Attachment F Groundwater Sampling Logs

			•						New York			an a la chuir	Sheet		of	1
		Site:		PP	G Jersey	City			Clier	nt / Site:		Dre	esdner Ro	bin		
	C	ate:			2/9/2011			<u>.</u>	Field Per	sonnel:	<u></u>		D. Miller			
v	Veat	her:		5	Sunny, 20ª	F				Job #			22930			
Monitorir	ng W	ell #:	10	8-TMW-J	008	-	Well Depth:	1	9.47	ft	Scr	eened/Op	en Interval:		5.0	ft
Well	1.1	L	_	NA		_ We	II Diameter:		1	inches						
PID/FID R (ppm):	eadi	ngs	Backgroun	d:		NA			Pump Intak	e Depth:		18.5		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	ater Befor	e Pump Ins	tallation:	15.(01	ft below TO)C
		_	Beneath In	ner Cap:		NA			and the second		Pe		Imp			
TIME	Purging	Sampling	p⊦ (pH u		Tempe (°C	and the second sec	Spec Conduc (us/c	ctivity	Disso Oxyg (mg/	jen	Red Poter (m)	ntial	Turbl (NT	10 Mar 10	Pumping Rate	Depth to Water (ft below
	Pul	Sar	Reading		Reading	Change			Reading	Change					(ml/min)	TOC)
0915	x		7.79	NA	13.7	NA	1042	NA	2.42	NA	231.8	NA	625	NA	100	15.47
0920	x		7.71	-0.08	13.9	0.2	645	-397	2.33	-0.09	219.7	-12.1	296	-329	100	15.56
0925	x		7.63	-0.08	14.0	0.1	373	-272	2.24	-0.09	211.1	-8.6	165	-131	100	15.64
0930	x		7.59	-0.04	14.1	0.1	370	-3	1.94	-0.30	202.4	-8.7	124	-41	100	15.70
0935	X		7.56	-0.03	14.1	0.0	369	-1	1.78	-0.16	193.1	-9.3	108.0	-16.0	100	15.76
0940	x		7.55	-0.01	14.1	0.0	365	-4	1.88	0.10	186.3	-6.8	116	8	100	15.83
0945	x		7.55	0.00	14.2	0.1	370	5	1.79	-0.09	179.9	-6.4	109.6	-6.4	100	15.86
0950	x		7.54	-0.01	14.3	0.1	374	4	1.72	-0.07	175.1	-4.8	169	59	100	15.91
0955	x		7.55	0.01	14.2	-0.1	362	-12	1.45	-0.27	170.6	-4.5	178	9	100	16.01
1000	x		7.54	-0.01	14.3	0.1	369	7	1.45	0.00	155.4	-15.2	2932	2754	100	17.43
1005	x		7.54	0.00	14.5	0.2	361	-8	0.99	-0.46	144.5	-10.9	3563	631	100	17.51
1010	x	1	7.54	0.00	14.1	-0.4	372	11	1.19	0.20	143.5	-1.0	3848	285	100	17.57
1015	x		7.54	0.00	14.2	0.1	368	-4	1.14	-0.05	138.6	-4.9	3751	-97	100	17.64
1020	x		7.54	0.00	14.2	0.0	362	-6	1.12	-0.02	135.8	-2.8	3685	-66	100	17.76
1025		x	7.54	0.00	14.3	0.1	360	-2	1.08	-0.04	134.2	-1.6	3602	-83	100	17.83
1030		x	7.54	0.00	14.3	0.0	366	6	1.11	0.03	133.0	-1.2	3533	-69	100	17.89
1035		x	7.54	0.00	14.2	-0.1	361	-5	1.06	-0.05	130.7	-2.3	3496	-37	100	17.94
																2
Comment	s:			Purge	began a	t 0910.	Sample	time is	1021.							
			ported relativ					Primary		DM 2/10			ary Review	r:	KH 2/15/1	1
			FERS HAVE S						N: <u>+</u> 0.1 for p	H; <u>+</u> 3% foi	Specific Co	nductivity a	ind			

	S	ite:		PP	G Jersey	City	in the		Clier	t / Site:		Dr	esdner Ro	bin		
	D	ate:			2/9/2011				Field Per	sonnel:			D. Miller			
v	Veat	her:		S	unny, 20°	F				Job #			22930			
Monitorir	ig We	ell #:	10	8-TMW-DO	008		Well Depth:	1	7.82	ft	Scr	eened/Op	en Interval:		5.0	ft
Well	Perm	it #:		NA		. We	II Diameter:		1	inches						
PID/FID R (ppm):	eadir		Backgroun	d:		NA			Pump Intak	e Depth:		17.5		ft below	тос	
			Beneath Ou			193 (A)				1.1.1			16.4	12.7		oc
			Beneath In			NA					Pe					
TIME	Purging	Sampling	pH (pH ur	nits)	Temper (°C)	Spec Conduc (us/c	ctivity :m)	Disso Oxyg (mg/	en L)	Red Poter (m\	ntial /)	Turbi (NT	U)	Pumping Rate	Depth to Water (ft below
	P	Sa	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	Reading	Change	(ml/min)	TOC)
1110	x	_	7.24	NA	14.6	NA	336	NA	6.45	NA	198.8	NA	1439	NA	100	16.99
1						in the s										
										in the				and the		2 ⁴ -
										ni Na stare As				enter de la constante de la co		
									1.1.16							
				-												
		-														
-		_														
	1															
												4			2	
	116															
	10.00			1										445		
						1						41.0				
-						in an				Sec. 1						
	-						- Aging - A				a si ya sa sa sa					
												in the second		_	-	
	_														1.1.1	
						1										
	-	-													E. C. Strand	
omments					egan at	1105	Well rar	n dry et	1113 4	llowed	time to	echar		en afte	San Sin .	
ennienta							ot contair							on and		

Wei Monitoring \	Da ath We erm	ate: ner: II #: it #: gs		S 8-TMW-J	Gunny, 20º 014	F			Clier Field Per			S 20 1	esdner Ro S. Schulze			
Wea Monitoring \ Well Pe PID/FID Rea	we we	ner: #: it #: gs	10	S 8-TMW-J	Sunny, 20º 014	F			Field Per	sonnel:			S. Schulze	•	5. A. S	
Monitoring N Well Pe PID/FID Rea	We erm	#: it #: igs	10	8-TMW-J	014											
Well Pe	ərm	it #: gs		11.2	1120								1.11			
PID/FID Rea	-	gs		NA			Well Depth:			_ft	Scr	eened/Op	en Interval:		5.0	ft
ppm):			Backgroun				II Diameter:		1	inches					Sally Barrow	
						1.1.1			Pump Intal	ke Depth:		17.0		ft below	тос	
									Depth to Wa			6 15 16		73	ft below TO	C
	2 E			ner Cap:		NA	Spec	Ific	Purg Disso	e Method Ived	Pe Red	rístaltic Pu ox	Imp	-	an là chi	Depth to
TIME	urging	amplin	pH (pH ur	nits)	Temper (°C	;)	Conduc (us/c	:m)	Oxyg (mg	/L)	Poter (m)	ntial /)	Turbi (NT	U)	Pumping Rate	Water (ft below
C	T	Ő	Reading	Change	6 40 10	Change	Reading	Change		Change		Change	Reading	Change	(ml/min)	TOC)
1950. 2014	×	-	8.59	NA	13.2	NA	615	NA	1.17	NA	30.2	NA	2388	NA	130	11.48
0924 >	Ч	_	8.22	-0.37	13.7	0.5	613	-2	1.09	-0.08	16.2	-14.0	2930	542	120	11.66
0929 >	×	_	8.01	-0.21	13.8	0.1	602	-11	1.10	0.01	1.5	-14.7	3166	236	120	11.90
0934 >	хļ		7.84	-0.17	13.3	-0.5	598	-4	0.94	-0.16	4.4	2.9	3667	501	120	12.07
0939 >	×		7.67	-0.17	13.4	0.1	592	-6	0.96	0.02	1.2	-3.2	3729	62	120	12.19
0944 X	x		7.60	-0.07	13.4	0.0	588	-4	0.96	0.00	-5.0	-6.2	3984	255	120	12.25
0949 X	x		7.58	-0.02	13.3	-0.1	586	-2	1.00	0.04	-5.9	-0.9	3945	-39	120	12.26
0954 X	x		7.53	-0.05	13.3	0.0	582	-4	1.02	0.02	-6.6	-0.7	3999	54	120	12.27
0959 X	x		7.50	-0.03	13.3	0.0	580	-2	1.04	0.02	-8.1	-1.5	3966	-33	120	12.29
1004 X	x		7.47	-0.03	13.3	0.0	579	-1	1.10	0.06	-9.7	-1.6	3941	-25	120	12.31
1009 X	ĸ	-	7.44	-0.03	13.4	0.1	575	-4	1.12	0.02	-12.7	-3.0	3954	13	120	12.35
1014 X	$\langle $		7.41	-0.03	13.4	0.0	571	-4	1.15	0.03	-19.8	-7.1	3947	-7	120	12.40
1019 X	$\langle $		7.41	0.00	13.5	0.1	569	-2	1.14	-0.01	-22.4	-2.6	4111	164	120	12.42
1024 X	<		7.40	-0.01	13.5	0.0	567	-2	1.19	0.05	-26.7	-4.3	4222	111	120	12.48
1029		x	7.40	0.00	13.6	0.1	566	-1	1.21	0.02	-29.3	-2.6	4198	-24	120	12.54
1034		x	7.40	0.00	13.6	0.0	565	-1	1.20	-0.01	-31.2	-1.9	4114	-84	120	12.66
1039		x	7.40	0.00	13.7	0.1	561	-4	1.14	-0.06	-37.8	-6.6	4222	108	120	12.68
	1															
					40000											
omments:			Pump on	@ 090	08		Sample	time : 1	025							
RP readings		e rep	orted relativ	e to the S	tandard Hyre	drogen Ele		Primary	Review:	SS 02/1		Seconda	ary Review		LM 02/15/	11

					G Jersey	Oity			Ciler	it / Site:		Dre	esdner Ro	nia		
	D	ate:			2/9/2011				Field Per	sonnel:			S. Schulz	9		
v	Veat	her:		S	Sunny, 20º	F				Job #			22930			
Monitorir	ng W	ell #:	10	8-TMW-D	012		Well Depth:	2	3.40	ft	Scr	eened/Op	en Interval:		5.0	ft
Well	Pern	nit #:		NA		- We	II Diameter:		1	inches						2.2
PID/FID R ppm):	eadi	ngs	Backgroun	id:		NA			Pump Intak	e Depth:		21.0		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	ater Befor	re Pump Ins	tallation:	13.2	25	ft below TO	oc
			Beneath In	ner Cap:		NA			all a strange to		Per		Imp	Januar		
TIME	Purging	Sampling	pł (pH u Reading	nits)	Temper (°C Reading)	Spec Conduc (us/c Reading	ctivity m)	Disso Oxyg (mg/ Reading	jen ′L)	Rede Poten (m\ Reading	tial /)	Turbi (NT Reading	U)	Pumping Rate (ml/min)	Depth to Water (ft below TOC)
1104	x		7.44	NA	12.8	NA	539	NA	0.19	NA	-235.9	NA	7824	NA	110	13.85
1109	x		7.28	-0.16	13.7	0.9	574	35	0.27	0.08	-289.6	-53.7	8195	371	110	14.08
1114	x		7.15	-0.13	13.8	0.1	598	24	0.44	0.17	-248.9	40.7	7628	-567	100	14.32
1119	x		7.08	-0.07	13.8	0.0	601	3	0.70	0.26	-238.2	10.7	6918	-710	100	14.45
1124	x		7.02	-0.06	13.7	-0.1	598	-3	0.59	-0.11	-220.5	17.7	6222	-696	100	14.58
1129	х		6.95	-0.07	13.8	0.1	594	-4	0.72	0.13	-213.0	7.5	5996	-226	100	14.73
1134	х		6.90	-0.05	13.9	0.1	590	-4	0.75	0.03	-205.2	7.8	5990	-6	100	14.82
1139	х		6.87	-0.03	13.9	0.0	586	-4	0.77	0.02	-202.6	2.6	5858	-132	100	14.87
1144	х		6.84	-0.03	13.8	-0.1	583	-3	0.80	0.03	-196.8	5.8	5840	-18	100	14.90
1149	х		6.83	-0.01	13.8	0.0	580	-3	0.83	0.03	-194.5	2.3	5822	-18	100	14.93
1154	-	X	6.82	-0.01	13.8	0.0	577	-3	0.84	0.01	-192.2	2.3	5846	24	100	14.96
1159		x	6.81	-0.01	13.8	0.0	576	-1	0.86	0.02	-190.8	1.4	5990	144	100	15.00
1204	_	X	6.80	-0.01	13.8	0.0	575	-1	0.88	0.02	-188.8	2.0	5976	-14	100	15.02
-		_														
	-	_			_											
	_	_														
		_														
	-	_														
	+	_									_	_				
omments																

													Sheet		_ of	1
	5	Site:		PP	G Jersey	City			Clier	nt / Site:		Dre	esdner Ro	bin		
	D	ate:			2/24/2011	1			Field Per	sonnel:		к	. Harrelso	on		
V	Veat	her:			Cool, 40°	F		_		Job #			23410			
Monitorin	ıg We	ell #:	10	8-TMW-M	1018	-	Well Depth:	1	8.28	ft	Scr	ened/Op	en Interval:		5.0	ft
and the second second	-			NA		We	II Diameter:	1253	1	inches						
PID/FID F (ppm):	leadi	ngs	Backgrour	nd:		NA			Pump Intak	e Depth:		15.5		ft below	тос	
			Beneath O	uter Cap:		NA		. ''	Depth to Wa	iter Befor	e Pump ins	tallation:	3.7	′5	ft below T	ос
			Beneath In	iner Cap:		NA		. Jacob	the stream of the state of the	e Method	· · · · · · · · · · · · · · · · · · ·	ristaltic Pu	ump			
TIME	Purging	Sampling	pł (pH u	nits)	Tempe (°C	;)	Spec Conduc (us/c	ctivity m)	Disso Oxyg (mg/	jen /L)	Red Poter (m)	ntial /)	Turbi (NT	'U)	Pumping Rate	(ft below
		S				Change	Reading	Cnange						Cnange		TOC)
1205	X		7.58	NA	10.0	NA	1469	NA	0.37		-107.1	NA	1018	NA	240	4.70
1210	x		7.65	0.07	9.9	-0.1	1448	-21	0.33	-0.04	-106.5	0.6	704	-314	240	5.12
1215	x	_	7.78	0.13	9.5	-0.4	1419	-29	0.34	0.01	-109.0	-3	189	-515	160	5.31
1220	x		7.67	-0.11	9.3	-0.2	1369	-50	0.35	0.01	-83.8	25.2	87.2	-101.8	160	5.52
1225	x		7.53	-0.14	9.0	-0.3	1297	-72	0.46	0.11	-52.2	31.6	614	527	120	6.45
1230	x		7.64	0.11	9.7	0.7	1381	84	0.32	-0.14	-98.7	-46.5	648	34	120	7.44
1235	X		7.65	0.01	9.9	0.2	1373	-8	0.39	0.07	-81.5	17.2	190	-458	120	8.04
1240	x		7.64	-0.01	10.0	0.1	1364	-9	0.52	0.13	-38.9	42.6	189	-1	120	8.97
1245	x		7.60	-0.04	9.9	-0.1	1338	-26	0.94	0.42	9.7	48.6	187	-2	120	9.63
1250		x	7.58	-0.02	9.9	0.0	1330	-8	0.93	-0.01	1.9	-7.8	188	1	120	10.12
Y.,								1						1		
												1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1				
								10.1					E H			
		-														
		-														
		-														
Comment	s:				Began				e Time	1246						-
ORP readi	ngs a	re re	ported relati	ive to the s	Standard Hy	rdrogen E	stabilizat	Primary	Review:	TP 3/7/1	10	Seconda	ary Review	v:	KBH 3/8	3/10
INDICATO	PAR	AME	TERS HAVE S	TABILIZED	WHEN 3 CO	MSEADOW	EPEADINGS	AREWITH	IN + 0 1 for r	H. + 30/ 60	r Specific Co	nducthday	and			

<u> (1997)</u>			5. A.S			1				and the second			Sheet	1	of	1
15.5	8	Site:		PP	G Jersey	City			Clier	nt / Site:		Dre	sdner Rol	bin		
	D	ate:	_		2/24/2011				Field Per	sonnel:		к	. Harrelso	n		- 11
V	Veat	her:			Cool, 40°	F	_	-	_	Job #			23410			
Monitorir	g W	ell #:	10	8-TMW-M	1006	-	Well Depth:	1	5.25	ft	Sc	reened/Op	en Interval:	<u></u>	NA	ft
Well PID/FID F						We	II Diameter:		1	inches			_	1	10000	
(ppm):	eadi	ngs	Backgrour	nd:		NA			Pump Intak	e Depth:		10.5		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to W	ater Befo	ore Pump In	stallation:	7.4	7	ft below T	oc
	_		Beneath In	iner Cap:		NA	C	16.		e Method		eristaltic Pu	mp			1.5. 4.4
TIME	Purging	Sampling	pł (pH u	nits)	Tempe (°C	;)	Spec Conduc (us/c Reading	ctivity ;m)	Disso Oxyg (mg/	jen /L)	(m	ntial V)	Turbi (NT	υ)	Pumping Rate	(ft below
4050	201		1.000		n,						Reading					TOC)
1350	X		6.92	NA	9.4	NA	659	NA	6.06	NA	246.0		109.6	NA	280	7.69
1355	×		6.88	-0.04	9.4	0.0	689	30	5.92	-0.1	249.3	3.3	82.2	-27.4	280	7.81
1400	x	_	6.85	-0.03	9.4	0.0	688	-1	5.83	-0.1	249.2	-0.1	77.6	-4.6	280	7.89
1405	x		6.82	-0.03	9.4	0.0	685	-3	6.08	0.3	251.2	2.0	642	564.4	280	9.82
1410	x		6.93	0.11	9.8	0.4	748	63	6.34	0.26	211.8	-39.4	OR	NA	120	10.50
1415	x		6.94	0.01	10.1	0.3	754	6	4.99	-1.35	200.4	-11.4	OR	NA	120	11.10
1420	x		6.93	-0.01	10.8	0.7	839	85	4.63	-0.36	129.5	-70.9	OR	NA	120	9.96
1425	x		6.86	-0.07	11.1	0.3	850	11	4.71	0.08	-0.5	-130.0	OR	NA	120	10.63
1430		x	6.88	0.02	11.5	0.4	874	24	4.20	-0.51	-21.3	-20.8	OR	NA	120	10.61
						1										
										1. 10						
											11. E	10.3				
		-														
		-														
	-	-														
Comment					Began	1345			e Time		At 140					of air.
ORP readi	ngs a	re re	ported relati	ve to the	Standard Hy	rdrogen E		Primary	Review:	TP 3/7/1		Seconda	ry Review:		client. KBH 3/8	3/10
INDICATO	PAR	AME	TERS HAVES	TABILIZED	WHEN 3 CO	NSEGUTIV	E READINGS	ARE WITH	IN + 0 1 for r	H. + 3% fo	r Specific Co	nductivity a	nd	-		A STATISTICS

