

AECOM 100 Red Schoolhouse Road Suite B-1 Chestnut Ridge, NY 10977-6715 www.aecom.com 845 425 4980 tel 845 425 4989 fax

Memorandum

То	Thomas Gibbons (CB&I)	Page 1
CC	Keith Prins (PPG), Mark Terril (PPG), Scott N	Mikaelian (AECOM)
Subject	Site 186 RAWP Addendum - Soil Remedial A Health Network	Action at Metropolitan Family
From	Alfred LoPilato (AECOM)	
Date	October 25, 2013	

RE: Hudson County Chromate Site 186 - Remedial Action Work Plan (RAWP) – Proposed RAWP Addendum - Soil Remedial Action at Metropolitan Family Heath Network, 935 Garfield Avenue, Jersey City, NJ

Tom -

As you know, on Saturday October 12, 2013, PPG/AECOM/ENTACT implemented a Remedial Investigation (RI) at the Metropolitan Family Health Network (MFHN) property, adjacent and south of Site 186.

The purpose of the RI was to investigate the presence/non-presence of visible Chromate Chemical Production Waste (CCPW) on the MHFN side of the fence/property boundary, since visible CCPW was observed at the property boundary on Site 186.

The scope of the RI potentially included both "initial" and "contingency" investigation activities, as presented in AECOM's Technical Memorandum dated September 16, 2013, and as approved by the New Jersey Department of Environmental Protection (NJDEP). A summary of the investigation results and proposed additional actions is provided below.

Initial Investigation Results

The initial investigation activities included excavation of a narrow trench (approximately 3-feet wide) along the fence line/property boundary to a depth of approximately 3-feet below ground surface. The trench was excavated starting at the east side of the property, and continued west along the fence towards the sidewalk adjacent to the MFHN building (Figure 1, attached)

Visible CCPW was not observed by PPG/AECOM or Weston/NJDEP personnel in either the soils excavated from the trench, nor on the excavation sidewalls. As a result, "contingency" RI activities (i.e. expanded excavation) were not required to be implemented.

A total of four confirmatory soil samples were collected (MFHT1-2.0-2.5 through MFHT1-4-2.0-2.5) from within the excavated trench (as depicted on Figure 1), and analyzed for hexavalent chromium (Cr+6) by Accutest Laboratories in Dayton, NJ. One duplicate sample (186-MFHT1-2.0-2.5X) was also collected.

Analytical results indicate Cr+6 concentrations ranged from 1.4 mg/kg to 24.1 mg/kg, as presented in Table 1 below:

TABLE 1 Hexavalent Chromium Analytical Results Soil Samples Collected at MFHN October 12, 2013

Lab Sample	Client Sample ID	Sample Depth (feet	Analytical Result
ID		bgs)	(Cr+6 mg/kg)
JB50090-6	186-MFHT1-2.0-2.5	2.0-2.5	4.7
JB50090-5	186-MFHT1-2.0-2.5X	2.0-2.5	5.6
JB50090-4R	186-MFHT1-2-2.0-2.5	2.0-2.5	1.4
JB50090-3	186-MFHT1-3-2.0-2.5	2.0-2.5	24.1
JB50090-2	186-MFHT1-4-2.0-2.5	2.0-2.5	5.8

BOLD results exceed the NJDEP Chromium Soil Cleanup Criteria of 20.0 mg/kg.

The laboratory data packages are included in Appendix A. The analytical results were subsequently validated by AECOM and determined to be useable for their intended purpose. AECOM's Validation Report is included as Appendix B.

Based on these findings, a presumably small area of actionable Cr+6 impacted soil exists on MFHN property, in the vicinity of sample location 186-MFHT1-3-2.0-2.5.

This sample exceedence is already delineated to the NORTH (via clean fill previously placed on Site 186), to the WEST via Sample 186-MFHT-2-2.0-2.5, and to the EAST by Sample 186-MFHT1-4-2.0-2.5. At a minimum, additional delineation sampling is required to the SOUTH, and also vertically (2.5-3.0 feet).

Proposed Remedial Action

PPG's proposed remedial action for soils near this sample location is excavation/removal, and off-site disposal. Prior to excavation, PPG proposes to collect four additional "Pre-Post-Excavation" delineation soil samples, as depicted in Figure 1. Assuming the analytical results exhibit Cr+6 concentrations below 20.0 mg/kg, this will allow for a smaller overall excavation area, and also allow for site restoration immediately following excavation.

The Pre-Post Excavation samples will be collected via hand auger at the locations and depths depicted on Figure 1. Analysis for Cr+6 will be requested on an expedited turnaround basis.

Note that during investigation activities, a subsurface concrete foundation structure was observed near the exceedence sample 186-MFHT1-3-2.0-2.5. Therefore, a sample of this concrete will be collected for Cr+6 analysis, and analyzed with the pre-post excavation samples.

Note that all of the applicable Health and Safety (H&S), air monitoring and disposal requirements stipulated in the Site 186 RAWP apply, and will be implemented, during the activities at MFHN, as well as Site 186. Additionally, the new temporary fencing at MFHN will be fitted with privacy screen to secure the work area during excavation activities. The excavated area will be backfilled with clean fill pursuant to NJDEP requirements, and the sod will be repaired/replaced.

Related Concerns

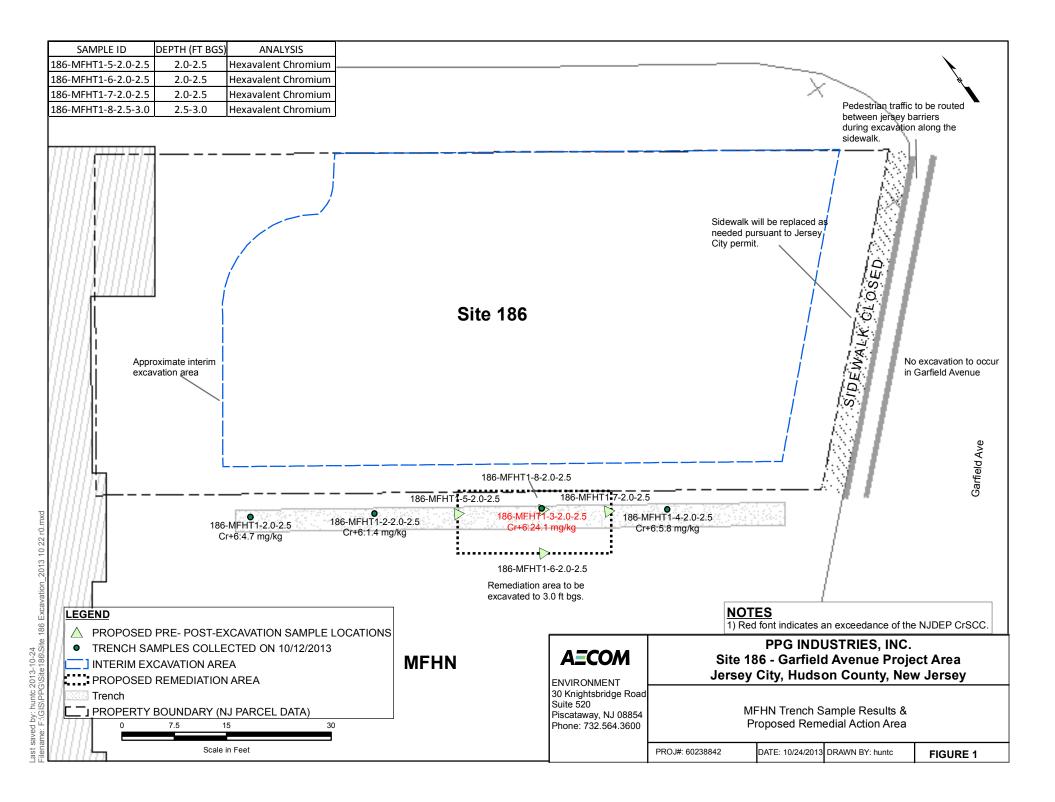
MFHN Fence Removal

Note that the current MFHN fencing along the property boundary will have to be removed to conduct the remedial activity proposed herein, as well as the removal of remaining visible CCPW material along the fence line on Site 186. PPG/ENTACT will request approval from MFHN to install temporary construction fencing, remove the existing fence, then re-install the original fencing upon completion of remediation activities. Note that it is likely the concrete footings for the existing fence will need to be re-poured, and depending on weather conditions, a few days' time for this concrete to set may be needed.

Temporary Re-Route of Pedestrian Traffic Along Garfield Avenue

The sidewalk along Garfield Avenue, adjacent to the east side of Site 186, will be closed during completion of Site 186 remediation activities. Pedestrian traffic will be re-routed, pursuant to the permit obtained from Jersey City by ENTACT, to a temporary walkway created using two rows of Jersey barriers, positioned adjacent to the current sidewalk and an appropriate distance into Garfield Avenue, respectively (see Figure 1). Although permission from MFHN to divert pedestrian traffic is not required, as a courtesy they will be notified, since this may affect patrons of their facility. Should the sidewalk become damaged or need to be removed during remediation activities, it will be repaired or replaced in accordance with Permit Requirements as issued by Jersey City. A copy of the permit is included in Appendix C. No excavation activity is planned beyond the sidewalk in Garfield Avenue

Schedule


NJDEP has requested that remedial action at MFHN be completed concurrent with the remaining remedial activities at Site 186, and that all activities be completed no later than November 2, 2013.

PPG believes this schedule requirement can be met so long as:

- NJDEP approves this RAWP Addendum no later than October 25, 2013;
- MFHN approves this RAWP Addendum, including site access approval for pre-post ex sampling, soil excavation and fence removal, no later than October 28, 2013;
- The pre-post-ex soil samples can be collected on or before October 28;
- The analytical laboratory can provide sample analysis by the afternoon of October 30, 2013.

AECOM

FIGURES

AECOM

APPENDIX A

Laboratory Data Reports

10/17/13

Technical Report for

AECOM, INC.

PPG-Site 186 RAM, Jersey City, NJ

60238842 186.RAM

Accutest Job Number: JB50090

Sampling Date: 10/14/13

Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin.Webster@aecom.com; Alfred.LoPilato@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 53

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Maney +. Cole
Nancy Cole
Laboratory Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

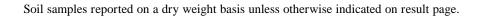
Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	
Section 4: Sample Results	7
4.1: JB50090-1: 186-FB20131014	8
4.2: JB50090-2: 186-MFHT1-4-2.0-2.5	9
4.3: JB50090-3: 186-MFHT1-3-2.0-2.5	10
4.4: JB50090-4: 186-MFHT1-2-2.0-2.5	11
4.5: JB50090-5: 186-MFHT1-2.0-2.5X	12
4.6: JB50090-6: 186-MFHT1-2.0-2.5	13
Section 5: Misc. Forms	14
5.1: Chain of Custody	15
5.2: Sample Tracking Chronicle	18
5.3: Internal Chain of Custody	20
Section 6: General Chemistry - QC Data Summaries	23
6.1: Method Blank and Spike Results Summary	24
6.2: Duplicate Results Summary	25
6.3: Matrix Spike Results Summary	26
6.4: Percent Solids Raw Data Summary	27
Section 7: General Chemistry - Raw Data	28
7.1: Raw Data GN93212: Chromium, Hexavalent	29
7.2: Raw Data GN93229: pH	37
7.3: Raw Data GN93230: Redox Potential Vs H2	40
7.4: Raw Data GN93231: Chromium, Hexavalent	42
7.5: Raw Data GN93240: Redox Potential Vs H2	51
7.6: Eh pH Phase Diagram	53

G

O


Sample Summary

AECOM, INC.

Job No: JB50090

PPG-Site 186 RAM, Jersey City, NJ Project No: 60238842 186.RAM

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
JB50090-1	10/14/13	08:30 AL	10/14/13	AQ	Field Blank Soil	186-FB20131014
JB50090-2	10/14/13	11:05 AL	10/14/13	SO	Soil	186-MFHT1-4-2.0-2.5
JB50090-3	10/14/13	10:15 AL	10/14/13	so	Soil	186-MFHT1-3-2.0-2.5
JB50090-4	10/14/13	09:15 AL	10/14/13	SO	Soil	186-MFHT1-2-2.0-2.5
JB50090-5	10/14/13	08:31 AL	10/14/13	so	Soil	186-MFHT1-2.0-2.5X
JB50090-6	10/14/13	08:30 AL	10/14/13	SO	Soil	186-MFHT1-2.0-2.5

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB50090

Site: PPG-Site 186, Jersey City, NJ **Report Date** 10/15/2013 5:37:56 P

On 10/14/2013, 5 Sample(s), 0 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 3.5 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB50090 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Wet Chemistry By Method ASTM D1498-76

Matrix: AO Batch ID: GN93240

Sample(s) JB50090-1DUP were used as the QC samples for Redox Potential Vs H2.

Wet Chemistry By Method ASTM D1498-76M

Matrix: SO Batch ID: GN93230

Sample(s) JB50090-2DUP were used as the QC samples for Redox Potential Vs H2.

Wet Chemistry By Method SM2540 G-97

Matrix: SO Batch ID: GN93189

Wet Chemistry By Method SM4500H+ B-11

Matrix: AQ Batch ID: R127133

- The data for SM4500H+ B-11 meets quality control requirements.
- JB50090-1 for pH: Sample received out of holding time for pH analysis.

Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP75260

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB50090-4DUP, JB50090-4MS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (85.8%) on this sample.
- GP75260-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.

Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN93212

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB50113-1DUP, JB50113-1MS were used as the QC samples for Chromium, Hexavalent.

[■] The data for SM2540 G-97 meets quality control requirements.

Wet Chemistry By Method SW846 9045C,D

Matrix: SO Batch ID: GN93229

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Sample(s) JB50090-2DUP were used as the QC samples for pH.

Summary of Hits Job Number: JB50090

Account: AECOM, INC.

Project: PPG-Site 186 RAM, Jersey City, NJ

Collected: 10/14/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
JB50090-1	186-FB20131014					
Redox Potential V	Vs H2	349 6.75			mv su	ASTM D1498-76 SM4500H+ B-11
JB50090-2	186-MFHT1-4-2.0	-2.5				
Chromium, Hexa Redox Potential V pH		5.8 345 7.70	0.47	0.081	mg/kg mv su	SW846 3060A/7196A ASTM D1498-76M SW846 9045C,D
JB50090-3	186-MFHT1-3-2.0	-2.5				
Chromium, Hexa Redox Potential V pH		24.1 365 7.37	0.47	0.081	mg/kg mv su	SW846 3060A/7196A ASTM D1498-76M SW846 9045C,D
JB50090-4	186-MFHT1-2-2.0	-2.5				
Chromium, Hexa Redox Potential V		1.1 355 7.70	0.44	0.076	mg/kg mv su	SW846 3060A/7196A ASTM D1498-76M SW846 9045C,D
JB50090-5	186-MFHT1-2.0-2	.5X				
Chromium, Hexa Redox Potential V		5.6 316 7.86	0.45	0.078	mg/kg mv su	SW846 3060A/7196A ASTM D1498-76M SW846 9045C,D
JB50090-6	186-MFHT1-2.0-2	5				
Chromium, Hexa Redox Potential V		4.7 313 7.87	0.45	0.077	mg/kg mv su	SW846 3060A/7196A ASTM D1498-76M SW846 9045C,D

⁽a) Sample received out of holding time for pH analysis.

Sample Results		
Report of Analysis		

Report of Analysis

Client Sample ID: 186-FB20131014

Lab Sample ID:JB50090-1Date Sampled:10/14/13Matrix:AQ - Field Blank SoilDate Received:10/14/13Percent Solids:n/a

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent Redox Potential Vs H2	0.0024 U 349	0.010	0.0024	mg/l mv	1 1	10/14/13 22:25 MH SW846 7196A 10/15/13 11:36 AA ASTM D1498-76
pH ^a	6.75			su	1	10/14/13 13:08 SUB SM4500H+ B-11

(a) Sample received out of holding time for pH analysis.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

4

Report of Analysis

Client Sample ID: 186-MFHT1-4-2.0-2.5

Lab Sample ID:JB50090-2Date Sampled:10/14/13Matrix:SO - SoilDate Received:10/14/13Percent Solids:85.5

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent	5.8	0.47	0.081	mg/kg	1	10/15/13 09:42 BP SW846 3060A/7196A
Redox Potential Vs H2	345			mv	1	10/15/13 11:09 AA ASTM D1498-76M
Solids, Percent	85.5			%	1	10/14/13 15:21 AR SM2540 G-97
pН	7.70			su	1	10/15/13 10:58 AA SW846 9045C,D

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

JB50090

Report of Analysis

Client Sample ID: 186-MFHT1-3-2.0-2.5

Lab Sample ID: JB50090-3 **Date Sampled:** 10/14/13 Matrix: SO - Soil **Date Received:** 10/14/13 Percent Solids: 84.9

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent	24.1	0.47	0.081	mg/kg	1	10/15/13 09:42 BP SW846 3060A/7196A
Redox Potential Vs H2	365			mv	1	10/15/13 11:09 AA ASTM D1498-76M
Solids, Percent	84.9			%	1	10/14/13 15:21 AR SM2540 G-97
pН	7.37			su	1	10/15/13 10:58 AA SW846 9045C,D

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

4

Report of Analysis

Client Sample ID: 186-MFHT1-2-2.0-2.5

 Lab Sample ID:
 JB50090-4
 Date Sampled:
 10/14/13

 Matrix:
 SO - Soil
 Date Received:
 10/14/13

 Percent Solids:
 90.8

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent	1.1	0.44	0.076	mg/kg	1	10/15/13 09:37 BP SW846 3060A/7196A
Redox Potential Vs H2	355			mv	1	10/15/13 11:09 AA ASTM D1498-76M
Solids, Percent	90.8			%	1	10/14/13 15:21 AR SM2540 G-97
pН	7.70			su	1	10/15/13 10:58 AA SW846 9045C,D

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: 186-MFHT1-2.0-2.5X

Lab Sample ID:JB50090-5Date Sampled:10/14/13Matrix:SO - SoilDate Received:10/14/13Percent Solids:88.8

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent	5.6	0.45	0.078	mg/kg	1	10/15/13 09:42 BP SW846 3060A/7196A
Redox Potential Vs H2	316			mv	1	10/15/13 11:09 AA ASTM D1498-76M
Solids, Percent	88.8			%	1	10/14/13 15:21 AR SM2540 G-97
pН	7.86			su	1	10/15/13 10:58 AA SW846 9045C,D

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: 186-MFHT1-2.0-2.5

 Lab Sample ID:
 JB50090-6
 Date Sampled:
 10/14/13

 Matrix:
 SO - Soil
 Date Received:
 10/14/13

 Percent Solids:
 89.8

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent	4.7	0.45	0.077	mg/kg	1	10/15/13 09:42 BP SW846 3060A/7196A
Redox Potential Vs H2	313			mv	1	10/15/13 11:09 AA ASTM D1498-76M
Solids, Percent	89.8			%	1	10/14/13 15:21 AR SM2540 G-97
pН	7.87			su	1	10/15/13 10:58 AA SW846 9045C,D

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

r0×

1 Coolex (A)

ΔΞ	:CC	M	50 F		CHAIN-		STODY / Ana 13-10-14				ent							Page:	Т	1 'R = 1	0090)
			1	6				_						Tas	k:	Site 18	6			٠ د ر٠	0010	
					The Chain-of-C	uetody is a	LEGAL DOCUMENT.	All relevant fie	elds must be com	siebed and ac	curate.					of Sam						
ab Info	rmation:		Project Info				Other Infor							_		- 1:	P.O.				055.05	71.014/
.ab:	Accutest	, Dayton NJ	Site ID #:	Site 186			Send Invoice						n)	9684	TAT		iltered . I	U= Hold	Rus	h	SEE BE	LOW
Address	2235 Rout 08810	e 130, Dayton NJ	Project #:	60238842.NGA.18	6.RAM		Address:				ad Suite E		F 4000		NOTES: 1	Field I	·iitered , i	n= noiu				
	08810		Site				City/State.		tnut Ridge 10977-671		Phone #:	845.42	5.4980	불								
			Address:	L			ļ	 '	108/7-0/15	,		1										
ab PM	Matt Cor	dova	City Jersey	City State, Zip Alfred LoPilato	NJ	07304	PO #: Send EDD to	L Tu	LU ADDATA								1		T			T
hone/F M ema	ax: 732-329-	0200/732-329-3499/3480	PM Name:	845-425-4980			CC Hardcop	ov to	No Hardco	py Nee	ded			attve						1		
ab Quo		48011607	PM Email:	Alfred.LoPileto@eecom	.com	•	CC Hardcop							Preserv								
TEM#		Field Sample N	No. /Identifica	ition	MATRIX CODE	G*GRAB C=COMP		SAMPLE DATE		#OF CONTAINERS		Co	omment	Analysis	GARA-HexChrom	GARA-pH-ORP						
1	186-FB201	31014			so	G	10/14	1/2013 08	8:30	2		2 Container	±: 1 Cr+8, 1 pH-ORP		х	х	-1	PH	67	\$ 0	4	
2	186-MFHT	1-4-2.0-2.5			so	G	10/12	2/2013 1	1:05	1			1 Jar		×	×	- 7					
3	186-MFHT	1-3-2.0-2.5			so	G	10/12	2/2013 10	0:15	1			1 Jar		х	×	- 3					
4	186-MFHT	1-2-2.0-2.5			so	G	10/12	2/2013 0	9:15	2		MS	MSD - 2 Jars		х	×	- 4					
5	186-MFHT	1-2.0-2.5X			so	G	10/12	2/2013 08	8:31	1			1 Jer		×	х	- 5					
6	186-MFHT	1-2.0-2.5			so	G	10/12	2/2013 0	8:30	1			1 Jer		Х	×	-6					
																						Cus
																			1	1		62
															ļ	-				1	+	MZS
							 										ļ		+	+		+
							-							-	-	\vdash	\vdash			-		+
												D D	THE STORY			DATE	TIME		ample Re	l Talot Car	ditions	
		ents/Special Instru	ctions:		RELINO	HSHED	BY/AFFILIATI	ON COM	DATE		ACCEPTE			, 3	10),		F SIVEE.	S		Y/N	Y/N	Y/N
DAY T	AT				1/1/2	and the	31/200	,,,,,,	10/14/13	0,	Kolin	you	6 10/14/	1/3	1000	, 0	125	7		Y/N	Y/N	Y/N
					W/US	Ico	~~~ 1	pla	13 1	22			2 10/10	41-			+	*		Y/N	Y/N	Y/N
					-				-	 										Y/N	Y/N	Y/N
																				lce?	£	
					NAM	E OF S	AMPLER:						DATE/TIME					\dashv	mp in 0C	ples on Ic	nple intact?	rip Blank?

JB50090: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JB	50090	Clie	ent:		Project:			
Date / Time Received: 10/	14/2013		Delivery I	Method:	Airbill #'s:			
Cooler Temps (Initial/Adjus	ted): #1:	(3.5/3.5);	<u>0</u>					
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:	Y o IR	4. Smpl [C Present: Dates/Time OK	<u>Y</u> or N ✓ □	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree: Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y Y Y	or N or N or N or N or N or N	
Quality Control _Preservation 1. Trip Blank present / cooler:		✓	<u>N/A</u> □		Sample Integrity - Instructions 1. Analysis requested is clear:	<u>Y</u>	or N	N/A
2. Trip Blank listed on COC:3. Samples preserved properly4. VOCs headspace free:	: y		□ ☑		Bottles received for unspecified tests Sufficient volume recvd for analysis: Compositing instructions clear: Filtering instructions clear:	□ ∨ □		V
Comments								
Accutest Laboratories V:732.329.0200					Highway 130 .329.3499			Dayton, New Jersey www/accutest.com

JB50090: Chain of Custody

Page 2 of 3

Job Change Order:

JB50090

Received Date: Due Date:

10/14/2013 10/15/2013

Deliverable:

PPG-Site 186, Jersey City, NJ

Project Description:

kellyp

AECOM, INC. 10/15/2013

Requested Date: Account Name: FULT1

TAT (Days):

Change:

JB50090-2 thru 6 Sample #:

Dept:

Please relog for XXCRAR

JB50090-4 Sample #:

Change:

Please relog for XXCRAR, FE2/7, SULFS, and TOCLK

186-MFHT1-2-2.0-2.5

Page 3 of 3

JB50090: Chain of Custody

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Representative.

Lisa Krowitz

Above Changes Per:

Date: 10/15/2013

Page 1 of 1

Internal Sample Tracking Chronicle

AECOM, INC.

Job No: JB50090

PPG-Site 186 RAM, Jersey City, NJ Project No: 60238842 186.RAM

Sample						
Number	Method	Analyzed	By	Prepped	By	Test Codes
JB50090-1 186-FB2013	Collected: 14-OCT-13 31014	08:30 By: AL	Receiv	ved: 14-OCT	-13 By	: AS
JB50090-1 JB50090-1	SM4500H+ B-11 SW846 7196A ASTM D1498-76	14-OCT-13 13:08 14-OCT-13 22:25 15-OCT-13 11:36	MH AA	1.14.0 <i>C</i> TT	12. D	PH XCR EH
186-MFHT	Collected: 14-OCT-13 1-4-2.0-2.5	11:05 By: AL	Recei	ved: 14-OCT	-13 By	: AS
JB50090-2 JB50090-2	SM2540 G-97 SW846 3060A/7196A SW846 9045C,D ASTM D1498-76M	14-OCT-13 15:21 15-OCT-13 09:42 15-OCT-13 10:58 15-OCT-13 11:09	BP	14-OCT-13	NP	SOL104 XCRA PH EH
JB50090-3 186-MFHT	Collected: 14-OCT-13 1-3-2.0-2.5	10:15 By: AL	Receiv	ved: 14-OCT	-13 By	: AS
JB50090-3 JB50090-3	SM2540 G-97 SW846 3060A/7196A SW846 9045C,D ASTM D1498-76M	14-OCT-13 15:21 15-OCT-13 09:42 15-OCT-13 10:58 15-OCT-13 11:09	BP	14-OCT-13	NP	SOL104 XCRA PH EH
JB50090-4 186-MFHT	Collected: 14-OCT-13 1-2-2.0-2.5	09:15 By: AL	Recei	ved: 14-OCT	-13 By	: AS
JB50090-4 JB50090-4	SM2540 G-97 SW846 3060A/7196A SW846 9045C,D ASTM D1498-76M	14-OCT-13 15:21 15-OCT-13 09:37 15-OCT-13 10:58 15-OCT-13 11:09	BP AA	14-OCT-13	NP	SOL104 XCRA PH EH
JB50090-5 186-MFHT	Collected: 14-OCT-13 1-2.0-2.5X	08:31 By: AL	Recei	ved: 14-OCT	-13 By	: AS
JB50090-5 JB50090-5	SM2540 G-97 SW846 3060A/7196A SW846 9045C,D ASTM D1498-76M	14-OCT-13 15:21 15-OCT-13 09:42 15-OCT-13 10:58 15-OCT-13 11:09	BP	14-OCT-13	NP	SOL104 XCRA PH EH

Internal Sample Tracking Chronicle

AECOM, INC.

