Appendix G

Technical Memorandum: Garfield Avenue Roadway Compliance Averaging for Antimony in Soil

AECOM 250 Apollo Drive Chelmsford, MA 01824

Memorandum

То	Ian Curtis, NJDEP	Page 1
CC	Ronald Riccio, Site Administrator	
	James Ray, Site Administrator PM	
	Nancy Colson, Site Administrator Assistant	
	Prabal Amin, WESTON Solutions, Inc.	
	Laura Amend-Babcock, WESTON Solutions, Inc.	
	Itza Wilson, Jersey City	
	Peter Baker, Jersey City	
	David Spader, ERFS	
	Jody Overmyer, PPG	
	Rich Feinberg, PPG	
	Dorothy Laguzza, K&L Gates	
	Joe Lagrotteria, K&L Gates	
	Aimee Ruiter, AECOM	
	Sandy Paulsen, AECOM	
Subject	Garfield Avenue Roadway Compliance Averaging for Anti	mony in Soil (Revision 1)
From	Claire Hunt	
Date	December 13, 2022	

1.0 Introduction

This memorandum provides documentation of attainment of compliance for antimony (Sb) in soil with the New Jersey Department of Environmental Protection (NJDEP) residential direct contact soil remediation standard (RDCSRS) for a site-specific soil sample set from the Garfield Avenue Roadway in accordance with the NJDEP's Technical Guidance for the *Attainment of Remediation Standards and Site-Specific Criteria* (July 2021, Version 2.0). An iterative approach for compliance averaging was used to demonstrate partial attainment of the RDCSRS for an Sb soil sample within Functional Area 2 that exceeds the RDCSRS (discussed herein).

Boring logs, laboratory reports, and data validation reports for samples discussed in this memorandum are included as part of the *Remedial Action Report, Garfield Avenue Roadway (AOC GAR-1A and AOC 114-1B), Soil, Draft*, issued on August 31, 2022, except where otherwise noted.

2.0 Compliance Averaging Evaluation of Sb Compared to RDCSRS

2.1 Antimony Concentrations Greater than RDCSRS

The following soil samples (**Table 1**) with Sb concentrations greater than the RDCSRS for Sb of 31 milligrams per kilogram (mg/kg) remain in place within the Garfield Avenue Roadway.

Location ID	Sample ID	Depth Interval (ft bgs)	Sample Elevation (ft NAVD88)	Sb (mg/kg)
114SWE-A`6A	114-A'6A-6.5-7.0	6.5 - 7.0	4.2 - 3.7	69.7
A6	A6S6.5-7	6.5 - 7.0	4.0 - 3.5	43.2 J
A6	A6S8.5-9	8.5 - 9.0	2.0 - 1.5	37.2 J
114-B9B-CC-SW	114-B9B-SW-4.0-4.5X	4.2 - 4.7	7.3 - 6.8	38.0 J
114-B9B-CC-SW	114-B9B-SW-5.5-6.0	5.7 - 6.2	5.8 - 5.3	52.5 J
114-B10B-CC-SW	114-B10B-SW-5.5-6.0	5.8 - 6.3	5.8 - 5.3	35.9
C9	C9S7-7.5	7.0 - 7.5	4.5 - 4.0	198

Table 1: Soil Samples Remaining with Sb Concentrations Greater than the RDCSRS

Notes:

bgs - below ground surface

ft - foot or feet

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample. NAVD88 - North American Vertical Datum of 1988

Figure 1 and **Figure 2** depict boring/sample locations, as well as analytical results for soil samples where Sb remains in place within the Garfield Avenue Roadway at concentrations greater than the RDCSRS.

2.2 Delineation - RDCSRS

Soil samples with Sb concentrations greater than the RDCSRS that remain in place within the Garfield Avenue Roadway are delineated as presented in **Table 2** through **Table 6**.

Location ID	Depth Interval (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Sb Result (mg/kg)	Direction
A6	10.5 - 11.0	0 - (-0.5)	9/2/2003	< 0.57 UJ	Vertical
EF-38A	7.5 - 8.0	4.8 - 4.3	4/26/2011	< 1.0 U	North/Northwest
GAR-PDI-C'7A	6.5 - 7.0	4.2 - 3.7	1/8/2017	0.<0.35 U	West
MW1A ¹	8.0 - 10.0	3.9 - 1.9	11/18/2003	1.1 B	South
X8 ¹	9.3 - 9.8	4.1 - 3.6	10/4/2005	3.6 J	East

Table 2: Delineation of Sample 114-A'6A-6.5-7.0

Notes:

¹The boring log for this sampling location is provided in **Attachment 2**; the laboratory report and data validation report associated with this sampling location are provided in **Attachment 3** and **Attachment 4**, respectively.

B - The analyte concentration was less than or equal to three times the maximum method blank.

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample. U - The analyte was not detected above the sample reporting limit shown.

UJ - The analyte was not detected above the sample reporting limit shown and the reporting limit was approximate.

Table 3: Delineation of Samples A6S6.5-7 and A6S8.5-9

Location ID	Depth Interval (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Sb Result (mg/kg)	Direction
A6	10.5 - 11.0	0 - (-0.5)	9/2/2003	< 0.57 UJ	Vertical

V:\7-Deliverables\7.1B-GAGroup\RARs\Garfield Avenue\GAR-002B GAR Full RAR\FINAL\4.0 Appendices\App G CAM Sb\Text\2022-12-13 Final Garfield Ave CAM-Sb F.docx

Location ID	Depth Interval (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Sb Result (mg/kg)	Direction
X2 ¹	8.0 - 8.4	3.7 - 3.3	10/4/2005	< 1.2 UJ	North/Northeast
GAR-PDI-C'7A	6.5 - 7.0	4.2 - 3.7	1/8/2017	< 0.35 U	West
A-8A ¹	10.0 - 10.5	3.4 - 2.9	9/23/2011	0.54 J	South
MW1A ¹	8.0 - 10.0	3.9 - 1.9	11/18/2003	1.1 B	East

¹The boring log for this sampling location is provided in **Attachment 2**; the laboratory report and data validation report associated with this sampling location are provided in **Attachment 3** and **Attachment 4**, respectively.

B - The analyte concentration was less than or equal to three times the maximum method blank.

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.

U - The analyte was not detected above the sample reporting limit shown.