Date: Weather:									nt / Site:			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
W		ate:			2/24/2011				Field Per	sonnel:		K	. Harrelso	n		
	eat	her:	_		Cool, 40°	F				Job #			23410	_		
Monitorin	g We	əll #:	10	8-TMW-B	008		Well Depth:	2	3.77	ft	Scr	eened/Op	en Interval:			ft
	-	_		NA		We	Il Diameter:		1	inches						
PID/FID Ro (ppm):	eadi	ngs	Backgroun	d:		NA			Pump Intak	e Depth:		19.5		ft below	тос	
			Beneath O	uter Cap:		NA		. 1	Depth to Wa	ter Befor	e Pump Ins	tallation:	16.9	94	ft below T	oc
			Beneath In	ner Cap:		NA			Purge	Method		ristaltic Pu	ump			
TIME	Purging	Sampling	pH (pH ur Reading	nits)	Temper (°C Reading)	Spec Conduc (us/c Reading	ctivity m)	Disso Oxyg (mg/	jen 'L)	Red Poter (m)	ntial ⁄)	Turbi (NT	U)	Pumping Rate (ml/min)	Depth to Water (ft below TOC)
4505							5.2				1. 1. 1.					
1525	X		6.79	NA	14.6	NA	1396	NA	2.96	NA	218.8		195	NA	160	17.01
1530	x		6.76	-0.03	14.9	0.3	1401	5	3.17	0.21	241.8	23.0	52.3	-142.7	160	17.03
1535	x		6.76	0.00	15.0	0.1	1400	-1	3.12	-0.05	227.7	-14.1	32.7	-19.6	160	17.06
1540	x		6.75	-0.01	15.1	0.1	1400	0	2.98	-0.14	212.2	-15.5	65.5	32.8	160	17.10
1545	x		6.80	0.05	15.2	0.1	1365	-35	2.09	-0.89	86.8	-125.4	3249	3184	160	19.20
1550	x		6.78	-0.02	15.1	-0.1	1320	-45	2.51	0.4	119.6	32.8	1198	-2051	160	20.21
1555		x	6.80	0.02	15.4	0.3	1328	8	1.60	-0.91	70.2	-49.4	OR	NA	160	21.40
4																

	-	-														
	-															
	_															
		_												i. T		
						4500				1551						
omments Decame		ry tı	urbid. Ha	Purge		1520 o intak			e Time Sample i	1551 regardl			5, water		ed 2' and	

Temperature; ± 10 mV for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

D: Weati Monitoring We Well Perm PID/FID Readli (ppm):	ate: her: all #: nit #:	Backgroun	B-TMW-CI NA	2/24/2011 Cool, 40°	F							esdner Ro . Harrelso	6.11		
Weati Monitoring We Well Perm PID/FID Readli (ppm):	her: ell #: nit #:	108 Backgroun	B-TMW-CI NA	Cool, 40°	F			Field Per	sonnel:	1 - 1	к	. Harrelso	n		
Monitoring We Well Perm PID/FID Readli (ppm):	əll #: nit #:	108 Backgroun	B-TMW-CO	002											
Well Perm PID/FID Readlı (ppm):	nit #:	Backgroun	NA				- deserved		Job #	Provide Management	State.	23410	E.a.		
PID/FID Readlı (ppm):		Backgroun			•	Well Depth:	2	3.50	ft	Scr	ened/Op	en Interval:			ft
(ppm):	ngs				We	ll Diameter:		1	inches		Late				
			d:		NA			Pump Intak	e Depth:		16.8		ft below	тос	
Ð		Beneath Ou	uter Cap:		NA	diana.		Depth to Wa	ter Before	e Pump Ins	tallation:	14.2	22	ft below T	oc
0		Beneath In	ner Cap:		NA			Purge	Method	Pe	ristaltic Pu	mp			
TIME Bui Bund	Sampling	pH (pH ur Reading	nits)	Temper (°C Reading	;)	Spec Conduc (us/c Reading	tivity m)	Disso Oxyg (mg/ Reading	jen /L)	Red Poter (m) Reading	ntial /)	Turbi (NT	U)	Pumping Rate (ml/min)	Depth to Water (ft below TOC)
1630 x	••	7.01	NA	13.6	NA	2330	NA	1.56	NA	47.0	NA	763	NA	160	14.62
1635 x	11.Y	7.06	0.05	14.0	0.4	2320	-10	1.40	-0.16	27.7	-19.3	938	175	160	15.03
1640 x	**	7.07	0.01	13.7	-0.3	2310	-10	1.35	-0.05	25.5	-2.2	930	-8	120	15.05
1645 x		7.07	0.00	13.6	-0.1	2310	0	1.26	-0.09	19.3	-6.2	1367	437	120	14.91
1650 x		7.07	0.00	13.6	0.0	2310	0	1.22	-0.04	14.1	-5.2	1463	96	120	14.81
1655 x		7.06	-0.01	13.6	0.0	2290	-20	1.06	-0.16	2.8	-11.3	1864	401	120	14.78
1700	x		0.00	13.7	0.1	2270	-20	1.00	-0.06	-1.4	-4.2	2235	371	120	14.78
2	1													A.	
									5.73						
1965. 195															
						\mathbf{P}_{i+1}									
Comments:				Began				e Time	1656						
ORP readings a			Samnle	e regardl	ess of	stabilizat	ion ne	client							

Temperature; \pm 10 mV for Redox Potential; and \pm 10% for Dissolved Oxygen and Turbidity

-		-					and the second se						and the second	1	of	
					G Jersey							1.1.1.1.1.1.1	esdner Ro	bin		
					3/19/2011				Field Per			5 - C - C - C - C - C - C - C - C - C -	T. Lesinsk	1		
N	/eat	her:		S	Sunny/ 50°	F		-		Job #			24306			
Monitorin	g We	ell #:	10	8_MW-1-1	9.0	-	Well Depth:	2	5.75	ft	Scr	eened/Op	en Interval:		15.0	ft
Well PID/FID R	-			NA		. We	II Diameter:		4	inches						
ppm):	ouun		Backgroun	d:		NA			Pump Intak	e Depth:		19.0		ft below	тос	
			Beneath O	uter Cap:		NA		-	Depth to Wa	ater Befor	e Pump Ins	tallation:	16.7	75	ft below TC	oc
			Beneath In	ner Cap:		NA	Spec	ific	Purgo Disso	e Method	B	adder Pu	mp			Depth to
TIME	Purging	Sampling	p⊦ (pH u Reading	nits)	Temper (°C Reading)	Conduc (us/c Reading	ctivity :m)	Oxyg (mg/ Reading	jen /L)	Poter (m\	ntial /)	Turbi (NT Reading	U)	Pumping Rate (ml/min)	Water (ft below TOC)
1015	x		6.03	NA	15.6	NA	515	NA	1.41	NA	230.5	NA	3.95	NA	160	16.83
1020	x		5.99	-0.04	15.3	-0.3	507	-8	1.16	-0.25	249.6	19.1	3.55	-0.40	160	16.86
1025	x		6.29	0.30	15.2	-0.1	524	17	0.96	-0.20	264.9	15.3	2.63	-0.92	160	16.86
1030	x		6.50	0.21	15.2	0.0	610	86	0.79	-0.17	266.3	1.4	1.73	-0.90	160	16.86
1035	x		6.20	-0.30	15.2	0.0	721	111	0.85	0.06	265.4	-0.9	1.73	0.00	160	16.86
1040	x		6.13	-0.07	15.2	0.0	911	190	0.86	0.01	262.9	-2.5	1.48	-0.25	160	16.86
1045	x		6.20	0.07	15.2	0.0	954	43	0.83	-0.03	258.4	-4.5	1.19	-0.29	160	16.86
1050	x	-	6.26	0.06	15.2	0.0	989	35	0.80	-0.03	254.8	-3.6	1.17	-0.02	160	16.86
1055	x		6.28	0.02	15.2	0.0	1037	48	0.79	-0.01	251.7	-3.1	0.92	-0.25	160	16.86
1100	x		6.30	0.02	15.2	0.0	1039	2	0.80	0.01	251.6	-0.1	0.98	0.06	160	16.86
1105	x		6.31	0.01	15.2	0.0	1036	-3	0.82	0.02	251.3	-0.3	0.94	-0.04	160	16.86
1110		x	6.32	0.01	15.3	0.1	1034	-2	0.96	0.14	250.3	-1.0	0.89	-0.05	160	16.86
1115		×	6.32	0.00	15.3	0.0	1033	-1	0.94	-0.02	249.8	-0.5	0.86	-0.03	160	16.86
	_	_														
35 - 14 1																
	_	-														
	_															
		-				e.										
	-	_														
omments	5:						Sample	time is	1106.							
RP readir	ngs a	re rep	orted relativ		911 @ 1 tandard Hyr		ectrode	Primary	Review:	TL 3/23/	44	Second	ary Review		SS 03/24/	11

							1.12.			and as as a			Sheet	1	. of	1
	s	Site:		PP	G Jersey	City			Clier	nt / Site:		Dr	esdner Ro	bin		
	D	ate:			3/19/2011			- L.	Field Per	sonnel:			T. Lesinsk	i		
v	Veat	her:		8	Sunny/ 50°	F				Job #			24306			
Monitorin	ng We	ell #:	10	8_MW-1-2	23.0		Well Depth:	2	5.75	ft	Scr	eened/Op	en Interval:		15.0	ft
Well	Perm	it #:		NA		. We	II Diameter:		1	inches						
PID/FID R (ppm):	eadir	ngs	Backgroun	d:		NA			Pump Intak	e Depth:		23.0		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	ater Befor	e Pump Ins	tallation:	16.7	75	ft below TO	oc
			Beneath In	ner Cap:		NA			فليو المحفظ ومقا	a	В	A CONTRACTOR OF THE	mp			
TIME	Purging	Sampling	pH (pH ui	nits)	Temper (°C)	Spec Conduc (us/c	ctivity m)	Disso Oxyg (mg/	jen ′L)	Red Poter (m)	ntial /)	Turbi (NT	U)	Pumping Rate	Depth to Water (ft below
		S	Reading	Change		Change		Cnange		Change		Cnange	Reading	Cnange	(ml/min)	TOC)
1125	X		6.37	NA	16.3	NA	1104	NA	0.89	NA	248.5	NA	3.78	NA	140	16.86
1130	x	_	6.36	-0.01	16.1	-0.2	1108	4	0.85	-0.04	248.4	-0.1	3.10	-0.68	140	16.86
1135	x	_	6.38	0.02	16.0	-0.1	1100	-8	0.82	-0.03	248.9	0.5	1.84	-1.26	140	16.86
1140	x		6.38	0.00	16.0	0.0	1098	-2	0.81	-0.01	249.4	0.5	1.49	-0.35	140	16.86
1145	x		6.39	0.01	16.0	0.0	1094	-4	0.80	-0.01	249.8	0.4	1.44	-0.05	140	16.86
1150	x		6.40	0.01	16.1	0.1	1090	-4	0.78	-0.02	250.4	0.6	1.33	-0.11	140	16.86
1155	x		6.40	0.00	16.0	-0.1	1087	-3	0.80	0.02	251.0	0.6	1.38	0.05	140	16.86
1200		x	6.40	0.00	16.1	0.1	1085	-2	0.86	0.06	251.4	0.4	1.31	-0.07	140	16.86
1205		x	6.41	0.01	16.1	0.0	1084	-1	0.85	-0.01	251.9	0.5	1.34	0.03	140	16.86
													-			
5- 1-1-1																
-																
					9											
								· · · · · ·								
		-										-5-4				
		-														
Comment	s:			Purge	began at	: 1120.	Sample	time is	1156.							
		re re	norted relativ	e to the S	tandard Hyr	tronen El	ectrode	Primany	Review:	TL 3/23			ourge was ary Review		SS 03/24/	11
INDICATOR	PAR	AME	TERS HAVE S	TABILIZED	WHEN 3 CO	NSECUTIV	E READINGS					nductivity	and	•	55 05/24/	• •

									nd Marinela				Sheet		of	
	:	Site:		PP	G Jersey	City			Clier	nt / Site:		Dre	esdner Ro	bin		
	D	ate:			3/19/2011		<u>e </u>		Field Per	sonnel:		Li	sa Melans	on		
V	Veat	her:		5	Sunny/ 50°	F				Job #		_	24306			
Monitorin	ng W	ell #:		MW-2-13.	5		Well Depth:	1	7.47	ft	Scr	eened/Op	en Interval:		12.0	ft
and the second s	Carl Inc. Inc.			NA		. We	II Diameter:		4	inches						_
PID/FID R (ppm):	eadi	ngs	Backgroun	d:		NA			Pump Intak	e Depth:		13.5		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	ater Befor	re Pump Ins	tallation:	10.9	95	ft below TO	oc
4.4.	_		Beneath In	ner Cap:		NA	0	10.	and the second second	e Method	the second second	adder Pu	mp			
TIME	Purging	Sampling	pH (pH ui Reading	nits)	Temper (°C Reading)	Spec Conduc (us/c Reading	ctivity :m)	Disso Oxyg (mg/ Reading	jen ′L)	Red Poter (m\ Reading	ntial /)	Turbi (NT Reading	U)	Pumping Rate (mi/min)	Depth to Water (ft below TOC)
0955	x		7.42	NA	15.0	NA	1852	NA	2.36	NA	308.1	NA	1.33	NA	120	11.00
1000	x		7.35	-0.07	15.2	0.2	1806	-46	2.14	-0.22	310.5	2.4	1.32	-0.01	120	11.00
1005	05 X 7		7.11	-0.24	15.2	0.0	1760	-46	1.46	-0.68	311.0	0.5	1.03	-0.29		11.05
1010	x		6.90	-0.21	15.3	0.1	1743	-17	1.22	-0.24	307.4	-3.6	1.34	0.31	120	11.10
1015			6.86	-0.04	15.5	0.2	1748	5	0.72	-0.50	306.4	-1.0	1.32	-0.02		11.15
1020	x		6.84	-0.02	15.6	0.1	1743	-5	0.69	-0.03	304.7	-1.7	1.20	-0.12		11.20
1025	x		6.81	-0.03	15.7	0.1	1741	-2	0.71	0.02	303.2	-1.5	0.90	-0.30	120	11.23
1030	х		6.80	-0.01	15.7	0.0	1743	2	0.74	0.03	302.5	-0.7	0.92	0.02	120	11.25
1035	х		6.79	-0.01	15.7	0.0	1742	-1	0.73	-0.01	302.0	-0.5	0.85	-0.07	120	11.28
1040		x	6.79	0.00	15.7	0.0	1740	-2	0.75	0.02	301.4	-0.6	0.87	0.02	120	11.30
1045		X	6.80	0.01	15.7	0.0	1736	-4	0.79	0.04	300.3	-1.1	0.90	0.03	120	11.33
1050		X	6.80	0.00	15.7	0.0	1731	-5	0.82	0.03	299.0	-1.3	0.93	0.03	120	11.35
		_														
		_						10-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-								
									tint a							
					1903											
	2	-														
Comment	s:				began @											
ORP readi	ngs a	re rep	orted relativ	e to the S	e time @ tandard Hyro	drogen Ele	ectrode.	Primary	Review:	LM 03/2	24/11	Second	ary Review	:	SS 03/28/	11
NDICATOR	C PAR	AMET	ERS HAVE S	IABILIZED	WHEN 3 CO	NSECUTIV	E READINGS	ARE WITH	N: + 0.1 for p	H: + 3% for	r Specific Cor	ductivity a	and			

Temperature; ± 10 mV for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

	-	litor		DD	Glomov	City			Clier	t / Sito:		Dre	esdner Ro	hin		
			100 million (* 1	211.31	G Jersey								6.1. 4			
					3/19/2011	1.1.1.1			Field Per					on		
v	veat	ner:	_	3	Sunny/ 50°			-		1.00			24305			
							Well Depth:	1	7.47	_ft	Scr	eened/Op	en Interval:		12.0	ft
Well	Perm	nit #:		NA		- We	II Diameter:		4	inches						
PID/FID R (ppm):	eadir		Backgroun	ıd:		NA			Pump Intal	ke Depth:		17.0		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	ater Befor	e Pump Ins	tallation:	10,9	95	ft below TC	oc
			Beneath In	ner Cap:	and the second	NA	الأرتيانية		Purg	e Method	BI	adder Pur	mp			
TIME	Purging	Sampling	pł (pH u Reading	nits)	Temper (°C	;)	Spec Conduc (us/c Reading	ctivity :m)	Disso Oxyg (mg.	jen /L)	Red Poter (m\	ntial /)	Turbi (NT	U)	Pumping Rate (ml/min)	Depth to Water (ft below
1055		0)								Change	a sector	Change		Change		TOC)
1055	X	11	6.79	NA	16.0	NA	1744	NA	0.70	NA	302.0	NA	1.26	NA	120	11.40
1100	Х	-	6.79	0.00	15.8	-0.2	1742	-2	0.69	-0.01	302.6	0.6	1.13	-0.13	120	11.40
1105	х		6.79	0.00	15.8	0.0	1745	3	0.68	-0.01	303.7	1.1	1.04	-0.09	120	11.42
1110	х		6.79	0.00	15.6	-0.2	1738	-7	0.68	0.00	304.8	1.1	1.21	0.17	120	11.45
1115	х		6.79	0.00	15.7	0.1	1737	-1	0.68	0.00	305.2	0.4	1.14	-0.07	120	11.45
1120	х		6.79	0.00	15.8	0.1	1728	-9	0.68	0.00	305.7	0.5	1.19	0.05	120	11.50
1125		x	6.79	0.00	15.8	0.0	1726	-2	0.70	0.02	304.2	-1.5	1.22	0.03	120	11.50
1130		X	6.79	0.00	15.9	0.1	1725	-1	0.71	0.01	302.2	-2.0	1.25	0.03	120	11.53
1135		X	6.79	0.00	15.9	0.0	1724	-1	0.71	0.00	301.9	-0.3	1.24	-0.01	120	11.55
		_														
4																
		_														
	-	_														
	-	-														
	-	-														
	+															
omments	 ;:				began @ e time is						DTW at s	tart of r		11 25		
RP readir	ngs ai	re rep		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tandard Hyr		ectrode.	Primary	Review:	LM 03/2			ary Review		SS 03/28	/11

					e en el constante de la constan La constante de la constante de				Sale Se	he da e		i.	Sheet	1	of	1
		Site:		PP	G Jersey	City			Clier	nt / Site:		Dr	esdner Ro	bin		
	D	ate:			3/19/2011				Field Per	sonnel:		St	eve Schul	ze		
v	Veat	her:		5	Sunny/ 50°	F	-			Job #			24306			
Monitori	ng W	ell #:		MW-3-12.	5		Well Depth:	1	9.40	ft	Scr	eened/Op	en Interval:		10.0	ft
	-	No. of Concession, Name		NA		. We	II Diameter:		4	inches						
PID/FID R (ppm):	eadi	ngs	Backgroun	id:		NA			Pump Intak	e Depth:		12.5		ft below	тос	
			Beneath O	uter Cap:	_	NA			Depth to Wa	ater Befor	e Pump Ins	tallation:	8.6	2	ft below TO	oc
	_		Beneath In	ner Cap:		NA				e Method		adder Pu	mp			
TIME	Purging	Sampling	pł (pH u		Temper (°C		Spec Conduc (us/c	ctivity	Disso Oxyg (mg/	jen	Red Poter (m\	itial	Turbi (NT		Pumping Rate	Depth to Water (ft below
_	Pu	Sai	Reading	Change			Reading				Reading				(mi/min)	TOC)
0949	X		9.16	NA	13.0	NA	1975	NA	2.78	NA	231.8	NA	1.70	NA	160	8.71
0954	x		8.27	-0.89	12.5	-0.5	1882	-93	2.51	-0.27	247.3	15.5	1.16	-0.54	160	8.78
0959	x		7.75	-0.52	12.5	0.0	1814	-68	2.51	0.00	252.8	5.5	0.82	-0.34	160	8.82
1004	x	24	7.63	-0.12	12.5	0.0	1797	-17	2.46	-0.05	254.2	1.4	0.99	0.17	160	8.82
1009	x		7.48	-0.15	12.6	0.1	1764	-33	2.51	0.05	255.5	1.3	0.68	-0.31	160	8.83
1014	x		7.33	-0.15	12.7	0.1	1736	-28	2.43	-0.08	258.1	2.6	0.63	-0.05	160	8.83
1019	х		7.28	-0.05	12.7	0.0	1722	-14	2.46	0.03	259.3	1.2	0.61	-0.02	160	8.83
1024	х		7.25	-0.03	12.8	0.1	1718	-4	2.44	-0.02	259.4	0.1	0.65	0.04	160	8.83
1029		X	7.25	0.00	12.8	0.0	1700	-18	2.43	-0.01	260.2	0.8	0.63	-0.02	160	8.83
1034		X	7.21	-0.04	12.9	0.1	1696	-4	2.41	-0.02	261.3	1.1	0.60	-0.03	160	8.83
				1.1.1									_			
									1. s.b.,							
		_														
Commerci																
Comment			Pump or				Sample									
ORP readi	ngs a	re re	ported relativ	ve to the S	tandard Hyro	drogen Ele	ectrode.	Primary	Review:	SS 03/2	4/11	Second	ary Review		LM 03/28	/11