Job No: JB50090

PPG-Site 186 RAM, Jersey City, NJ Project No: 60238842 186.RAM

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JB50090-6 186-MFHT	Collected: 14-OCT-13 1-2.0-2.5	08:30 By: AL	Receiv	ved: 14-OCT	-13 By	: AS
JB50090-6 JB50090-6	SM2540 G-97 SW846 3060A/7196A SW846 9045C,D ASTM D1498-76M	14-OCT-13 15:21 15-OCT-13 09:42 15-OCT-13 10:58 15-OCT-13 11:09	BP AA	14-OCT-13	NP	SOL104 XCRA PH EH

Accutest Internal Chain of Custody Job Number: JB50090

ENSRNJ AECOM, INC. Account:

Project: PPG-Site 186 RAM, Jersey City, NJ

Received: 10/14/13

BS0090-1.1 Secured Storage Secured Staging Area Secured Staging Area Secured Staging Area Secured Storage	Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JB50090-1.1 Shirley Grzybowski Analyst unavailable for custody transfer. JB50090-1.2 Secured Storage BBrnadette Vassilatos JB50090-1.2 Secured Staging Area JB50090-1.2 Secured Staging Area JB50090-1.2 Secured Staging Area JB50090-1.2 Alec Arbello Secured Staging Area JB50090-1.2 Alec Arbello JB50090-1.2 Alec Arbello JB50090-1.2 Alec Arbello JB50090-1.2 Alec Arbello JB50090-1.2 Secured Storage JB50090-1.2 Secured Storage JB50090-1.2 Bernadette Vassilatos JB50090-1.2 Secured Storage JB50090-1.2 Bernadette Vassilatos JB50090-1.1 Secured Staging Area JB50090-1.2 Secured Staging Area JB50090-1.1 Secured Staging Area JB50090-1.1 Secured Staging Area JB50090-1.1 Nilesh Patel JB50090-1.1 Secured Storage JB50090-1.1 Secured Storage JB50090-1.1 Secured Storage JB50090-1.1 Secured Staging Area JB50090-1.1 Secured Storage JB50090-1.1 Secured Staging Area JB50090-1.1 Secured Storage JB5	JB50090-1.1	Secured Storage	Lucas Schneider	10/14/13 15:24	Retrieve from Storage
Analyst unavailable for custody transfer. JB50090-1.2 Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello 10/15/13 06:25 Return to Storage JB50090-1.2 Alec Arbello Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage JB50090-1.2 Alec Arbello Secured Storage 10/15/13 12:08 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Staging Area JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Return to Storage JB50090-2.1 Secured Staging Area Nilesh Patel Secured Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 15:09 Retrieve from Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 15:09 Retrieve from Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 15:14 Retrieve from Storage JB50090-2.1 Secured Storage Bernadette Vassilatos J0/15/13 15:14 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage J0/15/13 15:14 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage J0/15/13 20:28 Return to Storage JB50090-2.1 Nilesh Patel Secured Storage J0/15/13 20:28 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area J0/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 06:25 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 15:19 Return to Storage JB50090-3.1 Secured Staging Area Alec Arbello J0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area A	JB50090-1.1	_	Secured Storage		
JB50090-1.2 Bernadette Vassilatos Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage 1B50090-1.2 Alec Arbello Secured Storage 10/15/13 12:08 Return to Storage 1B50090-2.1 Bernadette Vassilatos Secured Staging Area 10/14/13 14:38 Retrieve from Storage 1B50090-2.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage 1B50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage 1B50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage 1B50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage 1B50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage 1B50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage 1B50090-2.1 Secured Storage 10/15/13 06:25 Return to Storage 1B50090-2.1 Secured Storage 10/15/13 06:25 Return to Storage 1B50090-2.1 Secured Storage 10/15/13 13:06:25 Return to Storage 1B50090-2.1 Secured Storage 10/15/13 13:08:38 Retrieve from Storage 1B50090-2.1 Secured Storage 10/15/13 15:15 Return to Storage 1B50090-2.1 Secured Storage 10/15/13 15:15 Return to Storage 1B50090-2.1 Nilesh Patel Secured Storage 10/15/13 15:14 Retrieve from Storage 1B50090-2.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage 1B50090-2.1.1 Nilesh Patel Secured Storage 10/14/13 15:10 Aliquot from JB50090-2 JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/14/13 16:57 Depleted 10/14/13 16:57 Depleted 10/14/13 16:57 Depleted 10/14/13 16:59 Retrieve from Storage 1B50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage 1B50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 16:59 Retrieve from Storage 1B50090-3.1 Secured Staging Area Alec Arbello 10/15/13 06:25 Return to Storage 1B50090-3.1 Secured Staging Area Alec Arbello 10/15/13 15:14 Retrieve from Storage 1B50090-3.1 Secured Staging Area Alec Arbello 10/15/13 15:14 Return to Storage 1B50090-3.1 Secured Staging Area Alec Arbello 10/15/13 15:15 Return	Analyst unavailab		, and the second		C
JB50090-1.2 Bernadette Vassilatos Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage 10/15/090-1.2 Alec Arbello Secured Storage 10/15/13 12:08 Return to Storage 10/15/090-2.1 Secured Storage Bernadette Vassilatos 10/14/13 14:38 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage JB50090-2.1 Secured Staging Area Nilesh Patel 10/14/13 14:38 Retrieve from Storage JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Storage 10/14/13 23:27 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Storage 10/15/13 06:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 08:38 Retrieve from Storage JB50090-2.1 Bernadette Vassilatos Secured Storage 10/15/13 13:08.38 Retrieve from Storage JB50090-2.1 Bernadette Vassilatos Secured Storage 10/15/13 15:15 Return to Storage JB50090-2.1 Secured Storage Nilesh Patel 10/15/13 15:14 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage 10/14/13 16:57 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage 10/14/13 16:39 Return to Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 06:25 Return to Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 15:15 Return to Storage JB50090-3	JB50090-1.2	Secured Storage	Bernadette Vassilatos	10/15/13 06:25	Retrieve from Storage
JB50090-1.2 Secured Staging Area Alec Arbello Secured Storage 10/15/13 12:08 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel Secured Storage 10/15/13 12:08 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel 10/14/13 14:38 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-2.1 Secured Staging Area Secured Storage 10/14/13 15:09 Retrieve from Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 106:25 Retrieve from Storage JB50090-2.1 Bernadette Vassilatos Secured Staging Area Alec Arbello 10/15/13 06:25 Retrieve from Storage JB50090-2.1 Secured Staging Area Alec Arbello 10/15/13 106:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 106:25 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel 10/15/13 15:15 Return to Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 15:15 Return to Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 15:10 Aliquot from JB50090-2 JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 12:08 Return to Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 12:08 Return to Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 12:08 Return to Storage JB50090-3.1 Sec	JB50090-1.2		Secured Staging Area		
JB50090-2.1 Secured Staging Area Bernadette Vassilatos Secured Staging Area Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Storage Secured Staging Area Nilesh Patel Secured Storage Se	JB50090-1.2	Secured Staging Area	Alec Arbello	10/15/13 08:38	Retrieve from Storage
JB50090-2.1 Bernadette Vassilatos JB50090-2.1 Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Storage Bernadette Vassilatos JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Staging Area JB50090-2.1 Bernadette Vassilatos Secured Staging Area JB50090-2.1 Secured Staging Area Alec Arbello JM5/13 06:25 Return to Storage JB50090-2.1 Secured Staging Area Alec Arbello JM5/13 06:25 Return to Storage JB50090-2.1 Secured Staging Area Alec Arbello JM5/13 06:25 Return to Storage JB50090-2.1 Alec Arbello Secured Staging Area JM5/13 12:08 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos JM5/13 15:14 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel JM5/13 15:15 Return to Storage JB50090-2.1 Secured Staging Area Nilesh Patel JM5/13 15:15 Return to Storage JB50090-2.1 Secured Staging Area Nilesh Patel JM5/13 15:24 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage JM5/13 15:14 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage JM5/13 15:10 Aliquot from JB50090-2.1 JM5/13 15:15 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JM5/13 16:57 Depleted JM5/13 16:57 Deplete	JB50090-1.2	Alec Arbello	Secured Storage	10/15/13 12:08	Return to Storage
JB50090-2.1 Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage 10/14/13 14:38 Return to Storage JB50090-2.1 Nilesh Patel Secured Storage 10/14/13 23:27 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage JB50090-2.1 Bernadette Vassilatos Secured Staging Area Alec Arbello 10/15/13 06:25 Retrieve from Storage JB50090-2.1 Secured Staging Area Alec Arbello 10/15/13 06:25 Return to Storage JB50090-2.1 Alec Arbello Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage JB50090-2.1 Alec Arbello Secured Storage Bernadette Vassilatos 10/15/13 12:08 Return to Storage JB50090-2.1 Bernadette Vassilatos Secured Staging Area 10/15/13 15:14 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel 10/15/13 15:15 Return to Storage JB50090-2.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-2.1.1 Nilesh Patel Arayna Ramkelawan 10/14/13 15:10 Aliquot from JB50090-2. JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:15 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:15 Return to Storage JB50090-3.1 Secured	JB50090-2.1	Secured Storage	Bernadette Vassilatos	10/14/13 14:38	Retrieve from Storage
JB50090-2.1 Secured Staging Area JB50090-2.1 Nilesh Patel Secured Storage Bernadette Vassilatos Secured Staging Area JB50090-2.1 Bernadette Vassilatos Secured Staging Area JB50090-2.1 Bernadette Vassilatos Secured Staging Area Alec Arbello Secured Storage Bernadette Vassilatos JU15/13 06:25 Retrieve from Storage JB50090-2.1 Secured Staging Area Alec Arbello Secured Storage JB50090-2.1 Secured Storage Bernadette Vassilatos JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Staging Area JB50090-2.1 Bernadette Vassilatos Secured Staging Area Nilesh Patel J0/15/13 15:14 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel J0/15/13 15:15 Return to Storage JB50090-2.1 Nilesh Patel Secured Storage JB50090-2.1 Nilesh Patel Arayna Ramkelawan J0/14/13 15:10 Aliquot from JB50090-2.1 JB50090-2.1.1 Arayna Ramkelawan J0/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel J0/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JU14/13 13:09 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JU15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JU15/13 10:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JU15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JU15/13 15:15 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JU15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello JU15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel JU15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel JU15/13 15:14 Retrieve from Storage J	JB50090-2.1		Secured Staging Area	10/14/13 14:38	Return to Storage
JB50090-2.1 Nilesh Patel Secured Storage Bernadette Vassilatos Secured Storage Bernadette Vassilatos Secured Storage Bernadette Vassilatos Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello Secured Storage Bernadette Vassilatos I0/15/13 06:25 Return to Storage JB50090-2.1 Secured Staging Area Alec Arbello Secured Storage I0/15/13 12:08 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos I0/15/13 15:14 Retrieve from Storage JB50090-2.1 Bernadette Vassilatos Secured Staging Area Nilesh Patel I0/15/13 15:15 Return to Storage JB50090-2.1 Secured Staging Area Nilesh Patel I0/15/13 15:24 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage I0/15/13 20:28 Return to Storage JB50090-2.1 Nilesh Patel Arayna Ramkelawan I0/14/13 15:10 Aliquot from JB50090-2.1 JB50090-2.1.1 Arayna Ramkelawan I0/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel I0/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel Secured Storage I0/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage I0/14/13 13:09 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos I0/14/13 23:27 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos I0/15/13 06:25 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos I0/15/13 06:25 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos I0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos I0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos I0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello I0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel I0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel I0/15/13 15:24 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel I0/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh P	JB50090-2.1	Secured Staging Area			
JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello 10/15/13 06:25 Return to Storage JB50090-2.1 Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage JB50090-2.1 Alec Arbello Secured Storage 10/15/13 12:08 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Staging Area 10/15/13 15:14 Retrieve from Storage JB50090-2.1 Secured Staging Area Nilesh Patel 10/15/13 15:14 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 15:14 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 15:14 Retrieve from Storage JB50090-2.1.1 Arayna Ramkelawan 10/14/13 15:10 Aliquot from JB50090-2.1.1 Arayna Ramkelawan 10/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/14/13 14:38 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/14/13 23:27 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 12:08 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 15:24 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/	JB50090-2.1		Secured Storage		
JB50090-2.1 Secured Staging Area JB50090-2.1 Alec Arbello Secured Storage Bernadette Vassilatos JB50090-2.1 Bernadette Vassilatos Secured Storage JB50090-2.1 Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos JB50090-2.1 Nilesh Patel Secured Storage JB50090-2.1.1 Nilesh Patel Arayna Ramkelawan J0/14/13 15:10 Aliquot from JB50090-2.1 JB50090-2.1.1 Arayna Ramkelawan J0/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Storage Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage JB50090-3.1 Secured Stor	JB50090-2.1	Secured Storage	9		
JB50090-2.1 Secured Staging Area JB50090-2.1 Alec Arbello JB50090-2.1 Secured Storage JB50090-2.1 Bernadette Vassilatos JB50090-2.1 Secured Storage JB50090-2.1 Secured Storage JB50090-2.1 Secured Staging Area JB50090-2.1 Secured Staging Area JB50090-2.1 Secured Staging Area JB50090-2.1 Nilesh Patel JB50090-3.1 Secured Storage JB50090-3.1 Secured Staging Area JB50090-3.1 Secured Storage JB50090-3.1 Secured	JB50090-2.1	<u> </u>			
JB50090-2.1 Alec Arbello Secured Storage Bernadette Vassilatos 10/15/13 12:08 Return to Storage JB50090-2.1 Secured Storage Bernadette Vassilatos JB50090-2.1 Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/15/13 15:15 Return to Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 15:24 Retrieve from Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-2.1.1 Nilesh Patel Arayna Ramkelawan 10/14/13 15:10 Aliquot from JB50090-2 JB50090-2.1.1 Arayna Ramkelawan 10/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/14/13 23:27 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:15 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area 10/15/13 15:15 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage Nilesh Patel 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage Nilesh Patel 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage Nilesh Patel 10	JB50090-2.1				
JB50090-2.1 Secured Storage Bernadette Vassilatos Secured Staging Area JB50090-2.1 Bernadette Vassilatos Secured Staging Area JB50090-2.1 Secured Staging Area Nilesh Patel Secured Storage JB50090-2.1 Nilesh Patel Secured Storage JB50090-2.1 Nilesh Patel Secured Storage JB50090-2.1.1 Nilesh Patel Arayna Ramkelawan J0/14/13 15:10 Aliquot from JB50090-2.1.1 Arayna Ramkelawan J0/14/13 16:57 Depleted JB50090-2.1.1 Arayna Ramkelawan J0/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Staging Area Nilesh Patel Secured Storage JB50090-3.1 Nilesh Patel Secured Storage Bernadette Vassilatos J0/14/13 23:27 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello J0/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 12:08 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 15:14 Retrieve from Storage JB50090-3.1 Bernadette Vassilatos Secured Staging Area J0/15/13 15:15 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area J0/15/13 15:24 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage JB50090-3.1 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage JB50090-3.1 Return to Storage JB50090-3.1 Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Nilesh P			Secured Storage		
JB50090-2.1 Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/15/13 15:15 Return to Storage JB50090-2.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-2.1.1 Nilesh Patel Arayna Ramkelawan 10/14/13 15:10 Aliquot from JB50090-2.1.1 Arayna Ramkelawan 10/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Storage JB50090-3.1 Secured Staging Area Alec Arbello J0/15/13 06:25 Return to Storage JB50090-3.1 Alec Arbello Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 12:08 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos J0/15/13 15:15 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area J0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Secured Storage JD5013 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel J0/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel J0/15/13 2	JB50090-2.1	Secured Storage	9		
JB50090-2.1 Secured Staging Area Nilesh Patel Secured Storage 10/15/13 15:24 Retrieve from Storage 10/15/13 20:28 Return to Storage JB50090-2.1.1 Nilesh Patel Arayna Ramkelawan 10/14/13 15:10 Aliquot from JB50090-2 11 Arayna Ramkelawan 10/14/13 16:57 Depleted JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/14/13 14:38 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos 10/14/13 14:38 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area 10/15/13 06:25 Return to Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 12:08 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:15 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area 10/15/13 15:15 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-3.1 Nilesh Patel Secured Stora	JB50090-2.1	•	Secured Staging Area		
JB50090-2.1.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage JB50090-2.1.1 Nilesh Patel Arayna Ramkelawan 10/14/13 15:10 Aliquot from JB50090-2 JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area 10/14/13 14:38 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage Bernadette Vassilatos 10/14/13 23:27 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Bernadette Vassilatos Secured Staging Area 10/15/13 06:25 Return to Storage JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 12:08 Return to Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage JB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:15 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:15 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage	JB50090-2.1	Secured Staging Area			
JB50090-2.1.1 Arayna Ramkelawan JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Staging Area JB50090-3.1 Nilesh Patel JB50090-3.1 Secured Storage JB50090-3.1 Bernadette Vassilatos JB50090-3.1 Secured Staging Area JB50090-3.1 Secured Storage JB50090-3.1 Secured Storage JB50090-3.1 Secured Staging Area JB50090-3.1 Secured Storage Nilesh Patel J0/15/13 15:15 Return to Storage JB50090-3.1 Nilesh Patel J0/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel J0/15/13 20:28 Return to Storage	JB50090-2.1	0 0	Secured Storage	10/15/13 20:28	Return to Storage
JB50090-2.1.1 Arayna Ramkelawan JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Staging Area JB50090-3.1 Nilesh Patel JB50090-3.1 Secured Storage JB50090-3.1 Bernadette Vassilatos JB50090-3.1 Secured Staging Area JB50090-3.1 Secured Storage JB50090-3.1 Secured Storage JB50090-3.1 Secured Staging Area JB50090-3.1 Secured Storage Nilesh Patel J0/15/13 15:15 Return to Storage JB50090-3.1 Nilesh Patel J0/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel J0/15/13 20:28 Return to Storage	JB50090-2.1.1	Nilesh Patel	Arayna Ramkelawan	10/14/13 15:10	Aliquot from JB50090-2.1
JB50090-3.1 Bernadette Vassilatos Secured Staging Area Nilesh Patel 10/14/13 14:38 Return to Storage IB50090-3.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage IB50090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage IB50090-3.1 Bernadette Vassilatos Secured Staging Area I0/15/13 06:25 Return to Storage IB50090-3.1 Secured Staging Area Alec Arbello I0/15/13 08:38 Retrieve from Storage IB50090-3.1 Alec Arbello Secured Storage I0/15/13 12:08 Return to Storage IB50090-3.1 Secured Storage Bernadette Vassilatos I0/15/13 15:14 Retrieve from Storage IB50090-3.1 Bernadette Vassilatos Secured Staging Area I0/15/13 15:15 Return to Storage IB50090-3.1 Secured Storage Secured Staging Area I0/15/13 15:15 Return to Storage IB50090-3.1 Secured Staging Area Nilesh Patel I0/15/13 15:24 Retrieve from Storage IB50090-3.1 Nilesh Patel Secured Storage I0/15/13 20:28 Return to Storage ID/15/13 20:28 Return to Storage	JB50090-2.1.1	Arayna Ramkelawan	·		
JB50090-3.1 Secured Staging Area Nilesh Patel Secured Storage 10/14/13 15:09 Retrieve from Storage 1850090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage 1850090-3.1 Secured Staging Area Alec Arbello Secured Storage 10/15/13 06:25 Retrieve from Storage 1850090-3.1 Secured Staging Area Alec Arbello 10/15/13 08:38 Retrieve from Storage 1850090-3.1 Secured Storage Secured Storage 10/15/13 12:08 Return to Storage 1850090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:14 Retrieve from Storage 1850090-3.1 Secured Storage Bernadette Vassilatos 10/15/13 15:15 Return to Storage 1850090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage 1850090-3.1 Secured Staging Area Nilesh Patel 10/15/13 20:28 Return to Storage 10/15/13 20:28 Return to Storage	JB50090-3.1	Secured Storage	Bernadette Vassilatos	10/14/13 14:38	Retrieve from Storage
JB50090-3.1 Nilesh Patel Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 06:25 Return to Storage JB50090-3.1 Alec Arbello Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area JD/15/13 15:15 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage JD/15/13 20:28 Return to Storage	JB50090-3.1	Bernadette Vassilatos	Secured Staging Area	10/14/13 14:38	Return to Storage
JB50090-3.1 Nilesh Patel Secured Storage Bernadette Vassilatos 10/15/13 06:25 Retrieve from Storage JB50090-3.1 Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Staging Area Alec Arbello 10/15/13 06:25 Return to Storage JB50090-3.1 Alec Arbello Secured Storage JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Secured Storage Bernadette Vassilatos JB50090-3.1 Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Storage Bernadette Vassilatos Secured Staging Area JD/15/13 15:15 Return to Storage JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage JD/15/13 20:28 Return to Storage	JB50090-3.1	Secured Staging Area	Nilesh Patel	10/14/13 15:09	Retrieve from Storage
JB50090-3.1Bernadette VassilatosSecured Staging Area10/15/13 06:25Return to StorageJB50090-3.1Secured Staging AreaAlec Arbello10/15/13 08:38Retrieve from StorageJB50090-3.1Alec ArbelloSecured Storage10/15/13 12:08Return to StorageJB50090-3.1Secured StorageBernadette Vassilatos10/15/13 15:14Retrieve from StorageJB50090-3.1Bernadette VassilatosSecured Staging Area10/15/13 15:15Return to StorageJB50090-3.1Secured Staging AreaNilesh Patel10/15/13 15:24Retrieve from StorageJB50090-3.1Nilesh PatelSecured Storage10/15/13 20:28Return to Storage	JB50090-3.1	Nilesh Patel	Secured Storage		
JB50090-3.1Secured Staging AreaAlec Arbello10/15/13 08:38Retrieve from StorageJB50090-3.1Alec ArbelloSecured Storage10/15/13 12:08Return to StorageJB50090-3.1Secured StorageBernadette Vassilatos10/15/13 15:14Retrieve from StorageJB50090-3.1Bernadette VassilatosSecured Staging Area10/15/13 15:15Return to StorageJB50090-3.1Secured Staging AreaNilesh Patel10/15/13 15:24Retrieve from StorageJB50090-3.1Nilesh PatelSecured Storage10/15/13 20:28Return to Storage	JB50090-3.1	Secured Storage	Bernadette Vassilatos	10/15/13 06:25	Retrieve from Storage
JB50090-3.1Alec ArbelloSecured Storage10/15/13 12:08Return to StorageJB50090-3.1Secured StorageBernadette Vassilatos10/15/13 15:14Retrieve from StorageJB50090-3.1Bernadette VassilatosSecured Staging Area10/15/13 15:15Return to StorageJB50090-3.1Secured Staging AreaNilesh Patel10/15/13 15:24Retrieve from StorageJB50090-3.1Nilesh PatelSecured Storage10/15/13 20:28Return to Storage	JB50090-3.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 06:25	Return to Storage
JB50090-3.1Secured StorageBernadette Vassilatos10/15/13 15:14Retrieve from StorageJB50090-3.1Bernadette VassilatosSecured Staging Area10/15/13 15:15Return to StorageJB50090-3.1Secured Staging AreaNilesh Patel10/15/13 15:24Retrieve from StorageJB50090-3.1Nilesh PatelSecured Storage10/15/13 20:28Return to Storage	JB50090-3.1	Secured Staging Area	Alec Arbello	10/15/13 08:38	Retrieve from Storage
JB50090-3.1 Bernadette Vassilatos Secured Staging Area JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:15 Return to Storage 10/15/13 15:24 Retrieve from Storage 10/15/13 20:28 Return to Storage	JB50090-3.1	Alec Arbello		10/15/13 12:08	Return to Storage
JB50090-3.1 Secured Staging Area Nilesh Patel 10/15/13 15:24 Retrieve from Storage JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage	JB50090-3.1	Secured Storage	Bernadette Vassilatos	10/15/13 15:14	Retrieve from Storage
JB50090-3.1 Nilesh Patel Secured Storage 10/15/13 20:28 Return to Storage	JB50090-3.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 15:15	Return to Storage
	JB50090-3.1	Secured Staging Area	Nilesh Patel	10/15/13 15:24	Retrieve from Storage
IDE0000 2.1.1 Nil1 D.(.) A	JB50090-3.1	Nilesh Patel	Secured Storage	10/15/13 20:28	Return to Storage
JB50090-3.1.1 Nilesh Patel Arayna Ramkelawan 10/14/13 15:10 Aliquot from JB50090-3	JB50090-3.1.1	Nilesh Patel	Arayna Ramkelawan	10/14/13 15:10	Aliquot from JB50090-3.1
JB50090-3.1.1 Arayna Ramkelawan 10/14/13 16:57 Depleted	JB50090-3.1.1	Arayna Ramkelawan	-		
JB50090-4.1 Secured Storage Bernadette Vassilatos 10/14/13 14:38 Retrieve from Storage	JB50090-4.1	Secured Storage	Bernadette Vassilatos		
JB50090-4.1 Bernadette Vassilatos Secured Staging Area 10/14/13 14:38 Return to Storage	JB50090-4.1		Secured Staging Area	10/14/13 14:38	Return to Storage
JB50090-4.1 Secured Staging Area Nilesh Patel 10/14/13 15:09 Retrieve from Storage	JB50090-4.1	Secured Staging Area			

Accutest Internal Chain of Custody Job Number: JB50090

ENSRNJ AECOM, INC. Account:

Project: PPG-Site 186 RAM, Jersey City, NJ

Received: 10/14/13

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JB50090-4.1	Nilesh Patel	Secured Storage		Return to Storage
JB50090-4.1	Secured Storage	Bernadette Vassilatos	10/15/13 06:25	Retrieve from Storage
JB50090-4.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 06:25	Return to Storage
JB50090-4.1	Secured Staging Area	Alec Arbello		Retrieve from Storage
JB50090-4.1	Alec Arbello	Secured Storage		Return to Storage
JB50090-4.1	Secured Storage	Bernadette Vassilatos		Retrieve from Storage
JB50090-4.1	Bernadette Vassilatos	Secured Staging Area	10/16/13 06:17	Return to Storage
JB50090-4.1	Secured Staging Area	Chris Brunson	10/16/13 09:44	Retrieve from Storage
JB50090-4.1	Chris Brunson	Vaidehi Amin	10/16/13 10:20	Custody Transfer
JB50090-4.1	Vaidehi Amin	Secured Storage	10/16/13 18:35	Return to Storage
JB50090-4.1.1	Nilesh Patel	Arayna Ramkelawan	10/14/13 15:10	Aliquot from JB50090-4.1
JB50090-4.1.1	Arayna Ramkelawan		10/14/13 16:57	Depleted
JB50090-4.2	Secured Storage	Bernadette Vassilatos	10/14/13 14:38	Retrieve from Storage
JB50090-4.2	Bernadette Vassilatos	Secured Staging Area		Return to Storage
JB50090-4.2	Secured Staging Area	Nilesh Patel	10/14/13 15:09	Retrieve from Storage
JB50090-4.2	Nilesh Patel	Secured Storage	10/14/13 23:27	Return to Storage
JB50090-4.2	Secured Storage	Bernadette Vassilatos	10/15/13 06:25	Retrieve from Storage
JB50090-4.2	Bernadette Vassilatos	Secured Staging Area	10/15/13 06:25	Return to Storage
JB50090-4.2	Secured Staging Area	Alec Arbello	10/15/13 08:38	Retrieve from Storage
JB50090-4.2	Alec Arbello	Secured Storage	10/15/13 12:08	Return to Storage
JB50090-4.2	Secured Storage	Bernadette Vassilatos	10/15/13 15:14	Retrieve from Storage
JB50090-4.2	Bernadette Vassilatos	Secured Staging Area	10/15/13 15:15	Return to Storage
JB50090-4.2	Secured Staging Area	Nilesh Patel	10/15/13 15:24	Retrieve from Storage
JB50090-4.2	Nilesh Patel	Secured Storage	10/15/13 20:28	Return to Storage
JB50090-5.1	Secured Storage	Bernadette Vassilatos	10/14/13 14:38	Retrieve from Storage
JB50090-5.1	Bernadette Vassilatos	Secured Staging Area	10/14/13 14:38	Return to Storage
JB50090-5.1	Secured Staging Area	Nilesh Patel	10/14/13 15:09	Retrieve from Storage
JB50090-5.1	Nilesh Patel	Secured Storage	10/14/13 23:27	Return to Storage
JB50090-5.1	Secured Storage	Bernadette Vassilatos	10/15/13 06:25	Retrieve from Storage
JB50090-5.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 06:25	Return to Storage
JB50090-5.1	Secured Staging Area	Alec Arbello	10/15/13 08:38	Retrieve from Storage
JB50090-5.1	Alec Arbello	Secured Storage	10/15/13 12:08	Return to Storage
JB50090-5.1	Secured Storage	Bernadette Vassilatos	10/15/13 15:14	Retrieve from Storage
JB50090-5.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 15:15	Return to Storage
JB50090-5.1	Secured Staging Area	Nilesh Patel		Retrieve from Storage
JB50090-5.1	Nilesh Patel	Secured Storage		Return to Storage
JB50090-5.1.1	Nilesh Patel	Arayna Ramkelawan	10/14/13 15:10	Aliquot from JB50090-5.1
JB50090-5.1.1	Arayna Ramkelawan		10/14/13 16:57	
JB50090-6.1	Secured Storage	Bernadette Vassilatos	10/14/13 14:38	Retrieve from Storage

Accutest Internal Chain of Custody Job Number: JB50090

ENSRNJ AECOM, INC. Account:

Project: PPG-Site 186 RAM, Jersey City, NJ

Received: 10/14/13

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JB50090-6.1	Bernadette Vassilatos	Secured Staging Area	10/14/13 14:38	Return to Storage
JB50090-6.1	Secured Staging Area	Nilesh Patel	10/14/13 15:09	Retrieve from Storage
JB50090-6.1	Nilesh Patel	Secured Storage	10/14/13 23:27	Return to Storage
JB50090-6.1	Secured Storage	Bernadette Vassilatos	10/15/13 06:25	Retrieve from Storage
JB50090-6.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 06:25	Return to Storage
JB50090-6.1	Secured Staging Area	Alec Arbello	10/15/13 08:38	Retrieve from Storage
JB50090-6.1	Alec Arbello	Secured Storage	10/15/13 12:08	Return to Storage
JB50090-6.1	Secured Storage	Bernadette Vassilatos	10/15/13 15:14	Retrieve from Storage
JB50090-6.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 15:15	Return to Storage
JB50090-6.1	Secured Staging Area	Nilesh Patel	10/15/13 15:24	Retrieve from Storage
JB50090-6.1	Nilesh Patel	Secured Storage	10/15/13 20:28	Return to Storage
JB50090-6.1.1	Nilesh Patel	Arayna Ramkelawan	10/14/13 15:10	Aliquot from JB50090-6.1
JB50090-6.1.1	Arayna Ramkelawan		10/14/13 16:57	Depleted

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Percent Solids Raw Data Summary

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB50090 Account: ENSRNJ - AECOM, INC.
Project: PPG-Site 186 RAM, Jersey City, NJ

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chromium, Hexavalent Chromium, Hexavalent Chromium, Hexavalent	GN93212 GP75260/GN93231 GP75260/GN93231	0.010 0.40	0.0	mg/l mg/kg mg/kg	0.15 40.0 958.911	0.15 35.2 865	100.0 88.0 90.2	90-110% 80-120% 80-120%

Associated Samples: Batch GN93212: JB50090-1

Batch GP75260: JB50090-2, JB50090-3, JB50090-4, JB50090-5, JB50090-6

(*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB50090
Account: ENSRNJ - AECOM, INC.
Project: PPG-Site 186 RAM, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chromium, Hexavalent	GN93212	JB50113-1	mg/l	0.26	0.26	0.0	0-20%
Chromium, Hexavalent	GP75260/GN93231	JB50090-4	mg/kg	1.1	1.1	0.0	0-20%
Redox Potential Vs H2	GN93230	JB50090-2	mv	345	347	0.6	0-20.6%
Redox Potential Vs H2	GN93240	JB50090-1	mv	349	361	3.4	0-17.2%
рН	GN93229	JB50090-2	su	7.70	7.61	1.2	0-5.9%

Associated Samples:

Batch GN93212: JB50090-1

Batch GN93229: JB50090-2, JB50090-3, JB50090-4, JB50090-5, JB50090-6 Batch GN93230: JB50090-2, JB50090-3, JB50090-4, JB50090-5, JB50090-6

Batch GN93240: JB50090-1

 ${\tt Batch~GP75260:~JB50090-2,~JB50090-3,~JB50090-4,~JB50090-5,~JB50090-6}$

(*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB50090
Account: ENSRNJ - AECOM, INC.
Project: PPG-Site 186 RAM, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chromium, Hexavalent	GN93212	JB50113-1	mg/l	0.26	0.15	0.42	106.7	85-115%
Chromium, Hexavalent	GP75260/GN93231	JB50090-4	mg/kg	1.1	44.4	28.4	61.5N(a)	75-125%
Chromium, Hexavalent	GP75260/GN93231	JB50090-4	mg/kg	1.1	1020	1020	99.4(b)	75-125%

Associated Samples:

Batch GN93212: JB50090-1

Batch GP75260: JB50090-2, JB50090-3, JB50090-4, JB50090-5, JB50090-6

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (85.8%) on this sample.
- (b) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.

Percent Solids Raw Data Summary Job Number: JB50090

ENSRNJ AECOM, INC. **Account:**

Project: PPG-Site 186 RAM, Jersey City, NJ

Sample: JB50090-2 ClientID: 186-MFHT1-4-	•	14-OCT-13 by AR	Method: SM2540 G-97
Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent	34.2 29.03 33.45 85.5	g g g %	
Sample: JB50090-3 ClientID: 186-MFHT1-3-		14-OCT-13 by AR	Method: SM2540 G-97
Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent	33.39 27.49 32.5 84.9	g g g %	
Sample: JB50090-4 ClientID: 186-MFHT1-2-	•	14-OCT-13 by AR	Method: SM2540 G-97
Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent	30.89 24.26 30.28 90.8	g g g %	
Sample: JB50090-5 ClientID: 186-MFHT1-2.		14-OCT-13 by AR	Method: SM2540 G-97
Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent	32.43 26.71 31.79 88.8	g g g %	
Sample: JB50090-6 ClientID: 186-MFHT1-2.		14-OCT-13 by AR	Method: SM2540 G-97
Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent	26.86 21.59 26.32 89.8	g g g %	

General Chemistry
Raw Data

OC	Reports	GN93212	DEPOSITOR'S NAMED TO	ersten op et tre er und	(Llananya)	hain Gia (1971 ba)	COMOTE	15.74.74.070.078H	anteronano von e e	TOW THE ARRANGEMENT TOWN	SS G.S. BERTHARTS TO PER	CONTRACTOR STREET	OF A STREET OF THE STREET,
					Hexaval	ent Uni	romiu	[1]				. Pla	
		tadior- i	1 to 1	t ir i	je ^{te} se se se	: (7.85.67)						ka inga	6
•										ig _{al} es e		4	
	La di di Caranti di Ca	1.17.11.			Y Values Corr		4.2		42.27				
Bottle ID	Sample#	Sample Absorbance	BKGRD Abs	Analyzed Times	Sample : Absorbance	X Values Conc(mg/l)	Final Vol.	Sam voi. (ml)	Dilution	Final Conc.	Units	MDL	RDL.
	Test Title:	XCr		CAN MENTAL MENTAL MARKET		13.00m 元 7.4 VOMAPAN			SW846 7		1547-1. MINE PHILIPPER	I NOT SECULL VAN LAND	A1111 Mart Mart 1, 4 1- 10-
	GN Batch:	GN93212											
Analyst:		MRH											
	Prep Date:	N/A				Note: Use	4 for CLF	list poir	iter, 1 for	reg. List pointe	er.		
	Analysis Date:	10/14/2013 E											
	Instrument ID:	<u></u>	l							Corr. Coef:	0.99997		
	Cal. Blk.	0.000	NA	21:20	0.000	0.0000	1						
\neg	STD1	0.009	NA	21:24	0.009	0.0100				Slope:	0.8585		
	STD2	0.044	NA	21:24	0.044	0.0500					0.0022		
	STD3	0.089	NA NA	21:24	0.089	0.1000 0.3000	ł			Y intercept:	0.0022		
	STD4	0.263	NA NA	21:24 21:24	0.263 0.436	0.5000							
	STD5 STD6	0,436 0.687	NA NA	21:24	0.687	0.8000	Final Vol.	Sam. Vol.					
	STD7	0.859	NA NA	21:24	0.859	1.0000	(ml)	(ml)	Dilution	Final Conc.	<u>Units</u>	MDL	RDL
- 12	CCV	0.440	NA	21:53	0.440	0.5100	NA	NA	NA	NA	mg/l	0.001	0.010
	CCB	0.000	NA	22:07	0.000	-0.0026	NA	NA	NA	NA	mg/i	0.0013	0.010
	GN93212-MB1	0.000	0.000	22:07	0.000	-0.0026	50.0	50.0	1	-0.003	mg/l	0.0014	0.010
	GN93212-B1	0.132	0.000	22:07	0.132	0.1512 0.4179	50.0 50.0	50.0 50.0	1	0.151 0.418	mg/l mg/l	0.0014	0.010
4	GN93212-S1 GN93212-D1	0.388 0.256	0.027	22:07 22:07	0.361 0.228	0.4179	50.0	50.0	1	0.263	mg/l	0.0014	0.010
4	JB50113-1	0.256	0.028	22:07	0.227	0.2619	50.0	50.0	1	0.262	mg/l	0.0014	0.010
2	JB50113-2	0.095	0.102	22:07	0.000	-0.0026	50.0	50.0	1	-0.003	mg/l	0.0014	0.010
-2	JB50113-3	0.108	0.021	22:07	0.087	0.0988	50.0	50.0	1	0.099	mg/l	0.0014	0.010
-2	JB50113-4	0.026	0.024	22:07	0.002	-0.0002	50.0	50.0	1	0.000	mg/l	0.0014 0.0014	0.010 0.010
2	JB50113-5	0.245	0.018	22:07	0.227	0.2619	50.0 50.0	50.0	1	0.262 -0.003	mg/l mg/l	0.0014	0.010
3	JB50113-6	0.000	0.000 NA	22:07 22:07	0.000 0.438	-0.0026 0.5076	- 50.0 NA	NA	NA NA	NA NA	mg/l	0.0013	0.010
	CCV	0.438	NA NA	22:07	0.000	-0.0026	NA NA	NA NA	NA NA	NA	mg/l	0.0013	0.010
2	JB50113-7	0.095	0.015	22:25	0.080	0.0906	50.0	50.0	. 1	0.091	mg/l	0.0014	0.010
2	JB50113-8	0.092	0.052	22:25	0.040	0.0440	50.0	50.0	1	0.044	mg/l	0.0014	0.010
1'	JB50090-1	0.000	0.000	22:25	0.000	-0.0026	50.0	50.0	1	-0.003	mg/l	0.0014	0.010
1	JB50119-1	0.000	0.000	22:25	0.000	-0,0026	50.0	50.0	1 1	-0.003 0.144	mg/l	0.0014	0.010 0.010
2	GN93212-S2	0.149	0.023	22:25 22:25	0,126 0.000	-0.1442 -0.0026	50.0 50.0	50.0 50.0	1	-0.003	mg/l mg/l	0.0014	0.010
2 2	GN93212-D2 JB50139-3	0.018	0.023	22:25	0.000	-0.0026	50.0	50.0	1	-0.003	mg/l	0.0014	0.010
2	JB50139-6	0.000	0.000	22:25	0.000	-0.0026	50.0	50.0	1	-0.003	mg/l	0.0014	0.010
-8	jb50145-38	0.001	0.000	22:25	0.001	-0.0014	50.0	50.0	11	-0.001	mg/l	0.0014	0.010
8	jb50145-39	0.000	0.000	22:25	0.000	-0.0026	50.0	50.0	1	-0.003	mg/l	0.0014	0.010
	CCV	0.438	NA .	22:25	0.438	0.5076	NA NA	NA NA	NA NA	NA NA	mg/l mg/l	0.0013	0.010
	CCB.	0.000	NA	22:25	0.000	-0.0026	NA .	NA NA	INA	I NA	- 1119/1	0,0013	0.010
$\overline{}$		 	<u> </u>		<u> </u>			†					
-													
			1					<u> </u>					
			ļ				 	 	 	+			
		 	 		1		 	+	 	 	+	 	†
		 		<u> </u>		ļ.———	 	1					
	CCV		NA				NA	NA.	NA	NA NA	mg/l	0.0013	0.010
	CCB		NA NA				NA NA	NA	NA NA	NA NA	mg/l	0.0013	0.010
		-	ļ		 /	$\overline{}$	├ ──	-	+	 		 	
	·		+	 	 	.)	1	 					
		 	 	 	11 15%		1						
					\ X	7						<u></u>	<u> </u>
							1	<u> </u>	-		+		+
			1	<u> </u>		<u> </u>	1	 	1		 	-	+
			1	 	+		+	 	+	 	1	<u> </u>	
		-	 	 	1		1	 	1	- 			
	ccv		NA	1	1		NA.	NA	NA	NA .	mg/l	0.0013	0.010
·	CCB		NA				NA	NA.	NA	NA	mg/l	0.0013	0.010
							ļ	1		<u> </u>	_	<u> </u>	1
			 				 	1	 	 		 	+
		<u> </u>	-		-		+	 	1	+	+	+	+
		 	+	 		 	+	 	1		1	1	†
		.1		٠	,	L		<u> </u>	•			-14	

Hexavalent Chromium

Y Values Corr X Values Final Vol. Sam Vol. Bottle Sample BKGRD Analyzed Sample ID. Sample # Absorbance Abs Times Absorbance Conc(mg/l) (ml) (ml) Dilution Final Conc. MDL RDL Test Title: XCr Method: SW846 7196A GN Batch: GN93212 Analyst: MRH Prep Date: Note: Use 4 for CLP list pointer, 1 for reg. List pointer. N/A 10/14/2013 Analysis Date: Instrument ID: Ε 0.99997 Corr. Coef; Cal. Blk. 0.000 NΑ 21:20 0.000 0.0000 STD1 0.0100 0.8585 NA 0.009 0.009 Slope; STD2 0.044 NΑ 0.044 0.0500 STD3 0.1000 0.0022 0.089 NA 0.089 Y intercept: 0.3000 STD4 0.263 NΑ 0.263 STD5 0.436 NA 0.436 0.5000 STD6 0.687 NA 0.687 0.8000 Final Vol. Sam. Vol. STD7 0.859 NΑ 21:24 0.859 1.0000 Units MDL RDL (ml)(ml)**Dilution** Final Conc CCV 0.440 NA 21:53 0.440 0.5100 NA NA NΑ NΑ 0.001 0.010 mg/l CCB 0.000 NA 0.000 -0.0026 NA NA NA NΑ 0.0013 0.010 mg/l GN93212-MB1 0.000 0.000 22:07 0.000 -0.0026 50.0 50.0 -0.003 0.0014 0.010 mq/l GN93212-B1 0.132 0.000 22:07 0.132 0.1512 50.0 50.0 1 0.151 mg/l 0.0014 0.010 GN93212-S1 0.388 0.027 22:07 0.361 0.4179 50.0 50.0 1 0.418 0.0014 0.010 mg/l 4 GN93212-D1 0.256 0.028 22:07 0.228 0.2630 50.0 50.0 1 0.263 0.0014 0.010 mg/l 0.254 22:07 0.227 50.0 4 JB50113-1 0.027 0.2619 50.0 1 0.262 mg/l 0.0014 0.010 2 J850113-2 0.095 0.102 22:07 0.000 -0.0026 50.0 50.0 -0.003 0.0014 0.010 mg/i 2 JB50113-3 0.108 0.021 22:07 0.087 0.0988 50.0 50.0 1 0.099 0.0014 0.010 mg/l JB50113-4 0.026 0.024 22:07 0.002 -0.0002 50.0 50.0 0.0014 0.010 1 0.000 mg/l 2 JB50113-5 0.245 0.018 22:07 0.227 0.2619 50.0 50.0 1 0.262 mg/l 0.0014 0.010 JB50113-6 3 0.000 0.000 22:07 -0.0026 50.0 0.000 50.0 1 -0.003 mg/l 0.0014 0.010 CCV 0.438 NΑ 22:07 0.438 0.5076 NA NA NA 0.0013 0.010 NA mg/l CCB 0.000 NA 0.000 -0.0026 NA NA NA NA mg/l 0.0013 0.010 2 JB50113-7 0.095 0.015 0 0.080 0.0906 50.0 50.0 0.091 0.0014 0.010 1 mg/l 2 JB50113-8 0.092 0.052 0 0.040 0.0440 50.0 50.0 0.044 0.0014 0.010 mq/l O JB50090-1 0.000 0.000 0.000 -0.0026 50.0 50.0 1 -0.003 mg/l 0.0014 0.010 JB50119-1 0.000 0.000 0 0.000 -0.0026 50.0 50.0 1 -0.003 0.0014 0.010 mg/l 2 GN93212-S2 0.149 0.023 0 0.126 0.1442 50.0 50.0 1 0.144 0.0014 0.010 mg/l 0.018 0.023 0 0.000 -0.0026 50.0 2 GN93212-D2 50.0 1 -0.003mg/l 0.0014 0.010 2 JB50139-3 0.018 0.023 0 0.000 -0.0026 50.0 50,0 1 -0,003 0.0014 0.010 mg/l o 50.0 1 2 JB50139-6 0.000 0.000 0.000 -0.0026 50.0 -0.003 mg/l 0.0014 0.010 8 jb50145-38 0.001 0.000 0 0.001 -0.0014 50.0 50.0 1 -0.001 0.0014 0.010 mg/l jb50145-39 8 0.000 0.000 0 0.000 -0.0026 50.0 50.0 1 -0.003 mg/l 0.0014 0.010 CCV 0.438 NA 0.438 0.5076 NA NA NA NA mg/l 0.0013 0.010 CCB 0.000 NA 22:25 0.000 -0.0026 NA NA NΑ NA 0.0013 0.010 mg/l CCV NA NΑ NΑ NA mg/l 0.0013 CCB NA NA NA NA 0.0013 NA mg/l 0.010 CCV NA NΑ NA NΑ 0.0013 0.010 mg/l CCB 0.0013 NA NA NA NA NA mg/l 0.010

1 of 2

Test: Hexavalent Chromium	MDL = 0.0013 mg/l RDL = 0.010 mg/l	GNBatch ID: <u>GN 93212</u> Date: <u>10 14 13</u>
Product: XCr	RDL = 0.010 mg/i	Date: 10 19 13

Method: SW846 7196A Units = mg/l Digestion Batch QC Summary Date: 10/14/13 Result: 0,000 RDL: 0.010 <RDL: VCS Method Blank ID: TMB1 Result: 0,151 Spike: 0.150 %Rec.: 100,7 % Spike Blank ID: -B1 Date: Duplicate ID: D1 (T650113-1)Samp. Result: 0, 262 Dup. Result: 0, 263 %RPD: 0, 3870 Samp. Result: 0, 262 MS Result: 6, 4/8 Spike: 0, 150 %Rec: 104, 0 % Diluted Sample ID: Samp. Result:_ _____ Dil. Result:_____ %RPD:_ Samp. Result:__ MS Result: Spike:____ pH adj. PS ID: %Rec: Analysis Batch QC Summary Units = mg/l Result: 0. 5/00 TV: 0, 5000 %Rec.: 102.0 % %Rec.: 101. 5% Result: 0, 5076 TV: Result: 0, So76 TV: %Rec.: Result: TV: CCV: Result: TV:_ %Rec.: TV: Result: %Rec.: CCV: Result: 0 · 0000 RDL: 0 , 0 / 0 < RDL: \ Result: RDL: CC8: CCB: Result: RDL: <RDL: RDL: <RDL: CCB: Result: Result:__ RDL: <RDL: CCB: CCB: RDL: Result: <RDL:

Reagent Reference Numbers		
	secattached	
,		 _
In itial Calibration Source:		
Centinuing Calibration Source	:e:	

Arelyst: MRH	Date: 10 14 13
Comments:	

Fcom: GN076-01 D - Nadar 1/10/11

2 of 2

Test: Hexavalent Chromium

Product: XCr

Method: SWRAR 7106A

MDL	=	0	.0013	mg/
BDI	=	Λ	010 6	na/l

GNBatch ID: <u>GN93212</u> Date: <u>INII4 13</u>

Digestion Batch QC		Uni	ts = mg/l			
Method Blank ID:	Da	te:	_ Result:	_ RDL:	<rdl:< th=""><th></th></rdl:<>	
Spike Blank ID:	Đại	ie:	Result:	Spike:	%Rec.:	•
Duplicate ID: D 2 / J7	250/39-35am	p. Result: 0 . 0	ンク Dup. Resul	It: 0.000	%RPD: 0, 0.7	7 65
MS ID: 52 1						
Diluted Sample ID:						
pH adj. PS ID:						
Analysis Batch QC Su	ımmary	Units = mg/l				
CCV:	Result:	TV:	%Rec.:		•	
CCV:		TV:				•
CCV:	Result:	TV:	%Rec.:			
CCV:	Result:	TV:	%Rec.:			
ccv:	Result:	TV:	%Rec.:			
ccv :	Result:	TV:	%Rec.:	 .		
000	Donulle	DDI.	<rdl:< td=""><td></td><td></td><td></td></rdl:<>			
	Result:					
CCB:						
			<rdl:< td=""><td></td><td></td><td></td></rdl:<>			
CCB:	_					
CCB:		RDL:				
		· · · · · · · · · · · · · · · · · · ·				
Reagent Reference	Numbers:		.			
	.2.	e e attac	hod			
	,	<u>ca aarea</u>				·
In itial Calibration S	ource:					
Continuing Calibrat	ion Source:					
Analyst: MRH	Date:/	0/14/13				
Comments:	· -	<u></u>				

Fom: GN076-01 D -- Doin 1/10/11

Hexa	va	lent	Chromium	рΗ	Adjustment	Log

Method: SW84	6 /196A	
pH adj. start time:	21 25	
pH adj. end time:	21:45	

pH Adjust. Date: 10/14/13
GN Batch ID: 6N 9321 2

Initial Sample Volume (ml)	Final Volume (mi)	pH after H2SQ4	bkg pH after H2SO4	Spike Info	Comments
45	50	1,73	NIA	5.0 ml	sppm ultra
			4-		
				14	
45	50	1.75	NIA	NIA	
				,	
	, s _e *				
		1			
45	50	1,72	1.80	LOWL	7.spm Abs.
		1.69	1.88		
		181		1.OmL	7.Sppm Abs.
		1,93			, , , , , , , , , , , , , , , , , , , ,
4		1.88			
1		1.76			
		1.75			
			1.88		
			1,70		
			191		
		1.90			
		1.76			
		1.86		1,0 or L	7.5 ppm Abs
		1.82			/ /
		1.77	1.86		
		1.69	1,81		
V		1.71	1.80		
		<u> </u>			
	ļ <u> </u>				
				<u> </u>	
	<u> </u>			<u> </u>	
	Volume (ml) US US VS VS VS VS VS VS VS VS	Sample Volume (ml) 45 50 45 50	Sample Volume (ml) Volume (ml) PH after (ml) H2SO4 45 50 1.73 45 50 1.75 45 50 1.72 1.69 1.76 1.75 1.68 1.73 1.85 1.91 1.90 1.71 1.69 1.71	Sample Volume (ml) Volume (ml) pH after H2SO4 H2SO4 45 50 1.73 AIIA 45 50 1.75 NIA 45 50 1.72 1.80 1.81 1.93 1.76 1.76 1.72 1.76 1.72 1.75 1.86 1.71 1.86 1.83 1.88 1.91 1.91 1.86 1.91 1.91 1.86 1.91 1.91 1.86 1.92 1.90 1.93 1.72 1.90 1.87 1.86 1.87 1.89 1.87 1.86 1.87 1.86 1.87 1.88	Sample Volume (ml)

Reagent Information:	Sec attached		
Analyst: MRH	Date: 10 14 13	QC Reviewer:	Date:

Form: GN077-01 Rev. Date:1/10/11

Hexavalent Chromium pH Adjustment Log Method: SW846 7196A

pH adj. start time:

pH adj. end time:

21:10

pH Adjust. Date: 10 14/13 GN Batch ID: 6 N 9 3212

Sample ID	Initial Sample Volume (ml)	Final Volume (ml)	pH after H2SO4	Comments	Spike Info.
Calibration Blank	45	50	1.76		
0.010 mg/l standard			1,70	5 ppm Absolute	0.10 ml of 5 mg/l to 50 ml FV
0.050 mg/l standard			1.71		0.50 ml of 5 mg/l to 50 mL FV
0.100 mg/l standard	<u> </u>		181	A A A A A A A A A A A A A A A A A A A	1.00 ml of 5 mg/l to 50 mL FV
),300 mg/l standard			1.80		3.00 ml of 5 mg/l to 50 mL FV
).500 mg/l standard		,	1.75	A Company of the Comp	5.00 ml of 5 mg/l to 50 mL FV
0.800 mg/l standard			1.76		8.00 ml of 5 mg/l to 50 mL FV
1.00 mg/l standard	V	\perp	1.81		10.0 ml of 5 mg/l to 50 mL FV
2.00 mg/l standard			<i>y</i>	ah sah	20.0 ml of 5 mg/l to 50 mL FV
		,		· · · · · · · · · · · · · · · · · · ·	1
		13	y		
		31.17 5.16		100 mm	
	G. 40 fee.			the state of the s	
<u></u>	1,44	V.			
		1.	À.		
			₹ _n		
A			1901 S. M. J.	20 m	
	` \		(,
			9"	of A	
	BA.	H1.		Self Self Self Self Self Self Self Self	
	J. M. J. M. J. S.	A William County		A STATE OF THE STA	
			- 27		
 L					
-					
.					
···			<u> </u>		
	 	 	1		
-	+	 			
	+	+	 		
	- 	 -	 		<u></u>

Analyst: <u>MR / +</u> Date: 10 | 14 | 13

Form: GN078-01

HEXAVALENT CHROMIUM STANDARD PREPARATION LOG Product: $\frac{XCR}{CR}\frac{\gamma_{l}q}{\gamma_{l}}6$ GN or GP Number: $\frac{GN^{3}32}{C}$

					200			
	-	Stock			ō			
	Stock	volume		Final	Intermediate	Expiration		
Stock used to prepare standard co	concentration	used in ml	Dilnent	Volume	(mg/l)	Date	Analyst	Date
Z513	1000 ppm	1.0 ml	Ю	100 mls	10 mg/l	3/25/2016	MAH	ग्रीमीय
_	1000 ppm	10 ml	۵۱	100 mls	100 mg/l		_	,
	1000 ppm	1.0 ml	۵	200 mg/l	5 mg/l			
	1000 ppm	1.5 ml	IO	200 mg/l	7.5 mg/l			
Ultra lot #P00986	1000 ppm	1.0 ml	ī	100 mg/l	10 mg/l	10/31/2019	*	,
		Intermediate						
	Intermediate	or Stock			Final Conc.			
Intermediate or Stock used to	or Stock	volume		Final	Of Standard	Expiration		
	concentration	used in ml	Diluent	Volume	(mg/l)	Date	Analyst	Date
	5.0 ppm	0.1 ppm	П	50 mls	0.01 mg/l	10/15/13	MKH	10/14/13
5.0 ppm abs	5.0 ppm	0.5 ppm	ם	50 mls	0.05 mg/l		-	-
5.0 ppm abs	5.0 ppm	1.0 ppm	ía	50 mls	0.10 mg/l		_	_
5.0 ppm abs	5.0 ppm	3.0 ppm	Ö	50 mls	0.30 mg/l			
5.0 ppm abs	5.0 ppm	5.0 ppm	i	50 mls	0.50 mg/l			
5.0 ppm abs	5.0 ppm	8.0 ppm	Ĭ	50 mls	0.80 mg/l		-	
5.0 ppm abs	5.0 ppm	10.0 ppm	ă	50 mls	1.0 mg/l	>	>	¥

Form: GN205-02 Rev. Date:10/16/09

Reagent Information Log - XCR - water - 7196A

Reagent	Exp. Date	Reagent # or Manufacturer/Lot
Calibration Source: Hexavalent Chromium,		
1000 mg/L Stock	6/6/2016	Absolute Grade Lot # 060613
Calibration Checks: Hexavalent Chromium,		
1000 mg/L Stock	10/31/2019	Ultra lot # P00986
External Check	10/31/2019	Ultra lot # P00986
Spiking Solution Source	6/6/2016	Absolute Grade Lot # 060613
Diphenyl carbazide Solution	11/2/2013	GNE10-37623-XCR
Sulfuric Acid, 10%	3/30/2014	GNE9-37608-XCR
Filter 0.45um	па	130407036
1N NaOH	12/6/2013	GNE-6-36428-XCR

Form: GN087A-23 Rev. Date: 10/3/05

 QC Summary

 Duplicate ID: GN93229-D1
 Sample ID: JB50090-2

 Dup Result: 7.61
 % RPD: 1.18%

	Wt./Vol. used	Uncorrected/ Corrected Temp in			
Sample ID	for soilds	Deg C.	Result	Corrosivity	Read time
Buffer Check: 4	1	25	3.98	1	9:57
Buffer Check: 7		25	6.97		
Buffer Check: 10		25	9.98		
GN93229-D1		25	7.61		
JB50090-2		25	7.70		
JB50090-3		25	7.37	1	
JB50090-4		25	7.70		,
JB50090-5		25	7.86		
JB50090-6	·	25	7.87		
JB50119-2 /		25	7.95		
JB50145-32 A-		25	7.44		
JB50145-33CONF		25	7.30	·	
JB50145-34 <i>A</i>		25	7.30		
Buffer Check: 7		25	6.97		
Buffer Check: 10	-	25	9.97		
JB50145-35CONF		25	7,71	1	
JB50145-36CONF		25	7.64		
JB50145-37CONF		25	7.79		
Buffer Check: 7		25	6.99		
Buffer Check: 10		25	10.00		10:58
Buffer Check: Buffer Check:					
Comments	:	- II			
Validated By	: Nanc	y Cole		Validated Date:	10/1/2012

Document Control #: AGN-PH CORR-AQ-02

W		
£	ACCUTEST	•

Balance #_

Sample Prep Log

Sample ID	Sample Size	Final Volume
	The state of the s	
<u> </u>	50,9	aeldeel DML
-3	50.5	Approximate the second
-4	50,9	
	50.1	
-6	508 50,9	
-2pup	\$50,9	
JBS0145 - 32	50.4	
~ 3.3	50.0	
-34	50.7	
- 3 <u>S</u>	SO. 7 SO. 0	
-36	50 8	
- 37	50.9	
JB50119-2	30.0	askled 30mc
- 45. - 45.		
÷6		
		17-
•		
Æ		
<u> </u>		

Form: GN166-02 Rev: Date: 8/5/05

QC Review_

Reagent I	nformation Log	
Test Name:	рН	

GN 93229

Reagent

pH 2 Buffer Solution	FISHER LOT#126191 EXP 10/2014
pH 4 Buffer Solution	BDH LOT#2206544 EXP 6/2014
pH 7 Buffer Solution	RICCA LOT#2304783 EXP 03/2015
pH 10 Buffer Solution	BDH LOT#2206072 EXP 11/2013
pH 13 Buffer Solution	Lab Chem LOT# C025-16 EXP 1/29/20

Form: GN087-01 Rev. Date:9/18/2013

Test: Redox Potential Test Code: REDOX Method: ASTM D1498-76 Matrix: Solid 0 Method: ASTM D1498-76 Mod.

Analyst: ALECA Date: 10/15/13 GN Batch ID: GN93230 Temp (Deg C): 25

Quality Control Summary		
Sample ID: GN93230-D1 Results: 345	.4 Dup: 346.9	% RPD: 0.43%
Ferrous-Ferric True: 675	Found 675.5	% Rec 100.07%
pH 4 Quinhydrone True: 462	Found 492.8	% Rec 106.67%
pH 4 Quinhydrone True: 462	Found 485.1	% Rec 105.00%
pH 4 Quinhydrone True: 462	Found 484.4	% Rec 104.85%
pH 7 Quinhydrone True: 285	Found 290.3	% Rec 101.86%
pH 7 Quinhydrone True: 285	Found 284.8	% Rec 99.93%
pH 7 Quinhydrone True: 285	Found 285.4	% Rec 100.14%

Sample #:	mv vs. Ag/AgCI Electrode	Corrected results (mv vs. Hydrogen electrode) ***
Ferrous-Ferric Solution	463.5	675.5
oH 4 Quinhydrone	280.7	492.8
oH 7 Quinhydrone	78.2	290.3
Dup GN93230-D1	134.8	346.9
1. JB50090-2	133.3	345.4
2. JB50090-3	152.8	364.9
3. JB50090-4	143.2	355.3
4. JB50090-5	104.3	316.4
5. JB50090-6	101.1	313.2
6. JB50119-2	63.7	275.9
7. JB50145-32	90.5	302.5
8. JB50145-33CONF	101	313.1
9. JB50145-34	105.7	317.9
oH 4 Quinhydrone	273	485.1
oH 7 Quinhydrone	72.7	284.8
10. JB50145-35CONF	53.4	265.5
11. JB50145-36CONF	60	272.1
12. JB50145-37CONF	60.9	273
13.		
14.		
15.		
16.		. <u> </u>
17.		
18.		
19.		
oH 4 Quinhydrone	272.3	484.4
oH 7 Quinhydrone	73.3	285.4

*** Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the in-	trument by changing to the relative mv scale. The
conversion is done by adding about 200 mV to the Ag/AgCl reading.	\

Reagent Numbers:

GNE4-35810-ORP EXP:10/6/13

Comments:

Analyst _________

Method <u>C/f/k/f</u>

Prep Date 10/15/2013

GP# GN/3229-ptf

GN93030-EH

Sample P	rep	Log
----------	-----	-----

Sample ID	Sample Flep Lo	
Sample ID	Sample Size	Final Volume
JB 50090-2	50.9	geldrel some
, · · · · · · · · · · · · · · · · · · ·	50.5	The state of the s
-9	50,9	X S
5	50.1	
-0	50.8	
-2pup	.50.9	
51350145-32	50.4	
- 33	50.0	
-34	50,7	
-3 S	50.0	
-36	5) F	
- 37	50.9	
5850119-2	30.0	askled 3anc
12 de 12	2.	Horizon Company
do do		
	100	1.
. 4		
ĸ		

Form: GN166-02 Rev: Date: 8/5/05

QC Review_

	No.	Hexavalent Chromium											
				4		44.4							
					Y Values Corr								
Bottle	din .	Sample	BKGRD	Analysis	Sample	X Values				iffición.	orand for	47.36	an and an and an and an
#	Sample #	Absorbance	Abs	Times	Absorbance	Conc(mg/l)	(ml)	(9)	Dilution	Final Conc.	Units	MDL	RDL
	Test Title:	XCRA						Method:	SW846 3	060A, 7196A			
	GN Batch:	GN93231											
	Analyst:	BP											
	Prep Date:	10/14/2013				Note: All	results b	elow sho	own on a	wet weight basi	s.		
	Analysis Date:	10/15/2013							• • • • •				
	Instrument ID:	Н											
			ll .							Corr. Coef;	0.99997	7	
	Cal. Blk.	0.000	NA	8:37	0.000	0.0000	1			COIT. COBI.	0.33331		
	STD 1	0.009	NA NA	8:41	0.009	0.0100	1			Clause	0.8939	`	
	STD 2	0.044	NA NA	8:41	0.044	0.0500	1			Slope:	0.0338	,	
	STD 3	0.089	NA NA	8:41	0.089	0.1000	1				0.000	_	
	STD 4						-			Y Intercept:	-0.0005	,	
		0.268	NA	8:41	0.268	0.3000	4						
_	STD 5	0.446	NA	8:41	0.446	0.5000							
	STD 6	0.709	NA	8:41	0.709	0.8000	1	Sam. Wt.					_
\vdash	STD 7	0.898	NA NA	8:41	0.898	1.0000	(ml)	(a)	Dilution	Final Conc.	<u>Units</u>	MDL	RDL
 	CCV	0.442	NA	9:29	0.442	0.4950	NA NA	NA NA	NA NA	NA	mg/l	0.002	0.010
<u> </u>	CCB	0.000	NA NA	9:29	0.000	0.0006	NA	NA	NA	NA	mg/l	0.002	0.010
\sqcup	GP75260-MB1	0.000	0.000	9:37	0.000	0.0006	100.0	2.5000	1	0.024	mg/kg	0.069	0.400
	GP75260-B1	0.787	0.000	9:37	0.787	0.8810	100.0	2.5000	1	35.239	mg/kg	0.069	0.400
	GP75260-S1	0.577	0.005	9:37	0.572	0.6405	100.0	2.4800	1	25.825	mg/kg	0.070	0.403
	GP75260-D1	0.027	0.006	9:37	0.021	0.0241	100.0	2.4700	1	0.975	mg/kg	0.070	0.405
	JB50090-4	0.031	0.009	9:37	0.022	0.0252	100.0	2.4700	1	1.021	mg/kg	0.070	0.405
	JB50090-4PSCONF	0.394	0.000	9:37	0.394	0.4413	100.0	2.4700	2	35.736	mg/kg	0.070	0.810
	GP75260-B2	>3	ovr	9:37		#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	GP75260-\$2	>3	OVR	9:37	1	#VALUE!	100.0	2.4900	1	#VALUE!	mg/kg	0.069	0.402
	GP75260-B2	0.386	0.000	9:37	0,386	0.4324	100.0	2.5000	50	864.788		0.069	20.000
	GP75260-\$2	0.413	0.000	9:37	0.413	0.4626	100.0	2.4900	50		mg/kg	+	20.000
-	CCV	0.442	NA NA	9:37	0.442		NA			928.910	mg/kg	0.069	
-	CCB	0.000			***************************************	0.4950		NA	NA	NA NA	mg/l	0.002	0.010
		1	NA	9:37	0.000	0.0006 -	NA NA	NA	NA	NA NA	mg/l	0.002	0.010
	JB50090-2	0.150	0.039	9:42	0.111	0.1248	100.0	2.5000	1	4.991	mg/kg	0.069	0.400
	JB50090-3	0.578	0.132	9:42	0.446	0.4995	100.0	2.4400	1	20.472	mg/kg	0.071	0.410
	JB50090-5	0.140	0.031	9:42	0.109	0.1225	100.0	2.4800	1	4.941	mg/kg	0.070	0.403
	JB50090-6	0.126	0.033	9:42	0.093	0.1046	100.0	2.4900	1	4.202	mg/kg	0.069	0.402
				9:42		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
				9:42		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#D1V/0!
				9:42		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/01	#DIV/0!
				9:42		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
				9:42		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#D!V/0!
				9:42		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/01	#DIV/0!
	CCV	0.438	NA .	9:42	0,438	0.4906	NA	NA	NA	NA	mg/l	0.002	0.010
	CCB	0.000	NA	9:42	0.000	0.0006	NA.	NA.	NA.	NA NA	mg/l	0.002	0.010
		71 11 11 11 11 11 11 11 11 11 11 11 11 1		0:00		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/01
			İ			#VALUE!	100.0		1	#VALUE!		#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg		
			-			#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	
						#VALUE!					mg/kg	#DIV/0!	
		-					100.0		1	#VALUE!	mg/kg	#DIV/0!	_
					-	#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
		-				#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
			\longrightarrow			#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
	201		<u> </u>			#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
	CCV		NA			#VALUE!	NA	NA	NA	NA NA	mg/l	0.002	0.010
	ССВ		NA NA			#VALUE1	NA	NA	NA	NA NA	mg/l	0.002	0.010
			i			#VALUE!	100.0		1	#VALUE1	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0	$Z \setminus$	1	#VALUE!	mg/kg	#D!V/0!	#DIV/0!
						#VALUE!	100.0	/ \	1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
T						#VALUE!	100.0	. //	1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0	4/1	1	#VALUE!	mg/kg	#DIV/0!	#DIV/01
			·	· · · · · · · · · · · · · · · · · · ·	***	#VALUE!	100.0	 1 - 	1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0	<u> </u>	1	#VALUE!			
- 1						#VALUE!	100.0		1		mg/kg	#DIV/0!	#DIV/01
										#VALUE!	mg/kg	#DIV/0!	#DIV/0!
\dashv	ccv		110	-		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
+			NA I			#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010
	ССВ		NA NA			#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010
-						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
\longrightarrow						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			1			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400

#VALUE! 100.0 2.5000 1 #VALUE! mg/kg 0.069 0.400

.4

	 			#VALUE!	100.0	2.5000		#VALUE:	mg/kg	0.009	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
r			1	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	1	_	+	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
ccv					·					0.002	0.010
	N _i		+	#VALUE!	NA NA	NA ·	NA	NA NA	mg/l		
ССВ	N,	<u> </u>		#VALUE!	NA NA	NA	NA	NA NA	mg/l	0.002	0.010
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			1	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			· ·	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	+ + + + + + + + + + + + + + + + + + + +	-	+			_	1				
	 			#VALUE!	100.0	2.5000	•	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1 1	#VALUE!	mg/kg	0.069	0.400
	1			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0,069	0.400
	<u> </u>	$\overline{}$		#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
ccv	 		+				 		1	-	_
	N.		+	#VALUE!	NA NA	NA	NA	NA	mg/l	0.002	0.010
CCB	N,	\	<u> </u>	#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010
	1	i		#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100,0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			1	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	+	- 	+		+				1		_
	 			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		2.5000 1	#VALUE!	mg/kg	0.069	0.400					
				#VALUE!	100.0	2.5000	. 1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	 	_		#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	 			1	 	1				+	_
	+			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	 			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
CCV	l N	١		#VALUE!	NA	NA NA	NA	NA	mg/l	0.002	0.010
CCB	l l N	٠ I		#VALUE!	NA	NA NA	NA	NA	mg/l	0.002	0.010
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
+	+			#VALUE!	100.0	2.5000	1	#VALUE!		0.069	0.400
	+	$-\!$	+	+					mg/kg		
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
1			1	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			+		 					_	_
-		$-\!\!\!+\!\!\!-\!\!\!\!-$	+	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	. 1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
CCV	N,			#VALUE!	NA	NA	NA	NA NA	mg/l	0.002	0.010
ССВ	N.	4	T	#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010
		` 	 	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	+ +	$\overline{}$					+				
	 	\longrightarrow	 	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	1	+		#VALUE!	100.0	2.5000	1 1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	T		1	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
 			+		1			······································			
	 		+	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		#VALUE! 100.0 2.5000 1	#VALUE!	mg/kg	0.069	0.400					
	_1 _			#VALUE!	100.0	2.5000	1 1	#VALUE!	mg/kg	0.069	0.400
			Τ	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
ccv	N,			#VALUE!	NA.	NA	NA.	NA	mg/l	0.002	0.010
CCB	N/		+	#VALUE!	t				***********		·
- CCB	N/	<u> </u>	 		NA	NA	NA	NA NA	mg/l	0.002	0.010
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			T	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			1	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
7	 		1	+	 		-				_
+		$-\!\!\!\!+\!\!\!\!-\!\!\!\!-$	+	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	 			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	<u> </u>			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			T	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
**	 		1		····	2.5000	1				
	 		+	#VALUE!	100.0		-	#VALUE!	mg/kg	0.069	0.400
	 			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	1 1 41	. 1	1	1 101 4 4 1 1 1 - 1		I NA '	1 515				1
CCV	N/	`		#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010

revised	4/25/11
---------	---------

Commencs:	
·	
i de la companya de l	

Test: Hexavalent Ch Product: XCr Method: SW846 3060		MDL = 0.069 RDL = 0.40 i	~ ~	GNBatch ID: <u>Cyn(4323</u>) Date: <u>しいけいし</u>
Digestion Batch QC	· · · · · · · · · · · · · · · · · · ·	Units = mg/k	· a	
=	1	•	-	DL: O'Y RDL: YES,
			1	89 Spike: 40 %Rec.: 68 / 1
Insol. Spike Blank ID:	· · · · · · · · · · · · · · · · · · ·	i		St Spike: 955. %Rec.: 90.25.//
1		. 7	•	0.915 %RPD(1.6)
				25 Spike: 40:32 %Rec: 61.52/
1	. •			25 Spike: 420-5 % Rec: 61-5 & 7
1	<u>∫ – S2_</u> Samp. Result:		esuit: <u>HX:5-</u>	110 Spike: 13/19 %Rec: 19 12 77
	Samp. Result:	1		136 Spike: 40. 4 % Rec: 85-75/
Diluted Sample ID:	Samp. R	esult:	Dil. Resu	lt: %RPD:
pH adj. PS ID:	Samp. Result:	Ms	Result:	Spike: %Rec:
Analysis Batch QC Sur	mmary Units	= mg/l		
ccv: lolistis	Result: <u>O-Li95O</u> TV:	0.500 %Re	.c.:99·/·	
ccv:	Result: TV:		.c.: 1	
ccv:	Result: <u>O-UGO</u> CTV:		c:95-16	0-11
CCV:	Result: TV:		c.:	
ccv:	Result: TV:		ec.:	
CCV:	Result: TV:			
CCV:	Result: TV;			
ccv:		· ·	oc.:	
ccv:	Result: TV:		ec.:	
CCB: 10/15/13	Result: <u>() (7)06</u> RDL:	0.010 <rd< td=""><td>2010</td><td></td></rd<>	2010	
CCB:	- ;	_0.010 <rd< th=""><th></th><th></th></rd<>		
CCB:	Result: RDL:		DL:	
CCB:	Result: RDL:		. A	
CCB:	Result: RDL:			
CCB:	Result: RDL:			
CCB:	Result: RDL;			
	Result: RDL:	_0.010 <rd< th=""><th>)L:</th><th></th></rd<>)L:	
	_ Result: RDL:			
Reagent Reference I	nformation - refer to a	tached reage	nt reference	information page(s).
Insoluble spike = Pb0		ght = 323.2 g/m		
{1000000 ug/g x Insol	uble spike wt(g) x 52/32	3.2}/ms sample	e wt(g) = Ins	oluble spike amount
Analyst: BP	Date:	13		
Comments:				

Form: GN066-01 Rev. Date: 05/13/13

-
. ~
'n

H.J	M'
*	ACCUTEST:

Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

						pH Meter ID:	<u> </u>		
						Digestion Date		(~ 13 <u> </u>	
pH adj. start time:		551	•	916		pH adj. Date:	1015	3	
pH adj. end time:		<u>9 07</u>		9 24		GN Batch ID:	0 N93	<u> </u>	_
6175260	Sample Weight in	pH after HNO3 (7.0 to	Final Volume	pH after H2SO4 (1.5 to	bkg pH after	Spike	Spike	Digestate	
Sample ID	g	8.0)	(ml)	2.5)	H2SO4	Amounts	Solution	Description/Con	nments
ccv	3	7.112	100	196		Siomic	LOPPMUCHU		
CCV		 7.UZ 	100	1 -(0			Love To Green		
CCV									
CCV									
CCB		-7 (J	100	216	7				
ССВ		7.67	100	SX. (12)					
CCB									
CCB									
MS (Sol) JB 20090-4	2.48	- C-O	14-0	222	1.01-	1, onc	looppmags		
		7.82	100	3.32	196	0.0144	PBC(Dy		
ivio (maoi.)	2.49	7.61	- 1 -	319	1 3 2	0,0199	4 8 CI 0 4	<u> </u>	
DUP V ~4	4,47	7.46	-	06		1 12 14 2	13000-00		
SB (Sol)	2.50	7.54		3 (ज	168	10MC	WORPM ABS		
SB (Insol)		1 30		1 73	1.50	00149	bR10x		
MB		761		1.54	1.95	·			
12B20069- A	247	7 83		3.37	1.65			Lellow	
2	250	7.70		1.61	1.72			Tan	
3 -3	2.44	7-36		178	1.90			Brown	
4	3.18	7.25	·	0 15	182			tan	
5 V ~ 6	2.49	7-10		N-05	2 3			L	
6		, ,	<u> </u>	,	•				
7									
8									
9									
10									
11									
12									
13									
14									
15									
16									
17									
18		-							
19									
20									
SB (Insol)	2.2O	1.30	しいつ	2. lu	1.68	Int Same T	570mm wind	dilution	157
MS (Insol.)	2.10	7.61	100	186	303	Inc.song.	JOME WID!	dilution	- 34
PS(B 500904)		1.83		193			- 20 50 5		(1:2)
pH adjusted PS	MUT.	4.0.0	11.	12	10%	O SSCORTOOL	bures DZ ' K	r 7000	\ \ \ \ \
1:5 dil.		 				 			
TB50090-U	2.45	\vdash							
Reagent Reference In		- refer to	attached	roagent re	forence :	nformation no	ao(e)		
{1000000 ug/g x Insolu	nie shike /	w((y) x 02/3	ااالزے.حےد	sample Wil	(g) – msol	unie spike amo	unit of PDCIO	-	
2nd analyst check:				Anayst:	BP	,			-
Form: GN-067									

45 of 53
ACCUTEST.
JB50090
LABORATORIES

ACCUTEST LABS DAYTON, NJ

3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET GP Batch: $QP7 \leq 2Q_CO$

NOTE: Always dilute post-spike first, then take a 45 ml aliquot of the dilute

				Use calculated or	default spike?	40.486 sfault (40 mg/kg) spike	#DIV/0! Pfault (40 mg/kg) spike	#DIV/0! stautt (40 mg/kg) spike	#DIV/0! sfault (40 mg/kg) spike	#DIV/0! sfault (40 mg/kg) spike	#DIV/0! sfault (40 mg/kg) spike	fault (40 mg/kg) spike	Pfault (40 mg/kg) spike	fault (40 mg/kg) spike	sfault (40 mg/kg) spike	#DIV/0! sfault (40 mg/kg) spike
		ppm to Est. Read- Calculated	Spike	Amount in	mg/kg	40.486	#DIV/0i	#DIV/0i	#DIV/0i	i0/AIG#	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0i
		Est. Read-	back on	curve in	l/gm	0.513	i0/AIG#	i0/AIQ#	#DIV/0!	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0i	#DIV/0!	#DIV/0!
	Actual ml of 100	ppm to	spike on	dilution of	sample.	0.225										
pike amount.	Suggested	ml of 100	ppm to spike spike on	Dilution to Dilution to on dilution of dilution of	sample.	0.223	#DIV/0i	#DIV/0i	#DIV/0i	#DIA/0i	#DIV/0i	#DIV/0!	#DIV/0i	#DIV/0i	#DIN/0i	#DIV/0i
nd add the ડા			Actual	Dilution to	pe nsed	2										:
aliquot of the diluted post-spike and add the spike amount			Suggested	Dilution to	nse	1	0	0	0	0	0	0	0	0	0	0
the diluted				Dilution	needed	yes	92	no	ou	o _L	no	입	0	ou	20	on O
ni aliquot of		Amount in	ml to add	of 100 ppm	solution	0.445	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
n take a 45				Results in	mg/kg.	1.021										
NOTE: Always dilute post-spike first, then take a 45 mi				Weight in 45 Results in of 100 ppm	Ē	1.1115	0	0	0	0	0	0	0	0	0	0
ays allute post		PS Aliquot		=	100 ml	2.47										
NO II					Sample ID	JB50090-4										

3060A/7196A INSOLUBLE SPIKE CALCULATION

		127	ر ر در ک)		
 Amount	Spiked	958.911	930.454	#DIV/0i	#DIA/Oi	#DIV/0i
Weight of	Sample	2.5	2.49			
Weight of	PbCr04	0.0149	0.0144			

Date Validated: 2/26/13

Validated By: JJY
Doc. Control #: AGN-XCRAPSCALC-01

7.4

HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 318, 254, 395, 157

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C. o, Thermometer Correction factor:

Digestion			Temp. in deg. C Hot Plate # Uncorrected/Correc	Temp. in deg, C Hot Plate # Uncorrected/Correc	Temp. in deg. C Temp. in deg. C Temp. in deg. C Temp. in deg. C Hot Plate # ∠ - Hot Plate # ∠	Temp. in deg. C Hot Plate # 生 - Uncorrected/Correc
Batch ID	Description	Time	ted	ted	ted	ted
EP 5259	Starting Time	<u>ት</u> ት ' ዓ!	53(ed	41/91	01/6	16/16
	Time 1	MILL	16)86	9/191	91/91	1/6
	分子(八 Ending Time	አት'ሊ	1366 A	16/15	16/16	1/6/
			c		j	,,,
150 17360	Starting Time	05'U	36/86	15)16	16/16	15)13
15/50 (2)	Time 1	०४:११	43/54	91/61	01/41	16/15
	Ending Time	०५५१	58 St	91/91	16/16	16/16
			1		/	-
6/ ₂ /2	Starting Time	00761	તેર્ગંધત	61661		
	Time 1	19330	43/44	61/61		
	Ending Time $ \mathcal{A} \mathcal{I}_{\mathcal{O}}$	20:00	9364	$q_{\ell}(arepsilon/$		

Analyst: NBK 2nd Analyst Check: M.