UJ - The analyte was not detected above the sample reporting limit shown and the reporting limit was approximate.

Table 4: Delineation of Samples 114-B9B-SW-4.0-4.5X and 114-B9B-SW-5.5-6.0

	Location ID	Depth Interval (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Sb Result (mg/kg)	Direction
1	114-B9B-CC-PB	6.2 - 6.7	5.3 - 4.8	9/18/2014	17.0 J	Vertical
	GAR-PDI-A10B	5.0 - 5.5	6.8 - 6.3	2/19/2017	0.53 J	North/Northwest
	EF-42	6.0 - 6.5	5.4 - 4.9	4/29/2011	< 1.1 UJ	West

6.2 - 5.7

9.1 - 8.6

Notes:

PZ131

D10¹

¹The boring log for this sampling location is provided in **Attachment 2**; the laboratory report and data validation report associated with this sampling location are provided in **Attachment 3** and **Attachment 4**, respectively.

10/19/2005

8/21/2003

22.5

< 7.3 J

South

East

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample. UJ - The analyte was not detected above the sample reporting limit shown and the reporting limit was approximate.

Table 5: Delineation of Sample 114-B10B-SW-5.5-6.0

10.0 - 10.5

4.5 - 5.0

Location ID	Depth Interval (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Sb Result (mg/kg)	Direction
114-B10B-CC-PB	6.3 - 6.8	5.3 - 4.8	9/19/2014	19.3	Vertical
GAR-PDI-A10B	5.0 - 5.5	6.8 - 6.3	2/19/2017	0.53 J	Northwest
114-C11B-CC-SW	5.5 - 6.0	5.8 - 5.3	9/23/2014	3.4	Northeast
EF-42	6.0 - 6.5	5.4 - 4.9	4/29/2011	< 1.1 UJ	West
PZ13 ¹	10.0 - 10.5	6.2 - 5.7	10/19/2005	22.5	South
D10 ¹	4.5 - 5.0	9.1 - 8.6	8/21/2003	< 7.3 J	East

Notes:

¹The boring log for this sampling location is provided in **Attachment 2**; the laboratory report and data validation report associated with this sampling location are provided in **Attachment 3** and **Attachment 4**, respectively.

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample. UJ - The analyte was not detected above the sample reporting limit shown and the reporting limit was approximate.

Location ID	Depth Interval (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Sb Result (mg/kg)	Direction
C9	21.5 - 22.0	(-10) - (-10.5)	9/3/2003	1.4	Vertical
EF-42	6.0 - 6.5	5.4 - 4.9	4/29/2011	< 1.1 UJ	North
GE	4.1 - 4.6	6.7 - 6.2	3/16/2004	< 0.43 UJ	West
P4-GA-A5B	5.5 - 6.0	4.0 - 3.5	8/21/2014	2.1 J	South/Southwest
PZ131	10.0 - 10.5	6.2 - 5.7	10/19/2005	22.5	East

Table 6: Delineation of Sample C9S7-7.5

Notes:

¹The boring log for this sampling location is provided in **Attachment 2**; the laboratory report and data validation report associated with this sampling location are provided in **Attachment 3** and **Attachment 4**, respectively.

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample. UJ - The analyte was not detected above the sample reporting limit shown and the reporting limit was approximate.

2.3 Functional Areas - RDCSRS

The Sb RDCSRS is based on the ingestion-dermal pathway (**Attachment 1**). The functional area for the ingestion-dermal pathway is limited to 0.25 acres for residential use. The extents of the residential functional areas are shown on **Figure 1** and **Figure 2**. Remaining samples within the functional areas extents were collected from deeper than 2 feet below ground surface and are considered to be a part of the functional areas for the calculations.

2.4 Compliance Averaging - RDCSRS

Compliance with the Sb RDCSRS is demonstrated through spatial averaging. Theissen polygons were created within Functional Areas 1 and 2 as shown in **Figure 1** and **Figure 2**, respectively. The sample selection process is as follows:

- 1. The samples for Sb that fall within a functional area (horizontally and vertically), including samples that are associated with a functional area, but are located beyond the physical limits of a functional area, are identified.
- The maximum concentration is selected at each sample location for use in the weighted average (refer to **Table 7** through **Table 9** below). The maximum of either the concentration for detections or the Method Detection Limit (MDL)/Reporting Limit (RL) for non-detects is selected.

Table 7: Samples Used to Determine Weighted Average Sb Concentration for Samples 114-
A'6A-6.5-7.0, A6S6.5-7, and A6S8.5-9 (Functional Area 1)

Location ID	Sample Depth (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Maximum Sb Result (mg/kg)	Area (sf)	Area x Maximum Sb Result (sf*mg/kg)
114SWE-A`10A ¹	8.0 - 8.5	4.1 - 3.6	8/3/2012	0.54 J	99	53
114SWE-A`6A	6.5 - 7.0	4.2 - 3.7	7/31/2012	69.7	1,509	105,177
A6	6.5 - 7.0	4.0 - 3.5	9/2/2003	43.2 J	626	27,043
EF-37	2.5 - 3.0	10.4 - 9.9	4/22/2011	2.8	17	48

V:\7-Deliverables\7.1B-GAGroup\RARs\Garfield Avenue\GAR-002B GAR Full RAR\FINAL\4.0 Appendices\App G CAM Sb\Text\2022-12-13 Final Garfield Ave CAM-Sb_F.docx

Location ID	Sample Depth (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Maximum Sb Result (mg/kg)	Area (sf)	Area x Maximum Sb Result (sf*mg/kg)
EF-38	2.5 - 3.0	9.4 - 8.9	4/22/2011	< 1.1 U	712	783
EF-38A	2.5 - 3.0	9.8 - 9.3	4/25/2011	< 1.1 UJ	1,537	1,691
GAR-PDI-A'8A	8.0 - 8.5	2.8 - 2.3	11/10/2016	< 0.37 U	975	361
GAR-PDI-B'9A	3.0 - 3.5	7.8 - 7.3	11/20/2016	2.6	1,908	4,961
GAR-PDI-C'7A	2.5 - 3.0	8.2 - 7.7	1/8/2017	0.93 J	1,289	1,199
GB	4.0 - 4.5	6.2 - 5.7	3/15/2004	< 0.41 UJ	826	339
X2 ¹	13.6 - 14.1	(-1.9) - (-2.4)	10/4/2005	< 1.2 UJ	1.393	1,672
		(Total	10,891	143,327

¹The laboratory report and data validation report associated with this sampling location are provided in **Attachment 3** and **Attachment 4**, respectively.