Temperature; ± 10 mV for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

	S	ite:	_	PP	G Jersey	City			Clier	nt / Site:		Dre	esdner Ro	bin		
	D	ate:			3/19/2011				Field Per	sonnel:		St	eve Schul	ze		
v	Veat	her:		5	Sunny/ 50°	F				Job #			24306			
· · · · · · · · · · · · · · · · · · ·	· · · · · ·	196.2			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.	Well Depth:	1	9.40			10.00	en Interval:		10.0	ft
Well	Perm	it #:		NA		We	II Diameter:		4	inches						
PID/FID R ppm):		ngs	Backgroun						Pump Intal	e Depth:		17.5		ft below	тос	
			Beneath O	uter Cap:		NA					e Pump Ins			1.111	ft below T(oc
			Beneath In	ner Cap:		NA			Purge	e Method	ВІ	adder Pui	np			
TIME	Purging	Sampling	pH (pH ui	nits)	Temper (°C	;)	Spec Conduc (us/c Reading	ctivity m)	Disso Oxyg (mg/	jen 'L)	Rede Poten (m\	itial /)	Turbi (NT	U) Û	Pumping Rate	Depth t Water (ft below TOC)
4000	1.00	-			2010						1.18					
1039	X		7.15	NA	12.9	NA	1680	NA	2.41	NA	259.5	NA	0.94	NA	170	8.83
1044	Х	-	7.11	-0.04		0.3	1674	-6	2.33	-0.08		4.6	0.75	-0.19	170	8.84
1049	Х		7.11	0.00	13.2	0.0	1668	-6	2.31	-0.02	264.8	0.7	0.77	0.02	170	8.84
1054	Х		7.11	0.00	13.2	0.0	1663	-5	2.28	-0.03	265.3	0.5	0.80	0.03	170	8.84
1059		X	7.11	0.00	13.3	0.1	1660	-3	2.27	-0.01	266.8	1.5	0.81	0.01	170	8.84
1104		X	7.10	-0.01	13.3	0.0	1659	-1	2.29	0.02	266.3	-0.5	0.79	-0.02	170	8.84
										1						
										1.764						
										1735						
										4.34						
											3 - e - i					
					1.238											
		-						1								
		-														
omments								-							_	

Site: Di	C. Janaau City		1.1	Clier	4 / 8:44	177	De	adaan Da	la la		
Site: Pl	1. 1 × 1 × 1				1.1			esdner Ro	1.4		
Date:				Field Fer				eve Schul	20		
eather:			•								
Well #: MW-5-12						Scr	eened/Op	en Interval:		15.0	ft
ermit #:NA adings		ell Diameter:	- 10 B						eineir in		_
	X			Pump Intak		1.1.1.1.1.1				тос	
	NA			Depth to Wa					9	ft below TC)C
Beneath Inner Cap:	NA	Spec	fic	Purge Disso	e Method	BI	and the second second	mp			Depth to
Di pH Lijd (pH units) Di w Reading Change	Temperature (°C) Reading Change	Conduc (us/c	tivity m)	Oxyg (mg/	jen 'L)	Poten (m\	ntial /)	Turbi (NT Reading	U) (U	Pumping Rate (ml/min)	Water (ft below TOC)
X 6.84 NA	13.7 NA	1325	NA	0.85	NA	310.7	NA	0.99	NA	240	9.93
X 6.73 -0.11	13.3 -0.4	1320	-5	0.71	-0.14		-8.9	1.02	0.03	240	10.04
X 6.65 -0.08	13.2 -0.1	1319	-1	0.66	-0.05	296.1	-5.7	1.01	-0.01	160	10.09
X 6.59 -0.06	13.1 -0.1	1317	-2	0.64	-0.02	292.0	-4.1	1.07	0.06	160	10.14
X 6.55 -0.04	13.0 -0.1	1315	-2	0.63	-0.01	290.4	-1.6	1.01	-0.06	160	10.20
X 6.53 -0.02	13.0 0.0	1313	-2	0.63	0.00	289.4	-1.0	1.00	-0.01	160	10.26
X 6.50 -0.03	13.0 0.0	1312	-1	0.63	0.00	289.1	-0.3	0.99	-0.01	160	10.31
X 6.48 -0.02	13.0 0.0	1314	2	0.64	0.01	288.4	-0.7	0.96	-0.03	160	10.34
									- 10-11-1		
Pump on @											

				DD	C. Inman	014			Clie	4 / 0:40.		De	andrea De	la la	of	The second second
			1000		G Jersey								esdner Ro	1.1.1		
					3/19/2011				Field Per			1.11	1.1.1	ze		
		1			Sunny/ 50°					A MASS		1 B.S.			-	-
					0		Well Depth:		144 S. S.		Scr	eened/Op	en Interval:		15.0	. ^{ft}
Well PID/FID R	-	_		NA		We	Il Diameter:		4	inches						
(ppm):	cuun	.95	Backgroun	d:		NA		463	Pump Intak	e Depth:		16.0		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	ater Befor	e Pump Ins	tallation:	9.8	9	ft below TO	oc
			Beneath In	ner Cap:		NA			and the second	e Method			mp			
TIME	Purging	Sampling	pH (pH ui	nits)	Temper (°C	;)	Spec Conduc (us/c Reading	ctivity m)	Disso Oxyg (mg/	jen /L)	Red Poten (m\	ntial /)	Turbi (NT	U)	Pumping Rate (ml/min)	Depth to Water (ft below TOC)
						Change		Change				Change		Change		
1204	X		6.50	NA	13.3	NA	1309	NA	0.69	NA	307.0	NA	1.71	NA	160	10.39
1209	X		6.47	-0.03	13.2	-0.1	1316	7	0.66	-0.03	302.5	-4.5	1.69	-0.02	160	10.43
1214	х		6.45	-0.02	13.1	-0.1	1323	7	0.64	-0.02	302.7	0.2	1.74	0.05	160	10.47
1219		x	6.44	-0.01	13.0	-0.1	1328	5	0.60	-0.04	303.0	0.3	1.66	-0.08	160	10.51
1224		X	6.44	0.00	12.9	-0.1	1331	3	0.59	-0.01	303.2	0.2	1.68	0.02	160	10.55
		-														<u></u>
							50.2									
		_														
	-	_														
omments																

													Sheet		of	1
1.11	5	Site:		PP	G Jersey	City			Clier	nt / Site:		Dre	esdner Ro	bin		
	D	ate:			3/19/2011	1.14 			Field Per	sonnel:		D.	Nonemal	ker		
V	Veat	her:			Sunny/ 50°	F				Job #			24306			
Monitorin	ng W	ell #:	-	MW-4-12.	5	-	Well Depth:	2	0.00	ft	Scr	eened/Op	en Interval:		10.0	ft
Well	Pern	nit #:		NA		We	II Diameter:		4	inches						10. A
PID/FID R (ppm):	eadi	ngs	Backgroun	id:		NA			Pump Intak	e Depth:		12.5		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	ater Befor	e Pump Ins	tallation:	6.9	3	ft below TO)C
			Beneath In	ner Cap:		NA			Martin Contractor	in the second	BI		np			
TIME	Purging	Sampling	pł (pH u Reading	nits)	Tempe (°C	;)	Spec Conduc (us/c Reading	ctivity m)	Disso Oxyg (mg/ Reading	jen 'L)	Rede Poten (m\	itial /)	Turbi (NT Reading	U) U	Pumping Rate	Depth to Water (ft below
0055			1.1.1.2								Reading				(ml/min)	TOC)
0955	X		8.00	NA	10.7	NA	732	NA	2.72	NA	247.0	NA	3.85	NA	140	7.05
1000	X		7.80	-0.20	10.6	-0.1	668	-64	1.29	-1.43	251.2	4.2	1.48	-2.37	140	7.10
1005	X	_	7.50	-0.30	10.5	-0.1	648	-20	1.13	-0.16	258.9	7.7	1.36	-0.12	140	7.13
1010	X	-	7.30	-0.20	10.6	0.1	643	-5	1.06	-0.07	266.1	7.2	0.97	-0.39	180	7.20
1015	Х		7.30	0.00	10.7	0.1	640	-3	0.95	-0.11	271.4	5.3	0.53	-0.44	180	7.26
1020	х	1	7.30	0.00	10.7	0.0	639	-1	0.92	-0.03	275.2	3.8	0.31	-0.22	180	7.28
1025	х		7.30	0.00	10.7	0.0	638	-1	0.89	-0.03	277.8	2.6	0.18	-0.13	180	7.30
1030	e Second	х	7.30	0.00	10.7	0.0	636	-2	0.87	-0.02	280.0	2.2	0.00	-0.18	180	7.31
1035		х	7.30	0.00	10.7	0.0	634	-2	0.85	-0.02	281.8	1.8	0.00	0.00	180	7.32
1040		х	7.28	-0.02	10.8	0.1	633	-1	0.83	-0.02	283.5	1.7	0.00	0.00	180	7.32
1045		х	7.27	-0.01	10.8	0.0	632	-1	0.81	-0.02	284.9	1.4	0.00	0.00	180	7.32
1050		х	7.26	-0.01	10.8	0.0	630	-2	0.79	-0.02	286.3	1.4	0.00	0.00	180	7.32
1055		х	7.25	-0.01	10.8	0.0	628	-2	0.76	-0.03	288.1	1.8	0.00	0.00	180	7.32
				43.6												
														e e		
-																
					-											
Comment	s:															
			ported relativ				ectrode	Primary	Review: DI	N 3/26/1	1	Seconda	ary Review	:	JK 3/29/20	011
MIDICATO	DAD	ALLEY	ERS HAVE S		WHEN 2 CO	MISSING INCOME		ADE WITT	No. 1 O d form	1	B	- ALANA	and the second se		States and States and States	Strains Strains

Temperature; ± 10 mV for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

	S	Site:		PP	G Jersey	City			Clier	t / Site:		Dr	esdner Ro	bin		
	D	ate:			3/19/2011				Field Per	sonnel:		D.	Nonemal	ker	in the	1.1
M	/eat	her:		S	Sunny/ 50°	F	La Ar	_		Job #			24306			
Monitorin	g We	ell #:		MW-4-17.	5		Well Depth:	2	0.00	ft	Scr	eened/Op	en Interval:		10.0	ft
				NA		We	II Diameter:		4	inches						
PID/FID R ppm):	eadii		Backgroun	ıd:		NA			Pump Intak	e Depth:		17.5		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	iter Befor	e Pump Ins	tallation:	6.9	3	ft below TO	oc
			Beneath In	ner Cap:		NA	Sec. 1	Links	Purge	Method	В	ladder Pu	mp			
TIME	Purging	Sampling	pł (pH u Reading	nits)	Temper (°C)	Spec Conduc (us/c Reading	ctivity :m)	Disso Oxyg (mg/ Reading	len L)	Red Poter (m)	ntial /)	Turbi (NT Reading	U)	Pumping Rate (ml/min)	Depth to Water (ft below
1105		S									1.1		51 × 10 ¹			TOC)
1105	X		7.33	NA	10.5	NA	635	NA	1.40	NA	281.8	NA	1.92	NA	200	7.32
1110	Х		7.33	0.00	10.6	0.1	642	7	1.25	-0.15	277.3	-4.5	1.61	-0.31	200	7.42
1115	Х		7.33	0.00	10.7	0.1	647	5	0.97	-0.28	274.0	-3.3	1.36	-0.25	200	7.46
1120	Х	6	7.33	0.00	10.8	0.1	652	5	0.88	-0.09	270.4	-3.6	1.19	-0.17	200	7.50
1125	Х		7.33	0.00	11.2	0.4	655	3	0.70	-0.18	269.8	-0.6	1.14	-0.05	200	7.53
1130	х		7.30	-0.03	11.3	0.1	654	-1	0.70	0.00	268.5	-1.3	1.11	-0.03	200	7.55
1135	х		7.28	-0.02	11.3	0.0	656	2	0.70	0.00	269.7	1.2	1.06	-0.05	200	7.56
1140		х	7.26	-0.02	11.3	0.0	655	-1	0.70	0.00	269.9	0.2	0.94	-0.12	200	7.56
1145	- 10	х	7.25	-0.01	11.3	0.0	654	-1	0.70	0.00	270.4	0.5	0.71	-0.23	200	7.56
														11 F. A. A.		
		-														
	-	_			- Marine Marine											
	-										141 - 14 - 1 1					
omments					in the second	X.	÷			- Alera	5.000		Contraction of the			الما وريدة

Temperature; ± 10 mV for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

	5	Site:		PP	G Jersey	City			Clier	nt / Site:		Dr	esdner Ro	bin		
	D	ate:			10/13/201	1	and the	$\frac{1}{2}$	Field Per	sonnel:	<u>1. 1. 4</u>		T. Lesinsk	il		
۷	Veat	her:		Lig	ght Rain/5	3°F	1			Job #	d and a		32369			
Monitorir	ng We	ell #:		" the d			Well Depth:		0.35	ft	Scr	eened/Op	en Interval:	9	- 14	ft
Well PID/FID R	241		_	NA		We	II Diameter:		4	inches	(en en en linneter	-		
ppm):	cuun	.95	Backgroun	id:	and the second second	NA			Pump Intal	e Depth:		13.0		ft below	тос	
			Beneath O	uter Cap:		NA		•	Depth to Wa	ater Befor	e Pump Ins	tallation:	9.7	8	ft below TO	oc
-	L	_	Beneath In	ner Cap:		NA	Spec	ific	Purge Disso	e Method	Bi	adder Pu	np			Depth t
TIME	Purging	Sampling	pH (pH un Reading		Temper (°C Reading	;)	Conduc (us/c	ctivity m)	Oxyg (mg/ Reading	jen /L)	Poten (m\	ntial /)	Turbi (NT Reading	U)	Pumping Rate (ml/min)	Water (ft below TOC)
0950	x		7.04	NA	19.1	NA	639	NA	0.83	NA	302.4	NA	40.1	NA	160	10.24
0955	x		6.96	-0.08	19.0	-0.1	598	-41	0.65	-0.18	300.2	-2.2	41.2	1.1	160	10.45
1000	X		6.96	0.00	19.0	0.0	589	-9	0.72	0.07	296.1	-4.1	42.8	1.6	160	10.82
1005	х		6.95	-0.01	19.1	0.1	588	-1	0.67	-0.05	294.0	-2.1	38.1	-4.7	100	10.77
1010	х		6.96	0.01	19.1	0.0	585	-3	0.67	0.00	286.8	-7.2	37.1	-1.0	100	10.68
1015	х		6.95	-0.01	19.1	0.0	583	-2	0.58	-0.09	289.5	2.7	29.4	-7.7	100	10.68
1020	х		6.94	-0.01	19.1	0.0	582	-1	0.56	-0.02	289.1	-0.4	19.4	-10.0	100	10.68
1025	Х	-	6.94	0.00	19.1	0.0	580	-2	0.56	0.00	288.8	-0.3	18.7	-0.7	100	10.68
1030	Х		6.93	-0.01	19.1	0.0	579	-1	0.55	-0.01	288.4	-0.4	18.0	-0.7	100	10.68
1035		X	6.92	-0.01	19.1	0.0	577	-2	0.59	0.04	288.6	0.2	17.8	-0.2	100	10.68
1040		X	6.92	0.00	19.1	0.0	578	1	0.63	0.04	288.2	-0.4	17.6	-0.2	100	10.68
1045		×	6.91	-0.01	19.1	0.0	577	-1	0.61	-0.02	288.0	-0.2	17.2	-0.4	100	10.68
	1															
	-	-														
ommente	s:				began at 311 @ 1		Sample	time is	1031.					11 C 1		

									and Section 20				Sheet	1	- of	1
	5	Site:		PP	G Jersey	City			Clier	nt / Site:		Dre	esdner Ro	bin		
	D	ate:			10/13/201	1			Field Per	sonnel:			T. Lesinsk	i		
V	Veat	her:		Lig	ght Rain/5	3°F				Job #			32369			
Monitorin	ng W	ell #:		108_MW-	7		Well Depth:	1	8.17	.ft	Scr	eened/Op	en Interval:	5	- 10	ft
Well PID/FID R		-		NA		. We	II Diameter:	_	2	inches						
(ppm):	eau	ngs	Backgroun	id:		NA			Pump Intal	e Depth:		10.0		ft below	тос	
			Beneath O	uter Cap:		NA			Depth to Wa	ater Befor	e Pump Ins	tallation:	8.8	1	ft below TO	oc
	<u> </u>		Beneath In	ner Cap:		NA	- Enco	161.0		e Method		adder Pur	np			Donth 4-
TIME	Purging	Sampling	pH (pH un Reading	nits)	Temper (°C Reading)	Spec Conduc (us/c Reading	tivity m)	Disso Oxyg (mg Reading	jen ′L)	Red Poter (m\	ntial /)	Turbi (NT Reading	U)	Pumping Rate (ml/min)	Depth to Water (ft below TOC)
1100	x	am)	7.21		18.9	000259	303									1.1.1.14
1105	^ X		7.07	NA -0.14	18.7	-0.2	292	-11	2.44 1.72	NA -0.72	316.2 305.1	NA -11.1	59.5 37.4	NA -22.1	100 100	9.05
1110	×	-	7.06	-0.01	18.6	-0.2	292	-2	1.07	-0.65	288.2	-16.9	16.4			9.19
1.1.4	1.0													-21.0		9.33
1115	X		7.01	-0.05	18.5	-0.1	293	3	0.71	-0.36	276.9	-11.3	9.98	-6.42	100	9.38
1120	X		6.92	-0.09	18.4	-0.1	294	1	0.63	-0.08	266.5	-10.4	7.32	-2.66	100	9.43
1125	X		7.02	0.10	18.5	0.1	292	-2	0.55	-0.08	256.0	-10.5	5.71	-1.61	100	9.45
1130	X		7.05	0.03	18.7	0.2	292	0	0.49	-0.06	244.4	-11.6		-0.70		9.47
1135	X		7.08	0.03	18.7	0.0	289	-3	0.47	-0.02	237.9	-6.5	4.83	-0.18		9.47
1140	Х		7.08	0.00	18.8	0.1	291	2	0.46	-0.01	236.4	-1.5	4.70	-0.13		9.47
1145		×	7.08	0.00	18.7	-0.1	288	-3	0.64	0.18	235.4	-1.0	4.66	-0.04		9.47
1150		X		0.00	18.8	0.1	284	-4	0.73	0.09	234.8	-0.6	4.52	-0.14		9.47
1155		X	7.10	0.02	18.8	0.0	281	-3	0.69	-0.04	233.1	-1.7	6.78	2.26	100	9.47
1200		X	7.10	0.00	18.8	0.0	285	4	0.71	0.02	232.4	-0.7	9.98	3.20	100	9.47
1205		X	7.09	-0.01	18.7	-0.1	286		0.66	-0.05	232.0	-0.4	7.42	-2.56	100	9.47
1210	_	X	7.09	0.00	18.8	0.1	289	3	0.67	0.01	231.4	-0.6	5.43	-1.99	100	9.47
		_														
								_								
						46.5.5				3						
Comment	5:			Purge	began at	: 1055.	Sample	time is	5 1141.							
			ported relativ					Primary		TL 10/18			ary Review	r:	SS 10/18/	11