Form: GN074-02 Rev. Date: 8/08/12

Hexavalent Chromium pH Adjustment Log

Method: SW846 3060A/7196A

pH adj. start time: pH adj. end time: व्युच्चा

8:31

pH adjustment Date: 10 [15]

GN Batch ID: GN (13只ち

· · · · · · · · · · · · · · · · · · ·	Sample		Final			
	Weight in	pH after	Final Volume	pH after		
Sample ID	g	HNO3	(ml)		Comments	 Spike Info.
Calibration Blank	NA	7.81	100		0	Оріке іпіо.
0.010 mg/l standard	NA	1.42		<u>रु.</u> छ	10ppm Absolute	0.10 ml of 10 mg/l
0.050 mg/l standard	NA	7.26	100		10ppm Absolute	0.50 ml of 10 mg/l
0.100 mg/l standard	NA	7.61	100		10ppm Absolute	
0.300 mg/l standard	NA	7.58	100		10ppm Absolute	1.00 ml of 10 mg/l
0.500 mg/l standard	NA	7.33		8.16	10ppm Absolute	3.00 ml of 10 mg/l
0.800 mg/l standard	NA	7.20	100		10ppm Absolute	5.00 ml of 10 mg/l
1.00 mg/l standard	NA	4.70			10ppm Absolute	8.00 ml of 10 mg/l
noo mga otanoara	10/1	4-44	100	04.02	Toppin Absolute	10.0 ml of 10 mg/l
·	-					
				-		
			-			
	-	- -				
Pagant Peterana I						

Reagent Reference Inform	ation -	- refe	r to attached	reagent	referenc	e informatio	n page(s)
(4000000	., .						

{1000000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

Anayst:	BP		
Date:		101513.	

Form: GN068-01 Rev. Date:5/22/06

HEXAVALENT CHROMIUM STANDARD PREPARATION LOG

Product: ፲፻፫ﯘ됩기요. GN or GP Number: (대시대고요의

			٦			_	П	Т			_	Ç.	1	Т	_	r	_	_	_	_	_	1	_	_
		Date	10/15	1		_	7		_		Date		_				_							ł
		Analyst	77,0	-	_		7				Analyst	RP	_		_		-							
	Expiration	Date	6/6/2016				5/31/2017			Expiration	Date	2 2 a	,											
Final Conc. of	Intermediate	(mg/l)	10 mg/l	100 mg/l	5 mg/l	7.5 mg/l	10 mg/l		Final Conc.	Of Standard	(l/gm)	0.01 mg/l	0.05 mg/l	0.10 mg/l	0.30 mg/l	0.50 mg/l	0.80 mg/l	1.0 mg/l						
	Final	Volume	100 mls	100 mls	200 mg/l	200 mg/l	100 mg/l			Final	Volume	100 mls												
		Dilnent	IΩ	Ы	ō	10	ī				Diluent	۵	Б	П	ā	ō	Ю							
Stock	volume	used in ml	1.0 mľ	10 ml	1.0 ml	1.5 ml	1.0 ml	Intermediate	or Stock	volume	used in ml	0.1 ppm	0.5 ppm	1.0 ppm	3.0 ppm	5.0 ppm	8.0 ppm	10.0 ppm						
	Stock	concentration	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm		Intermediate	or Stock	concentration	10.0 ppm												
		Stock used to prepare standard	Absolute Grade Lot #060613				Ultra lot #L00439			Intermediate or Stock used to	prepare standard	10.0 ppm abs												
Intermediate	Standard	Description	10 ppm	100 ppm	5 ppm	7.5 ppm	10 ppm			Standard	Description	.010 ppm	.050 ppm	.10 ppm	.30 ppm	.50 ppm	.80 ppm	1.00 ppm						

Form: GN205-02 Rev. Date:10/16/09

GN/GP Batch ID: 675260

Reagent Information Log - XCRA (soil 3060A/7196)

Reagent	Exp. Date	Reagent # or Manufacturer/Lot
Calibration Source: Hexavalent Chromium,		
1000 mg/L Stock	6/6/2016	ABSOLUTE GRADE #060616
Calibration Checks: Hexavalent Chromium,		
1000 mg/L Stock	10/31/2019	ULTRA #P00986
Spiking Solution Source	6/6/2016	ABSOLUTE GRADE #060616
Lead Chromate (Insoluble Hexavalent Chromium Spike)	7/26/2017	SIGMA ALDRICH # BCBG0578V
Magnesium Chloride, Anhydrous	9/2/2017	ALFA AESAR # H10X010
1N NaOH		
Digestion Solution	11/9/2013	GN=10-37704-XCR
Phosphate Buffer Solution	4/3/2014	GUE10-37639-XCRA
5.0 M Nitric Acid	S[25/15]	CINEM - 37811- XCRA
Diphenylcarbazide Solution	11413	CINTID-376FEI-+CP.
Sulfuric Acid, 10%	3(30(4	CINE 9-37608-402
Filter	NA	Lot#130508059
Teflon Chips	NA	91920

Form: GN087A-21B Rev. Date: 2/18/10

Test: Redox Pot	ential
Matrix: Aqueous	\odot
Matrix: Solid	0

Test Code: REDOX Method: ASTM D1498-76 Method: ASTM D1498-76 Mod.

Analyst: ALECA Date: 10/15/13 GN Batch ID: GN93240 25 Temp (Deg C): __

Quality Control Summary					
Sample ID: GN93240-D1	Results: 370.3	Dup:	361.2	% RPD:	2.49%
Ferrous-Ferric True: 675		Found	672.9	% Rec	99.69%
pH 4 Quinhydrone True: 462		Found	494.6	% Rec	107.06%
pH 4 Quinhydrone True: 462		Found	484.5	% Rec	104.87%
pH 4 Quinhydrone True: 462		Found		% Rec	
pH 7 Quinhydrone True: 285		Found	288	% Rec	101.05%
pH 7 Quinhydrone True: 285		Found	285.4	% Rec	100.14%
pH 7 Quinhydrone True: 285		Found		% Rec	

Sample #:	mv vs. Ag/AgCl Electrode	Corrected results (mv vs. Hydrogen electrode) ***
Ferrous-Ferric Solution	461	672.9
pH 4 Quinhydrone	282.4	494.6
pH 7 Quinhydrone	76	288
Dup GN93240-D1	149.2	361.2
1. JB50090-1	136.4	348.5
2. JB50119-1	158.2	370.3
3.		
4.		
5.		
6.		
7		
8.		
9.		
oH 4 Quinhydrone	272.4	484.5
oH 7 Quinhydrone	73.3	285.4
10.		
11.		
12.		
13.		
14.		
15.		
16.		
17.		
18.		
19.	$\overline{}$	
oH 4 Quinhydrone		
oH 7 Quinhydrone		

Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

Reagent Numbers:

GNE4-35810-ORP EXP:10/6/13

Comments:		 	 80.00	<u> </u>	

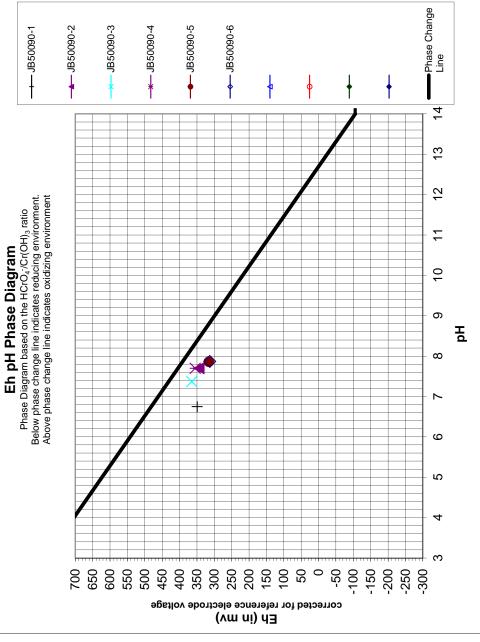
M		
£	ACCUTES'	T.

Balance #_____

Sample Prep Log

Sample ID	Sample Prep Log	Final Volume
5B50090-1		
	40m(40	A STATE PROGRAMMENT OF THE STATE OF THE STAT
7/35 NO 5 1	40	
3011		×
	ASA	·
	σ_{i_1,\dots,i_n}	
The state of the s		
(4) (4)	ser'	W
ं ਹੋਣ		
• 4		
18 VI		

Form: GN166-02 Rev: Date: 8/5/05


QC Review_____

_										
eH (MV)	1027.7	-105.6	eH (mv)	349	345	365	322	316	313	
Hd	0	14	Hd	6.75	2.7	75.7	2.7	28.7	78.7	
	Phase Change Line		Sample Number	JB50090-1	JB50090-2	JB50090-3	JB50090-4	JB50090-5	JB50090-6	

650	009	550	500	450		5 5	320	300	250
				әбі	silo	ΛЭ	rod	()	lə Vu
eH (mv)	349	345	365	322	316	313			
Ha	6.75	7.7	7:37	7.7	7.86	78.7			
Sample Number	JB50090-1	JB50090-2	JB50090-3	JB50090-4	JB50090-5	JB20090-6			

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A

10/17/13

Technical Report for

AECOM, INC.

PPG-Site 186 RAM, Jersey City, NJ

60238842 186.RAM

Accutest Job Number: JB50090R

Sampling Date: 10/14/13

Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com; Alfred. LoPilato@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 79

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Maney T. Cole
Nancy Cole
Laboratory Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	. 4
Section 3: Summary of Hits	
Section 4: Sample Results	. 7
4.1: JB50090-2R: 186-MFHT1-4-2.0-2.5	. 8
4.2: JB50090-3R: 186-MFHT1-3-2.0-2.5	. 9
4.3: JB50090-4R: 186-MFHT1-2-2.0-2.5	. 10
4.4: JB50090-5R: 186-MFHT1-2.0-2.5X	. 11
4.5: JB50090-6R: 186-MFHT1-2.0-2.5	. 12
Section 5: Misc. Forms	13
5.1: Chain of Custody	14
5.2: Sample Tracking Chronicle	17
5.3: Internal Chain of Custody	. 18
Section 6: General Chemistry - QC Data Summaries	21
6.1: Method Blank and Spike Results Summary	22
6.2: Duplicate Results Summary	23
6.3: Matrix Spike Results Summary	. 24
6.4: Inst QC GN93029: Total Organic Carbon	25
6.5: Inst QC GN93334: Total Organic Carbon	27
6.6: XCR 3rd Tier Analyses	. 29
6.7: Percent Solids Raw Data Summary	. 30
Section 7: General Chemistry - Raw Data	. 31
7.1: Raw Data GN93029: Total Organic Carbon	. 32
7.2: Raw Data GN93304: Chromium, Hexavalent	53
7.3: Raw Data GN93315: Iron, Ferrous	. 62
7.4: Raw Data GN93317: Sulfide Screen	64

Sample Summary

AECOM, INC.

Job No: JB50090R

PPG-Site 186 RAM, Jersey City, NJ Project No: 60238842 186.RAM

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
JB50090-2R	10/14/13	11:05 AL	10/14/13	SO	Soil	186-MFHT1-4-2.0-2.5
JB50090-3R	10/14/13	10:15 AL	10/14/13	SO	Soil	186-MFHT1-3-2.0-2.5
JB50090-4R	10/14/13	09:15 AL	10/14/13	SO	Soil	186-MFHT1-2-2.0-2.5
JB50090-5R	10/14/13	08:31 AL	10/14/13	SO	Soil	186-MFHT1-2.0-2.5X
JB50090-6R	10/14/13	08:30 AL	10/14/13	SO	Soil	186-MFHT1-2.0-2.5

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB50090R

Site: PPG-Site 186 RAM, Jersey City, NJ **Report Date** 10/17/2013 7:13:22 P

On 10/14/2013, 5 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 3.5 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB50090R was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Wet Chemistry By Method ASTM D3872-86

Matrix: SO Batch ID: GN93315

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB47902-1RTDUP, JB47902-1RTMS were used as the QC samples for Iron, Ferrous.
- JB50090-4R for Iron, Ferrous: The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

Wet Chemistry By Method LLOYD KAHN 1988 MOD

Matrix: SO Batch ID: GP75181

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB48878-1DUP, JB48878-1MS were used as the QC samples for Total Organic Carbon.
- Matrix Spike Recovery(s) for Total Organic Carbon are outside control limits. Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

Wet Chemistry By Method SM4500S2- A-11

Matrix: SO Batch ID: GN93317

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- JB50090-4R for Sulfide Screen: The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP75278

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB50090-4RDUP, JB50090-4RMS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Insoluble XCR matrix spike recovery indicates possible matrix interference. See additional comments on soluble matrix spike recovery.
- RPD(s) for Duplicate for Chromium, Hexavalent are outside control limits for sample GP75278-D1. High RPD due to possible sample nonhomogeneity.
- GP75278-S1 for Chromium, Hexavalent: Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (93.8%) on this sample.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Summary of Hits

Job Number: JB50090R Account: AECOM, INC.

Project: PPG-Site 186 RAM, Jersey City, NJ

Collected: 10/14/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method			
JB50090-2R	186-MFHT1-4-2.0-2.5								
Chromium, Hexa	valent	4.1	0.47	0.081	mg/kg	SW846 3060A/7196A			
JB50090-3R	186-MFHT1-3-2.0	-2.5							
Chromium, Hexa	valent	24.1	0.47	0.081	mg/kg	SW846 3060A/7196A			
JB50090-4R	186-MFHT1-2-2.0-2.5								
Chromium, Hexa Iron, Ferrous ^a Total Organic Ca		1.4 0.50 39700	0.44 0.20 110	0.076 92	mg/kg % mg/kg	SW846 3060A/7196A ASTM D3872-86 LLOYD KAHN 1988 MOD			
JB50090-5R	JB50090-5R 186-MFHT1-2.0-2.5X								
Chromium, Hexa	valent	2.0	0.45	0.078	mg/kg	SW846 3060A/7196A			
JB50090-6R	186-MFHT1-2.0-2	.5							
Chromium, Hexa	valent	2.5	0.45	0.077	mg/kg	SW846 3060A/7196A			

⁽a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

Sample Results		
Report of Analysis		

Page 1 of 1

Report of Analysis

Client Sample ID: 186-MFHT1-4-2.0-2.5

Lab Sample ID:JB50090-2RDate Sampled:10/14/13Matrix:SO - SoilDate Received:10/14/13Percent Solids:85.5

Project: PPG-Site 186 RAM, Jersey City, NJ

11 G-Bite 100 Main, Jersey City, 143

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium Hexavalent	4.1	0.47	0.081	mg/kg	1	10/16/13 10:03 BP SW846 3060A/7196A

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

Report of Analysis

Client Sample ID: 186-MFHT1-3-2.0-2.5

Lab Sample ID:JB50090-3RDate Sampled:10/14/13Matrix:SO - SoilDate Received:10/14/13Percent Solids:84.9

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By	Method
Chromium, Hexavalent	24.1	0.47	0.081	mg/kg	1	10/16/13 10:03 BP	SW846 3060A/7196A

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Page 1 of 1

4

Report of Analysis

Client Sample ID: 186-MFHT1-2-2.0-2.5

 Lab Sample ID:
 JB50090-4R
 Date Sampled:
 10/14/13

 Matrix:
 SO - Soil
 Date Received:
 10/14/13

 Percent Solids:
 90.8

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent	1.4	0.44	0.076	mg/kg	1	10/16/13 09:58 BP SW846 3060A/7196A
Iron, Ferrous ^a	0.50	0.20		%	1	10/16/13 CB ASTM D3872-86
Sulfide Screen b	NEGATIVE				1	10/16/13 CB SM4500S2- A-11
Total Organic Carbon	39700	110	92	mg/kg	1	10/16/13 14:24 VA LLOYD KAHN 1988 MOD

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries
- (b) The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Page 1 of 1

Client Sample ID: 186-MFHT1-2.0-2.5X

Lab Sample ID:JB50090-5RDate Sampled:10/14/13Matrix:SO - SoilDate Received:10/14/13Percent Solids:88.8

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

MDL = Method Detection Limit

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent	2.0	0.45	0.078	mg/kg	1	10/16/13 10:03 BP SW846 3060A/7196A

Report of Analysis

RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL

4

Page 1 of 1

Report of Analysis

Client Sample ID: 186-MFHT1-2.0-2.5

Lab Sample ID:JB50090-6RDate Sampled:10/14/13Matrix:SO - SoilDate Received:10/14/13Percent Solids:89.8

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By Method
Chromium, Hexavalent	2.5	0.45	0.077	mg/kg	1	10/16/13 10:03 BP SW846 3060A/7196A

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody

CHAIN-OF-CUSTODY / Analytical Request Document 2013-10-14_SITE186_COC Page: 1 of JB 50090

							All relevant fields must be con					Total #	of Sam	oles: 6					
ab Inform		Project Info				Other Infor	e to: Lisa Krowit	= /l iso l	(soudta@nanom	nom)	+	TAT	per	P.O.	T	Rush		SEE BE	LOV
ab: A	ccutest, Dayton NJ		Site 186 60238842.NGA.	186 DAM		Address:	100 Red Schoolh			wiii)				iltered ,	H= Hold				
Address: 2	235 Route 130, Dayton NJ 3810	Project #: Site	00230042.NGA.	IOU.RAW		City/State.			Phone #: 845.	425,4980									
		Address:				Oity/Glate.	10977-871	5			3								
ah DM: N	latt Cordova	City Jersey	City State, Z	p NJ	07304	PO #:					13								
hone/Fax:	732-329-0200/732-329-3499/3480	PM Name:	Alfred LoPilato			Send EDD	O: NULABDATA	Daecom.c	om		ative					.			
M email:		Phone/Fax:	845-425-4980			CC Hardco	by to No Hardo	opy Nee	ded		- 2					.			
ab Quote	¥: 46011607	PM Email:	Alfred.LoPilato@sec	om.com		CC Hardco	by to				Pres								_
EM#	Field Sample f	No. /Identifica	tion	MATRIX CODE	G*GRAB C=COMP		SAMPLE DATE	#OF CONTAINERS		Comment	Analysis	GARA-HexChrom	GARA-pH-ORP						
-	-FB20131014			so	G	10/14	1/2013 08:30	2	2 Cont	sinens: 1 Cr+8, 1 pH-ORP		Х	х	-1	PH	674	<i>.</i> Q	}	
2 186	-MFHT1-4-2.0-2.5			so	G	10/1:	2/2013 11:05	1		1 Jar		Х	х	- ر					
3 186	-MFHT1-3-2.0-2.5			so	G	10/1:	2/2013 10:15	1		1 Jar		Х	Х	- 3					L
4 186	-MFHT1-2-2.0-2.5			so	G	10/1:	2/2013 09:15	2		MS/MSD - 2 Jars		×	х	- 4					
5 186	-MFHT1-2.0-2.5X			so	G	10/1:	2/2013 08:31	1		1 Jar		×	х	- 5					
6 186	-MFHT1-2.0-2.5			so	G	10/1:	2/2013 08:30	1		1 Jer		×	Х	-6					
																			C
																			ľ
																			ļ
	Comments/Special Instru	ictions:				BY/AFFILIAT G 17-EG			ACCEPTED BY		2	1407,	DATE	TIME	San	nple Rece		Y/N	Т
DAY TAT				11/10	my	1/200	0/14/1 10/14/13/	155	1000 le	me 10117	3	1473	, 0	/z 5	7			Y/N	+
				100	ומט	-cm	12 1 15 1 1 2 Z			· · · · · · · · · · · · · · · · · · ·						Y	/N	Y/N	Τ
																		Y/N	1
				NAI	ME OF S	AMPLER:				DATE/TIME:						Temp in 0C	and the same	Sample intact?	
				SIGNA	TURE O	F SAMPLER				Custody Seal(s):						<u> </u>	Saudiuso	Sam	

JB50090R: Chain of Custody Page 1 of 3

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: JB	50090		Client:				Project:			
Date / Time Received: 10	/14/2013	3		Delivery N	lethod:		Airbill #'s:			
Cooler Temps (Initial/Adjus	sted): #	1: (3.5/3.	<u>5); 0</u>							
1. Custody Seals Present:	Y or N] 3.	COC Pre	esent: s/Time OK	Y or	<u>N</u>	Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete:	Y •	or N	
Cooler Temperature	<u>Y</u>	or N					3. Sample container label / COC agree:	✓		
Temp criteria achieved: Cooler temp verification: Cooler media: No. Coolers:		IR Gun ce (Bag)					Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Υ ✓ ✓	or N	
Quality Control Preservati	<u>о Y</u>	or N	N/A				Sample Integrity - Instructions	Υ	or N	N/A
 Trip Blank present / cooler: Trip Blank listed on COC: Samples preserved properly 		V					Analysis requested is clear: Bottles received for unspecified tests			N/A
VOCs headspace free:	/: V		V				Sufficient volume recvd for analysis: Compositing instructions clear: Filtering instructions clear:			V
Accutest Laboratories						2235 US	Highway 130			Dayton, New Jersey
V:732.329.0200						F: 732	.329.3499			www/accutest.com

JB50090R: Chain of Custody

Page 2 of 3

Page 1 of 1

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Representative.

Lisa Krowitz

Above Changes Per:

Date: 10/15/2013

Job Change Order:

JB50090

Received Date: Due Date:

10/14/2013 10/15/2013

Deliverable:

PPG-Site 186, Jersey City, NJ

Project Description:

kellyp

AECOM, INC. 10/15/2013

Requested Date: Account Name: FULT1

TAT (Days):

Please relog for XXCRAR Change:

JB50090-2 thru 6 Sample #:

Dept:

Change:

JB50090-4

Sample #:

Please relog for XXCRAR, FE2/7, SULFS, and TOCLK

186-MFHT1-2-2.0-2.5

JB50090R: Chain of Custody

Page 3 of 3

Internal Sample Tracking Chronicle

AECOM, INC.