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample. sf - square feet

 $\ensuremath{\mathsf{U}}$ - The analyte was not detected above the sample reporting limit shown.

UJ - The analyte was not detected above the sample reporting limit shown and the reporting limit was approximate.

Weighted Average Sb Concentration for Functional Area 1 = 143,327 sf x mg/kg / 10,891 sf = 13 mg/kg.

Table 8: Samples Used to Determine Weighted Average Sb Concentration for Samples 114-B10B-SW-5.5-6.0, 114-B9B-SW-5.5-6.0, 114-B9B-SW-4.0-4.5X, and C9S7-7.5 (Functional Area 2)

Location ID	Sample Depth (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Maximum Sb Result (mg/kg)	Area (sf)	Area x Maximum Sb Result (sf*mg/kg)
114-B10B-CC-SW	5.8 - 6.3	5.8 - 5.3	9/19/2014	35.9	805	28,900
114-B9B-CC-SW	5.7 - 6.2	5.8 - 5.3	9/18/2014	52.5 J	1,213	63,683
114-C11B-CC-PB	6.5 - 7.0	5.3 - 4.8	9/23/2014	3.7	108	400
114-C11B-CC-SW	2.0 - 2.5	9.3 - 8.8	9/23/2014	10.3 J	1,278	13,163
114-C11B-PB ¹	13.5 - 14.0	(-0.8) - (-1.3)	10/17/2013	< 0.41 UJ	6	2
C9	7.0 - 7.5	4.5 - 4.0	9/3/2003	198	1,481	293,238
EF-41	2.5 - 3.0	8.6 - 8.1	4/26/2011	< 1.0 U	419	419
EF-42	2.5 - 3.0	8.9 - 8.4	4/26/2011	6.7	911	6,104

V:\7-Deliverables\7.1B-GAGroup\RARs\Garfield Avenue\GAR-002B GAR Full RAR\FINAL\4.0 Appendices\App G CAM Sb\Text\2022-12-13 Final Garfield Ave CAM-Sb F.docx

Location ID	Sample Depth (ft bgs)	Elevation Date S		Maximum Sb Result (mg/kg)	Area (sf)	Area x Maximum Sb Result (sf*mg/kg)
GAR-PDI-A10B	5.0 - 5.5	6.8 - 6.3	2/19/2017	0.53 J	1,003	532
GAR-PDI-B'4B	3.0 - 3.5	7.8 - 7.3	1/22/2017	0.69 J	27	19
GE	4.1 - 4.6	6.7 - 6.2	3/16/2004	< 0.43 UJ	1,476	635
MW2AV	12.0 - 12.5	(-1.2) - (-1.7)	10/6/2005	< 1.1 UJ	23	25
P4-GA-A5B	5.5 - 6.0	4.0 - 3.5	8/21/2014	2.1 J	1,672	3.511
	0.0 0.0	1.0 - 0.0	0/2 1/2014	Total	10,422	410,631

¹The laboratory report and data validation report associated with this sampling location are provided in **Attachment 3** and **Attachment 4**, respectively.

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample. sf - square feet

U - The analyte was not detected above the sample reporting limit shown.

UJ - The analyte was not detected above the sample reporting limit shown and the reporting limit was approximate.

Weighted Average Sb Concentration for Functional Area 2 = 410,631 sf x mg/kg / 10,422 sf = 39 mg/kg.

The weighted average concentration of 39 mg/kg exceeds the 31 mg/kg RDCSRS for Sb. As a result, an iterative analysis was performed. Future soil removal is planned within Functional Area 2. It is assumed the Sb concentration in the soil will be 31 mg/kg or less based analytical results associated with backfill placed throughout the Garfield Avenue Group Sites. For this iterative analysis, the RDCSRS for Sb was substituted (i.e., 31 mg/kg). The weighted average Sb concentration, substituting the backfill concentration for the Sb concentration at sample location C9S7-7.5, is provided in **Table 9** below.

Table 9: Samples Used to Determine Weighted Average Sb Concentration for Samples 114-
B10B-SW-5.5-6.0, 114-B9B-SW-5.5-6.0, 114-B9B-SW-4.0-4.5X, and C9S7-7.5 (Functional Area
2) - Iterative Approach

Location ID	Sample Depth (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Maximum Sb Result (mg/kg)	Area (sf)	Area x Maximum Sb Result (sf*mg/kg)
114-B10B-CC-SW	5.8 - 6.3	5.8 - 5.3	9/19/2014	35.9	805	28,900
114-B9B-CC-SW	5.7 - 6.2	5.8 - 5.3	9/18/2014	52.5 J	1,213	63,683
114-C11B-CC-PB	6.5 - 7.0	5.3 - 4.8	9/23/2014	3.7	108	400
114-C11B-CC-SW	2.0 - 2.5	9.3 - 8.8	9/23/2014	10.3 J	1.278	13,163
114-C11B-PB ¹	13.5 - 14.0	(-0.8) - (-1.3)	10/17/2013	< 0.41 UJ	6	2
C9	7.0 - 7.5	4.5 - 4.0	9/3/2003	31	1,481	45,911

V:\7-Deliverables\7.1B-GAGroup\RARs\Garfield Avenue\GAR-002B GAR Full RAR\FINAL\4.0 Appendices\App G CAM Sb\Text\2022-12-13 Final Garfield Ave CAM-Sb_F.docx

Location ID	Sample Depth (ft bgs)	Sample Elevation (ft NAVD88)	Date Collected	Maximum Sb Result (mg/kg)	Area (sf)	Area x Maximum Sb Result (sf*mg/kg)
EF-41	2.5 - 3.0	8.6 - 8.1	4/26/2011	< 1.0 U	419	419
EF-42	2.5 - 3.0	8.9 - 8.4	4/26/2011	6.7	911	6,104
GAR-PDI-A10B	5.0 - 5.5	6.8 - 6.3	2/19/2017	0.53 J	1,003	532
GAR-PDI-B'4B	3.0 - 3.5	7.8 - 7.3	1/22/2017	0.69 J	27	19
GE	4.1 - 4.6	6.7 - 6.2	3/16/2004	< 0.43 UJ	1,476	635
MW2AV	12.0 - 12.5	(-1.2) - (-1.7)	10/6/2005	< 1.1 UJ	23	25
P4-GA-A5B	5.5 - 6.0	4.0 - 3.5	8/21/2014	2.1 J	1,672	3,511
		•	•	Total	10,422	163,303

¹The laboratory report and data validation report associated with this sampling location are provided in **Attachment 3** and **Attachment 4**, respectively.