Temperature; ± 10 mV for Redox Potential; and ± 10% for Dissolved Oxygen and Turbidity

DATE:	2/24/2011		:Dre	esdner Robin	SITE:	:PF	PG Jersey City
NEATHER:	Cool, 40° F		: 0830	DEPARTURE:	1	730	JOB #: 23410
ANALYS	T / FIELD SAMPLER	:	K. Harrelson	FIELI	D SAMPLER:		
		FIELD IN	ISTRUMENT	AND CALIBRAT			
	M	ETER ID'	S				
00	METER M-043	-	PROB MP-13		Set to :	Turbidit	y (NTU) 4000
OH COND. ORP	E-016 M-024 M-036	-	MP-10 MP-08 MP-12	3	Lot & Exp	. <u>A</u> C	0278 3-10-11
	M-050	-		<u> </u>	Read :	True Value	1.00
	DISSOLVED OX Water Temp (°C) 1	1.6			Result	0.93
	netric Press (mm Hg O2 Saturation % Inst be to 100% O2 Saturation	1	769 100			be within 10%	38030 3-10-11 of True Value.
Calibration mu		H			l of # o	nd Evninati	an Data
Buffer 4.01	4.00	Temp (°C)	12.6			nd Expiration 0263 7/201	
	7.05	Temp (°C)				9273 9/201	
	10.15	-				0333 11/20	
	erformed at	_ (0)	0905	the second second second second		0000 11/20	
pH buffe	or 7.00	ORP	T				
w/quinhy		02.6	_ Temp (°C)	14.0	Lot / Exp Da	te	A0034 2/2012
The reading sh pH buffe w/quinhy				20°C, +90 mV at 25°C 10.0	Lot / Exp Da	te	A0071 3/2014
The reading sh	ould be between +170mV	at 20°C and +'	185mV at 25°C abo	ove the reading in the 7 buf	fer mixture	- 7 - 2.5	
				Quinhydrone	Lot / Exp Da	te	Q17266 3/2013
	SPECIFIC CO	NDUCTA	NCE				
	· · · · · · · · · · · · · · · · · · ·	000 0.0	<u>a</u> - -	Lot # and Expirati A0257 9/20			
NOTES:	Primary Re	eview:	TP 3/7/11	Secondary R	Review: KBH (3/08/2011	

	DATE:	2/9/2011	CLIENT	: Dres	dner Robin	SITE:	1	PPG Jersey City
<section-header></section-header>	WEATHER:	Sunny, 20° F		: 0830	DEPARTURE:	14	130	JOB #:
METER ID'S METER ID'S Turbidity 00 M-007 MP-118 Set to:: 4000 00 MD. M-033 MP-118 Set to:: 4000 00 MD. M-035 MP-118 Set to:: 4000 00 MD. M-041 MP-111 Read:: True Value 10.0 00 MD. M-048 MP-111 Read:: True Value 10.0 01 MD. M-048 MP-111 Read:: True Value 10.0 01 MD. MALTER (D'S) MP-111 Read:: True Value 10.0 02 Saturation % 100 True Value 10.0 Result 9.9 Calibration musts to to 100% 02 Saturation % 100 Not 300 3/10/11 "Result must be within 10% of True Value. Calibration musts to to 100% 02 Saturation % 10.4 A9273 09/2013 A9328 11/2011 uffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 alibration performed at 840 A9273 09/2013 A9328 11/2011	ANALYST	/ FIELD SAMPLE	R:	D. Miller	FIEL	D SAMPLER:		S. Schulze
METER ID'S METER ID'S Turbidity 00 M-007 MP-118 Set to:: 4000 00 MD. M-033 MP-118 Set to:: 4000 00 MD. M-035 MP-118 Set to:: 4000 00 MD. M-041 MP-111 Read:: True Value 10.0 00 MD. M-048 MP-111 Read:: True Value 10.0 01 MD. M-048 MP-111 Read:: True Value 10.0 01 MD. MALTER (D'S) MP-111 Read:: True Value 10.0 02 Saturation % 100 True Value 10.0 Result 9.9 Calibration musts to to 100% 02 Saturation % 100 Not 300 3/10/11 "Result must be within 10% of True Value. Calibration musts to to 100% 02 Saturation % 10.4 A9273 09/2013 A9328 11/2011 uffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 alibration performed at 840 A9273 09/2013 A9328 11/2011								
METER PROBE Turbidity 0 M-007 MP-1124 Set to : 4000 0ND. M-005 MP-072 Lot & Exp. A0278 3/10/11 DRD M-005 MP-072 Lot & Exp. A0278 3/10/11 DRD M-041 MP-072 Lot & Exp. A0278 3/10/11 DRBOTY M-048 Result 9.9			FIELD II	NSTRUMENT	AND CALIBRAT	IUN DATA		
OO M-007 MP-113 Set to : 4000 MOD M-039 MP-124 Lot & Exp. A0278 3/10/11 MRP M-041 MP-124 Lot & Exp. A0278 3/10/11 URBIDITY M-041 MP-124 Lot & Exp. A0278 3/10/11 URBIDITY M-041 MP-124 Lot & Exp. A0278 3/10/11 URBIDITY M-043 MP-124 Lot & Exp. A0278 3/10/11 URBIDITY M-043 MP-124 Lot & Exp. C03000 3/10/11 URBIDITY M-043 Temp (°C) 10.6 Result 9.9 Calibration must be to 100% 02 Saturation % 100 Result 9.9 Lot & Exp. C03300 3/10/11 Calibration must be to 100% 02 Saturation % 10.0 A9273 09/2013 A9273 09/2013 uffer 4.01 4.03 Temp (°C) 10.6 A9273 09/2013 uffer 10.01 10.18 Temp (°C) 10.6 A9328 11/2011 alibration performed at 840 H Heter should be duiter 2.005 pH units from actual buffer value at			METER ID'				-	
MI M-039 MP-124 Lot & Exp. A0278 3/10/11 SOND. M-005 MP-072 Lot & Exp. A0278 3/10/11 DRP M-041 MP-111 Read: True Value 10.0 DISSOLVED OXYGEN Result 9.9 Result 9.9 Water Temp (°C) 10.6 Lot & Exp. C03300 3/10/11 "Result must be within 10% of True Value. Calibration must be to 100% 02 Saturation pH Lot & Exp. C03300 3/10/11 "Result must be within 10% of True Value. Calibration must be to 100% 02 Saturation pH Lot # and Expiration Date A9273 09/2013 utfier 4.01 4.03 Temp (°C) 10.6 A9328 11/2011 utfier 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 Satibiration read buffer 7.00 - 11 should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 99.8 Temp (°C) 10.7 Lot / Exp Date A9273 09/2013 hthe reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 M/// exp / e							Tu	rbialty
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					the second se	Set to :	4000	a de la constant
DRP URBIDITY M-041 M-048 MP-111 Read : True Value 10.0 DISSOLVED OXYGEN Water Temp (°C) 10.6 Result 9.9 Barometric Press (mm Hg) O2 Saturation % 100 Result 9.9 Calibration must be to 100% 02 Saturation pH Lot & Exp. C03300 3/10/11 Suffer 4.01 4.03 Temp (°C) 10.4 A9273 09/2013 Suffer 7.00 7.05 Temp (°C) 10.6 A9328 11/2011 Suffer 7.00 7.05 Temp (°C) 10.6 A9328 11/2011 Suffer 7.00 10.18 Temp (°C) 10.6 A9328 11/2011 Satisfication performed at 840 A9328 11/2011 A9328 11/2011 Huffer 7.00 mp. of calibration read buffer 7.0 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 Che reading should be within 15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date 017226 3/2013 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
URBIDITY M-048 Read : True Value 10.0 DISSOLVED OXYGEN Result 9.9 Water Temp (°C) 10.6 D2 Saturation % 100 Calibration must be to 100% 02 saturation PH Calibration must be to 100% 02 saturation PH Duffer 4.01 4.03 Temp (°C) 10.4 PH Lot & Exp. C03300 3/10/11 PH Lot # and Expiration Date Buffer 4.01 4.03 Temp (°C) 10.4 A9273 09/2013 A9328 11/2011 A9328 11/2011 buffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 childbration performed at 840 A9328 11/2011 A9328 11/2011 childbration performed at 840 A9328 11/2011 A9328 11/2011 childbration read buffer 7.00 · it should read ± 0.05 pH units from actual buffer value at imp. of calibration. After calibration read buffer 7.00 · it should read ± 0.05 pH units from octal buffer value at imp. of calibration. ORP pH buffer 7.00 winquinhydrone 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be between +170mV at 20°C and +185mV at 20°C, +90 mV at 25°C pH buffer 4.00	the second se			Contraction of the local data and the local data an	3	Lot & Exp.	A027	8 3/10/11
DISSOLVED OXYGEN Result 9.9 Water Temp (°C) 10.6 Lot & Exp. C03300 3/10/11 O2 Saturation % 100 "Result must be within 10% of True Value. Calibration must be to 100% 02 Saturation % pH Lot # and Expiration Date Muffer 4.01 4.03 Temp (°C) 10.4 A9273 09/2013 Muffer 7.00 7.05 Temp (°C) 10.3 A9328 11/2011 Muffer 10.1 10.18 Temp (°C) 10.6 A0333 11/2011 Muffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 Muffer 10.01 10.18 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 Muffer 7.00 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 Mo328 11/2011 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture A9273 09/2013			<u></u>	MP-111				
Water Temp (°C) 10.6 Barometric Press (mm Hg) 768 O2 Saturation % 100 Barometric Press (mm Hg) 100 Calibration must be to 100% 02 Saturation pH Lot & Exp. C03300 3/10/11 "Result must be within 10% of True Value. Calibration must be to 100% 02 Saturation pH Lot # and Expiration Date A9273 09/2013 uffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 A9328 11/2011 A9328 11/2011 allbration performed at 840 A0333 11/2011 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at A9328 11/2011 here adilg should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 7.00 99.8 PH buffer 4.00 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 he reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 7.00 Wquinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 he reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Q		M-048	-			Read :	True Valu	ue <u>10.0</u>
Barometric Press (mn Hg) 768 O2 Saturation % 100 Calibration must be to 100% 02 Saturation 100 PH Lot & Exp. C03300 3/10/11 Suffer 4.01 4.03 Temp (°C) 10.3 Temp (°C) 10.4 Ag273 09/2013 Ag328 11/2011 Auffer 7.00 7.05 Temp (°C) 10.8 Temp (°C) 10.6 Ad333 11/2011 Ag328 11/2011 Satibiration performed at 840 OP PH Indifer 7.00 readibration read buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at emp. of calibration. ORP PH buffer 7.00 It should read ± 0.05 from actual value at temp. of calibration. ORP PH buffer 7.00 99.8 Temp (°C) 10.7 Lot / Exp Date Ag328 11/2011 The reading should be within ±15mV from the following values: ±96 mV at 20°C. ±90 mV at 20°C. ±90 mV at 20°C pH buffer 4.00 wiquinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date Ag273 09/2013 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot /		DISSOLVED C	XYGEN				Result	9.9
O2 Saturation % 100 "Result must be within 10% of True Value. Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date buffer 4.01 4.03 Temp (°C) 10.4 A9273 09/2013 buffer 7.00 7.05 Temp (°C) 10.6 A0333 11/2011 buffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 buffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 billibration performed at 840				0.6				
Calibration must be to 100% O2 Saturation pH buffer 4.01 <u>4.03</u> Temp (°C) <u>10.4</u> <u>A9273 09/2013</u> buffer 7.00 <u>7.05</u> Temp (°C) <u>10.3</u> <u>A9328 11/2011</u> buffer 10.01 <u>10.18</u> Temp (°C) <u>10.6</u> <u>A0333 11/2011</u> alibration performed at <u>840</u> buffer solub to calibration read/buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp. of calibration actual buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 <u>99.8</u> Temp (°C) <u>10.7</u> Lot / Exp Date <u>A9328 11/2011</u> The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 <u>40273 09/2013</u> The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone <u>273.4</u> Temp (°C) <u>10.8</u> Lot / Exp Date <u>A9273 09/2013</u> The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date <u>017226 3/2013</u> SPECIFIC CONDUCTANCE Standard <u>1000 + 10 uS/cm NaCl</u> Reading <u>1000</u> Temp (°C) <u>10.8</u> *Reading must be 1000 uS/cm	Baromet	tric Press (mm H	g) 7	768		Lot & Exp.	C0330	0 3/10/11
pH Lot # and Expiration Date buffer 4.01 4.03 Temp (°C) 10.4 A9273 09/2013 buffer 7.00 7.05 Temp (°C) 10.3 A9328 11/2011 buffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 buffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 ballibration performed at 840 A0333 11/2011 bill meter should be calibrated using 3 buffers. PH Calibration readings should be ± 0.05 pH units from actual buffer value at temp. of calibration. A9328 11/2011 bill meter should be calibrated using 3 buffers. PH Calibration readings should read ± 0.05 from actual value at temp. of calibration. A9328 11/2011 Ph buffer 7.00 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: ±96 mV at 20°C, ±90 mV at 25°C pH buffer ration A9273 09/2013 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/2013 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 09/2015 A0257 <td></td> <td>O2 Saturation</td> <td>%1</td> <td>100</td> <td></td> <td>*Result must</td> <td>be within 109</td> <td>% of True Value.</td>		O2 Saturation	%1	100		*Result must	be within 109	% of True Value.
Lot # and Expiration Date huffer 4.01 4.03 Temp (°C) 10.4 A9273 09/2013 huffer 7.00 7.05 Temp (°C) 10.3 A9328 11/2011 huffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 huffer 4.00 widguinhydrone 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: ±96 mV at 20°C, ±90 mV at 25°C pH buffer 4.00 widguinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/2013 EPECIFIC CONDUCTANCE Standard 1000 ±10 uS/cm NaCl A0257 09/2015 A0257 09/2015 "Temp (°C) 10.6 A0257 09/2015 "Temp (°C) 10.6 </td <td>Calibration must b</td> <td></td> <td>A CONTRACT OF A</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Calibration must b		A CONTRACT OF A					
buffer 7.00 7.05 Temp (°C) 10.3 A9328 11/2011 buffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 salibration performed at 840 och meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at semp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 wiquinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/2013 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl A0257 09/2015 Reading 10.6 A0257 09/2015 "Reading must be 1000 uS/cm A0257 09/2015			pri			Lot # a	nd Expira	tion Date
buffer 10.01 10.18 Temp (°C) 10.6 A0333 11/2011 calibration performed at 840 obt meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at some, of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp, of calibration. ORP pH buffer 7.00 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 wiquinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/2013 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl A0257 09/2015 Reading 10.6 A0257 09/2015 "Reading must be 1000 uS/cm A0257 09/2015	Suffer 4.01	4.03	Temp (°C)	10.4		A	9273 09/2	2013
Stalibration performed at 840 OH meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at some, of calibration. ORP pH buffer 7.00 99.8 pH buffer 7.00 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/2013 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl A0257 09/2015 A0257 09/2015 Temp (°C) 10.6 A0257 09/2015 A0257 09/2015								
bet meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at an p. of calibration. orp. pH buffer 7.00 w/quinhydrone 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 273.4 w/quinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/2013 The reading 1000 ± 10 uS/cm NaCl Reading 10.06 A0257 09/2015 *Reading must be 1000 uS/cm	Buffer 7.00	7.05	Temp (°C)	10.3	<u></u>	A	9328 11/2	2011
amp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. DRP pH buffer 7.00 w/quinhydrone 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date 017226 3/2013 Comparison of the following values: Lot # and Expiration Date A0257 09/2015 *Reading must be 1000 uS/cm	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		and the second					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ORP PH buffer 7.00 w/quinhydrone 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C PH buffer 4.00 w/quinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/2013 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading Lot # and Expiration Date A0257 09/2015 Temp (°C) 10.6 A0257 09/2015 *Reading must be 1000 uS/cm	Buffer 10.01	10.18	and the second	10.6				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pH buffer 7.00 w/quinhydrone 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date A9273 09/2013 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading Lot # and Expiration Date Mo257 09/2015 A0257 09/2015	Buffer 10.01	10.18 ormed at	Temp (°C)	10.6 840	 be ± 0.05 pH units from a	A	0333 11/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
w/quinhydrone 99.8 Temp (°C) 10.7 Lot / Exp Date A9328 11/2011 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 A9273 09/2013 pH buffer 4.00 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/2013 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl A0257 09/2015 Reading 10.00 10.6 A0257 09/2015 *Reading must be 1000 uS/cm	Buffer 10.01	10.18 ormed at e calibrated using 3 bu	Temp (°C)	10.6 840 ation readings should		Ai	0333 11/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/2013 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 10.6 *Reading must be 1000 uS/cm	Buffer 10.01	10.18 ormed at e calibrated using 3 bu	Temp (°C) uffers. pH Calibra buffer 7.00 - it s	10.6 840 ation readings should		Ai	0333 11/2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
pH buffer 4.00 273.4 Temp (°C) 10.8 Lot / Exp Date A9273 09/2013 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/2013 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 10.6 *Reading must be 1000 uS/cm	Buffer 10.01	10.18 ormed at e calibrated using 3 bu . After calibration read	Temp (°C) uffers. pH Calibra buffer 7.00 - it s ORP	10.6 840 ation readings should hould read ± 0.05 from	n actual value at temp. o	A actual buffer value f calibration.	0333 11/2 e at	2011
The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/2013 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 ± 10.6 *Reading must be 1000 uS/cm	Buffer 10.01 Calibration perfo OH meter should be omp. of calibration. pH buffer 7. w/quinhydro	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one	Temp (°C) Iffers. pH Calibra buffer 7.00 - it s ORP 99.8	10.6 840 ation readings should hould read ± 0.05 from Temp (°C)	n actual value at temp. o 10.7	A actual buffer value f calibration.	0333 11/2 e at	2011
Quinhydrone Lot / Exp Date Q17226 3/2013 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 09/2015 Standard 1000 ± 10 uS/cm NaCl A0257 09/2015 A0257 09/2015 Temp (°C) 10.6 A0257 09/2015	Buffer 10.01 Calibration perfo oH meter should be omp. of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4.	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one d be within ±15mV fron .00	Temp (°C) Iffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va	10.6 840 ation readings should hould read ± 0.05 from Temp (°C) alues: +96 mV at 20°C	n actual value at temp. o 10.7 C, +90 mV at 25°C	Alexandreficial definition Alexandreficial definition.	0333 11/2 e at	2011 A9328 11/2011
SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 10.6 *Reading must be 1000 uS/cm	Suffer 10.01 Calibration performer of meter should be some, of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4. w/quinhydro	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one d be within ±15mV from .00 one2	Temp (°C) uffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4	10.6 840 ation readings should hould read ± 0.05 from	n actual value at temp. o 10.7 C, +90 mV at 25°C 10.8	An actual buffer value calibration. Lot / Exp Dat	0333 11/2 e at	2011 A9328 11/2011
Standard 1000 ± 10 uS/cm NaCl Lot # and Expiration Date Reading 1000 A0257 09/2015 Temp (°C) 10.6 A0257 09/2015 *Reading must be 1000 uS/cm	Suffer 10.01 Calibration performer of meter should be some, of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4. w/quinhydro	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one d be within ±15mV from .00 one2	Temp (°C) uffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4	10.6 840 ation readings should hould read ± 0.05 from	n actual value at temp. o 10.7 C, +90 mV at 25°C 10.8 he reading in the 7 buffe	A actual buffer value I calibration. Lot / Exp Dat	0333 11/2 e at se	2011 A9328 11/2011 A9273 09/2013
Standard 1000 ± 10 uS/cm NaCl Lot # and Expiration Date Reading 1000 A0257 09/2015 Temp (°C) 10.6 A0257 09/2015 *Reading must be 1000 uS/cm	Buffer 10.01 Calibration perfo oH meter should be emp. of calibration. pH buffer 7. w/quinhydro pH buffer 4. w/quinhydro	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one d be within ±15mV from .00 one2	Temp (°C) uffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4	10.6 840 ation readings should hould read ± 0.05 from	n actual value at temp. o 10.7 C, +90 mV at 25°C 10.8 he reading in the 7 buffe	A actual buffer value I calibration. Lot / Exp Dat	0333 11/2 e at se	2011 A9328 11/2011 A9273 09/2013
Standard 1000 ± 10 uS/cm NaCl A0257 09/2015 Reading 1000 Temp (°C) 10.6 *Reading must be 1000 uS/cm • Reading must be 1000 uS/cm • Reading must be 1000 uS/cm	Buffer 10.01 Calibration performed off meter should be omp. of calibration. pH buffer 7. w/quinhydro pH buffer 4. w/quinhydro	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one .00 .00 one .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .09 .00 .01 .02 .03 .04 .05 .06 .07	Temp (°C) uffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4 at 20°C and +18	10.6 840 ation readings should hould read ± 0.05 from _Temp (°C) alues: +96 mV at 20°C _Temp (°C)	n actual value at temp. o 10.7 C, +90 mV at 25°C 10.8 he reading in the 7 buffe	A actual buffer value I calibration. Lot / Exp Dat	0333 11/2 e at se	2011 A9328 11/2011 A9273 09/2013
Temp (°C) 10.6 *Reading must be 1000 uS/cm	Buffer 10.01 Calibration perfo oH meter should be emp. of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4. w/quinhydro	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one .00 .00 one .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .09 .00 .01 .02 .03 .04 .05 .06 .07	Temp (°C) uffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4 at 20°C and +18	10.6 840 ation readings should hould read ± 0.05 from _Temp (°C) alues: +96 mV at 20°C _Temp (°C)	n actual value at temp. o 10.7 2, +90 mV at 25°C 10.8 he reading in the 7 buffer Quinhydrone Lot # and Expirat	Additional Addition A	0333 11/2 e at se	2011 A9328 11/2011 A9273 09/2013
*Reading must be 1000 uS/cm	Buffer 10.01 Calibration perfo oH meter should be emp. of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4. w/quinhydro The reading should	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .00 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .01 .02 .03 .04 .05	Temp (°C) Iffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4 at 20°C and +18 ONDUCTA!	10.6 840 ation readings should hould read ± 0.05 from _Temp (°C) alues: +96 mV at 20°C _Temp (°C) _Temp (°C) _S5mV at 25°C above the	n actual value at temp. o 10.7 2, +90 mV at 25°C 10.8 he reading in the 7 buffer Quinhydrone Lot # and Expirat	Additional Addition A	0333 11/2 e at se	2011 A9328 11/2011 A9273 09/2013
*Reading must be 1000 uS/cm	suffer 10.01 salibration perfor off meter should be some, of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4. w/quinhydro The reading should	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .00 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .01 .02 .03 .04 .05	Temp (°C) Iffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4 at 20°C and +18 ONDUCTA!	10.6 840 ation readings should hould read ± 0.05 from _Temp (°C) alues: +96 mV at 20°C _Temp (°C) _Temp (°C) _S5mV at 25°C above the	n actual value at temp. o 10.7 2, +90 mV at 25°C 10.8 he reading in the 7 buffer Quinhydrone Lot # and Expirat	Additional Addition A	0333 11/2 e at se	2011 A9328 11/2011 A9273 09/2013
NOTES: Primary Review: DM 2/10/11 Secondary Review: KH 2/15/11	Buffer 10.01 Calibration perfo oH meter should be emp. of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4. w/quinhydro The reading should St	10.18 ormed at e calibrated using 3 bu . After calibration read .00 .00 .00 .00 .00 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .00 .00 .00 .00 .00 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .01 .02 .03 .04 .05 .05	Temp (°C) Iffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4 at 20°C and +18 ONDUCTA! DUS/CM NaC 1000	10.6 840 ation readings should hould read ± 0.05 from _Temp (°C) alues: +96 mV at 20°C _Temp (°C) _Temp (°C) _S5mV at 25°C above the	n actual value at temp. o 10.7 2, +90 mV at 25°C 10.8 he reading in the 7 buffer Quinhydrone Lot # and Expirat	Additional Addition A	0333 11/2 e at se	2011 A9328 11/2011 A9273 09/2013
	Buffer 10.01 Calibration perfo oH meter should be emp. of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4. w/quinhydro The reading should St R R	10.18 ormed at e calibrated using 3 bu . After calibration read .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 .010 .02 <	Temp (°C) Iffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4 at 20°C and +18 ONDUCTA! DUS/CM NaC 1000 10.6	10.6 840 ation readings should hould read ± 0.05 from _Temp (°C) alues: +96 mV at 20°C _Temp (°C) _Temp (°C) _S5mV at 25°C above the	n actual value at temp. o 10.7 2, +90 mV at 25°C 10.8 he reading in the 7 buffer Quinhydrone Lot # and Expirat	Additional Addition A	0333 11/2 e at se	2011 A9328 11/2011 A9273 09/2013
	Buffer 10.01 Calibration perfo oH meter should be emp. of calibration. pH buffer 7. w/quinhydro The reading should pH buffer 4. w/quinhydro The reading should St R Te *Rea	10.18 ormed at e calibrated using 3 bu . After calibration read .00 one .01 .02 .03 .04 .05 .06 .07 .08 .09 .00	Temp (°C) Iffers. pH Calibra buffer 7.00 - it s ORP 99.8 n the following va 273.4 at 20°C and +18 ONDUCTAN 0 uS/cm NaC 1000 10.6 S/cm	10.6 840 ation readings should hould read ± 0.05 from _Temp (°C) alues: +96 mV at 20°C _Temp (°C)	n actual value at temp. o 10.7 2, +90 mV at 25°C 10.8 he reading in the 7 buffer Quinhydrone Lot # and Expirat A0257 09/20	A	0333 11/2 e at xe xe	2011 A9328 11/2011 A9273 09/2013 Q17226 3/2013