Job No: JB50090R

PPG-Site 186 RAM, Jersey City, NJ Project No: 60238842 186.RAM

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
JB50090-2F 186-MFHT	R Collected: 14-OCT-13 1-4-2.0-2.5	11:05 By: AL	Receiv	ved: 14-OCT-	-13 By:	AS
JB50090-2F	R SW846 3060A/7196A	16-OCT-13 10:03	BP	15-OCT-13	NP	XCRA
JB50090-3F 186-MFHT	R Collected: 14-OCT-13 1-3-2.0-2.5	10:15 By: AL	Receiv	ved: 14-OCT-	-13 By:	: AS
JB50090-3F	R SW846 3060A/7196A	16-OCT-13 10:03	BP	15-OCT-13	NP	XCRA
JB50090-4F 186-MFHT	R Collected: 14-OCT-13 1-2-2.0-2.5	09:15 By: AL	Receiv	ved: 14-OCT-	-13 By:	: AS
JB50090-4F JB50090-4F	R ASTM D3872-86 R SM4500S2- A-11 R SW846 3060A/7196A R LLOYD KAHN 1988 N			15-OCT-13 16-OCT-13		FE2/7 SULFS XCRA TOCLK
JB50090-5F 186-MFHT	R Collected: 14-OCT-13 1-2.0-2.5X	08:31 By: AL	Receiv	ved: 14-OCT-	-13 By:	: AS
JB50090-5F	R SW846 3060A/7196A	16-OCT-13 10:03	BP	15-OCT-13	NP	XCRA
JB50090-6F 186-MFHT	R Collected: 14-OCT-13 1-2.0-2.5	08:30 By: AL	Receiv	ved: 14-OCT-	-13 By:	AS
JB50090-6F	R SW846 3060A/7196A	16-OCT-13 10:03	BP	15-OCT-13	NP	XCRA

Accutest Internal Chain of Custody Job Number: JB50090R

ENSRNJ AECOM, INC. Account:

Project: PPG-Site 186 RAM, Jersey City, NJ

Received: 10/14/13

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JB50090-2.1	Secured Storage	Bernadette Vassilatos	10/14/13 14:38	Retrieve from Storage
JB50090-2.1	Bernadette Vassilatos	Secured Staging Area		Return to Storage
JB50090-2.1	Secured Staging Area	Nilesh Patel		Retrieve from Storage
JB50090-2.1	Nilesh Patel	Secured Storage		Return to Storage
JB50090-2.1	Secured Storage	Bernadette Vassilatos		Retrieve from Storage
JB50090-2.1	Bernadette Vassilatos	Secured Staging Area		Return to Storage
JB50090-2.1	Secured Staging Area	Alec Arbello		Retrieve from Storage
JB50090-2.1	Alec Arbello	Secured Storage		Return to Storage
JB50090-2.1	Secured Storage	Bernadette Vassilatos		Retrieve from Storage
JB50090-2.1	Bernadette Vassilatos	Secured Staging Area		Return to Storage
JB50090-2.1	Secured Staging Area	Nilesh Patel	10/15/13 15:24	Retrieve from Storage
JB50090-2.1	Nilesh Patel	Secured Storage	10/15/13 20:28	Return to Storage
JB50090-2.1.1	Nilesh Patel	Arayna Ramkelawan	10/14/13 15:10	Aliquot from JB50090-2.1
JB50090-2.1.1	Arayna Ramkelawan		10/14/13 16:57	Depleted
JB50090-3.1	Secured Storage	Bernadette Vassilatos	10/14/13 14:38	Retrieve from Storage
JB50090-3.1	Bernadette Vassilatos	Secured Staging Area	10/14/13 14:38	Return to Storage
JB50090-3.1	Secured Staging Area	Nilesh Patel	10/14/13 15:09	Retrieve from Storage
JB50090-3.1	Nilesh Patel	Secured Storage	10/14/13 23:27	Return to Storage
JB50090-3.1	Secured Storage	Bernadette Vassilatos	10/15/13 06:25	Retrieve from Storage
JB50090-3.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 06:25	Return to Storage
JB50090-3.1	Secured Staging Area	Alec Arbello	10/15/13 08:38	Retrieve from Storage
JB50090-3.1	Alec Arbello	Secured Storage	10/15/13 12:08	Return to Storage
JB50090-3.1	Secured Storage	Bernadette Vassilatos	10/15/13 15:14	Retrieve from Storage
JB50090-3.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 15:15	Return to Storage
JB50090-3.1	Secured Staging Area	Nilesh Patel	10/15/13 15:24	Retrieve from Storage
JB50090-3.1	Nilesh Patel	Secured Storage	10/15/13 20:28	Return to Storage
JB50090-3.1.1	Nilesh Patel	Arayna Ramkelawan	10/14/13 15:10	Aliquot from JB50090-3.1
JB50090-3.1.1	Arayna Ramkelawan		10/14/13 16:57	Depleted
JB50090-4.1	Secured Storage	Bernadette Vassilatos	10/14/13 14:38	Retrieve from Storage
JB50090-4.1	Bernadette Vassilatos	Secured Staging Area	10/14/13 14:38	Return to Storage
JB50090-4.1	Secured Staging Area	Nilesh Patel	10/14/13 15:09	Retrieve from Storage
JB50090-4.1	Nilesh Patel	Secured Storage	10/14/13 23:27	Return to Storage
JB50090-4.1	Secured Storage	Bernadette Vassilatos	10/15/13 06:25	Retrieve from Storage
JB50090-4.1	Bernadette Vassilatos	Secured Staging Area	10/15/13 06:25	Return to Storage
JB50090-4.1	Secured Staging Area	Alec Arbello		Retrieve from Storage
JB50090-4.1	Alec Arbello	Secured Storage		Return to Storage
JB50090-4.1	Secured Storage	Bernadette Vassilatos		Retrieve from Storage
JB50090-4.1	Bernadette Vassilatos	Secured Staging Area		Return to Storage
JB50090-4.1	Secured Staging Area	Chris Brunson		Retrieve from Storage
JB50090-4.1	Chris Brunson	Vaidehi Amin		Custody Transfer

Accutest Internal Chain of Custody Job Number: JB50090R

ENSRNJ AECOM, INC. Account:

Project: PPG-Site 186 RAM, Jersey City, NJ

Received: 10/14/13

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JB50090-4.1	Vaidehi Amin	Secured Storage	10/16/13 18:35	Return to Storage
JB50090-4.1.1 JB50090-4.1.1	Nilesh Patel Arayna Ramkelawan	Arayna Ramkelawan	10/14/13 15:10 10/14/13 16:57	Aliquot from JB50090-4.1 Depleted
JB50090-4.2 JB50090-4.2 JB50090-4.2 JB50090-4.2 JB50090-4.2 JB50090-4.2 JB50090-4.2	Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Staging Area	Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello	10/14/13 14:38 10/14/13 15:09 10/14/13 23:27 10/15/13 06:25 10/15/13 06:25	Retrieve from Storage Return to Storage Retrieve from Storage Return to Storage Retrieve from Storage Return to Storage Retrieve from Storage
JB50090-4.2 JB50090-4.2 JB50090-4.2 JB50090-4.2 JB50090-4.2	Alec Arbello Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel	Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage	10/15/13 12:08 10/15/13 15:14 10/15/13 15:15 10/15/13 15:24	Return to Storage Retrieve from Storage Return to Storage Retrieve from Storage Retrieve from Storage Return to Storage
JB50090-5.1 JB50090-5.1 JB50090-5.1 JB50090-5.1 JB50090-5.1 JB50090-5.1 JB50090-5.1 JB50090-5.1	Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello Secured Storage	Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello Secured Storage Bernadette Vassilatos	10/14/13 14:38 10/14/13 15:09 10/14/13 23:27 10/15/13 06:25 10/15/13 06:25 10/15/13 12:08 10/15/13 15:14	Retrieve from Storage Return to Storage Retrieve from Storage Return to Storage Retrieve from Storage Return to Storage Return to Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage
JB50090-5.1 JB50090-5.1 JB50090-5.1	Bernadette Vassilatos Secured Staging Area Nilesh Patel	Secured Staging Area Nilesh Patel Secured Storage	10/15/13 15:24	Return to Storage Retrieve from Storage Return to Storage
JB50090-5.1.1 JB50090-5.1.1	Nilesh Patel Arayna Ramkelawan	Arayna Ramkelawan	10/14/13 15:10 10/14/13 16:57	Aliquot from JB50090-5.1 Depleted
JB50090-6.1 JB50090-6.1 JB50090-6.1 JB50090-6.1 JB50090-6.1 JB50090-6.1 JB50090-6.1 JB50090-6.1 JB50090-6.1	Secured Storage Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello Secured Storage Bernadette Vassilatos	Bernadette Vassilatos Secured Staging Area Nilesh Patel Secured Storage Bernadette Vassilatos Secured Staging Area Alec Arbello Secured Storage Bernadette Vassilatos Secured Storage Secured Storage Secured Staging Area	10/14/13 14:38 10/14/13 15:09 10/14/13 23:27 10/15/13 06:25 10/15/13 08:38 10/15/13 12:08 10/15/13 15:14	Retrieve from Storage Return to Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Return to Storage Retrieve from Storage

Accutest Internal Chain of Custody Job Number: JB50090R

ENSRNJ AECOM, INC. Account:

Project: PPG-Site 186 RAM, Jersey City, NJ

Received: 10/14/13

Sample.Bottle Number	Transfer FROM	Transfer TO	Date/Time	Reason
JB50090-6.1	Secured Staging Area	Nilesh Patel		Retrieve from Storage
JB50090-6.1	Nilesh Patel	Secured Storage		Return to Storage
JB50090-6.1.1	Nilesh Patel	Arayna Ramkelawan	10/14/13 15:10	Aliquot from JB50090-6.1
JB50090-6.1.1	Arayna Ramkelawan		10/14/13 16:57	Depleted

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB50090R Account: ENSRNJ - AECOM, INC.
Project: PPG-Site 186 RAM, Jersey City, NJ

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chromium, Hexavalent Chromium, Hexavalent	GP75278/GN93304 GP75278/GN93304	0.40	0.0	mg/kg mg/kg	40.0 900.990	38.2 884	95.5 98.1	80-120% 80-120%
Iron, Ferrous Sulfide Screen	GN93315 GN93317	0.20	<0.20 NEGATIVE	%				
Total Organic Carbon	GP75181/GN93334	100	0.00	mg/kg	2000	1950	97.5	80-120%

Associated Samples:

Batch GN93315: JB50090-4R Batch GN93317: JB50090-4R Batch GP75181: JB50090-4R

 ${\tt Batch~GP75278:~JB50090-2R,~JB50090-3R,~JB50090-4R,~JB50090-5R,~JB50090-6R)}$

(*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB50090R Account: ENSRNJ - AECOM, INC.
Project: PPG-Site 186 RAM, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Chromium, Hexavalent Iron, Ferrous Sulfide Screen	GP75278/GN93304 GN93315 GN93317	JB50090-4R JB47902-1RT JB47902-1RT	mg/kg %	1.4 1.0 NEGATIVE	0.77 1.0 NEGATIVE	58.1*(a) 0.0	0-20% 0-26% 0-%
Total Organic Carbon	GP75181/GN93029	JB48878-1	mg/kg	84500	109000	25.3	0-50.8%

Associated Samples:

Associated Samples.

Batch GN93315: JB50090-4R

Batch GP75181: JB50090-4R

Batch GP75278: JB50090-2R, JB50090-3R, JB50090-4R, JB50090-5R, JB50090-6R

(*) Outside of QC limits

(a) High RPD due to possible sample nonhomogeneity.

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB50090R
Account: ENSRNJ - AECOM, INC.
Project: PPG-Site 186 RAM, Jersey City, NJ

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	%Rec	QC Limits
Chromium, Hexavalent	GP75278/GN93304	JB50090-4R	mg/kg	1.4	44.6	28.5	60.8N(a)	75-125%
Chromium, Hexavalent	GP75278/GN93304	JB50090-4R	mg/kg	1.4	968	1280	132.0N(b)	75-125%
Iron, Ferrous	GN93315	JB47902-1RT	8	1.0	50.71	58.0	112.4	62-130%
Total Organic Carbon	GP75181/GN93029	JB48878-1	mg/kg	84500	95000	222000	144.8N(c)	39.6-124

Associated Samples:

Batch GN93315: JB50090-4R Batch GP75181: JB50090-4R

Batch GP75278: JB50090-2R, JB50090-3R, JB50090-4R, JB50090-5R, JB50090-6R

- (*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (93.8%) on this sample.
- (b) Insoluble XCR matrix spike recovery indicates possible matrix interference. See additional comments on soluble matrix spike recovery.
- (c) Spike recovery indicates possible matrix interference and/or sample nonhomogeneity.

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JB50090R Account: ENSRNJ - AECOM, INC. Project: PPG-Site 186 RAM, Jersey City, NJ

File ID: E31010S1.TXT Date Analyzed: 10/10/13 Methods: LLOYD KAHN 1988 MOD Run ID: GN93029

Analyst: VA

Parameters: Total Organic Carbon

Time	Sample Description	Dilutior Factor	n PS Recov	Comments
10:01	GN93029-STD1	1		STDA
10:19	GN93029-STD2	1		STDB
11:19	GN93029-STD3	1		STDC
11:31	GN93029-STD4	1		STDD
11:44	GN93029-STD5	1		STDE
12:02	GN93029-STD6	1		STDF
12:17	GN93029-STD7	1		STDG
09:58	GN93029-CRI1	1		
10:19	GN93029-HSTD1	1		
10:34	GN93029-ICV1	1		
11:03	GN93029-ICB1	1		
11:27	GN93029-CCV1	1		
11:45	GN93029-CCB1	1		
12:02	GP75181-MB1	1		
12:14	GP75181-B1	1		
12:32	ZZZZZZ	1		
12:51	JB48878-1	1		(sample used for QC only; not part of login JB50090R)
13:11	ZZZZZZ	1		
14:08	ZZZZZZ	1		
14:34	ZZZZZZ	1		
14:52	ZZZZZZ	1		
15:09	GP75181-D1	1		
15:40	GP75181-S1	1		
15:54	GN93029-CCV2	1		
16:04	GN93029-CCB2	1		
16:16	ZZZZZZ	1		
16:54	ZZZZZZ	1		
17:09	ZZZZZZ	1		
17:23	GN93029-CCV3	1		
17:40	GN93029-CCB3	1		

Refer to raw data for calibration curve and standards.

Instrument QC Summary Inorganics Analyses

Login Number: JB50090R Account: ENSRNJ - AECOM, INC. Project: PPG-Site 186 RAM, Jersey City, NJ

File ID: E31010S1.TXT Date Analyzed: 10/10/13 Methods: LLOYD KAHN 1988 MOD

Run ID: GN93029 Units: mg/l

Sample Number	Parameter	Result	RL	IDL/MDL	True Value	% Recov.	QC Limits
GN93029-CRI1	Total Organic Carbon	127	100	84	100	127.0	70-130
GN93029-HSTD1	Total Organic Carbon	5080	100	84	5000	101.6	90-110
GN93029-ICV1	Total Organic Carbon	2080	100	84	2000	104.0	90-110
GN93029-ICB1	Total Organic Carbon	37.0	100	84			
GN93029-CCV1	Total Organic Carbon	2600	100	84	2500	104.0	90-110
GN93029-CCB1	Total Organic Carbon	31.7	100	84			
GN93029-CCV2	Total Organic Carbon	2620	100	84	2500	104.8	90-110
GN93029-CCB2	Total Organic Carbon	31.7	100	84			
GN93029-CCV3	Total Organic Carbon	2610	100	84	2500	104.4	90-110
GN93029-CCB3	Total Organic Carbon	31.7	100	84			

^(!) Outside of QC limits

Accutest Laboratories Instrument Runlog Inorganics Analyses

Login Number: JB50090R Account: ENSRNJ - AECOM, INC. Project: PPG-Site 186 RAM, Jersey City, NJ

File ID: D31016S1.TXT Date Analyzed: 10/16/13 Methods: LLOYD KAHN 1988 MOD Run ID: GN93334

Analyst: VA

Parameters: Total Organic Carbon

Time	Sample Description	Dilution Factor	PS Recov	Comments
11:00	GN93334-STD1	1		STDB
11:31	GN93334-STD2	1		STDC
11:52	GN93334-STD3	1		STDD
12:08	GN93334-STD4	1		STDE
12:27	GN93334-STD5	1		STDF
12:46	GN93334-STD6	1		STDG
09:47	GN93334-CRI1	1		
10:31	GN93334-HSTD1	1		
10:44	GN93334-ICV1	1		
11:10	GN93334-CCV1	1		
11:47	GP75181-MB2	1		
12:16	GP75181-B2	1		
12:52	JB50090-4R	1		Overrange.Rerun at 0.1g.
14:24	JB50090-4R	1		
14:52	ZZZZZZ	1		
15:11	ZZZZZZ	1		
15:40	GN93334-CCV2	1		
15:57	ZZZZZZ	1		
16:32	ZZZZZZ	1		
16:49	ZZZZZZ	1		
17:03	ZZZZZZ	1		
17:15	ZZZZZZ	1		
17:29	ZZZZZZ	1		
17:59	GN93334-CCV3	1		

Refer to raw data for calibration curve and standards.

Instrument QC Summary Inorganics Analyses

Login Number: JB50090R Account: ENSRNJ - AECOM, INC. Project: PPG-Site 186 RAM, Jersey City, NJ

Date Analyzed: 10/16/13 Methods: LLOYD KAHN 1988 MOD Run ID: GN93334 Units: mg/l File ID: D31016S1.TXT

Sample Number	Parameter	Result	RL	IDL/MDL	True Value	% Recov.	QC Limits
GN93334-CRI1	Total Organic Carbon	79.1	100	84	100	79.1	70-130
GN93334-HSTD1	Total Organic Carbon	5120	100	84	5000	102.4	90-110
GN93334-ICV1	Total Organic Carbon	2010	100	84	2000	100.5	90-110
GN93334-CCV1	Total Organic Carbon	2520	100	84	2500	100.8	90-110
GN93334-CCV2	Total Organic Carbon	2520	100	84	2500	100.8	90-110
GN93334-CCV3	Total Organic Carbon	2500	100	84	2500	100.0	90-110

^(!) Outside of QC limits

Report of Analysis

Client Sample ID: 186-MFHT1-2-2.0-2.5

 Lab Sample ID:
 JB50090-4R
 Date Sampled:
 10/14/13

 Matrix:
 SO - Soil
 Date Received:
 10/14/13

 Percent Solids:
 90.8

Project: PPG-Site 186 RAM, Jersey City, NJ

General Chemistry

Analyte	Result	RL	MDL	Units	DF	Analyzed By	Method
Chromium, Hexavalent	1.4	0.44	0.076	mg/kg	1	10/16/13 09:58 BP	SW846 3060A/7196A
Iron, Ferrous ^a	0.50	0.20		%	1	10/16/13 CB	ASTM D3872-86
Sulfide Screen ^b	NEGATIVE				1	10/16/13 CB	SM4500S2- A-11
Total Organic Carbon	39700	110	92	mg/kg	1	10/16/13 14:24 VA	LLOYD KAHN 1988 MOD

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (b) The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

6.1

Page 1 of 1

Percent Solids Raw Data Summary Job Number: JB50090R

ENSRNJ AECOM, INC. **Account:**

Project: PPG-Site 186 RAM, Jersey City, NJ

Sample: JB50090-2 ClientID: 186-MFHT1-4-	Analyzed: 14-2.0-2.5	OCT-13 by AR	Method:	SM2540 G-97
Wet Weight (Total) Tare Weight	34.2 29.03	g g		
Dry Weight (Total) Solids, Percent	33.45 85.5	g %		
Sample: JB50090-3 ClientID: 186-MFHT1-3-	Analyzed: 14-2.0-2.5	OCT-13 by AR	Method:	SM2540 G-97
Wet Weight (Total)	33.39	g		
Tare Weight	27.49	g		
Dry Weight (Total)	32.5	g		
Solids, Percent	84.9	%		
Sample: JB50090-4 ClientID: 186-MFHT1-2-	Analyzed: 14-2.0-2.5	OCT-13 by AR	Method:	SM2540 G-97
Wet Weight (Total)	30.89	g		
Tare Weight	24.26	g		
Dry Weight (Total)	30.28	g		
Solids, Percent	90.8	%		
Sample: JB50090-5 ClientID: 186-MFHT1-2.	Analyzed: 14-0-2.5X	OCT-13 by AR	Method:	SM2540 G-97
Wet Weight (Total)	32.43	g		
Tare Weight	26.71	g		
Dry Weight (Total)	31.79	g		
Solids, Percent	88.8	%		
Sample: JB50090-6 ClientID: 186-MFHT1-2.	Analyzed: 14-0-2.5	OCT-13 by AR	Method:	SM2540 G-97
Wet Weight (Total)	26.86	g		
Tare Weight	21.59	g		
Dry Weight (Total)	26.32	g		
Solids, Percent	89.8	%		

	Туре	Analysis	Sample Nam	Sample ID	Origin	Manual Diluti	Result	Status	Date / Time
1	Unknown	SSM-TC	CRI	(A)	TOCSSMC	1.000	SSM-TC:0.1	Completed	10/10/2013 1
2	Unknown	SSM-TC	HSTD		TOCSSMC	1.000	SSM-TC:5.0	Completed	10/10/2013 1
3	Unknown	SSM-TC	ICV		TOCSSMC	1.000	SSM-TC:2.0	Completed	10/10/2013 1
4	Unknown	SSM-TC	ICB	1	TOCSSMC	1.000	SSM-TC:0.0	Completed	10/10/2013 1
5	Unknown	SSM-TC	CCV		TOCSSMC	1.000	SSM-TC:2.5	Completed	10/10/2013 1
6	Unknown	SSM-TC	CCB		TOCSSMC	1.000	SSM-TC:0.0	Completed	10/10/2013 1
7	Unknown	SSM-TC	GP75181-M	TOCLK	TOCSSM.m	1.000	SSM-TC:0.0	Completed	10/10/2013 1
8	Unknown	SSM-TC	GP75181-B1		TOCSSM.m	1.000	SSM-TC:0.2	Completed	10/10/2013 1
9	Unknown	SSM-TC	JB48878-3		TOCSSM.m	1.000	SSM-TC:4.4	Completed	10/10/2013 1
10	Unknown	SSM-TC	JB48878-1		TOCSSM.m	1.000	SSM-TC:3.5	Completed	10/10/2013 1
11	Unknown	SSM-TC	JB48878-2		TOCSSM.m	1.000	SSM-TC:3.6	Completed	10/10/2013 1:
12	Unknown	SSM-TC	JB48878-14		TOCSSM.m	1.000	SSM-TC:4.8	Completed	10/10/2013 2:
13	Unknown	SSM-TC	JB48878-19		TOCSSM.m	1.000	SSM-TC:1.3	Completed	10/10/2013 2:
14	Unknown	SSM-TC	JB48878-22		TOCSSM.m	1.000	SSM-TC:1.8	Completed	10/10/2013 3:
15	Unknown	SSM-TC	GP75181-D1	JB48878-3	TOCSSM.m	1.000	SSM-TC:4.5	Completed	10/10/2013 3:
16	Unknown	SSM-TC	GP75181-S1	JB48878-3	TOCSSM.m	1.000	SSM-TC:9.2	Completed	10/10/2013 3:
17	Unknown	SSM-TC	CCV		TOCSSMC	1.000	SSM-TC:2.6	Completed	10/10/2013 4:
18	Unknown	SSM-TC	CCB		TOCSSMC	1.000	SSM-TC:0.0	Completed	10/10/2013 4:
19	Unknown	SSM-TC	JB48878-24		TOCSSM.m	1.000	SSM-TC:0.4	Completed	10/10/2013 4:
20	Unknown	SSM-TC	JB48878-38		TOCSSM.m	1.000	SSM-TC:4.3	Completed	10/10/2013 5:
21	Unknown	SSM-TC	JB48878-42		TOCSSM.m	1.000	SSM-TC:5.1	Completed	10/10/2013 5:
22	Unknown	SSM-TC	CCV		TOCSSMC	1.000	SSM-TC:2.6	Completed	10/10/2013 5:
23	Unknown	SSM-TC	CCB	V	TOCSSMC	1.000	SSM-TC:0.0	Completed	10/10/2013 6:

E3101051170C GN93029
TOCK VA 10/11/13

10/11/2013 7:24:57 AM 1/1

TOLLY

63101051,70c

est: Total	i Organi	ic Carbon
------------	----------	-----------

roduct: TOC

roduct: TOC Balance ID: 6-39 lethod: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

DL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID 6N93029 Date (0/10/13

Analyst____

Sample ID	Sample Weight	Bottle #	Sample Description & comments
CKI			
HSTD			
ICVITOB			
cer Iccb			
6P75181-MBI	1.0000		
	1.0000		
4875181-61	1.0000		
	1.0000		
1848878-3	0.0513	3	
	0.0501		
	00518		
	0.0522		
JB 48878 - 1	0.2517	1	
	0.0503		
	0.0509		
	0.0501		
JB48878-2	0.0509		
	0· <i>05</i> 03		
	0.0525		
	00529		
JB48878-14	00514		
	0.0506		
	0:0517		
	0.0515		

Analyst: <i>JA</i>	Date:_	<u>IOliol</u> BQCRe	viewer:		Date:		
Manager Review:		Date:					
Comments:							
BSP + MS = 100	ul 92 2	20000 meyl	-) 1·0g	91	Silita	Sand	TV= 2000 mely
	0	(blucok)		-			8

Form: GN058-01 Rev. Date: 11/11/08

∋st: To tai	Organic	Carbon
--------------------	---------	--------

roduct: TOC

Units = mg/kg 6 ~ 3 9 Balance ID: lethod: Corp. Eng. 81 M/SW846 9060 M of EPA Region 2 Lloyd Kann (circle one)

DL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID UN93029 Date 10/10/13 Analyst<u>∨</u>A

Sample ID	Sample Weight	Bottle #	Sample Description & comments
JB48878-19	0.1038	1	
	0.1000		
	0.000		
	0.1054		
JB48878-12	0.0520	1	
	0.0502		
	0.0501		
,	0.0501		
GP75181-P1	0.0522	3	1848878-3
	0.0509		
	0.0501		
·	0.0518		
6P75181-SI	0.0503	3	1849878-3 TV= 39801
	0.0502		
	0-0502	·	
	0.0501		
Carpers			
JB43868-24	0.2502		
	0.2501		
	0.2500		·
-	02500		
BB48868-38	0.0520		
	0.0502		
× × × × × × × × × × × × × × × × × × ×	0.0501		
nahisti MA			
inalyst: Vi	Date: <u>1016 13</u> QCRev Date:	lewer:	Date:

Form: GN058-01 Rev. Date: 11/11/08

est: Total Organic Carbon

Units = mg/kg

roduct: TOC

roduct: TOC Balance ID: 6-39
lethod: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

tDL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID 6493029

Analyst<u>∨</u>A

Sample ID	Sample Weight	Bottle #	Sample Description & comments
	0.0509		
1BU8378-42	0.0515		
	0.0501		
	D.0504		
	0.0502		
CWICEB	0 0 0 0 -		
SWICES.			
			