J - The result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample. J- - The analyte was positively identified; the associated numerical value is an estimated quantity with a potential low bias.

sf - square feet

U - The analyte was not detected above the sample reporting limit shown.

UJ - The analyte was not detected above the sample reporting limit shown and the reporting limit was approximate.

Weighted Average Sb Concentration for Functional Area 2 = 163,303 sf x mg/kg / 10,422 sf = 16 mg/kg.

3.0 Conclusions

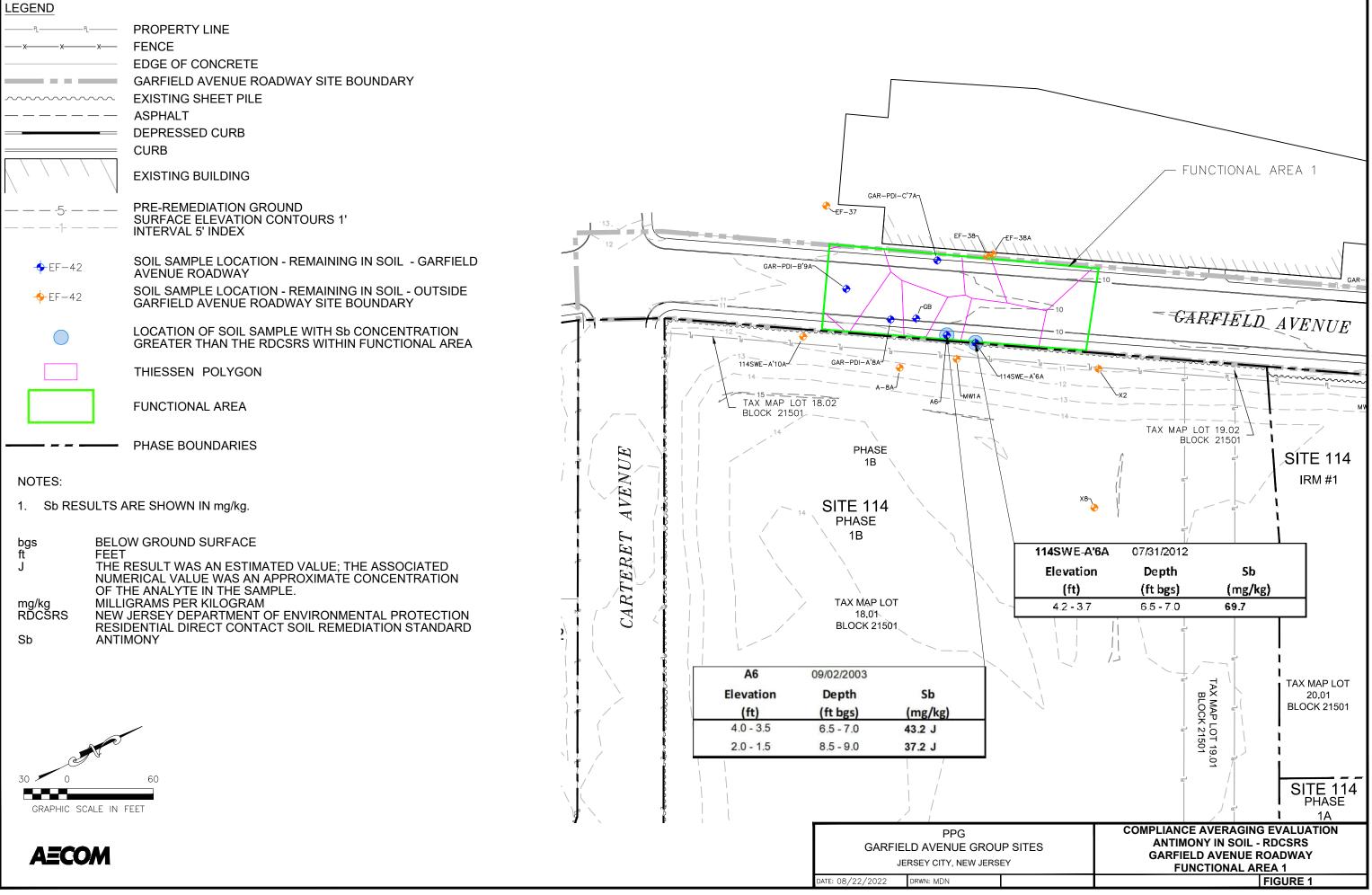
Based on the residential exposure scenario, the spatially weighted average Sb concentration within Functional Area 1 for samples 114-A'6A-6.5-7.0, A6S6.5-7, and A6S8.5-9 is 13 mg/kg, which is compliant with the 31 mg/kg RDCSRS.