WEATHER: Sunny, 20° F ARRIVAL: 0830 DEPARTURE: 1430 JOB #: 22930 ANALYST/FIELD SAMPLER: Steve Schulze FIELD INSTRUMENT AND CALIBRATION DATA FIELD INSTRUMENT AND CALIBRATION DATA METER PROBE Turbidity Set to : 4000 DO E-005 EP-043 Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" ON PROBE Turbidity Set to : Turbidity DO E-005 EP-043 Lot & Exp. A0678 03/10/11 Colspan="2">Colspan="2" Colspan="2" Colspan="2" DISSOLVED OXYGEN Result 9.9 Water Temp (°C) 13.8 Lot & Exp. Colspan="2" DISSOLVED OXYGEN PM Colspan="2" DISSOLVED OXYGEN <td colspan<="" th=""><th>DATE</th><th>: 2/9/2011</th><th>_ CLIENT:</th><th>Dresdne</th><th>er Robin</th><th> SITE:</th><th>PPG J</th><th>ersey City</th></td>	<th>DATE</th> <th>: 2/9/2011</th> <th>_ CLIENT:</th> <th>Dresdne</th> <th>er Robin</th> <th> SITE:</th> <th>PPG J</th> <th>ersey City</th>	DATE	: 2/9/2011	_ CLIENT:	Dresdne	er Robin	SITE:	PPG J	ersey City
FIELD INSTRUMENT AND CALIBRATION DATA METER ID'S METER ID'S Turbidity DO E-011 EP-0403 COND. E-006 EP-043 COND. E-009 EP-043 DO SECUED OXYGEN Read: True Value 10.0 Name True Value 10.0 DISSOLVED OXYGEN Read: True Value 9.9 Ustantion To Press (mM Mg) 768 C03300 03/10/11 Calibration must be to 100% C2 Saturation % 100 True Value. DH Lot # and Expiration Date A0051 02/14 Buffer 1.01 1.0.12 Temp (°C) 13.7 Buffer 1.01 10.12 Temp (°C) 13.9 Buffer 7.00 7.03 Temp (°C) 13.8 Buffer 1.01 10.12 Temp (°C) 13.8 Ph tower should be calibrated using 3 buffer 1.02 - 1 should read ± 0.05 from actual value at temp, or calibration. Calibration performed 1 0.03 - 1 (Temp (°C) 13.7 Lot # and Exploration readults abude be 2.05 ph units from actual value at temp, or calibration. A0057 02	WEATHER:	Sunny, 20° F	ARRIVAL:	0830	DEPARTURE:	1430		JOB #: 22930	
METER ID'S Turbidity DO E-011 EP-040 pH E-035 EP-043 COND. E-006 EP-021 Lot & Exp. A0678 03/10/11 Read: True Value 10.0 DISSOLVED OXYGEN Read: True Value 10.0 Water Temp (°C) 13.8 Lot & Exp. C03300 03/10/11 Calibration must be to 100% 02 saturation % 100 Result 9.9 Barometric Press (mm Hg) 768 C03300 03/10/11 "Result must be within 10% of True Value." Calibration must be to 100% 02 saturation % 100 Note: Temp (°C) 13.7 A0061 02/14 Suffer 1.01 10.12 Temp (°C) 13.6 A0057 02/12 A0057 02/12 Satibration performed at 0035 03/311 A0057 02/12 D0 Calibration performed at 0035 13.8 Lot / Exp Date A0057 02/12 The reading should be allbrated using 3 buffers. PH Calibration readings should be ± 0.05 PH units from actual buffer value at A0057 02/12 The reading should be within ±15mV from the following values: ±96 mV at 29°C pH uniter 4.00 A0057 02/12	ANALY	ST / FIELD SAMPLER	: 5	Steve Schulze	FIEL	D SAMPLER:	D.	Miller	
pH Lot # and Expiration Date Buffer 4.01 4.00 Temp (°C) 13.7 $A0061$ $02/14$ Buffer 7.00 7.03 Temp (°C) 13.9 $A0057$ $02/12$ Buffer 10.01 10.12 Temp (°C) 13.6 $A0063$ $03/11$ Datiburation performed at 0835 $A0063$ $03/11$ $a0063$ $03/11$ Delibration performed at 0835 0063 $a0/11$ $a0063$ $03/11$ Delibration performed at 0835 00057 $02/12$ $a0063$ $03/11$ Delibration readius buffer 7.00 widguinhydrone ed buffer 7.00 + it should read ± 0.05 from actual value at temp. of calibration. $OCPP$ PH buffer 7.00 88.1 Temp (°C) 13.8 Lot / Exp Date $A0057$ $02/12$ The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 widquinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date $A0061$ $02/14$ The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date 017226 03	PH COND. ORP TURBIDITY Baro	METER E-011 E-035 E-006 E-009 E-058 DISSOLVED OX Water Temp (°C ometric Press (mm Hg O2 Saturation %	ETER ID'\$ 	S PROBE EP-040 EP-043 EP-021 EP-041 3.8 68	D CALIBRAT	Set to : Lot & Exp Read : Tru Re Lot & Exp	4 A0678 ue Value esult CO3300	000 03/10/11 10.0 9.9 0 03/10/11	
buffer 7.00 7.03 Temp (°C) 13.9 A0057 02/12 buffer 10.01 10.12 Temp (°C) 13.6 A0063 03/11 calibration performed at 0835 0835 och meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at emp. of calibration. ORP pH buffer 7.00 088.1 Temp (°C) 13.8 Lot / Exp Date A0057 02/12 rhe reading should be within ±15mV from the following values: ±96 mV at 20°C, ±90 mV at 25°C pH buffer 4.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mbdure Quinhydrone Q17226 03/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl A0257 09/15 Reading 1000 A0257 09/15 "Reading must be 1000 uS/cm Lot # and Expiration Date A0257 09/15		þ	н	13 7					
Suffer 10.01 10.12 Temp (°C) 13.6 A0063 03/11 Calibration performed at 0835 pH meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at amp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 88.1 Temp (°C) 13.8 Lot / Exp Date A0067 02/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 7.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mbdure Quinhydrone Q17226 03/13 SPECIFIC CONDUCTANCE Standard 1000 + 10 uS/cm NaCl A0257 09/15 Reading 1000 A0257 09/15 "Reading must be 1000 uS/cm A0257 09/15					-				
Calibration performed at 0835 pH meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at emp. of calibration. ORP pH buffer 7.00 w/quinhydrone 88.1 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone C17226 03/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl A0257 09/15 Reading 1000 A0257 09/15 "Reading must be 1000 uS/cm A0257 09/15 A0257 09/15									
pH meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at emp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. PH buffer 7.00 ORP PH buffer 7.00 88.1 Temp (°C) 13.8 Lot / Exp Date A0057 02/12 The reading should be within ±15mV from the following values: ±96 mV at 20°C, ±90 mV at 25°C pH buffer 4.00 A0061 02/14 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl A0257 09/15 A0257 09/15 Reading must be 1000 uS/cm	Suffer 10.01	10.12							
emp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 w/quinhydrone 88.1 Temp (°C) 13.8 Lot / Exp Date A0057 02/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.9 Lot # and Expiration Date A0257 09/15 A0257 09/15 "Reading must be 1000 uS/cm				13.6	_				
pH buffer 7.00 w/quinhydrone 88.1 Temp (°C) 13.8 Lot / Exp Date A0057 02/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.9 Lot # and Expiration Date A0257 09/15 *Reading must be 1000 uS/cm	Calibration	performed at	_ _Temp (°C)	13.6 0835	 0.05 pH units from a	A00			
pH buffer 7.00 w/quinhydrone 88.1 Temp (°C) 13.8 Lot / Exp Date A0057 02/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.9 Lot # and Expiration Date A0257 09/15 *Reading must be 1000 uS/cm	Calibration	performed at uld be calibrated using 3 buff	Temp (°C) ers. pH Calibrat	13.6 0835 tion readings should be ±	2 - C	A00			
w/quinhydrone 88.1 Temp (°C) 13.8 Lot / Exp Date A0057 02/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 A0061 02/14 The reading should be between +15mV from the following values: +96 mV at 25°C above the reading in the 7 buffer mixture A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading must be 1000 uS/cm	Calibration	performed at uld be calibrated using 3 buff	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh	13.6 0835 tion readings should be ±	2 - C	A00			
pH buffer 4.00 w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading Lot # and Expiration Date A0257 09/15 Temp (°C) 13.9 *Reading must be 1000 uS/cm	Calibration pH meter sho emp. of calibra	performed at uld be calibrated using 3 buff ation. After calibration read bu	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh	13.6 0835 tion readings should be ±	2 - C	A00			
w/quinhydrone 262.2 Temp (°C) 13.7 Lot / Exp Date A0061 02/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Lot / Exp Date Q17226 03/13 Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.9 *Reading must be 1000 uS/cm	Calibration pH meter sho emp. of calibra pH buff	performed at uld be calibrated using 3 buff ation. After calibration read bu	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP	13.6 0835 tion readings should be ± ould read ± 0.05 from act	tual value at temp. of	A00 actual buffer value at r calibration.		A0057 02/12	
The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading Temp (°C) 13.9 *Reading must be 1000 uS/cm	Calibration pH meter sho emp. of calibra pH bufi w/quint	performed at uld be calibrated using 3 buff ation. After calibration read bu fer 7.00 hydrone8	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C)	tual value at temp. of	A00 actual buffer value at r calibration.		A0057 02/12	
Quinhydrone Lot / Exp Date Q17226 03/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 09/15 Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.9 Lot # and Expiration Date A0257 09/15 *Reading must be 1000 uS/cm *Reading must be 1000 uS/cm None None	Calibration pH meter sho emp. of calibra pH buff w/quint The reading si pH buff	performed at uld be calibrated using 3 buff ation. After calibration read bu fer 7.00 nydrone8 hould be within ±15mV from to fer 4.00	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) tues: +96 mV at 20°C, +9	tual value at temp. of 13.8 10 mV at 25°C	A00 actual buffer value at I calibration. Lot / Exp Date			
SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.9 *Reading must be 1000 uS/cm	Calibration pH meter sho emp. of calibra pH buff w/quint The reading si pH buff	performed at uld be calibrated using 3 buff ation. After calibration read bu fer 7.00 nydrone8 hould be within ±15mV from to fer 4.00	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) tues: +96 mV at 20°C, +9	tual value at temp. of 13.8 10 mV at 25°C	A00 actual buffer value at I calibration. Lot / Exp Date			
Standard 1000 ± 10 uS/cm NaCl Lot # and Expiration Date Reading 1000 A0257 09/15 Temp (°C) 13.9 *Reading must be 1000 uS/cm	Calibration pH meter sho emp. of calibra pH buff w/quint The reading si pH buff w/quint	performed at uld be calibrated using 3 buff ation. After calibration read bu fer 7.00 nydrone	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) lues: +96 mV at 20°C, +9 Temp (°C)	tual value at temp. of 13.8 10 mV at 25°C 13.7	A00 actual buffer value at ' calibration. Lot / Exp Date Lot / Exp Date			
Standard 1000 + 10 uS/cm NaCl Lot # and Expiration Date Reading 1000 Temp (°C) 13.9 *Reading must be 1000 uS/cm Heading	Calibration pH meter sho emp. of calibra pH buff w/quint The reading si pH buff w/quint	performed at uld be calibrated using 3 buff ation. After calibration read bu fer 7.00 nydrone	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) lues: +96 mV at 20°C, +9 Temp (°C) Temp (°C) Temp (°C) Temp (°C)	tual value at temp. of 13.8 10 mV at 25°C 13.7 eading in the 7 buffer	A00 actual buffer value at r calibration. Lot / Exp Date Lot / Exp Date		A0061 02/14	
Standard 1000 ± 10 uS/cm NaCl A0257 09/15 Reading 1000 Temp (°C) 13.9 *Reading must be 1000 uS/cm	Calibration pH meter sho emp. of calibra pH buff w/quint The reading si pH buff w/quint	performed at uld be calibrated using 3 buff ation. After calibration read bu fer 7.00 nydrone	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) lues: +96 mV at 20°C, +9 Temp (°C) Temp (°C) Temp (°C) Temp (°C)	tual value at temp. of 13.8 10 mV at 25°C 13.7 eading in the 7 buffer	A00 actual buffer value at r calibration. Lot / Exp Date Lot / Exp Date		A0061 02/14	
Temp (°C) 13.9 *Reading must be 1000 uS/cm	Calibration pH meter sho emp. of calibra pH buff w/quint The reading si pH buff w/quint	performed at uld be calibrated using 3 buff ation. After calibration read buff fer 7.00 hydrone 8 hould be within ±15mV from 1 fer 4.00 hydrone 26 hould be between +170mV at	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va 52.2 t 20°C and +185	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) tues: +96 mV at 20°C, +9 Temp (°C) 5mV at 25°C above the re	tual value at temp. of 13.8 10 mV at 25°C 13.7 eading in the 7 buffer	A00 actual buffer value at r calibration. Lot / Exp Date Lot / Exp Date		A0061 02/14	
NOTES: Primary Review: SS 02/10/11 Secondary Review: LM 02/15/11	Calibration pH meter sho emp. of calibra pH buff w/quint The reading si pH buff w/quint	performed at uld be calibrated using 3 buff ation. After calibration read buff fer 7.00 hydrone 8: hould be within ±15mV from 1 fer 4.00 hydrone 26 hould be between +170mV at SPECIFIC COI Standard 1000 ± 10	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va 52.2 t 20°C and +185 NDUCTAN uS/cm NaCI	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) lues: +96 mV at 20°C, +9 Temp (°C) SmV at 25°C above the re Q ICE	tual value at temp. of 13.8 10 mV at 25°C 13.7 eading in the 7 buffer uinhydrone t # and Expirati	A00 actual buffer value at ' calibration. Lot / Exp Date Lot / Exp Date imixture Lot / Exp Date		A0061 02/14	
	Calibration pH meter sho emp. of calibra pH buff w/quint The reading si pH buff w/quint	performed at uld be calibrated using 3 buff ation. After calibration read buff fer 7.00 hydrone	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va 52.2 t 20°C and +185 NDUCTAN US/cm NaCI 000 3.9	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) lues: +96 mV at 20°C, +9 Temp (°C) SmV at 25°C above the re Q ICE	tual value at temp. of 13.8 10 mV at 25°C 13.7 eading in the 7 buffer uinhydrone t # and Expirati	A00 actual buffer value at ' calibration. Lot / Exp Date Lot / Exp Date imixture Lot / Exp Date		A0061 02/14	
	Calibration pH meter sho emp. of calibra pH bufi w/quint The reading si pH bufi w/quint	performed at uld be calibrated using 3 buff ation. After calibration read buff fer 7.00 hydrone 8 hould be within ±15mV from 1 fer 4.00 hydrone 26 hould be between +170mV at SPECIFIC COI Standard 1000 ± 10 Reading 10 Temp (°C) 13 *Reading must be 1000 uS/o	Temp (°C) ers. pH Calibrat uffer 7.00 - it sh ORP 8.1 the following va 52.2 t 20°C and +185 NDUCTAN uS/cm NaCl 000 3.9 cm	13.6 0835 tion readings should be ± ould read ± 0.05 from act Temp (°C) tues: +96 mV at 20°C, +9 Temp (°C) 5mV at 25°C above the re Q ICE Lo	tual value at temp. of 13.8 10 mV at 25°C 13.7 eading in the 7 buffer uinhydrone t # and Expirati A0257 09/1	A00 actual buffer value at r calibration. Lot / Exp Date Lot / Exp Date Lot / Exp Date Lot / Exp Date 0 Date 5	63 03/11	A0061 02/14 Q17226 03/13	