<u> </u>	•		
• !	•		
	•		
<u> </u>			
		`	
<u> </u>			
lvst: VA	Date: 10/10/3 QCR	eviewer: [Date:
nager Review:	Date: 10/10/13 QCR6		
nments:			

Form: GN058-01 Rev. Date: 11/11/08

GENERAL CHEMISTRY STANDARD PREPARATION LOG

Product: স্কুম্ম্র GN or GP Number: জ্মণ্ডরতহনু

					_				
			700) 1			
			O OCK		•	<u>.</u>			
Intermediate	Stock used to	Stock	volume used		Final	Intermediate	Expiration		
Standard Description	prepare standard	concentration	in ml	Diluent	Volume	(mg/l)	Date	Analyst	Date
ave10-37709-10c.	Fisher 12297	Sucrose	43.54	DE H.S	1001	200000	11/4/12	4	colation
	1			-	-	-	2	-	-
(s. 16) - 3 7-24 m- TPx.	Fisher 120215	(s lu cone	12. 54	-3	->	60000	7		>
									•
			Intermediate						
	Intermediate or Stock	Intermediate	or Stock			Final Conc.			
٠	used to prepare	or Stock	volume used		Final	of Standard	Expiration		
Standard Description	standard	concentration	in mi	Diluent	Volume	(mg/l)	Date	Analyst	Date
Sucrose STPS									
6 me 10 - 37711 - TOC	6NE10-37309-TCC	200,000	5.0	DE Has	JM COI	000/	11/6/13	NA.	10/4/12
(ME10-37712. 70c			2.5	ĺ	1	2000	-	_	-
Grieso - 37+13 -70c			5.0		-	10000			
6NETO-77-74 - TEC			12.5	- ;		25,000		,	
BAE10-37715 -70C			20.02			40000			
6NE10-3746-TBC	->	→	25.0	->	->	50000	3	7	>
Glucose att									
62-2137717 - Tac	6WE10-37710-70C	20000	C-017	or His	7# Cal	0000	11/6/13	A.	1019112
6/E10 - 3 7418-70C	-	->		ج-	->	25,000	->	7	>
	•	_				`			

Form: GN121 Rev. Date:2/26/03

Glass Piper: Class A

Balance: 3-39

Reagent Information Log - TOC - Soil

Reagent	Reagent # or Manufacturer/Lot
Sucrose Stock Solution, 200000 mg/L	UNEID- 37709- 70c 11/6/1
Glucose Stock Solution, 50000 ug/L	(222.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
Glucose Check Solution, 25000 ug/L	(WE10 - 37718 - TOC 11/6/3
Nitric Acid, Reagent Grade	Baker K50030 2/17/17
Glucose Stock Solution, 20100 mg/L	CNE10-37717-70c 11/6/13

All standards and stocks were made as described in the SOP for this method (circle one): Y

Form: GN-087 I-66 Rev. Date: 4/26/01

If no (N), see attached page for standards prep.

Instr.Information

Instrument Options Catalyst

TOC/SSM/Sparge Kit/ Regular Sensitivity

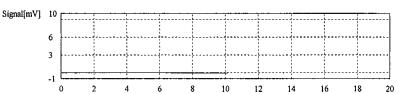
Cal. Curve

Sample Name: Sample ID: Cal. Curve: Status

Untitled

e31009s1.2013_10_09_09_50_34.cal

Completed


	0.	da:	. (C) 80	SSM-TC	11.14
ı					

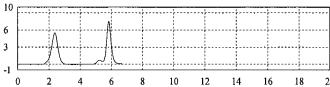
AbsC: 0.000ug

			483			% 0.000		
1	0.000	0.000	0,000ug	100.0mg	******	 10/9/2013	3 10:01:14 Al	VI.
2	0.000	0.000	0.000ug	100,0mg	******	10/9/2013	3 10:12:38 AT	vf

Mean Area Mean CNV

0.000 0,000

Time[min]

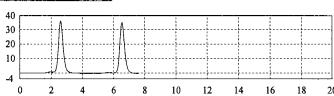

Time[min]

Time[min]

AbsC: 0.01000ug

CARLES.		1000				
1,300						
8.00						
1	16.35	16.35	0,01000цд	100,0mg	*****	10/9/2013 10:19:58 AM
2	16.73	16.73	0.01000ug	100.0mg	******	10/9/2013 10:59;25 AM

Mean Area Mean CNV 16.54 16.54 Signal[mV] 10

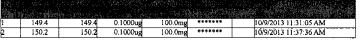


AbsC: 0.05000ug

ēķi,	500	31/4/	1 (98)	17786 (79)	S.CEL	
A .	1.00	1		·		
1	76.25	76.25		100,0mg	*****	10/9/2013 11:19:15 AM
2	76,49	76.49	0.05000ug	100.0mg	*****	10/9/2013 11:25:09 AM

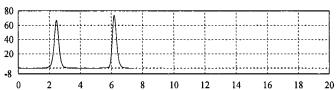
Mean Area Mean CNV

Signal[mV] 40



10/10/2013 5;32;16 PM

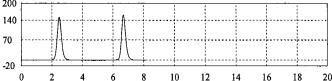
1/3



AbsC: 0.1000ug

Mean Area Mean CNV

149.8 149.8 Signal[mV]



AbsC: 0.2500ug

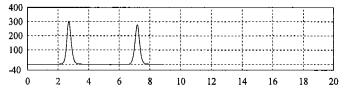
304	**************************************			PARANTER.	ATT ATT	High s	or o	รรักครั้งการได้ เกาะราชา	
	300.3	300.3	0.2500ug	100.0mg	*****		10/9/2013 11:44:	45 AM	
	3101	3101	0.2500ug	100 0mg	*****		10/9/2013 11:55:	34 AM	

Mean Area Mean CNV 305.2

Signal[mV] 200

Time[min]

Time[min]

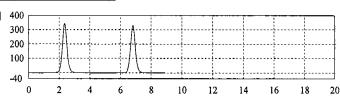

AbsC: 0.4000ug

		n diantepide Lightedia			Trans.	MES.		differ house:	
1	632.2	632.2	0.4000ug	100,0mg	*****		10/9/2013	12:02:28 PM	
2	614.5	614.5	0.4000ug	100.0mg	******		10/9/2013	12:09:13 PM	

Mean Area Mean CNV

623.4

Signal[mV] 400

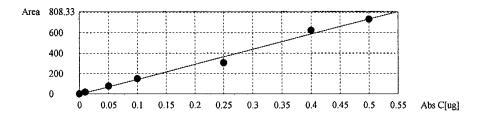

Time[min]

AbsC: 0.5000ug

				930 35te			
1	731.9	731.9	0.5000սց	100.0mg	******	10/9/2013 12:17:26 PM	
2	735.1	735.1	0.5000ug	100,0mg	******	10/9/2013 12:26:39 PM	

Mean Area Mean CNV 733.5

Signal[mV] 400



Time[min]

10/10/2013 5:32:16 PM

JB50090R

Slope: Intercept r^2 1479 -4.688 0.9904 0.9952 r Zero Shift No

10/10/2013 5:32:16 PM

Instr.Information

Instrument Options Catalyst

TOC/SSM/Sparge Kit/ Regular Sensitivity

<u>Sample</u>

ÇRI

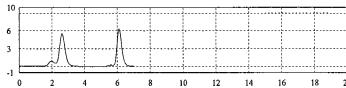
Sample Name: Sample ID: Origin: Status Chk. Result

TOCSSMCAL.met

Completed

Unknown SSM-TC 1.000 1.000mg/ul SSM-TC:0.1267r			eria, qua di Collidor Carl Esta grafia		
	Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:0.1267mg

1. Det


Anal.: SSM-TC

1	14.67	14.67	0.1309mg/L	100.0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 9:58:08 AM
2	13.42	13.42	0.1224mg/L	100.0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 10:05:20 AM

Mean Conc. CV Conc

0.1267mg/L 4.72%

Signal[mV] 10

Time[min]

<u>Sample</u>

Sample Name:

HSTD

Sample ID: Origin: Status Chk. Result

TOCSSMCAL.met

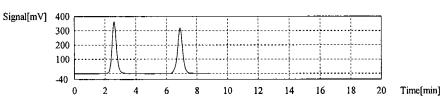
Completed

1.000mg/uL SSM-TC 1.000 SSM-TC:5.084mg/L Unknown

1. Det

Anal.: SSM-TC

i j	738.5	738,5	5.025mg/L	100.0mg	100uL	e31009s1.2013_10	_09_09_50_34.cal	10/10/2013 1	10:19:49 AM
2	755.9	755,9	5.142mg/L	100.0mg	100uL	e31009s1.2013 10	09 09 50 34.cal	10/10/2013 1	10:28:35 AM


41 of 79 ACCUTEST JB50090R

10/11/2013 7:25:01 AM

Time[min]

Mean Conc. CV Conc

5.084mg/L 1.64%

Sample

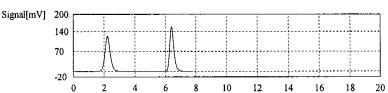
ICV

Sample Name: Sample ID: Origin: Status

TOCSSMCAL.met Completed

Chk. Result

akus Meletik di Reduktion di Santa	granda da karakarakarak			
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:2.079mg/L


1. Det

Anal.: SSM-TC

	Kaywina j			CASTAL.			
1	300.4	300.4	2.063mg/L	100.0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 10:34:44 AM
2	305.2	305.2	2.095mg/L	100.0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 10:58:59 AM

Mean Conc. CV Conc

2.079mg/L 1.10%

<u>Sample</u>

Sample Name: Sample ID:

ІÇВ

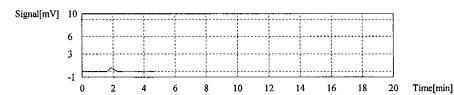
Origin: Status Chk. Result

TOCSSMCAL.met Completed

						1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 การกระบบกระบบสองสัตริย์สัตร์สมอบกำลัง 	Umber i 1925 Awaren Chidake			354 - D. Herder 2365 &
1.00						
	 Fig. 1. The distriction of the property of the pr	 A. A. M. F. L. 1997 Shinted Strategy 	All the second of the second o	kultur i di 1989a ir a kristininininininininini ili ili Suuranda ai tiri ke krista araba ira	Print 1 2 1 1 10 11 2 2 2 1 2 2 2 2 2 2 2 2 2	The second of th
Unknown	SSM-TC	1.000	1.000mg/uLi			SSM-TC:0.03695mg/L

1. Det

Anal.: SSM-TC


(\$15) :		in and the second of the secon		3,43146H			
1	1.554	1.554	0.04220mg/L	100.0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 11:03:27 AM
2	0.000	0.000	0.03170mg/L	100,0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 11:16:39 AM

42 of 79 ACCUTEST JB50090R

10/11/2013 7:25:01 AM

Mean Conc. CV Conc

0.03695mg/L 20.11%

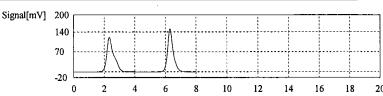
Sample

Sample Name: Sample ID: Origin:

CCV

TOCSSMCAL met Status Chk. Result Completed

all Carase sto				
Unknown	SSM-TC	1,000	1.000mg/uLj	SSM-TC:2.597mg/I


1. Det

Anal.: SSM-TC

100.00			0.00			e31009sl 2013 10	09 09 50 34 00	10/10/2013 11:27:58 AM
1	380.2	380.2	2.602mg/L	100.0mg	100uL	e31009s1.2013_10	_09_09_50_34.cal	10/10/2013 11,27,38 AMI
2	378.7	378.7	2.592mg/L	100.0mg	100uL	e31009s1.2013_10	_09_09_50_34.cal	10/10/2013 11:41:08 AM

Mean Conc. CV Conc

2.597mg/L 0.28%

<u>Sample</u>

Sample Name: Sample ID:

CCB

Origin: Status

TOCSSMCAL.met Completed

1.000

Chk. Result

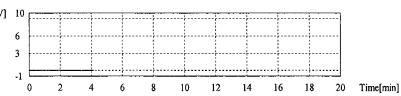
Unknown 1. Det

Anal.: SSM-TC

: NX		A PARKET					
1	0.000	0.000	0.03170mg/L	100.0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 11:45:54 AM
2	0.000	0.000	0.03170mg/L	100.0mg	100uL	e31009s1.2013 10 09 09 50 34.cal	10/10/2013 11:53:21 AM

43 of 79 ACCUTEST JB50090R

Time[min]


SSM-TC:0,03170mg/L

Time[min]

Mean Conc. CV Conc

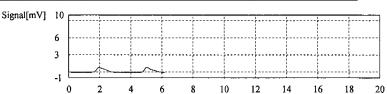
0.03170mg/L 0.00%

<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result

GP75181-MB1 TOCSSM.met Completed

			signess of the	t militari.	
Unknown	SSM-TC	1,000	1.000mg/uL		SSM-TC:0.00518mg/L


1. Det

Anal.: SSM-TC

					Valdičke 123 SAJ - T			
1	3.034	3.034	0.00522mg/L	1000mg	1000uL	e31009s1.2013_10_09_	_09_50_34.cal	10/10/2013 12:02:00 PM
2	2.925	2,925	0.00515mg/L	1000mg	1000uL	e31009s1.2013_10_09_	09_50_34.cal	10/10/2013 12:07:32 PM

Mean Conc. CV Conc

0.00518mg/L1.01%

<u>Sample</u>

Sample Name: Sample ID: Origin; Status

GP75181-B1

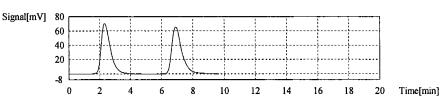
TOCSSM.met Completed

Chk. Result

		2.4X03+19.419		
Unknown	SSM-TC	1.000	1,000mg/uL	SSM-TC:0.2004mg/I

1. Det

Anal.: SSM-TC


(4)							1172 (174 (174)	
1	293.1	293.1	0.2013mg/L	1000mg	1000uL	e31009s1.2013_10_0	9_09_50_34.cal	10/10/2013 12:14:23 PM
2	290.4	290.4	0.1995me/I	1000mg	1000u1	e31009s1 2013 10 0	9 09 50 34 cal	10/10/2013 12:23:08 PM

44 of 79 ACCUTEST JB50090R

10/11/2013 7:25:01 AM

Mean Conc. CV Conc

0.2004mg/L 0.64%

<u>Sample</u>

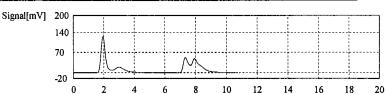
Sample Name: Sample ID: Origin:

JB48878-3

TOCSSM.met Completed

Status Chk. Result

\$ \$400 m			The state of the s	
Unknown	SSM-TC	1,000 1,000mg/s	ıt	SSM-TC:4.486mg/L


1. Det

Anal.: SSM-TC

					A Private Control			
ī	348.1	348.1	4.650mg/L	51.30mg	51uL	e31009s1.2013_10_09_09	50_34.cal	10/10/2013 12:32:52 PM
2	315,6	323.2	4.322mg/L	50,10mg	50uL	e31009s1,2013_10_09_09	50_34.cal	10/10/2013 12:40:28 PM

Mean Conc. CV Conc

4.486mg/L 5.16%

<u>Sample</u>

Sample Name: Sample ID:

JB48878-1

Origin: Status

TOCSSM.met Completed

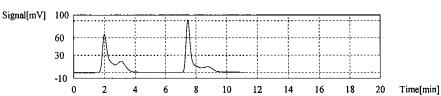
Chk. Result

		e e e e e e e e e e e e e e e e e e e		
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC;3,542mg/L

1. Det

Anal.: SSM-TC

Ī	1 20	55.2	265.2	3.529mg/L	51.70mg	51uL	e31009s1.2013_10_09_09_50_34.ca	10/10/2013 12:51:29 PM
- [2 2	59.8	267.0	3,555mg/L	50.30mg	50uL	e31009s1.2013 10 09 09 50 34.ca	10/10/2013 12:59:35 PM


45 of 79 ACCUTEST JB50090R

Time[min]

Time[min]

Mean Conc. CV Conc

3.542mg/L 0.51%

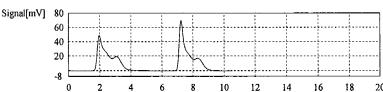
Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JB48878-2

TOCSSM.met Completed

			การ และจับกราชาชิติสัสดิตกร์ที่ใ พ.ศ.พระจัดการการพ.ศ. การการ
Unknown SSM-TC	1.000	1.000mg/uL	SSM-TC:3.650mg/L


1. Det

Anal.: SSM-TC

l l	258.1	258.1	3.491mg/L	50.90mg	50uL	c31009s1.2013_10_09_09_50_34.cal	10/10/2013 1:11:01 PM
2	278.7	282.0	3.809mg/L	50,30mg	50uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 1:58;46 PM

Mean Conc. CV Conc

3.650mg/L 6.17%

<u>Sample</u>

Sample Name: Sample ID:

JB48878-14

Origin: Status TOCSSM.met Completed

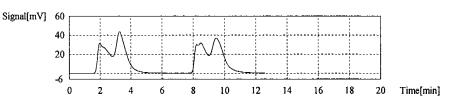
Chk. Result

				A. CON
Unknown	SSM-TC	1.000	1,000mg/uL	C:4.815mg/L

1. Det

Anal.: SSM-TC

					AMORE H		
l	361.4	361.4	4.815mg/L	51.40mg	51uL	e31009s1.2013_10_09_09_50_34.c	al 10/10/2013 2:08:17 PM
2	355.0	361.3	4.816mg/L	50.50mg	50uL	e31009s1.2013 10 09 09 50 34.c	al 10/10/2013 2:24:15 PM


46 of 79 ACCUTEST JB50090R

10/11/2013 7:25:01 AM

Time[min]

Mean Conc. CV Conc

4.815mg/L

Sample

Sample Name: Sample ID: Origin: Status

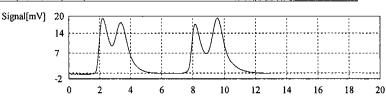
JB48878-19

TOCSSM.met

Chk. Result

Completed

	•			
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:1.330mg/L
Capacita Santa Santa				erskoff op 19 oktive en et 19 km kare. De 19 oktive en 19 oktive en en en 19 oktiviske britansk bleven en 19 oktive
a company			na ngapaga kabagan manga	一个知题的心理是多少的特殊,这一些的特别或是特殊的一个人 <i>的</i> 多数数据的一个时间,这个人们是是否的各种可能的一个人。这个人的对象


1. Det

Anal.: SSM-TC

3							
1	192.9	192,9	1.287mg/L	103.8mg	103uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 2:34;15 PM
2	198.3	205.8	1.372mg/L	100.0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 2:46:37 PM

Mean Conc. CV Conc

1.330mg/L 4.54%

Sample 5 4 1

Sample Name: Sample ID: Origin:

JB48878-22

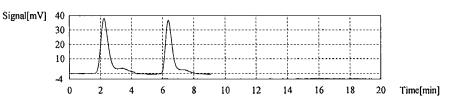
TQCS\$M.met Completed

Status Chk. Result

Unknown SSM-TC	1.000	1.000mg/uL	SSM-TC:1.807mg/L

1. Det

Anal.: SSM-TC


48.00	3.44° 10° 6								
1	139.9	139.9	1.880mg/L	52.00mg	52uL	e31009s1	.2013_10_09	_09_50_34.ca	1 10/10/2013 2:52:15 PM
2	124.0	128.4	1.733mg/L	50.20mg	50uL	e31009s1	.2013 10 09	09 50 34.cal	l 10/10/2013 3:00:16 PM

47 of 79 ACCUTEST JB50090R

10/11/2013 7:25:01 AM

Mean Conc. CV Conc

1.807mg/L 5.74%

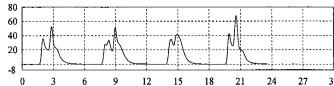
<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result

GP75181-D1 JB48878-3 TOCSSM.met Completed

Agr. 1					
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:4.588m	2/L

1. Det


Anal.: SSM-TC

è							
1	324.6	324,6	4,265mg/L	52,20mg	52uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 3:09:46 PM
2	368.7	378.1	4.960mg/L	50.90mg	50uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 3:17:20 PM
3	327.8	341.5	4.487mg/L	50.10mg	50uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 3:26:19 PM
4	350,8	353.5	4.640mg/L	51.80mg	51uL	e31009s1.2013 10 09 09 50 34.cal	10/10/2013 3:33:02 PM

Mean Conc. CV Conc

4.588mg/L 6.36%

Signal[mV] 80

Time[min]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

GP75181-S1 JB48878-3 TOCSSM.met Completed

1.000 1.000mg/uL SSM-TC:9.292mg/L Unknown SSM-TC

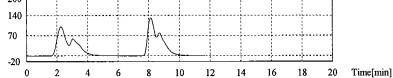
8/12

1. Det

Anal.: SSM-TC

JB50090R

48 of 79


ACCUTEST

c31009s1.2013_10_09_09_50_34.cal c31009s1.2013_10_09_09_50_34.cal 10/10/2013 3:40:47 PM 9.007mg/L 9.577mg/L 50.30mg 665.4 706.4 665.4 707.8 50uL 50.20mg 10/10/2013 3:47:24 PM

Mean Conc. CV Conc

9.292mg/L 4.34%

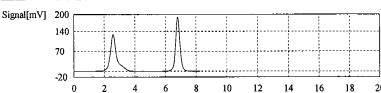
Signal[mV] 200

<u>Sample</u>

CCV

Sample Name: Sample ID: Origin: Status TOCSSMCAL.met Completed Chk. Result

43.8				
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:2.623mg/L


1. Det

Anal.: SSM-TC

	filipa Tanakan				. Santida Charles			
1	384.4	384.4	2.631mg/L	100.0mg	100uL	e31009s1.2013_10	09_09_50_34.cal	10/10/2013 3:54:14 PM
2	382.1	382.1	2.615mg/L	100.0mg	100uL	e31009s1.2013_10	09_09_50_34.cal	10/10/2013 4:00:42 PM

Mean Conc. CV Conc

2.623mg/L 0.42%

<u>Sample</u>

Sample Name:

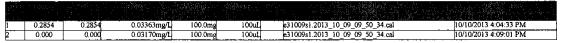
CCB

Sample ID: Origin:

TOCSSMCAL.met Completed

Status Chk. Result

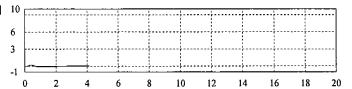
1. Det


Anal.: SSM-TC

10/11/2013 7:25:01 AM

Time[min]

Time[min]


Time[min]

Mean Conc. CV Conc

0.03266mg/L 4.18%

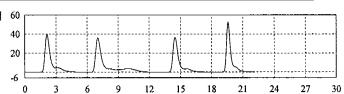
Signal[mV] 10

Sample

Sample Name: Sample ID: JB48878-24 TOCSSM.met Origin: Status Completed Chk. Result

Unknown	SSM-TC	1,000	1,000mg/uL	SSM-TC:0.4387mg/L

1. Det


Anal.: SSM-TC

1	149.5	149.5	0.4167mg/L	250.2mg	250uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 4:16:58 PM
2	189.9	190.0	0.5260mg/L	250.1mg	250uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 4:25:30 PM
3	139,8	139.9	0,3908mg/L	250,0mg	250uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 4:33:18 PM
4	151.1	151.2	0.4213mg/L	250 Omo	250uI	e31009s1 2013 10 09 09 50 34 cal	10/10/2013 4:45:47 PM

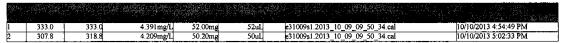
Mean Conc. CV Conc

0.4387mg/L 13.62%

Signal[mV]

<u>Sample</u>

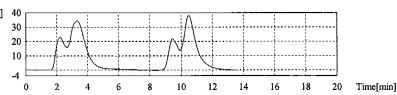
Sample Name: Sample ID: Origin: JB48878-38 TOCSSM.met Status Completed Chk. Result


ing and the second			Ç. Parisa de	
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:4.300mg/L

1. Det

10/12 10/11/2013 7:25:01 AM

Time[min]


Anal.: SSM-TC

Mean Conc. CV Conc

4.300mg/L 2.99%

Signal[mV]

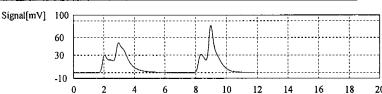
Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JB48878-42

TOCSSM.met Completed

		ta Magayaagi Gurifayi a daab	A STANSON OF THE STAN	
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:5.172mg/L


1. Det

Anal.: SSM-TC

44)] k	i galantin (i				Sipilist (Ci		
1	389.1	389.1	5.170mg/L	51.50mg	51uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 5:09:49 PM
2	378.8	389,4	5.175mg/L	50.10mg	50uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 5:16:15 PM

Mean Conc. CV Conc

5.172mg/L 0.07%

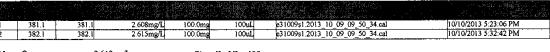
<u>Sample</u>

Sample Name: Sample ID:

ccv

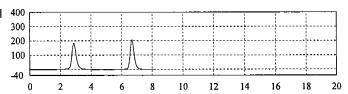
Origin: Status Chk. Result

TOCSSMCAL.met Completed


	1 (A)			
Unknown	SSM-TC	1.000	1.000mg/uL	SSM-TC:2.612mg/L

1. Det

11/12 10/11/2013 7:25:01 AM


Anal.: SSM-TC

Mean Conc. CV Conc

2.612mg/L 0,18%

Signal[mV] 400

Time[min]

<u>Sample</u>

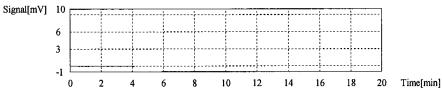
ССВ

Sample Name: Sample ID: Origin: Status Chk. Result

TOCSSMCAL, met

Completed

Unknown S	SSM-TC	1.000	1.000mg/uL	 SSM-TC:0,03170mg/L


1. Det

Anal.: SSM-TC

		324		AND COL			
]	0.000	0.000	0.03170mg/L	100.0mg	100uL	e31009s1.2013_10_09_09_50_34.cal	10/10/2013 5:40:26 PM
2	0.000	0.000	0.03170mg/L	100.0mg	100uL	e31009s1.2013 10 09 09 50 34.cal	10/10/2013 6:11:33 PM

Mean Conc. CV Conc

0.03170mg/L 0.00%

10/11/2013 7:25:01 AM

Bottle

Abs

BKGRD Analysis

8:36

ă		e)	(av	a (٩n	t		н	rc	ìľ	n	L	L.	n	ä
	1000	استنسف		9,000,100	(g), w	×		15.7.5	200	22.00	. 23	2.66	غست	28.2	35
87					56	5-11-00	YYER								88

0.0000

Sample Absorbance Sample # Test Title: XCRA gn93304 GN Batch: Analyst: BP Prep Date: 10/15/2013 Analysis Date: 10/16/2013

Н

0.000

Instrument ID:

Cal. Blk.

Y Values Corr Sample

0.000

Times Absorbance Conc(mg/l)

X Values Final Vol. Sam Wt. (ml)

(g) Dilution Final Conc. Units MDL

Method: SW846 3060A, 7196A

Note: All results below shown on a wet weight basis.