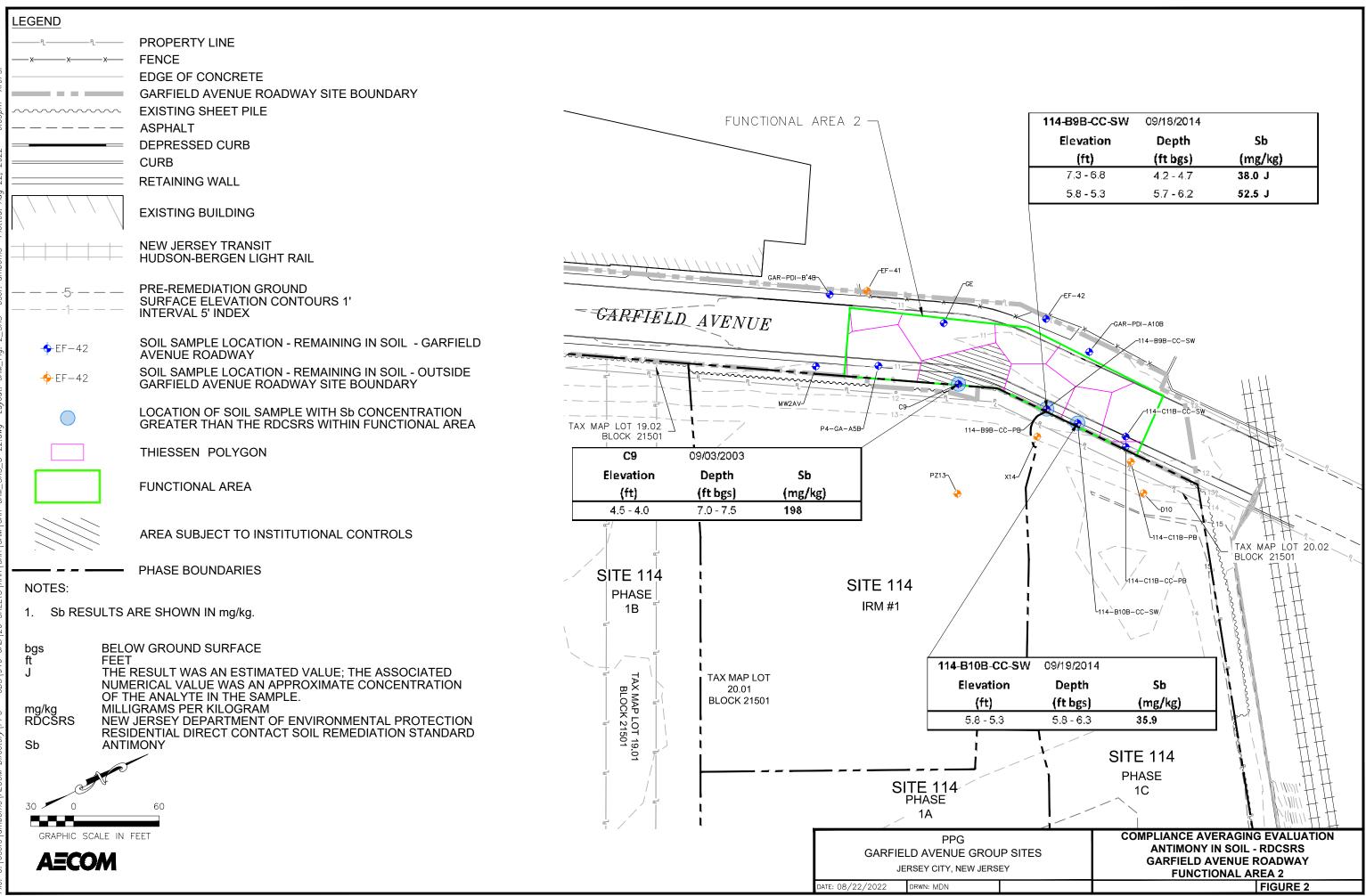
The spatially weighted average Sb concentration within Functional Area 2 at the Garfield Avenue right-of-way for samples 114-B10B-SW-5.5-6.0, 114-B9B-SW-5.5-6.0, 114-B9B-SW-4.0-4.5X, and C9S7-7.5 is 39 mg/kg, which is not compliant with the 31 mg/kg RDCSRS. Removing sample C9S7-7.5, which exceeds the RDCSRS, and substituting an estimated backfill concentration of 31 mg/kg (the RDCSRS), results in a weighted average Sb concentration of 16 mg/kg, which is compliant with the 31 mg/kg Sb RDCSRS. The polygon within which the highest Sb concentration exceeding the RDCSRS was substituted with the estimated Sb concentration in backfill to achieve compliance with the RDCSRS, will be addressed via institutional controls as shown on **Figure 2**.

Attachments:

Figures:

- **Figure 1** Compliance Averaging Evaluation, Antimony in Soil RDCSRS, Garfield Avenue Roadway Functional Area 1
- **Figure 2** Compliance Averaging Evaluation, Antimony in Soil RDCSRS, Garfield Avenue Roadway Function Area 2
- Attachment 1 NJDEP Environmental Criteria for Sb


Attachment 2 - Boring Logs


Attachment 3 - Laboratory Analytical Reports (Provided Separately)

Attachment 4 - Data Validation Reports (Provided Separately)

Garfield Avenue Roadway Compliance Averaging for Antimony in Soil (Revision 1) PPG, Jersey City, New Jersey

Figures

Garfield Avenue Compliance Averaging for Antimony in Soil (Revision 1) PPG, Jersey City, New Jersey

Attachment 1

NJDEP Environmental Criteria for Sb

Standards for Drinking Water, Ground Water, Soil and Surface Water

Antimony (Total)

CAS #: 7440-36-0							
Drinking Water Standards (µ g/l or ppb)							
Standard: 6	Type: Primary	FEDERAL MCL					
	Ground Water Quality Sta	ndards (µ g/l or ppb)					
Standard: 6	Type: Specifi	ic					
GW-Quality Criterion: 6							
PQL: 3							
	Surface Water Quality Sta	ndards (µ g/l or ppb)					
Fresh Water-							
Human Health: 5.6(h)(T)	Aquatic-Acute:	Aquatic-Chronic:					
Saline Water-							
Human Health: 640(h)(T)	Aquatic-Acute:	Aquatic-Chronic:					
	<u>Soil Standards</u>	(mg/kg)					
Residential Direct Contact Health Based Cri	teria and Soil Remediation Star	<u>ndard</u>					
Soil Remediation Standard: 31	Effective:	6/2/2008 Interim:					
Ingestion Dermal: 31							
Inhalation: 360,000							
Soil PQL: 6							
Non-Residential Direct Contact Health Base	Non-Residential Direct Contact Health Based Criteria and Soil Remediation Standard						
Soil Remediation Standard: 450	Effective:	6/2/2008 Interim:					
Ingestion Dermal: 450							
Inhalation: 23,000							
Soil PQL: 6							

Garfield Avenue Roadway Compliance Averaging for Antimony in Soil (Revision 1) PPG, Jersey City, New Jersey