NEEATHER: Summy 50° F ARRIVAL: 0830 DEPARTURE: 1300 JOB #: 2430 ANALYST / FIELD SAMPLER: T. Lesinski FIELD INSTRUMENT AND CALIBRATION DATA FIELD INSTRUMENT AND CALIBRATION DATA METER PROBE Turbidity OO METER PROBE Turbidity METER PROBE Turbidity OO METER PROBE Turbidity DO METER PROBE Turbidity DO Colspan="2">Turbidity DO METER PROBE Turbidity DO Colspan="2">Turbidity METER PROBE Turbidity METER PROBE Turbidity DO Colspanumator	ANALYST / FIELD SAMPLER: T. Lesinski FIELD SAMPLER:	DATE:	3/19/2011	CLIENT	: Dr	esdner Robin	SITE:		PPG Jersey Cit	у		
FIELD INSTRUMENT AND CALIBRATION DATA DI SETTE INSTRUMENT AND CALIBRATION DATA METER ID'S METER ID'S METER ID'S OD METER ID'S METER ID'S METER ID'S METER ID'S METER ID'S METER ID'S AUTOIN % OD SOLVED OXYGEN METER ID'S AUTOIN % OD SOLVED ID'S AUTOIN %	FIELD INSTRUMENT AND CALIBRATION DATA DEFINITION OF CALIBRATION DATA NOT AT THE ID'S Turbidity ON AD001 PD-049 Set to :: Inurbidity OND E-010 EP-049 Set to :: 100 OND E-010 MP-127 Set to :: Inurbidity OND E-010 MP-127 Result 100 DISSOLVED OXYGEN Result 1.09 Water Temp (°C) 13.4 Col & Exp. Col 300.0 4/11 Barometric Prees (mr. MP) 13.1 Col & and Expiration Date Mefer 4.01 4.02 Temp (°C) 13.4 A033.3 1/1/1 Inter 4.01 1.00 Temp (°C) 13.1 A033.3 1/1/1 Inter 4.01 0.00 Temp (°C) 13.1 A033.3 1/1/1 Inter 4.02 Temp (°C) 13.2 A033.3 1/1/1 Inter 4.01 0.00 Temp (°C) 13.1 A033.3 1/1/1 Inter 4.01 0.00 Temp (°C) 13.1 Lot (Exp Date	NEATHER:	Sunny 50° F		:0830) DEPARTUR	E:1	300	Job #:	24306		
METER ID'S METER ID'S Turbidity NO $E:003$ $E:P:049$ Set to: 100 NP $E:012$ $E:P:018$ Lot & Exp. A1020 4/11 NRP $E:012$ $MP:127$ Read: True Value 1.00 NRP $E:012$ $MP:127$ Read: True Value 1.00 NBDITY $E:056$ Result 1.09 Read: True Value 1.00 Valer Temp (°C) 13.4 Lot & Exp. CO 38030 4/11 "Result 1.09 Barometric Press (mm Hg) 763 Lot & Exp. CO 38030 4/11 "Result 1.09 O2 Saturation % 100 Tom CO 30030 4/11 "Result 1.09 Calibration must be to 100% C2 Saturation % 100 Lot & Exp. CO 38030 4/11 "Result rust be within 10% of True Value. Calibration must be to 100% C2 Saturation % 100 13.2 A0061 2/14 A0343 12/12 uffer 7.00 7.03 Temp (°C) 13.1 A0333 11/11 A0333 11/11 alibration performed at ON SITE 0945 Lot / Exp Date A0343 12/12 PH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 hereading	METER ID'S METER ID'S METER ID'S METER 03 EP-049 EP-043 EP-044 EP-016 Lot & Exp. NP E-012 MP-127 DISSOLVED OXYGEN Read: True Value 1.00 Water Temp (°C) 13.4 EP-018 Lot & Exp. CO 38030 4/11 Barometric Press (mm Hg) 763 Lot & Exp. CO 38030 4/11 O2 Saturation % 100 Result 1.09 Mue. Calibration must be to 100% C2 Saturation % 100 Result 1.09 Differ 4.01 4.02 Temp (°C) 13.4 Lot # and Expiration Date uffer 10.01 10.09 Temp (°C) 13.4 A0343 12/12 uffer 7.00 7.03 Temp (°C) 13.1 A0333 11/11 alibration performed at ON STE 0945 13.0 Lot / Exp Date A0343 12/12 uffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 uffer 7.00 90.9 Temp (°C)	ANALYST	/ FIELD SAMPLER	:	T. Lesinski	Fil	ELD SAMPLER:					
METER ID'S METER ID'S METER ID'S METER 003 EP-049 DO E-013 EP-049 Set to : 100 DO E-012 MP-127 DRP E-012 MP-127 Read: True Value 1.00 DISSOLVED OXYGEN Read: True Value 1.00 Water Temp (°C) 13.4 Lot & Exp. CO 38030 4/11 Barometric Press (mm Hg) 763 Lot & Exp. CO 38030 4/11 Calibration must be to 100% C2 Saturation % 100 Result 1.09 Differ 4.01 4.02 Temp (°C) 13.4 Lot # and Expiration Date utffer 10.01 10.09 Temp (°C) 13.4 A0343 12/12 utffer 7.00 7.03 Temp (°C) 13.1 A0333 11/11 alibration performed at ON SITE 0945 Lot / Exp Date A0343 12/12 PH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 'Preading should be within 415mV from the following values: +96 mV	METER ID'S METER ID'S METER ID'S METER 03 EP-049 EP-043 EP-044 EP-016 Lot & Exp. NP E-012 MP-127 DISSOLVED OXYGEN Read: True Value 1.00 Water Temp (°C) 13.4 EP-018 Lot & Exp. CO 38030 4/11 Barometric Press (mm Hg) 763 Lot & Exp. CO 38030 4/11 O2 Saturation % 100 Result 1.09 Mue. Calibration must be to 100% C2 Saturation % 100 Result 1.09 Differ 4.01 4.02 Temp (°C) 13.4 Lot # and Expiration Date uffer 10.01 10.09 Temp (°C) 13.4 A0343 12/12 uffer 7.00 7.03 Temp (°C) 13.1 A0333 11/11 alibration performed at ON STE 0945 13.0 Lot / Exp Date A0343 12/12 uffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 uffer 7.00 90.9 Temp (°C)											
METER PROBE Turbidity 00 EP-043 EP-044 Set to : 100 00.00 E012 MP-127 Lot & Exp. A1020 4/11 00.00 E012 MP-127 Read: True Value 1.00 00.00 E012 MP-127 Read: True Value 1.00 00.00 Colored MP-127 Read: True Value 1.00 00.00 Colored MP-127 Read: True Value 1.00 00.00 Colored MP-127 Reault 1.00 Result 1.00 01.00 Colored MP-127 Result 1.00 Result 1.00 02.00 Colored MP-127 Result 1.00 Result 1.00 02.00 Colored MP-127 Result 1.00 Result 1.00 02.00 Colored MP-127 MP-127 Result 1.00 Result 1.00 Result 1.00 Lot & Exp.	METER PROBE Turbidity 00 EP-043 EP-044 Set to:: 100 00.00 E010 EP-044 Set to:: 100 00.01 E010 EP-044 Set to:: 100 00.01 E010 MP-127 Read:: True Value 1.00 00.01 EP-013 MP-127 Read:: True Value 1.00 00.01 EP-013 MP-127 Read:: True Value 1.00 00.01 EP-013 MP-127 Read:: True Value 1.00 00.02 Statustion: MP-127 Read:: True Value 1.00 01.02 O2 statustion: 100 Co 38030 4/11 Co 28030 4/11 Read:: Read::: Read:::: Read:::: Read:::: Read:::: Read:::: Read:::: Read:::: Read:::: Read::::: Read:::::<::::::::::::::::::::::			FIELD I	NSTRUMEN	IT AND CALIBR	ATION DATA					
DO E-003 M-M-M-042 EP-049 EP-044 Set to:: 100 DND. E-010 MPP E-010 EP-018 EP-044 Lot & Exp. A1020 4/11 DRP E-010 EP-018 Lot & Exp. A1020 4/11 DRP E-012 MP-127 Read : True Value 1.00 DISSOLVED OXYGEN MP-127 Read : True Value 1.00 O2 Saturation % 100 Catibration must be to 100% 02 Saturation Result 1.09 Catibration must be to 100% 02 Saturation pH Lot & and Expiration Date A0061 2/14 uffer 4.01 4.02 Temp (°C) 13.4 A0333 11/11 allbration performed at 0 N SITE 0945 A0033 11/11 H meter should be cathbrated using 3 buffers. pH Cathbraten readings should be at 0.05 pH units from actual value at mp. of catibration. ORP PH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be buffly r 2.00 and t 2.0°C, +90 mV at 25°C MV at 25°C above the reading in t	DO E-003 M-M-M-042 EP-049 EP-044 Set to:: 100 DND. E-010 MPP E-010 EP-018 EP-044 Lot & Exp. A1020 4/11 DRP E-010 EP-044 Lot & Exp. A1020 4/11 DRP E-012 MP-127 Read : True Value 1.00 DISSOLVED OXYGEN MP-127 Read : True Value 1.00 O2 Saturation % 100 Catizration must be to 100% 02 Saturation Result 1.09 Catizration must be to 100% 02 Saturation pH Lot & Exp. C0 3030 4/11 Catizration must be to 100% 02 Saturation % 100 True Value. Result 1.09 Catizration must be to 100% 02 Saturation % 100 Catizration % A0041 2/14 uffer 4.01 4.02 Temp (°C) 13.4 A0343 12/12 Iffer 4.01 4.02 Temp (°C) 13.1 A0333 11/11 allbration performed at 0 0.8 Tre 0945 Model at temp. of catibration. Iffer 10.01		M	ETER ID'	s							
H M-042 E-044 EOND. E-010 EP-044 EOND. E-012 MP-127 URBIDITY E-056 MP-127 DISSOLVED OXYGEN Read : True Value Water Temp (°C) 13.4 Barometric Press (mm Hg) 763 O2 Saturation % 100 Calibration must be to 100% O2 Saturation PH Differ 4.01 4.02 Temp (°C) MF 7.00 7.03 Temp (°C) 13.4 Matter 10.09 Temp (°C) 13.4 A0061 MF 7.00 7.03 Temp (°C) 13.4 Matter 10.01 10.09 Temp (°C) 13.1 Matter 10.01 10.09 Temp (°C) 13.1 Matter 10.01 0.09 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 Meeter should be calibration readings should be ± 0.05 from actual value at temp. of calibration. ORP PH buffer 7.00 # should read ± 0.05 from actual value at temp. of calibration. ORP PH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A034	Hi M-042 EP-044 EOND. E-010 EP-044 URBIDITY E-056 MP-127 DISSOLVED OXYGEN Read : True Value Water Termp (°C) 13.4 Result 1.00 Calibration must be to 100% 02 Saturation pH Lot & Exp. C0 38030 4/11 Calibration must be to 100% 02 Saturation pH Lot # and Expiration Date A0061 2/14 uffer 4.01 4.02 Temp (°C) 13.4 A0333 11/11 alibration performed at ON STE 0945 A0333 11/11 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 FM units from actual value at temp. of calibration. ORP pH buffer 7.00 Wiguinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 7.00 MOS1 2/14 A006	1990 - 1990 <u>- 1</u> 9	METER		PROE	E		Т	urbidity			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0 -	E-003		EP-04	9	Set to :		100			
DRP E-012 MP-127 UNBIDITY E-056 MP-127 DISSOLVED OXYGEN Read : True Value1.00 Water Temp (°C) 13.4 Barometric Press (mm Hg) 763 O2 Saturation % 100 Calibration must be to 100% 02 Saturation PH Lot # and Expiration Date 4/11 uffer 4.01 4.02 Temp (°C) 13.4 uffer 10.01 10.09 Temp (°C) 13.4 allibration performed at ON SITE 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 prive actual buffer value at mp. of calibration. After calibrated using 3 buffers. pH Calibration readings should be ± 0.05 prive actual buffer value at mp. of calibration. ORP PH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be ween +170mV at 20°C and +185mV at 20°C, +90 mV at 20°C, +90 mV at 25°C PH buffer 4.00 A0061 2/14 wiquinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be ween +170mV at 20°C and +185mV at 25°C above the r	DRP E-012 MP-127 UNBIDITY E-056 mP-127 DISSOLVED OXYGEN Read: True Value 1.00 Water Temp (°C) 13.4 Result 1.09 Barometric Press (mm Hg) 763 Lot & Exp. CO 38030 4/11 "Result must be vithin 10% of True Value. True Value 1.09 Lot & Exp. CO 38030 4/11 "Result must be within 10% of True Value. pH Lot # and Expiration Date A0061 2/14 uffer 4.01 4.02 Temp (°C) 13.4 A0343 12/12 uffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 allibration performed at ON SITE 0.945 MW A0333 11/11 wifer 7.00 g0.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within 15mV from the following values: +96 mV at 20°C. +90 mV at 25°C pH buffer 7.00 Wiguinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 he readin	H _	M-042		EP-04	4						
URBIDITY E-056 Read: True Value 1.00 DISSOLVED OXYGEN Result 1.09 Water Temp (*C) 13.4 Lot & Exp. CO 38003 4/11 Barometric Press (mm Hg) 763 ''Result must be within 10% of True Value. Calibration must be to 100% O2 Saturation pH Lot & Exp. CO 38003 4/11 Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date uffer 4.01 4.02 Temp (*C) 13.2 A0061 2/14 uffer 10.01 10.09 Temp (*C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 Ht meter should be calibrated using 3 buffers. PH Calibration readings should be ±0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 wifquinhydrone 90.9 Temp (*C) 13.1 Lot / Exp Date A0343 12/12 he reading should be within ±15mV from the following values: +96 mV at 20*C, +90 mV at 25*C pH buffer 4.00 wifquinhydrone 265.1 Temp (*C) 13.1 Lot / Exp Date 0001 2/14	URBIDITY E-056 Read : True Value 1.00 DISSOLVED OXYGEN Result 1.09 Water Temp (°C) 13.4 Lot & Exp. CO 38030 4/11 Barometric Press (mm Hg) 763 Co 2 saturation % Lot & Exp. CO 38030 4/11 Calibration must be to 100% O2 Saturation pH Lot & Exp. CO 38030 4/11 "Result must be within 10% of True Value. Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.4 A0343 12/12 uffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 Meeter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 wifquinhydrone 90.9 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 he reading should be within ±15mV from the following values: +96 mV at 25°C pH buffer 4.00 wifquinhydrone 265.1 Temp (°C)		E-010		and the second se		Lot & Exp.	A1	020 4/11			
Dissolved version Result 1.09 Water Temp (°C) 13.4 100 Calibration must be to 100% 02 Saturation % 100 100 Calibration must be to 100% 02 Saturation % pH Lot & ExpCO 38030/11 Calibration must be to 100% 02 Saturation % pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.4 A00611/14 uffer 10.01 10.09 Temp (°C) 13.1 A03331/11 alibration performed at ON SITE 0945 A03331/11 H meter should be calibrated using 3 buffers. pH Calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp of calibration After calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp of calibration After calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp. dotad	Dissolved version Result 1.09 Water Temp (°C) 13.4 100 Calibration must be to 100% 02 Saturation % 100 100 Calibration must be to 100% 02 Saturation % pH Lot & ExpCO 38030/11 Calibration must be to 100% 02 Saturation % pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.4 A00611/14 uffer 10.01 10.09 Temp (°C) 13.1 A03331/11 alibration performed at ON SITE 0945 A03331/11 H meter should be calibrated using 3 buffers. pH Calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp of calibration After calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp of calibration After calibration read buffer 7.00 - it should read ± 0.05 pH units from actual buffer value at mp. dotad	121-121			MP-12	27		1. A.				
Water Temp (°C) 13.4 Barometric Press (mm Hg) 763 O2 Saturation % 100 Saturation must be to 100% O2 Saturation PH Lot & Exp. CO 38030 4/11 "Result must be to 100% O2 Saturation PH uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 A0343 12/12 uffer 10.01 10.09 Temp (°C) 13.1 A0343 12/12 allbration performed at ON SITE 0945 0945 A0333 11/11 A0333 12/12 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at temp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP PH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within ±15mV from the following values: +98 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be within ±15mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone	Water Temp (°C) 13.4 Barometric Press (mm Hg) 763 O2 Saturation % 100 Saturation must be to 100% O2 Saturation PH Lot & Exp. CO 38030 4/11 "Result must be to 100% O2 Saturation PH uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 A0343 12/12 uffer 10.01 10.09 Temp (°C) 13.1 A0343 12/12 allbration performed at ON SITE 0945 0945 A0333 11/11 A0333 12/12 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at temp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP PH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within ±15mV from the following values: +98 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be within ±15mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone	URBIDITY	E-056	- 0.125			Read :	True Va	alue <u>1.00</u>			
Barometric Press (min Hg) 763 Lot & Exp. C0 38030 4/11 Calibration must be to 100% 02 Saturation pH "Result must be within 10% of True Value. Calibration must be to 100% 02 Saturation pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 7.00 7.03 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 A0333 11/11 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 ylog Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within ±15mV from the following values: +96 mV at 25°C pH buffer 7.00 w/quinhydrone 90.9 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 9/	Barometric Press (min Hg) 763 Lot & Exp. C0 38030 4/11 Calibration must be to 100% 02 Saturation pH "Result must be within 10% of True Value. Calibration must be to 100% 02 Saturation pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 7.00 7.03 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 A0333 11/11 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 ylog Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within ±15mV from the following values: +96 mV at 25°C pH buffer 7.00 w/quinhydrone 90.9 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 9/							Result	1.09			
O2 Saturation $\frac{9}{4}$ 100 "Result must be within 10% of True Value. Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 10.01 10.09 Temp (°C) 13.4 A0343 12/12 allbration performed at ON SITE 0945 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. ORP 09.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20° C, ± 90 mV at 25° C pH buffer 7.00 90.9 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20° C, ± 90 mV at 25° C pH buffer 7.00 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be between $\pm 170mV$ at 20° C and $\pm 185mV$ at 25° C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE <td cols<="" td=""><td>O2 Saturation $\frac{9}{4}$ 100 "Result must be within 10% of True Value. Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 10.01 10.09 Temp (°C) 13.4 A0343 12/12 allbration performed at ON SITE 0945 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. ORP 09.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20°C, ± 90 mV at 25°C pH buffer 7.00 90.9 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20°C, ± 90 mV at 25°C pH buffer 7.00 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be between $\pm 170mV$ at 20°C and $\pm 185mV$ at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE <td cols<="" td=""><td>1.00</td><td></td><td></td><td></td><td></td><td>and the second</td><td>Sec.</td><td></td><td></td></td></td></td>	<td>O2 Saturation $\frac{9}{4}$ 100 "Result must be within 10% of True Value. Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 10.01 10.09 Temp (°C) 13.4 A0343 12/12 allbration performed at ON SITE 0945 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. ORP 09.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20°C, ± 90 mV at 25°C pH buffer 7.00 90.9 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20°C, ± 90 mV at 25°C pH buffer 7.00 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be between $\pm 170mV$ at 20°C and $\pm 185mV$ at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE <td cols<="" td=""><td>1.00</td><td></td><td></td><td></td><td></td><td>and the second</td><td>Sec.</td><td></td><td></td></td></td>	O2 Saturation $\frac{9}{4}$ 100 "Result must be within 10% of True Value. Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 10.01 10.09 Temp (°C) 13.4 A0343 12/12 allbration performed at ON SITE 0945 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. ORP 09.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20° C, ± 90 mV at 25° C pH buffer 7.00 90.9 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20° C, ± 90 mV at 25° C pH buffer 7.00 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be between $\pm 170mV$ at 20° C and $\pm 185mV$ at 25° C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE <td cols<="" td=""><td>1.00</td><td></td><td></td><td></td><td></td><td>and the second</td><td>Sec.</td><td></td><td></td></td>	<td>1.00</td> <td></td> <td></td> <td></td> <td></td> <td>and the second</td> <td>Sec.</td> <td></td> <td></td>	1.00					and the second	Sec.		
Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date utifier 4.01 <u>4.02</u> Temp (°C) <u>13.2</u> <u>A0061 2/14</u> utifier 7.00 <u>7.03</u> Temp (°C) <u>13.4</u> <u>A0343 12/12</u> utifier 10.01 <u>10.09</u> Temp (°C) <u>13.1</u> <u>A0333 11/11</u> alibration performed at <u>ON SITE 0945</u> W meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP PH buffer 7.00 <u>90.9</u> Temp (°C) <u>13.0</u> Lot / Exp Date <u>A0343 12/12</u> The reading should be within $\pm 15mV$ from the following values: $\pm 96 \text{ mV}$ at $20^{\circ}C$, $\pm 90 \text{ mV}$ at $25^{\circ}C$ pH buffer 4.00 w(quinhydrone <u>265.1</u> Temp (°C) <u>13.1</u> Lot / Exp Date <u>A0061 2/14</u> The reading should be between $\pm 170mV$ at $20^{\circ}C$ and $\pm 185mV$ at $25^{\circ}C$ above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date <u>Q17226 3/13</u> SPECIFIC CONDUCTANCE Standard <u>1000 + 10 uS/cm NaCl</u> Reading <u>1000</u> Temp (°C) <u>13.8</u> *Reading must be 1000 uS/cm	Calibration must be to 100% O2 Saturation pH Lot # and Expiration Date uffer 4.01 <u>4.02</u> Temp (°C) <u>13.2</u> <u>A0061 2/14</u> <u>4.02 Temp (°C) 13.4</u> <u>A0343 12/12</u> <u>4.0061 2/14</u> <u>4.00333 11/11</u> <u>4.0333 11/11</u> <u>4.0051 2/14</u> <u>4.0061 2/14 <u>4.0061 2/14</u> <u>4.0061 2/14 <u>4.0061 2/14 <u>4.0061 2/14 <u>4.0061 2/14 <u>4.0061</u></u></u></u></u></u>	Barome								-		
pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 7.00 7.03 Temp (°C) 13.4 A0333 12/12 uffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 wiquinhydrone 90.9 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 The reading should be between +170mV at 20°C and +185mV at 20°C, +90 mV at 25°C ph buffer 7.00 wiquinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 3/13 "Reading 1000 1000 Temp (°C) 13.8 A0257 <td>pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 7.00 7.03 Temp (°C) 13.4 A0333 12/12 uffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 wiquinhydrone 90.9 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: ±96 mV at 20°C, ±90 mV at 25°C pH buffer 7.00 wiquinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 EXECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading A0257 9/15 "Reading must be 1000 uS/cm </td> <td></td> <td></td> <td></td> <td>00</td> <td></td> <td>*Result must</td> <td>be within 1</td> <td>0% of True Value.</td> <td></td>	pH Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 A0061 2/14 uffer 7.00 7.03 Temp (°C) 13.4 A0333 12/12 uffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 wiquinhydrone 90.9 Temp (°C) 13.1 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: ±96 mV at 20°C, ±90 mV at 25°C pH buffer 7.00 wiquinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 EXECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading A0257 9/15 "Reading must be 1000 uS/cm				00		*Result must	be within 1	0% of True Value.			
Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 $A0061$ $2/14$ uffer 7.00 7.03 Temp (°C) 13.4 $A0333$ $12/12$ uffer 10.01 10.09 Temp (°C) 13.1 $A0333$ $11/11$ allbration performed at ON SITE 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration aread buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP wfquinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date $A0343$ $12/12$ he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20° C, ± 90 mV at 25° C pH buffer 4.00 $u/1226$ $A0061$ $2/14$ he reading should be between $\pm 170mV$ at 20° C and $\pm 185mV$ at 25° C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date $Q17226$ $3/13$ Lot # and Expiration Date Maging must be 1000 uS/cm $A0027$ $9/15$	Lot # and Expiration Date uffer 4.01 4.02 Temp (°C) 13.2 $A0061$ $2/14$ uffer 7.00 7.03 Temp (°C) 13.4 $A0333$ $12/12$ uffer 10.01 10.09 Temp (°C) 13.1 $A0333$ $11/11$ allbration performed at ON SITE 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration aread buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP wfquinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date $A0343$ $12/12$ he reading should be within $\pm 15mV$ from the following values: ± 96 mV at 20° C, ± 90 mV at 25° C pH buffer 4.00 $u/1226$ $A0061$ $2/14$ he reading should be between $\pm 170mV$ at 20° C and $\pm 185mV$ at 25° C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date $Q17226$ $3/13$ Lot # and Expiration Date Maging must be 1000 uS/cm $A0027$ $9/15$	Calibration must										
huffer 7.00 7.03 Temp (°C) 13.4 A0343 12/12 huffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 hailibration performed at ON SITE 0945 oH meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at imp. of calibration. ORP pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 of the reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 wiquinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 the reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 SPECIFIC CONDUCTANCE Reading 1000 10.0 Lot # and Expiration Date A0257 9/15 A0257 9/15 "Reading must be 1000 uS	uffer 7.00 7.03 Temp (°C) 13.4 A0343 12/12 uffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 the reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0361 2/14 he reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date 017226 3/13 SPECIFIC CONDUCTANCE Reading 1000 1000 13.8 A0257 9/15 remp (°C) 13.8 remp (°C) 13.8 Reading must be 1000 uS/cm						Lot # a	and Expi	iration Date			
uffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 wh meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. ORP pH buffer 7.00 09.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 wiquinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date A0361 2/14 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 wiquinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 Culinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 Culinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 Reading 1000 13.8 A0257 9/15 "Reading must be 1000 uS/cm	uffer 10.01 10.09 Temp (°C) 13.1 A0333 11/11 allbration performed at ON SITE 0945 H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 he reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 wiquinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 he reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 Reading 1000 13.8 - A0257 9/15 "Reading must be 1000 uS/cm 13.8 - A0257 9/15	uffer 4.01	4.02	_Temp (°C)	13.2			A0061	2/14			
alibration performed at ON SITE 0945 bH meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at temp. of calibration. ORP pH ouffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 "he reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 "he reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Lot # and Expiration Date Reading 1000 13.8 P/15 "Reading must be 1000 uS/cm 13.8 A0257 9/15	allbration performed at ON SITE 0945 HI meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. ORP pH ouffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 the reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 A0061 2/14 the reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture A0061 2/14 Culinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 the reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 Reading 1000 10.00 Temp (°C) 13.8 *Reading must be 1000 uS/cm	uffer 7.00	7.03	_Temp (°C)	13.4		F	0343	12/12			
bH meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at simp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 w/quinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 Standard 1000 ± 10 uS/cm NaCl Reading must be 1000 uS/cm	H meter should be calibrated using 3 buffers. pH Calibration readings should be ± 0.05 pH units from actual buffer value at mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	uffer 10.01	10.09	Temp (°C)	13.1		F	40333	11/11			
amp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 w/quinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	mp. of calibration. After calibration read buffer 7.00 - it should read ± 0.05 from actual value at temp. of calibration. ORP pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 the reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 A0061 2/14 the reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 A0061 2/14 the reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 Specific CONDUCTANCE Lot # and Expiration Date Standard 1000 + 10 uS/cm NaCl Reading must be 1000 uS/cm	alibration perf	formed at	ON SITE	0945				1. S. M.			
PH buffer 7.00 w/quinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: ±96 mV at 20°C, ±90 mV at 25°C ph ouffer 4.00 A0061 2/14 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mixture A0061 2/14 The reading should be between ±170mV at 20°C and ±185mV at 25°C above the reading in the 7 buffer mixture Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 Lot # and Expiration Date A0257 9/15 "Reading must be 1000 uS/cm "Reading must be 1000 uS/cm A0257 9/15	PH buffer 7.00 w/quinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 'he reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH ouffer 4.00 A0061 2/14 'he reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C 13.1 Lot / Exp Date A0061 2/14 'he reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 BPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 Standard 1000 +10 uS/cm NaCl A0257 9/15 "Reading must be 1000 uS/cm	oH meter should I	be calibrated using 3 but	fers. pH Calibr	ation readings sho	ould be ± 0.05 pH units f	rom actual buffer va	lue at				
pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH ouffer 4.00 a0061 2/14 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH ouffer 4.00 a0061 2/14 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C ph ouffer mixture a0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 the reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 a0061 2/14 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 the reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading must be 1000 uS/cm	mp. of calibration	n. After calibration read b	ouffer 7.00 - it s	hould read ± 0.05	from actual value at ten	p. of calibration.					
pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH ouffer 4.00 a0061 2/14 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH ouffer 4.00 a0061 2/14 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C ph ouffer mixture a0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	pH buffer 7.00 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 the reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 a0061 2/14 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 the reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading must be 1000 uS/cm			OPP								
w/quinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 *Reading 1000 ± 10 uS/cm Temp (°C) 13.8 *Reading must be 1000 uS/cm	w/quinhydrone 90.9 Temp (°C) 13.0 Lot / Exp Date A0343 12/12 The reading should be within ±15mV from the following values: +96 mV at 20°C, +90 mV at 25°C pH buffer 4.00 A0061 2/14 W/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Q17226 3/13 SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl A0257 9/15 Reading 1000 13.8 A0257 9/15 "Reading must be 1000 uS/cm	pH buffer 7	.00	URF								
pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0057 9/15 Standard 1000 10.0 13.8 A0257 9/15 *Reading must be 1000 uS/cm	pH buffer 4.00 w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 Reading 1000 13.8 A0257 9/15 "Reading must be 1000 uS/cm		one <u>9</u>	0.9	Temp (°C)	13.0	Lot / Exp Dat	te	A0343 12/12			
w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading 1000 A005 9/15 "Reading must be 1000 uS/cm	w/quinhydrone 265.1 Temp (°C) 13.1 Lot / Exp Date A0061 2/14 The reading should be between +170mV at 20°C and +185mV at 25°C above the reading in the 7 buffer mixture Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm			the following v	alues: +96 mV at	20ºC, +90 mV at 25ºC						
Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date A0257 9/15 Standard 1000 13.8 A0257 9/15 *Reading must be 1000 uS/cm 1000 uS/cm A0257 9/15	Quinhydrone Lot / Exp Date Q17226 3/13 SPECIFIC CONDUCTANCE Lot # and Expiration Date Standard 1000 ± 10 uS/cm NaCl A0257 9/15 Reading 1000 13.8 *Reading must be 1000 uS/cm			5.1	Temp (°C)	13.1	Lot / Exp Dat	te	A0061 2/14			
SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	he reading shoul	ld be between +170mV	at 20°C and +1	85mV at 25°C ab	ove the reading in the 7	buffer mixture					
SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	SPECIFIC CONDUCTANCE Standard 1000 ± 10 uS/cm NaCl Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm					Quinhydrone	Lot / Exp Dat	te	Q17226 3/13	3		
Standard 1000 ± 10 uS/cm NaCl Lot # and Expiration Date Reading 1000 A0257 9/15 Temp (°C) 13.8 A0257 9/15 *Reading must be 1000 uS/cm	Standard 1000 ± 10 uS/cm NaCl Lot # and Expiration Date Reading 1000 A0257 9/15 Temp (°C) 13.8 A0257 9/15 *Reading must be 1000 uS/cm											
Standard 1000 ± 10 uS/cm A0257 9/15 Reading 1000 13.8 Prevention Prevention<	Standard 1000 ± 10 uS/cm A0257 9/15 Reading 1000 13.8 *Reading must be 1000 uS/cm		SPECIFIC CO	NDUCTAI	NCE							
Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	Reading 1000 Temp (°C) 13.8 *Reading must be 1000 uS/cm	6	tandard 1000 + 10	uS/cm NaC								
Temp (°C) 13.8 *Reading must be 1000 uS/cm	Temp (°C) 13.8 *Reading must be 1000 uS/cm					AU201	5/15	1.21				
*Reading must be 1000 uS/cm	*Reading must be 1000 uS/cm				•							
NOTES: Primary Review: TL 3/23/11 Secondary Review: SS 03/24/11	NOTES: Primary Review: TL 3/23/11 Secondary Review: SS 03/24/11											
Thindry Noview. TE 0/20/11 Sconidaly Neview. 33 03/24/11		NOTES	Primany Pr	aview.	TI 3/23/11	Secondary Pou	iew: 55 03/24/4	1				
		110120.			120/20/11	Coolinaly Nev	1011. 00 03/24/1			_		

TestAmerica

		-	0830					
ANALYST / FI	ELD SAMPLEF			DEPARTURE:	1	300	JOB #:	
		۲: <u>ا</u>	isa Melanson	FIELC	SAMPLER:			
		FIELD I	NSTRUMENT	AND CALIBRAT	ION DATA	<u>.</u>		
	N	IETER ID'	S					
	METER		PROBE			Turbio	dity	
	M-032		EP-047		Set to :		100	
pH COND.	E-019 M-028	-	EP-045 EP-031		Lot 8 Evn	A10	20 4/10/11	
ORP	E-028	-	EP-031		LOI & EXP.	A10	120 4/10/11	
	E-055	_			Read :	True Value	1.00	
DIS	SOLVED O	XYGEN				Result _	1.05	
٧	ater Temp (°C	;)1	3.7					
	Press (mm Hg		63				8030 4/10/11	
Calibration must be to	2 Saturation		00		*Result must l	be within 10% of 1	Frue Value.	
Calibration must be to		оН						
		511			Lot#a	nd Expiration	Date	
Duffer 4 04	4.00	Tamm (90)	10.0			sur shire and		
and the second			13.6			A0061 2/14		
Buffer 7.00	7.06	_Temp (°C)				A0343 12/12		
Buffer 10.01	10.12	Temp (°C)	13.7	<u></u>	A0333 11/11			
Calibration perform	ed at		0835					
pH meter should be ca	librated using 3 bu	iffers. pH Calibr	ation readings shou	Id be ± 0.05 pH units from	actual buffer val	ue at		
emp. of calibration. Aft	er calibration read	buffer 7.00 - it s	hould read ± 0.05 fr	om actual value at temp. c	of calibration.			
		ORP						
pH buffer 7.00 w/quinhydrone	8	38.8	Temp (°C)	13.6	_Lot / Exp Dat	e A	0343 12/12	
The reading should be	within ±15mV from	n the following v	alues: +96 mV at 20	0⁰C, +90 mV at 25⁰C				
pH buffer 4.00 w/quinhydrone	2	68.4	Temp (°C)	13.6	_Lot / Exp Dat	e /	0061 2/14	
The reading should be	between +170mV	at 20°C and +1	85mV at 25ºC abov	e the reading in the 7 buff	er mixture			
				Quinhydrone	Lot / Exp Dat	e (217226 3/13	
		NDUCTA						
C		NDUCIA	NCE	Lot # and Expiration	on Date			
S		uS/cm NaC		A0257 9/15				
Stand		000						
Stand Read	ding 1							
Stand Read Temp	ding 1	3.8						
Stand Read Temp *Readin	ding 1 (°C) 1 g must be 1000 us	3.8 S/cm	IM 03/24		ary Review	55 03/2	8/11	
Stand Read Temp	ding 1 (°C) 1 g must be 1000 us	3.8	LM 03/24/	11 Second	dary Review:	SS 03/2	8/11	
Stand Read Temp *Readin	ding 1 (°C) 1 g must be 1000 us	3.8 S/cm	LM 03/24/	11 Second	dary Review:	SS 03/2	8/11	