Attachment 2

Boring Logs

	-	-3200 office	cataway, NJ (telephone		Las Series	50.0			Page 1 of
Project N			PG Soil Ri	-		Company: SGS	Drilling Water L		5,0F+
Project N			26015-4201		Drilling	Charlet	Boring Total De	4	244
0.0	rted Drilli		21/11		Rig Type	0010-1	Grout Depth (by Boring Total De		REI
	shed Dril		15111		Core Siz		Logged By:		1314
hysical	Location	PPE	Site	114	10) (and -Arreq	Logged by.		(Note) bgs = below ground surface
	PL V	Ê	2 2		Ø	Garfield Avenue Site	s Classification & Modifi	d Unified Soil Cla	siffication System
Depth Range	Re covery ft/ft	PID (ppm)	Molature Content	GA Class.	nscs	Surface Cover and Thicknes	SS:		Sample name & #:
0-1	0.8		drymous	+3	FIL	0.0-0.8 Loddish FSARD, little	Brown (SYR F Granel	444)	114-A-BA-0
1-2			/		1	Sit, medium de			
2-3						110.		-	
3-4									
4-5							m sup ut	1	
5-6	2.0	0.0	wet.	36	611	S.O - 7.0 Brown Black Interbude	led Silty		114-A-8A-3
6-7		0.0	d'	Bl	1	OICL COAL ASH/CI	NDERSibe	t loose,	IN A OF I
7-8						1		1	80
8-9					-	-		1.	
9-10		1.1				10.0-11.3 SAA	· o-te		114-A-8A-
10-11	33	0.0	x	6	H		in the	3)SILT	11. 4000
11-12	-	0.0	Moist	3.	T	Sond I Sond I trac	2 Organics	, soft,	2
12-13	-	0.0	1	7.8	SI	Moist, NO:	PEAT . high	nomenics	
13-14					-	12.0-12.6 Black 12.0-12.6 Black 1.144 STIT, 1044 12.6-13.0 PrkGro SAND, Some ST	yish Brunch	VR4(2)	10.100 (m)
14-15	-	-		-	-	dense moist, N	to.	Perarel	(red torrasione)
15-16					-	-			
16-17, 17-18		1		1	-	Find R	15f4	-	1
18-19			N.	-					
19-20	-							-	
St	ratioran	hic Unit	t Depth i	ntervals	(bgs):		Comme		
1)		3	4)			Sanded an	9/23/4	HOF TO+	CR KCP eh
2)			5)			Sampled on # Bottom Se VOCS, SV	.1-1.	2	
3)			6)		4	+ Bottom So	mple	Nor TAL	_Metals, xce

ENSR AECOM	Client:	PPG				BORING ID:		
EINSK AECOM	Site:	PPG - Jersey City, NJ			D10			
Start Date:	Project:	Site Investigation				Page: 1 o	f 2	
8/21/2003	Coordinat	es: X-611141.89	Y-683913.	65		Depth of I	Boring: 12.00	
End Date:	Elevation:	13.6 ft NAVD88				Geologist		
8/21/2003	Drill Subc	contractor: S&S			Driller:			
Depth (ft) Lithology		Description		PID	Sa	mple ID	Sample Parameters	

`

0_					
		ASPHALT			
		COBBLE		D10 (0.5-1.0)	TAL Metals, Cr+6
		FILL: Yellow silt (staining), cobble, coal, coke/slag] 0.0 ppm	D 40	TAL MULL OUR OVOD
2-		FILL: Yellow silt (staining), fine		D10 (1.5-2.0)	TAL Metals, Cr+6, SVOCs, PCBs, VOCs, Cyanide
		FILL: Orange, sandy silt, small gravel	_/ 0.0 ppm [
-			0.0 ppm		
4-		FILL: Brown silt, slight yellow staining, some sand, coal, coke, brick	0.0 ppm		
-			0.0 ppm		
6-			0.0 ppm		
-		FILL: COKE/SLAG	0.0 ppm		
8—			0.0 ppm		
-			0.0 ppm		
10-		SAND: Red brown, cobble	0.0 ppm		
			0.0 ppm	D10 (11.0-11.5)	TAL Metals, Cr+6
l ₁₂ ⊥	·····				

NOTES: Coordinates are provided in New Jersey State Plane NAD 1983 Feet.

ENSR AECOM	Client: PPG	BORING ID:
ENSR AECOM	Site: PPG - Jersey City, NJ	D10
Start Date:	Project: Site Investigation	Page: 2 of 2
8/21/2003	Coordinates: X-611141.89 Y-683913.65	Depth of Boring: 12.00
End Date:	Elevation: 13.6 ft NAVD88	Geologist:
8/21/2003	Drill Subcontractor: S&S	Driller:
Depth (t1) Lithology	Description PID	Sample ID Sample Parameters

. 12 ____

NULL: End of Boring at 12 ft.

NOTES: Coordinates are provided in New Jersey State Plane NAD 1983 Feet.

ENSR AECOM	Client: PPG	ì				BORING ID:		
ENSR AECOM Site: PPG - Jersey City, N			NJ			M	W1A	
Start Date:	Project: Site	Investigation				Page: 1 of	2	
11/18/2003	Coordinates: X-6	610815.64	Y-683479.2	26		Depth of E	Boring: 12.00	
End Date:	Elevation: 11.9	ft NAVD88				Geologist:	D. Sherman	
11/18/2003	Drill Subcontrac	tor: ADI				Driller:		
Depth (tt) Lithology	5	Description		PID	ear	mple ID	Sample Parameters	

. 0				
	FILL: Dark brown (10YR 3/3) GRAVEL, some coarse to fine sand, cement, concrete, brick, cinder			
-		0.0 ppm		
2-	FILL: Dark brown (10YR 3/3) SILT, some fine sand,	0.0 ppm	MW-1A2.0	TAL Metals, Cr+6, TCLSVOCs, TCLVOCs, Cyanide, PCBs
-	Iittle gravel, clinker, cinder, 10% COPR	0.0 ppm		Cyanide, PCDS
4		0.0 ppm		
	FILL: Black (10YR 2/1) SILT, some fine sand, little gravel, cinder, slag, 20%COPR, brick			
		0.0 ppm		
6+	FILL: Black (10YR 2/1) SILT, little coarse to fine sand and gravel, cinder, clinker, cement, 20% COPR	0.0 ppm		
-		0.0 ppm		
8-	FILL: Reddish brown (5YR 5/3) SILT, little fine sand,	0.0 ppm	MW-1A8.0	TAL Metals, Cr+6, TCLSVOCs, TCLVOCs,
-	Clinker, wood, cinder	0.0 ppm		Cyanide, PCBs
10+	SILT: Dark gray (5YR 4/1) SILT, little clay, trace fine	0.0 ppm		
		0.0 ppm		
I ₁₂ ⊥				

NOTES: Coordinates are provided in New Jersey State Plane NAD 1983 Feet.