DATE:	3/19/2011	CLIENT	: Dre	esdner Robin	SITE	PF	G Jersey City
WEATHER:	Sunny 50° F		:0830	DEPARTURE	:1	300	JOB #: 24306
ANALYST	/ FIELD SAMPLEI	R:	Steve Schulze	FIEL	D SAMPLER:		
		FIELD I	NSTRUMEN	T AND CALIBRA	TION DATA		
	and the second	METER ID'	S				
	METER		PROB	E		Turb	
	E-011		EP-040		Set to :	a and a state	100
H _	E-035	<u> </u>	EP-04				
COND.	E-006 E-009	-012.54	EP-02 EP-04		Lot & Exp	A1020	4/10/11
	E-009 E-058	<u> </u>	EF-04	<u>.</u>	Read :	True Value	1.0
	DISSOLVED O					Result	1.03
	Water Temp (°C		3.6				
Barome	etric Press (mm He		763			CO38030	
	O2 Saturation		100		*Result must	be within 10% o	f True Value.
Calibration must	t be to 100% O2 Satura						
		рН					
					Lot # a	and Expiration	on Date
Buffer 4.01	4.00	Temp (°C)	13.7			A0061 02/14	
Buffer 7.00	7.04	Temp (°C)	13.6		A0057 02/12		
Buffer 10.01	10.15	Temp (°C)	13.7		A0333 11/11		
Calibration per	formed at		0831				
pH meter should	be calibrated using 3 b	uffers. pH Calibi	ration readings sho	uld be ± 0.05 pH units fro	m actual buffer va	lue at	
emp. of calibratio	n. After calibration read	buffer 7.00 - it s	should read ± 0.05 f	from actual value at temp	. of calibration.		
		ORP					
pH buffer	7.00	ON					
w/quinhyd	rone	86.2	_Temp (°C)	13.7	Lot / Exp Dat	te	A0057 02/12
-	uld be within ±15mV fror	m the following v	values: +96 mV at 2	20°C, +90 mV at 25°C			
pH buffer w/quinhyd		69.8	_Temp (°C)	13.9	Lot / Exp Dat	te	A0061 02/14
The reading shou	uld be between +170m∨	/ at 20°C and +1	185mV at 25ºC abo	ve the reading in the 7 bu	iffer mixture		
				Quinhydrone	Lot / Exp Dat	te	Q17226 03/13
	SPECIFIC CC	ADUCIA	NUE				
	standard <u>1000 +</u> 10		<u>.</u>	Lot # and Expirat A0257 09/			
		000					
	eading must be 1000 us	13.8 S/cm					
NOTES:	Primary R	keview:	SS 03/24/11	Secondary I	Review:	LM 03/28/1	
				and the second second second			
			3				

DATE:	3/19/2011	CLIENT	: Dre	esdner Robin	SITE	- <u>P</u> I	PG Jersey Cit	/
WEATHER:	Sunny 50° F		. 0830	DEPARTUR	RE:1	300	JOB #:	24306
ANALYST	/ FIELD SAMPLER	:	D. Nonemaker	Fie	ELD SAMPLER:		NA	
		FIELD II	NSTRUMEN	T AND CALIBR	ATION DATA	<u> </u>		
	м	ETER ID	S					
	METER		PROB	E		Turk	oidity	
DO _	M-015		MP-12		Set to :	100		
pH	M-031		MP-12					
COND	M-014 M-006	-	MP-10		Lot & Exp	. <u>A1020</u>	4/9/2011	_
	M-008 M-049		MP-11	٤	Read :	True Value	1.00	
	DISSOLVED O	KYGEN				Result	0.99	
	Water Temp (°C)) 1:	3.2					
Barome	tric Press (mm Hg)		63		Lot & Exp.	C038030	4/9/2011	
	O2 Saturation %		00		*Result must	be within 10% of	of True Value.	
Calibration must	be to 100% O2 Saturation							
					Lot # a	and Expirati	on Date	
Buffer 4.01	4.01	_Temp (°C)	12.7		A	9273 09/20	013	
Buffer 7.00	7.01	Temp (°C)	12.7		Δ.	9328 11/20	011	
					A	5020 11/20		
Buffer 10.01	10.12	 Temp (°C)				0333 11/20		
Calibration per		_ _Temp (°C)	13.4 0945	uld be ± 0.05 pH units fi	A	0333 11/20		
Calibration per	formed at	_ Temp (°C) fers. pH Calibr	13.4 0945 ation readings sho		A rom actual buffer va	0333 11/20		
Calibration per	formed at be calibrated using 3 buf	_ Temp (°C) fers. pH Calibr	13.4 0945 ation readings sho		A rom actual buffer va	0333 11/20		
Calibration per PH meter should emp. of calibration pH buffer 7	formed at be calibrated using 3 buf n. After calibration read b 7.00	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP	13.4 0945 ation readings sho hould read ± 0.05 t	irom actual value at terr	A rom actual buffer va np. of calibration.	0333 11/2(lue at		
Calibration per pH meter should emp. of calibration	formed at be calibrated using 3 buf n. After calibration read b 7.00	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP	13.4 0945 ation readings sho hould read ± 0.05 t		A rom actual buffer va np. of calibration.	0333 11/2(lue at		1
Calibration perf PH meter should emp. of calibration pH buffer 7 w/quinhydr The reading shou	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 85 Id be within ±15mV from	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP 9.4	13.4 0945 ation readings sho hould read ± 0.05 f	rom actual value at terr 11.1	A rom actual buffer va np. of calibration.	0333 11/2(lue at	011	1
calibration perf pH meter should emp. of calibration pH buffer 7 w/quinhydr	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 85 Id be within ±15mV from 8.00	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP 9.4 the following v	13.4 0945 ation readings sho hould read ± 0.05 f Temp (°C) alues: +96 mV at 2	rom actual value at terr 11.1	A rom actual buffer va np. of calibration.	0333 11/20 lue at te	011	
Calibration perf pH meter should i emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 85 Id be within ±15mV from 8.00	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP 9.4 the following v 50.0	13.4 0945 ation readings sho hould read ± 0.05 f Temp (°C) ralues: +96 mV at 2 Temp (°C)	rom actual value at tem <u>11.1</u> 20°C, +90 mV at 25°C <u>11.7</u>	A rom actual buffer va np. of calibration. Lot / Exp Dat	0333 11/20 lue at te	011 A9328 11/201	
Calibration perf PH meter should I emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 89 Id be within ±15mV from 8.00 rone 26	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP 9.4 the following v 50.0	13.4 0945 ation readings sho hould read ± 0.05 f Temp (°C) ralues: +96 mV at 2 Temp (°C)	rom actual value at tem <u>11.1</u> 20°C, +90 mV at 25°C <u>11.7</u>	A rom actual buffer va np. of calibration. Lot / Exp Dat	0333 11/2(lue at te	011 A9328 11/201	4
Calibration perf pH meter should i emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 89 Id be within ±15mV from 8.00 rone 26 Id be between +170mV a	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP 9.4 the following v 60.0 at 20°C and +1	13.4 0945 ation readings sho hould read ± 0.05 f Temp (°C) ralues: +96 mV at 2 Temp (°C) S5mV at 25°C abo	rom actual value at terr 11.1 20°C, +90 mV at 25°C 11.7 ve the reading in the 7 l	A rom actual buffer va up. of calibration. Lot / Exp Dat Lot / Exp Dat buffer mixture	0333 11/2(lue at te	A9328 11/201 A0263 09/201	4
Calibration perf PH meter should I emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 89 Id be within ±15mV from 8.00 rone 26	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP 9.4 the following v 60.0 at 20°C and +1	13.4 0945 ation readings sho hould read ± 0.05 f Temp (°C) ralues: +96 mV at 2 Temp (°C) S5mV at 25°C abo	rom actual value at terr <u>11.1</u> 20°C, +90 mV at 25°C <u>11.7</u> ve the reading in the 7 f Quinhydrone	A rom actual buffer va np. of calibration. Lot / Exp Dat Lot / Exp Dat buffer mixture Lot / Exp Dat	0333 11/2(lue at te	A9328 11/201 A0263 09/201	4
Calibration perf pH meter should emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr The reading shou	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone	Temp (°C) fers. pH Calibr utfer 7.00 - it s ORP 9.4 the following v 50.0 at 20°C and +1	13.4 0945 ation readings sho hould read ± 0.05 f	rom actual value at terr <u>11.1</u> 20°C, +90 mV at 25°C <u>11.7</u> ve the reading in the 7 l Quinhydrone Lot # and Expira	A rom actual buffer va np. of calibration. Lot / Exp Dat Lot / Exp Dat Lot / Exp Dat	0333 11/2(lue at te	A9328 11/201 A0263 09/201	4
Calibration perf pH meter should emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr The reading shou Si	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 89 Id be within ±15mV from 8.00 rone 26 Id be between +170mV a SPECIFIC COI tandard 1000 ± 10 to	Temp (°C) fers. pH Calibr uffer 7.00 - it s ORP 9.4 the following v 50.0 at 20°C and +1 NDUCTAN	13.4 0945 ation readings sho hould read ± 0.05 f	rom actual value at terr <u>11.1</u> 20°C, +90 mV at 25°C <u>11.7</u> ve the reading in the 7 l Quinhydrone Lot # and Expira	A rom actual buffer va np. of calibration. Lot / Exp Dat Lot / Exp Dat buffer mixture Lot / Exp Dat	0333 11/2(lue at te	A9328 11/201 A0263 09/201	4
Calibration perf pH meter should emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr The reading shou Si	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 89 Id be within ±15mV from 8.00 rone 26 Id be between +170mV a SPECIFIC COI tandard 1000 ± 10 to Reading 10	Temp (°C) fers. pH Calibr utfer 7.00 - it s ORP 9.4 the following v 50.0 at 20°C and +1 NDUCTAN	13.4 0945 ation readings sho hould read ± 0.05 f	rom actual value at terr <u>11.1</u> 20°C, +90 mV at 25°C <u>11.7</u> ve the reading in the 7 l Quinhydrone Lot # and Expira	A rom actual buffer va np. of calibration. Lot / Exp Dat Lot / Exp Dat Lot / Exp Dat	0333 11/2(lue at te	A9328 11/201 A0263 09/201	4
Calibration perf pH meter should emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr The reading shou Si F Ta	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone	Temp (°C) fers. pH Calibrium fers. pH Calibrium unifer 7.00 - it s ORP 9.4 the following v 60.0 at 20°C and +1 NDUCTAN NDUCTAN US/cm NaCl 000 3.2	13.4 0945 ation readings sho hould read ± 0.05 f	rom actual value at terr <u>11.1</u> 20°C, +90 mV at 25°C <u>11.7</u> ve the reading in the 7 l Quinhydrone Lot # and Expira	A rom actual buffer va np. of calibration. Lot / Exp Dat Lot / Exp Dat Lot / Exp Dat	0333 11/2(lue at te	A9328 11/201 A0263 09/201	4
Calibration perf pH meter should 1 emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr The reading shou Si F To *Re	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 89 Id be within ±15mV from 8.00 rone 26 Id be between +170mV a SPECIFIC COI tandard 1000 ± 10 to Reading 10 emp (°C) 13 bading must be 1000 uS/	Temp (°C) fers. pH Calibr utfer 7.00 - it s ORP 9.4 the following v 60.0 at 20°C and +1 NDUCTAN NDUCTAN US/cm NaCl 000 3.2 fcm	13.4 0945 ation readings sho hould read ± 0.05 f Temp (°C) alues: +96 mV at 2 Temp (°C) 85mV at 25°C abo NCE	rom actual value at terr 11.1 20°C, +90 mV at 25°C 11.7 ve the reading in the 7 l Quinhydrone Lot # and Expira A0257 09,	A rom actual buffer va rom actual buffer va rom actual buffer va Lot / Exp Dat Lot / Exp Dat buffer mixture Lot / Exp Dat ation Date /2015	0333 11/2(lue at te te	A9328 11/201 A0263 09/201 Q17226 03/20	4
Calibration perf PH meter should i emp. of calibration pH buffer 7 w/quinhydr The reading shou pH buffer 4 w/quinhydr The reading shou Si F Ta	formed at be calibrated using 3 buf n. After calibration read b 7.00 rone 89 Id be within ±15mV from 8.00 rone 26 Id be between +170mV a SPECIFIC COI tandard 1000 ± 10 to Reading 10 emp (°C) 13 bading must be 1000 uS/	Temp (°C) fers. pH Calibrium fers. pH Calibrium unifer 7.00 - it s ORP 9.4 the following v 60.0 at 20°C and +1 NDUCTAN NDUCTAN US/cm NaCl 000 3.2	13.4 0945 ation readings sho hould read ± 0.05 f Temp (°C) alues: +96 mV at 2 Temp (°C) 85mV at 25°C abo NCE	rom actual value at terr <u>11.1</u> 20°C, +90 mV at 25°C <u>11.7</u> ve the reading in the 7 l Quinhydrone Lot # and Expira	A rom actual buffer va rom actual buffer va rom actual buffer va Lot / Exp Dat Lot / Exp Dat buffer mixture Lot / Exp Dat ation Date /2015	0333 11/2(lue at te	A9328 11/201 A0263 09/201 Q17226 03/20	4

WEATHER:			Dres	dner Robin	SITE:	PP	G Jersey	City
ANALYST	Light Rain/53°F		0830	DEPARTURE:	1	230	JOB	#: 32369
	/ FIELD SAMPLE	R:	T. Lesinski	FIEL	D SAMPLER:			
		FIELD II	NSTRUMENT		TION DATA			
		AETER ID'	S					
	METER		PROBE			Turbi	idity	
DO	E-003		EP-063		Set to :		100	
pH	M-042		EP-044					
COND.	E-010		EP-018		Lot & Exp.	A10	20 10/	6/11
ORP	E-012		MP-127	<u></u>		-		
	E-056	7			Read :	True Value		1.0
	DISSOLVED O					Result		1.03
Baromet	Water Temp (°(tric Press (mm He		3.8 56		Lot & Exp.	CO 40	073 10)/16/11
Buromot	O2 Saturation		00			be within 10% of		
Calibration must I	be to 100% O2 Satura	Contraction of the local division of the loc						
		рН						
					Lot # a	nd Expiratio	n Date	
Buffer 4.01	4.00	Temp (°C)	13.6		A	0340 12/1	4	
Buffer 7.00	7.02	Temp (°C)	13.8	<u>3. 1</u> 7. 1	A	0343 12/1	2	
Buffer 10.01	10.08	Temp (°C)	13.7		A	0333 11/1	1	
alibration perf		ON SITE	0935				1.1.1.1	
				be ± 0.05 pH units from		ueat		
emp. or calibration	. After calibration read	burier 7.00 - it s	nould read ± 0.05 tro	m actual value at temp.	of calibration.			
		ORP						
pH buffer 7. w/quinhydro		90.9	Temp (°C)	13.8	Lot / Exp Dat	0	A0343	12/12
-	d be within ±15mV fror	n the following v	alues: +96 mV at 20º	℃, +90 mV at 25°C				
i ne reading should	00							
pH buffer 4. w/quinhydro		62.1	Temp (°C)	13.9	Lot / Exp Dat	0	A0340	12/14
pH buffer 4. w/quinhydro	one2			13.9 the reading in the 7 buf		e	A0340	12/14
pH buffer 4. w/quinhydro	one2						A0340 Q17226	<u>12/14</u> 3/15
pH buffer 4. w/quinhydro	one2 d be between +170mV	′ at 20⁰C and +1	85mV at 25°C above	the reading in the 7 buf	fer mixture			
pH buffer 4. w/quinhydro	one2	′ at 20⁰C and +1	85mV at 25°C above	the reading in the 7 buf Quinhydrone	fer mixture Lot / Exp Dat			
pH buffer 4. w/quinhydro	one2 d be between +170mV SPECIFIC CC	at 20°C and +1	85mV at 25°C above	the reading in the 7 buf Quinhydrone Lot # and Expirati	fer mixture Lot / Exp Dat On Date			
pH buffer 4. w/quinhydro The reading shouk	one2 d be between +170mV SPECIFIC CC candard <u>1000 ± 10</u>	at 20°C and +1	85mV at 25°C above	the reading in the 7 buf Quinhydrone	fer mixture Lot / Exp Dat On Date			
pH buffer 4. w/quinhydro The reading should St R	one2 d be between +170mV SPECIFIC CC candard <u>1000 ± 10</u> Reading1	at 20°C and +1	85mV at 25°C above	the reading in the 7 buf Quinhydrone Lot # and Expirati	fer mixture Lot / Exp Dat On Date			
pH buffer 4. w/quinhydro The reading should St R Te	one2 d be between +170mV SPECIFIC CC candard <u>1000 ± 10</u> Reading1	2 at 20°C and +1 DNDUCTAN 0 uS/cm NaCl 000 13.4	85mV at 25°C above	the reading in the 7 buf Quinhydrone Lot # and Expirati	fer mixture Lot / Exp Dat On Date			
pH buffer 4. w/quinhydro The reading should St R Te	one 2 d be between +170mV SPECIFIC CC candard 1000 ± 10 candard 1000 ± 10 ceading1 emp (°C)	2 at 20°C and +1 2000 and +1 2000 and 10 2000 and +1 20°C and +1 2	85mV at 25°C above	the reading in the 7 buf Quinhydrone Lot # and Expirati	fer mixture Lot / Exp Dat on Date 5	8		
pH buffer 4. w/quinhydro The reading shouk The seading shouk The Te *Rea	one 2 d be between +170mV SPECIFIC CC tandard 1000 ± 10 tandard 1000 ± 10 tandard 1000 ± 10 tandard 1000 ± 10 tandard 1000 ± 10	2 at 20°C and +1 2000 and +1 2000 and 10 2000 and +1 20°C and +1 2	85mV at 25°C above	the reading in the 7 buf Quinhydrone Lot # and Expirati A0257 9/1	fer mixture Lot / Exp Dat on Date 5	8		