ENSR AECOM	Client: PPG	BORING ID:		
ENSK AECOM	Site: PPG - Jersey City, NJ	MW1A		
Start Date:	Project: Site Investigation	Page: 2 of 2		
11/18/2003	Coordinates: X-610815.64 Y-683479.26	Depth of Boring: 12.00		
End Date:	Elevation: 11.9 ft NAVD88	Geologist: D. Sherman		
11/18/2003	Drill Subcontractor: ADI	Driller:		
Depth (#1) Lithology	Description PID San	hple ID Sample Parameters		

. 12 ____

NULL: End of Boring at 12 ft.

NOTES: Coordinates are provided in New Jersey State Plane NAD 1983 Feet.

ENSR AECOM	Client: PPG	BORING ID:		
EINSK AECOM	Site: PPG - Jersey City, NJ	PZ13		
Start Date:	Project: Site Investigation	Page: 1 of 2		
10/19/2005	Coordinates: X-611083.7 Y-683797	Depth of Boring: 20.00		
End Date:	Elevation: 16.2 ft NAVD88	Geologist: D. Sherman		
10/19/2005	Drill Subcontractor: Ameridrill	Driller:		
Depth (ft) Lithology	Description PID 58	mple ID Sample parameters		

`

0				
	FILL: Yellowish Brown (10YR 5/8) fine SAND, well	0.1 ppm		
	sorted, dry.		PZ130.5	
2+			PZ132.0	
	FILL: Very Dusky Red (10R 2.5/2) fine to coarse SAND, some fine Gravel (brick, glass, cinders), dry.		1 2 1 3 2 . 0	
-				
4-	FILL: Weak Red (10R 4/4) fine SAND, some Sandy	0.0 ppm		
	Silt, little Clayey Silt, trace Pebbles, wet at 6.0'. 100% COPR			
-				
6+			PZ136.0	
8-		0.0 ppm		
	FILL: Grayish Brown (10YR 5/2) fine to medium SAND, some Gravel, trace Silt (coal ash, cinder), wet. 30%	0.0 ppm		
	Mud Waste			
10+	FILL: Greenish Gray (GLEY1 5/1) fine to coarse SAND,		PZ1310.0	
	some medium to fine Gravel (coal ash, clinker), wet. 80% Mud Waste			
₁₂ ⊥				
14				

NOTES: Coordinates are provided in New Jersey State Plane NAD 1983 Feet.

	Client: PPG	BORIN	IG ID:		
ENSR AECOM	Site: PPG - Jersey City, NJ	PZ13			
Start Date:	Project: Site Investigation			Page: 2 of	2
10/19/2005	Coordinates: X-611083.7 Y-683797			Depth of E	Boring: 20.00
End Date:	Elevation: 16.2 ft NAVD88			Geologist:	D. Sherman
10/19/2005	Drill Subcontractor: Ameridrill			Driller:	
Depth (#1) Lithology	Description	PID	Sa	mpleID	Sample Parameters
	L: Grayish Brown (10YR 5/2) fine to coarse SAND, ne fine Gravel (coal ash, brick, glass), wet. L: Dark Brown (10YR 3/3) SILT, some fine to arse Sand, little fine Gravel (brick fragments), wet.	0.2 ppm		Z1314.0 Z1318.0	
	LL: End of Boring at 20 ft.				

、

NOTES: Coordinates are provided in New Jersey State Plane NAD 1983 Feet.

Boring ID: X2

Page: 1

Project Name: Project Numb					Prilling Company: Ameridrill Prilling Method: Geoprobe	Coordinates (NJSPNA	D83) x: 610865 92
Date Started E					Rig Type:	Coordinates (NJSPNA	
Date Finished					Core Size: 2 inches	Boring Total Depth: 2	
Logged By:					Project Manager:	Depth to Water:	т IL
hysical Loca				F		Surface Elevation: 11	
				1 1			
Depth Range ft bgs)	ery PID (ppm)	Moisture Content	USCS	Graphic Log	Surface Cover and Th	hickness:	Sample ID
 -1		moist	FILL		Very dark gray (7.5YR 3/1) fine sar to coarse gravel, trace coal fragme organics, slgiht cohesive		114-X2A0-0.5
-2		dry	FILL		Dark reddish brown (2.5YR 3/4) me	edium to coarse	114-X2B-2-2.7
		saturated	FILL		\gravel, loose	/ [114-X2B2-2.7
-3			NR		Very dark gray (7.5YR 3/1) medium some fine to coarse gravel, little fin No Recovery	n and coarse sand, ne sand, loose	
-4		saturated	FILL		Very dark gray (7.5YR 3/1) fine to r	medium sand and silt	114-X2C4-4.5
5			NR		little fine gravel, slight cohesive No Recovery		
-8							
		saturated	FILL NR		Very dark gray (7.5YR 3/1) silt, trac	ce tine gravel and fine	114-X2D8-8.4
-9			NK		No Recovery		
11 		saturated	FILL		Very dark gray (7.5YR 3/1) fine sar slight cohesive	nd and silt, trace clay,	
-13		saturated	FILL		Dark reddish gray (7.5YR 4/1) silt a sand, trace organics, cohesive		114-X2E13.6-14.1
14 			NR		No Recovery		
16 17		saturated	SAND		Dark reddish brown (2.5YR 3/4) fin some silt and fine to medium grave		
 18			NR		No Recovery		114-X2F-17.4-17.9
 19					-		
		saturated	SAND		Dark reddish brown (2.5YR 3/4) fin	e to coarse sand, little	
· -		saturated	SAND		fine gravel and silt, trace medium g	gravel, loose	
21		saturated	SILTY SAND	-	Very dark gray (7.5YR 3/4) fine to c gravel and silt, trace medium grave Dark reddish brown (2.5YR 3/4) fin	coarse sand, little fine	

Boring ID: X2

Page: 2

	Name: F Number:					Filling Method: Geoprobe	Coordinates (N	JSPNAD83) x: 610865.92
	arted Dril					Rig Type:		SPNAD83) x: 683563.95
			10/4/2005			Core Size: 2 inches	Boring Total Dep	
	By: Ric					Project Manager:	Depth to Water:	
	al Locatio							n: 11.7 ft NAVD88
Depth Range t bgs)	Recovery (ft/ft)	PID (ppm)	Moisture Content	USCS	Graphic Log	Surface Cover and ⊺	Thickness:	Sample ID
				NR		sand, slight cohesive to loose		
-						No Recovery		
-23								
_								
-24								
				NULL		End of Boring at 24'		
					1			
otes: as - belo	ow surface g	arade	COPR - chro	mite ore proce	essina resid	due UNDno - non-organic undisturbed nati	ive deposits MGP - r	nanufactured gas plant
<u>M - m</u> e	adow mat		GGM - green			due UNDno - non-organic undisturbed nati UNDorg - organic undisturbed native of	denosits CCPW	- chromate chemical production was

Boring ID: X8

Dado	1
гауе.	

			arfield Ave			Drilling Company: Ameridrill				
	Number:					Drilling Method: Geoprobe		(NJSPNAD83) x: 610951		
Date Started Drilling: 10/4/2005				Rig Type:	PNAD83) y: 683518					
Date Fi	nished Dr	illing:	10/4/2005	5		Core Size: 2 inches	Boring Total Depth:	24 ft		
.oggec	d By: Ric	hard Fi	rely			Project Manager:	Depth to Water:			
hysica	al Locatio	n: 5'V	/est, reloc	ated			Surface Elevation:	13.4 ft NAVD88		
			Ĺ							
Depth Range t bgs)	Recovery (ft/ft)	PID (ppm)	Moisture Content	USCS	Graphi Log	c Surface Cover and Thic	kness:	Sample ID		
						2 Concrete				
_			dry	CONCRETE FILL	\times	Concrete		114-X8A0.4-0.9		
			moist	FILL	\times	White (7.5YR 8/1) fine to coarse sand Strong brown (7.5YR 5/6) fine sand, t		114-X6A0.4-0.9		
-1					\times	cohesive		114-X8B1-1.5		
_			moist	FILL	\times	Dark reddish brown (5YR 3/3) COPR	100% fine to			
			moist	FILL		medium gravel, little medium to coars		-		
-			moist			Very dark gray (7.5YR 3/1) COPR 10 sand and fine to medium gravel, ash,	% fine to coarse			
-3				NR		soil, trace coal fragments, loose		1		
_						No recovery				
-4			saturated	FILL		Green stained medium to coarse, qua	artz gravel, wood,	-		
			L		\bigotimes	little medium to coarse sand, loose		4		
-5			saturated	FILL		Brown (7.5YR 4/4) degraded wood, fi	perous			
-6								444 2000 0.5		
-			saturated	FILL	\otimes	Dark brown (7.5YR 3/2) medium to co	parse sand and fine	114-X8C6-6.5		
	1			NR	XXXX	to medium gravel, trace fine sand and	I silt, wood at 2.5 to $/$	1		
-7						2.6 feet, loose	/			
_						No recovery				
-8										
-0			saturated	FILL	\times	Gray (7.5YR 5/1) medium to coarse g	ravel, some fine to			
-					\times	coarse sand and ash, little silt, trace	vood, loose			
-9					\times	X				
-					\times	8		114-X8D9.3-9.8		
					$\times\!\!\times\!\!\times$	β.				
-10				NR	~~~~	No recovery		1		
_						,				
-11										
-11										
-										
-12					XXXX			-		
			saturated				e gravel, loose	1		
				NR		No recovery				
-13										
_										
-14										
·*										
-	1									
-15										
_										
16										
-16			moist	FILL	<u> </u>	Dark brown (7.5YR 3/4) silt and clay,	trace organics, /-	114-X8F16-16.5		
-				PT		\cohesive				
-17					<u>1, \1,</u>					
_					<u> </u>	<u> </u>				
٦ ٦				NR		No recovery		1		
-18	1									
_										
-19										
-	1									
-20					<u></u>			4		
			L	PT				-		
			saturated	SM		Gray (7.5YR 5/1) fine sand, some silt	, trace medium			
-21	1		saturated	SM		gravel, slight cohesive	and and all as as	1		
_			Saturateu			Dark reddish brown (2.5YR 3/4) fine s		X8G		
						medium to coarse sand, little fine to c	uaise gravel, loose	1		
otes:					anina rai	viduo LINDRO por organia undisturbod pativo a	onooita MCD manu	ifactured gas plant		
gs - bel	ow surface (adow mat	grade	GGM - gree	omite ore proce	ssing res	sidue UNDno - non-organic undisturbed native o UNDorg - organic undisturbed native depo		omate chemical production was		

Boring ID: X8

Page:	2

Project	Numbor	60.20						
Project Number: 60240739 Date Started Drilling: 10/4/2005 Date Finished Drilling: 10/4/2005 Logged By: Richard Firely						Drilling Method: Geoprobe Rig Type:		es (NJSPNAD83) x: 610951 es (NJSPNAD83) y: 683518
						Core Size: 2 inches		tal Depth: _24 ft
						Project Manager:	Depth to W	
Physic	al Locatio	n: 5'\/	/est, reloca	ated			Surface FL	evation: 13.4 ft NAVD88
							Candoo Er	
Depth Range ft bgs)	Recovery (ft/ft)	PID (ppm)	Moisture Content	USCS	Graphie Log	Surface Cover an	d Thickness:	Sample ID
				NR		No recovery		
· -								
-23								
-24								
24				NULL		End of Boring at 24'		
				NOLL				
lotes: gs - belo /IM - me	ow surface g	grade	COPR - chro GGM - greer	mite ore proce	essing res	idue UNDno - non-organic undisturbed UNDorg - organic undisturbed nativ	native deposits	MGP - manufactured gas plant CCPW - chromate chemical production was

Garfield Avenue Roadway Compliance Averaging for Antimony in Soil (Revision 1) PPG, Jersey City, New Jersey

Attachment 3

Laboratory Analytical Reports (Provided Separately)

Garfield Avenue Roadway Compliance Averaging for Antimony in Soil (Revision 1) PPG, Jersey City, New Jersey

Attachment 4

Data Validation Reports (Provided Separately)