Corr. Coef:

0.99985

	Cal. Blk.	0.000	NA NA	8:36	0.000	0.0000							
	STD 1	0.009	NA	8:39	0.009	0.0100				Slope:	0.8922		
	STD 2	0.044	NA	8:39	0.044	0.0500							
	STD 3	0.091	NA	8:39	0.091	0.1000				Y intercept:	-0.0002		
	STD 4	0.267	NA	8:39	0.267	0.3000							
	STD 5	0.448	NA	8:39	0.448	0.5000							
	STD 6	0.701	NA NA	8:39	0.701	0.8000	Final Vol.	Sam. Wt.					
	STD 7	0.901	NA	8:39	0.901	1.0000	(ml)	(g)	<u>Dilution</u>	<u>Final Conc.</u>	<u>Units</u>	<u>MDL</u>	RDL
	CCV	0.430	NA	9:50	0.430	0.4822	NA NA	NA	NA	NA	mg/l	0.002	0.010
	CCB	0.000	NA	9:58	0.000	0.0002	NA NA	NA	NA	NA	mg/l	0.002	0.010
	GP75278-MB1	0.000	0.000	9:58	0.000	0.0002	100.0	2.5000	111	0.008	mg/kg	0.069	0.400
	GP75278-B1	0.852	0.000	9:58	0.852	0.9551	100.0	2.5000	1	38.206	mg/kg	0.069	0.400
	GP75278-S1	0.581	0.011	9:58	0.570	0.6391	100.0	2.4700	1	25.874	mg/kg	0.070	0.405
	GP75278-D1	0.027	0.012	9:58	0.015	0.0170	100.0	2.4400	1	0.697	mg/kg	0.071	0.410
<u> </u>	JB50090-4R	0.038	0.011	9:58	0.027	0.0305	100.0	2.4700	1	1.234	mg/kg	0.070	0.405
<u> </u>	JB50090-4RPSCONF	0.432	0.000	9:58	0.432	0.4844	100.0	2.4700	2	39.223	mg/kg	0.070	0.810
	GP75278-B2	>3	OVR	9:58		#VALUE!	100.0	2.5000	1 1	#VALUE!	mg/kg	0.069	0.400
	GP75278-S2	>3	OVR	9:58		#VALUE1	100.0	2.4700	1	#VALUE!	mg/kg	0.070	0.405
	GP75278-B2	0.394	0.000	9:58	0.394	0.4418	100.0	2.5000	50	883.622	mg/kg	0.069	20.000
	GP75278-S2	0.511	0.000	9:58	0.511	0.5729	100.0	2.4700	50	1159.813	mg/kg	0.070	20.243
	CCV	0.430	NA	9:58	0.430	0.4822 4	NA	NA NA	NA	NA NA	mg/l	0.002	0.010
	CCB	0.000	NA	9:58	0.000	0.0002	NA NA	NA	NA	NA NA	mg/l	0.002	0.010
	JB50090-2R	0.154	0.077	10:03	0.077	0.0865	100.0	2.4400	1	3.545	mg/kg	0.071	0.410
_	JB50090-3R	0.609	0.167	10:03	0.442	0.4956	100.0	2.4200	11	20.480	mg/kg	0.071	0.413
-	JB50090-5R	0.084	0.046	10:03	0.038	0.0428	100.0	2.4400	1	1.754	mg/kg	0.071	0.410
<u> </u>	JB50090-6R	0.110	0.062	10:03	0.048	0.0540	100.0	2.4400	1	2.213	mg/kg	0.071	0.410
				10:03		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
<u> </u>				10:03		#VALUE!	100.0	<u> </u>	1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
-				10:03		#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
				10:03	*	#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
				10:03		#VALUE! #VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
	ccv	0.430	NA	10:03	0.430	0.4822	100.0 NA	NA NA	1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
	CCB	0.000	NA NA	10:03	0.000	0.0002	NA NA	NA NA	NA NA	NA NA	mg/l	0.002	0.010
	- 005	0.000	IN/A	10.03	0.000	#VALUE!	100.0	INA	1 NA	#VALUE!	mg/l	0.002	0.010
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0! #DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
-						#VALUE1	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
			-			#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
			***************************************			#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE1	mg/kg	#DIV/0!	#DIV/0!
			***************************************			#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/01
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
	CCV		NA			#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010
	CCB		NA	· ·		#VALUE!	NA	NA	NA	NA	mg/I	0.002	0.010
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
					İ	#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/01	#DIV/0!
$oxed{oxed}$						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/01	#DIV/0!
\vdash						#VALUE!	100.0		1	#VALUE!	mg/kg	#DIV/0!	#DIV/0!
<u> </u>						#VALUE!	100.0		1	#VALUE!	rng/kg	#DIV/0!	#DIV/0!
<u> </u>	CCV		NA			#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010
	CCB		NA NA			#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
\vdash						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
$\vdash\vdash\vdash$						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
L	<u>. </u>					#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400

GN93304

ķ

1

QC F	Reports:		GN9330	4									
				1	Т	45/611/51	400.0	0.5000	T 7	T (0./ALLE)			T 0 400
<u> </u>						#VALUE! #VALUE!	100.0	2.5000 2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		 	 		1	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	† · ·		 			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	ccv		NA NA		-	#VALUE!	NA	NA	NA NA	NA NA	mg/kg mg/l	0.002	0.400
	CCB		NA NA			#VALUE!	NA NA	NA NA	NA NA	NA NA	mg/l	0.002	0.010
		·	- · · · · · · · · · · · · · · · · · · ·			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			 			#VALUE!	100.0	2.5000	i	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	CCV		NA		İ	#VALUE!	NA	NA	NA.	NA NA	mg/l	0.002	0.010
	ССВ		NA			#VALUE!	NA	NA	NA NA	NA NA	mg/l	0.002	0,010
			T		İ	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
····						#VALUE1	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
					1	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			T			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
					l	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	ccv		NA			#VALUE!	NA	NA	NA.	NA	mg/l	0.002	0.010
	CCB		NA			#VALUE!	NA	NA	NA	NA	mg/t	0.002	0.010
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	. 1	#VALUE!	mg/kg	0.069	0.400
			<u> </u>			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			ļ			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			<u></u>			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	ccv		NA			#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010
	CCB		NA			#VALUE!	NA	NA	NA	NA NA	mg/l	0.002	0.010
						#VALUE!	100.0	2.5000	11	#VALUE!	mg/kg	0.069	0.400
			<u> </u>			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		 			ļ	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
						#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
			ļ			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		1	ļ			#VALUE!	100.0	2.5000	11	#VALUE!	mg/kg	0.069	0.400
		 				#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	 	+	 			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
					<u> </u>	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	001/					#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	CCV	+	NA NA			#VALUE!	NA NA	NA	NA	NA	mg/l	0.002	0.010
	ССВ		NA .		<u> </u>	#VALUE!	NA 100.0	NA 0.5000	NA .	NA	mg/l	0.002	0.010
		+	-		 	#VALUE!	100.0	2.5000	11	#VALUE!	mg/kg	0.069	0.400
-				-	<u> </u>	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
					 	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		 	-			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		 	 		 	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		 	-		 	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		 			 	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
		+	-		 	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
-		-	 	·	 	#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
	ccv	 	A10			#VALUE!	100.0	2.5000	1	#VALUE!	mg/kg	0.069	0.400
-	CCB	+	NA NA			#VALUE!	NA NA	NA NA	NA	NA NA	mg/l	0.002	0.010
	d 4/25/11	1	NA		L	#VALUE!	NA	NA	NA	NA	mg/l	0.002	0.010

	4 40 5		-	
revised	4/25	/1	1	

Comments:			

Test: Hexavalent Chromium

Product: XCr

MDL = 0.069 mg/kg RDL = 0.40 mg/kg GNBatch ID: <u>GN 9 33 OU</u> Date: 10 1 6 1 3

Method: SW846 3060A/7196A **Digestion Batch QC Summary** Units = mg/kg Method Blank ID: GP75278-MB1 Date: 1016113 Result: のつる RDL: 0 4 <RDL: YES・ -BI_ Date: Sol. Spike Blank ID:__ Result: 365-206 Spike: 40. %Rec.: 95-521/ Insol. Spike Blank ID: <u>- 132</u> Date:___ ___ Result: <u>を名3.667.</u> Spike:9で99%Rec.: 9 かっち / <u> - D i Samp. Result: 1・234 Dup. Result: 0・6年子</u> %RPD: <u>55</u>-627・ Duplicate ID: <u>__51</u> Samp. Result:<u></u>」 MS Result:<u>名5-6刊</u> Spike:<u>いい頃</u> %Rec:<u>6の</u> を与力 Sol. MS ID: _ MS Result: 1159 813_ Spike: 879 36 %Rec: 131 75 / Insol. MS ID: <u>. 🎝 - 52</u> Samp. Result: Post Spike ID:<u>7/35ლ9 0- 42/2</u>Samp. Result: Diluted Sample ID: _ Samp. Result:_ ____ Dil. Result: %RPD: pH adj. PS ID: MS Result:_____ Spike:____ %Rec: Samp. Result: Analysis Batch QC Summary Units = mg/l CCV: 1016/13 Result: 0.4822 TV: 0.500 %Rec.: 96.411 CCV: Result: TV: _0.500___ %Rec.: CCV: Result: ____ TV: _0.500___ %Rec.:_ CCV :____ Result: ____ TV: _0.500 %Rec.: CCV:_ Result:_____ TV: _0.500___ %Rec.:__ CCV :_____ Result: ___ TV: _0.500___ %Rec.:_ Result:_____ TV: _0.500___ %Rec.:_ Result:_____ TV: _0.500___ %Rec.:_ Result:_____ TV: _0.500___ %Rec.:_ CCB: 1016113 Result: 0.0009 RDL: 0.010 <RDL: 100 CCB:__ Result: __ RDL:_0.010__ <RDL:_ CCB: Result: △ RDL: 0.010 <RDL: CCB:__ Result: ___ RDL:_0.010___ <RDL:__ CCB:__ Result: __ RDL:_0.010___ <RDL: CCB: Result:__ __ RDL:_0.010___ <RDL: CCB:_ Result: __ RDL:_0.010___ <RDL:__ CCB: Result: __ RDL:_0.010 ___ <RDL: CCB:___ _____ Result:____ RDL:_0.010___ <RDL:___

Reagent Reference Informa	ation - refer to attached reagent reference information page(s).	
Insoluble spike = PbCrO ₄	Molecular weight = 323.2 g/mol Cr = 52.0 g/mol	
{1000000 ug/g x Insoluble sp	ike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount	

Analyst: BP	Date: 10 16 1122 .	
Comments:		

Form: GN066-01 Rev. Date: 05/13/13

ACCUTEST LABS DAYTON, NJ

3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

GP Batch: GP구 S 의 왕 ,

				יום מווחמני ביו י		מולמסו כו מיז מוומנים לספו-פלוועים מוח מוח מווים פלוועים מוווים מווים מווים מווים מווים מווים מווים מווים מווים	2000	once difficultie.				
									Actual ml			
_								Suggested	of 100			
_	PS Aliquot			Amount in				ml of 100	ppm to	Est. Read-	Calculated	
_	Weight in g			ml to add		Suggested	Actual	ppm to spike	spike on	back on	Spike	
_	Digested in	Digested in Weight in 45 Results in	Results in	of 100 ppm	Dilution	Dilution to	Dilution to	Dilution to on dilution of dilution of	dilution of	curve in	Amount in	Use calculated or
	100 ml	ıπ	mg/kg.	solution	needed	nse	pe nsed	sample.	sample.	l/gm	mg/kg	defauft spike?
I	2.47	1.1115	1.234	0.445	yes	1	7	0.223	0.225	0.515	40.486	efault (40 mg/kg) spike
I		0		0.000	no	0		i0/AIG#		#DIV/0i	#DIV/0i	#DIV/0! sfault (40 mg/kg) spike
!		0		0.000	ou	0		i0/AIG#		#DIV/0!	#DIV/0i	#DIV/0! pfault (40 mg/kg) spike
י		0		0.000	ou	0		i0/AIG#		#DIV/0i	#DIV/0i	#DIV/0! sfault (40 mg/kg) spike
!		0		0.000	no	0		i0//\lG#		#DIV/0i	#DIV/0i	#DIV/0! pfault (40 mg/kg) spike
'		0		0.000	uo	0		i0//\lG#		#DIV/0i	#DIV/0i	#DIV/0! pfault (40 mg/kg) spike
_ '		0		0.000	no	0		i0/AIG#		#DIV/0i	#DIV/0i	#DIV/0! pfault (40 mg/kg) spike
'		0		0.000	no	0		i0//\lG#		i0/AIG#	#DIV/0!	#DIV/0! pfault (40 mg/kg) spike
		0		0.000	no	0		i0/AIG#		i0/AIG#	#D1V/0!	sfault (40 mg/kg) spike
_ !		0		0.000	O.	0		i0//\lQ#		#DIV/0i	i0//IC#	#DIV/0! pfault (40 mg/kg) spike
_ '		0		0.000	OU.	0		i0/AIG#		#DIV/0i	#DIV/0i	#DIV/0! sfault (40 mg/kg) spike

3060A/7196A INSOLUBLE SPIKE CALCULATION

			82	88			
Z	Amount	Spiked	900.990	879.364	#DIV/0i	i0//\lQ#	#DIA/0i
CALCULATION	Weight of	Sample	2.5	2.47			
ً	Weight of	PbCr04	0.014	0.0135			

Validated By: JJY
Doc. Control #: AGN-XCRAPSCALC-01

Date Validated: 2/26/13

M L				
SA	CCL	ЛE	ST.	

Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

	••		Method	1 5W040	SUDUAV		ച	
						pH Meter ID:	<u>, , , , , , , , , , , , , , , , , , , </u>	· ·
				(1 2 -		Digestion Date		5-13
pH adj. start time:		914	· •	<u> 1.37</u>	•	pH adj. Date:	<u> 101611</u>	3
pH adj. end time:		<u>9.36</u>		1 45		GN Batch ID:	GING	3304
6 10-2-	_	pH after		pH after				
675278	Sample	HNO3	Final	H2SO4	bkg pH			
	Weight in		Volume	(1.5 to	after	Spike	Spike	Digestate
Sample ID	g	8.0)	(ml)	2.5)	H2SO4	Amounts	Solution	Description/Comments
CCV		7.42	100	215		Signl	10PM UTLA	
CCV						Ψ	<u> </u>	
ccv								
CCV								
ССВ		7.59	100	2.03				
CCB		,						
CCB						<u> </u>		
CCB	· · · · · · ·							
MS (SOI) DBS QYU-YR	347	7 33	1070	े उन	1-39.	LOME	1000000ABS	
MS (Insol.)	d.47	7. 82		ચ16	804	00(38	PBCIDG	
DUP & -GR	2.49	7.46		1.66	163	<u> </u>	4 40 40	
SB (Sol)	2.50	7.73		177	016	ROML	190APM ABS	
SB (Insol)		7.66		204	1.55	0.0140	PBC104	
MB	0	7 59		195	1.82			1
17B50090- 4K	241	7 23		1 53	0 17			Jellow
2 -2 1	244	7.40		3.38	195			Blown
3 - 3k	2.42	7 14		168	1.73			Park Brown
4 -4 5 -6	244	791		2.35	1-59			Van
	2.44	7.75	<u> </u>	1.79.	1.83			791
6								
7								
8		<u> </u>						
9				<u></u>				
10								
11	<u> </u>			<u> </u>				
12								
13								
14	ļ							
15								
16								
17				<u> </u>				
18								
19 20								
SB (Insol)	2.52	77 / 2	Î/m/2	0 1.	221	IntSamp!	100 1010	dilution / 50
MS (Insol.)	જે <u>ડે</u> ઇ	7.86	100	3/14	162	Imr sauny	1,2010 C~ II	
		7.82		1.95		10 a= = a()=	Δ	
PS(JB50090~UP) pH adjusted PS	347	1.03	11.	2-02	1.13	0.225mL100	bbwtho,	FV-50ml (12)
							 	
1:5 dil.) BSO090-YL	2.00			1				
Reagent Reference Ir	formation	refer to	attached	reagent re	oference i	nformation pa	na(s)	
{1000000 ug/g x Insolu) <u>4</u>
t 1000000 ag/g x 1118010	inie ahive	wi(g) x 32/	الماريد.	sample Wi	(9) - 111501	anie spike affic	June of F DOTO	· T
2nd analyst check:				Anayst:	BP.			
				a, o				

Form: GN-067 Rev. Date: 08/8/12

Hexavalent Chromium pH Adjustment Log

Method: SW846 3060A/7196A

pH adj. start time: pH adj. end time:

pH adjustment Date: __

GN Batch ID: GN GIN 9350L

	Sample		Final			
	Weight in	pH after	Volume	pH after		
Sample ID	g	HNO3	(ml)	H2SO4	Comments	Spike Info.
Calibration Blank	NA	7.33	100		0	
0.010 mg/l standard	NA	7. 86			10ppm Absolute	
0.050 mg/l standard	NA	7.79	100	1 97	10ppm Absolute	0.10 ml of 10 mg/l
0.100 mg/l standard	NA	7.65	100		10ppm Absolute	0.50 ml of 10 mg/l
0.300 mg/l standard	NA	7 22	100	1.17	10ppm Absolute	1.00 ml of 10 mg/l
0.500 mg/l standard	NA	7.58	100		10ppm Absolute	3.00 ml of 10 mg/l
0.800 mg/l standard	NA	1.37	100			5.00 ml of 10 mg/l
1.00 mg/l standard	NA	7.81	100			8.00 ml of 10 mg/l
		7.01		1.19	Toppin Absolute	10.0 ml of 10 mg/l
	,					
	·					
			-			
	 					
Reagent Reference Inf	ormation	- refer to a	ttaabad e			· ·

Reagent Reference Information - refer to attached reagent referer	Ce information page(s)
(1000000 ug/g x Insoluble spike wt(g) x 52/323.2)/ms sample wt(g) = 1	ioo information page(s).
$\frac{1.0000}{1.000}$ of aging \times misolable spike $W(0) \times \frac{1}{2} \times$	Insoluble spike amount of DbC-C4

Anayst:	BP	
Date:	10/16/13	

Form: GN068-01 Rev. Date:5/22/06

HEXAVALENT CHROMIUM STANDARD PREPARATION LOG

Product: ACR ATI96. GN or GP Number: CTA 93304

			ıκ	_		Г	_	_				Ü	_		_	_	_			_		
		Date	101101				7				Date	10/16/1	-		_			>				
		Analyst	ВP				>				Analyst	£₽	1		-			7				
	Expiration	Date	6/6/2016				5/31/2017			Expiration	Date	10 11 41 3	-			_		¥				
Final Conc. of	Intermediate	(l/gm)	10 mg/l	100 mg/l	5 mg/l	7.5 mg/l	10 mg/l		Final Conc.	Of Standard	(mg/l)	0.01 mg/l	0.05 mg/l	0.10 mg/l	0.30 mg/l	0.50 mg/l	0.80 mg/l	1.0 mg/l				
	Final	Volume	100 mls	100 mls	200 mg/l	200 mg/l	100 mg/l			Final	Volume	100 mls	100 mis	100 mls								
		Dilnent		Ы	D	ī	ā				Diluent	IG	ū	DI	Ю	ā	Ю	DI				
Stock	volume	used in ml	1.0 ml	10 ml	1.0 ml	1.5 ml	1.0 mf	Intermediate	or Stock	volume	used in ml	0.1 ppm	0.5 ppm	1.0 ppm	3.0 ppm	5.0 ppm	8.0 ppm	10.0 ppm				
	Stock	concentration	1000 ppm	1000 ppm	1000 ppm	1000 ppm	1000 ppm		Intermediate	or Stock	concentration	10.0 ppm										
		Stock used to prepare standard	Absolute Grade Lot #060613				Ultra lot #L00439			Intermediate or Stock used to	prepare standard	10.0 ppm abs	10.0 ppm abs	10.0 ppm abs	10.0 ppm abs	10.0 ppm abs	10.0 ppm abs	10.0 ppm abs				
Intermediate	Standard	Description	10 ppm	100 ppm	5 ррт	7.5 ppm	10 ppm			Standard	Description	.010 ppm	.050 ppm	.10 ppm	.30 ppm	.50 ppm	.80 ppm	1.00 ppm				

Form: GN205-02 Rev. Date:10/16/09

HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 3/8,354,355.137

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

			Temp. in deg. C Hot Plate # 1 -	Temp. in deg. C Hot Plate # ス -	Temp. in deg. C Hot Plate # ス -	Temp. in deg. C Hot Plate # V -
Digestion		į	Uncorrected/Correc	Uncorrected/Correc	Uncorrected/Correc	Uncorrected/Correc Uncorrected/Correc
Batch ID	Description	Time	ted	ted	ted	ted
15.00 S	Starting Time	16,43	43(44	91/91	16/15	16/16
PLEX.	Time 1	S1'L1	55/E3	91/61	9/[9]	91/91
	Ending Time	8h; <i>U</i> l	75/65	91/91	91/91	$q_{\ell}(q_{\ell})$
					-	
SC 750	Starting Time	05,71	43/64	15/15	16/16	9/61
S 38 (Time 1	62,8}	hspes	91/91	9/19/	97.64
	Ending Time	68:80	h5/E3	16/16	9/14/	9161
					,	
Esex	子子3分 Starting Time	18:55	15/63	61/61	161	90/91
983 Time 1	Time 1	19:25	43/84	6//6/	16/16	0(16)
	Ending Time	19:55	43/64	6/19/	91191	91/91

Analyst: NOO! 2nd Analyst Check: MYEH

Date: 10-(5-13

Rev. Date: 8/08/12 Form: GN074-02

	GN/GP Batch ID:	GIN9330(1.
--	-----------------	------------

Reagent Information Log - XCRA (soil 3060A/7196)

Reagent	Exp. Date	Reagent # or Manufacturer/Lot
Calibration Source: Hexavalent Chromium,		
1000 mg/L Stock	6/6/2016	ABSOLUTE GRADE #060616
Calibration Checks: Hexavalent Chromium,		
1000 mg/L Stock	10/31/2019	ULTRA #P00986
Spiking Solution Source	6/6/2016	ABSOLUTE GRADE #060616
Lead Chromate (Insoluble Hexavalent Chromium Spike)	7/26/2017	SIGMA ALDRICH # BCBG0578V
Magnesium Chloride, Anhydrous	9/2/2017	ALFA AESAR # H10X010
1N NaOH		
Digestion Solution	11/9/2013	GNG10-37704-XCR
Phosphate Buffer Solution	4/3/2014	6NE10-37639-XCKA
5.0 M Nitric Acid	3/25/14	CINEG-378CI-XCRA
Diphenylcarbazide Solution	11/4/13	CINEID- 37689 - XCP.
Sulfuric Acid, 10%	3/2014	CINIA - 37608 YCB
Filter	NA	Lot#130508059
Teflon Chips	NA	91920

Form: GN087A-21B Rev. Date: 2/18/10

en l	173						
MAN.	M None			,,			
₹.	AC	ÇL	П	E	5	ï	T.
æ.		~~~		_	_	_	

TEST: Ferrous Iron (FE2/7) METHOD: ASTM D3872-86

RDL: 0.20 %

F = Weight of Iron in a Vol. Of Dichomate in mL

ANALYST:		CB_		
DATE:	۵	الطنا	3	

GN BATCH: REAGENT ID's: See attached page

%Fe2/7 = ml Dichromate x F x 100 sample wt in g x (%sol/100)

OC Summary Dup. Sample ID:	Original: 1.02 1.02 Amt. Spiked: Result: <0.2 Amt. Spiked: Known:	Duplicate: 1.02 50.71 MS: 58.03 RDL: 0.2 Result:	RPD:	Units	Within limits? (Y/N)
			REC:		

Bottle #	Sample Description	Sample Weight in g	Start Time/End Time	Titrant Start in ml	Titrant End in mi	Titrant Total (ml)	Result in mg/l	Final Result in mg/l	RDL	Units
	GNMB	. ,	10:00 AM	_ O	0.10	0.10	0.134	40.a	ව.2	%
	GNB				37.50	37.50	For calma	ton only	ı	%
	1 JB47902-1FT		The same of the sa		0.75	0.75	1.0193	1.02		%
	GND	0.525	ă.		<u>0√75</u>	0.75	1.0197	1.02		%
	GNS	0.525	43-4597		42.70	4270	58.0351	58-03		%
	2. JB50090-4R	0.526	#4 _{C0}		0.35	ଚ.35	0.4966	0.50.		%
	3 JB49787-1R	0.580	No. 17		0,25	6.35	0.3840	0.38%		%
	4 JR49477-1R	0535	" 小	4	0.70	0.70	1.0145	1.04:00	V	%
	5									%
	6									%
	7									%
	8									%
	9 90 Solals		j		- ()(- ()	7				%
	10 JBH7902-1RT	94.8				# D				%
·	11 JB50090-4R	90.8	49 . 3 %	M.5-	.25	V 1977 A	\mathcal{T}'	50.71		%
	12 · JR49787-1R	4.25					.948			1 %
	13 JB49673-IR	88.9			, , ,		- '-18			%
	14									1 %
	15									<u>%</u>
	16					•			· · · ·	1 %
	17									%
	18									1 %
	19					;	<u> </u>			%
	20			T				 		% %

Reason codes for data corrections :	- reviewer error correction; 2 - transcription error	3-computer error: 4- englyst error
	ations, and correction, 2 - transcription attoly	3-computer error; 4- analyst error

ANALYST:	CB_	DATE: OLOLIGIA	_QC REVIEW:_	DN	DATE:	<u></u>	
COMMENTS:	·	/	T	1			
		لمنخف		$\leq =$			
		<u> </u>					

Form: GN-198

Reagent Information Log Fe2/7

Work Group #

Reagent

FINDS

Iron Wire Std

HCL (1:1)

GNEID - 37L51- SReact 415/11

GNEID - 37L51- SReact 415/11

GNEID - 37L51- SReact 415/11

GNEID - 37L53- Fe 2/7 415/11

GNEID - 37L53- Fe 2/7 415/11

GNEID - 37L53- Fe 2/7 415/11

GNE 9 - 375L5- Fe 2/7 3/2+/14

GNE 7 - 3L794 - SUISS 1/11/14

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN087-01 Rev. Date:12/19/2011

7
4

1
_

W L		
MAC	CUT	EST.

Balance #___B-14

Analyst	CB	
Method	Sulfs	
Prep Date	10/16/13	
GP# G	N 93317	

Sample Prep Log

Sample Prep Log							
Sample ID	Sample Siz	ze .	Final Volume				
MB		+ lom DI	Negative				
JB47902-1RT	10.58g		, ,				
-IFTDU	P 10.62 g						
JB50090-4R	10.119						
JB49787-1R	10.01 3 10.52 g						
JB49673-1R	10.52 9		V				
	J						
			,				
_							
			<u> </u>				

Form: GN166-02 Rev. Date: 8/5/05

	Туре	Sample Nam	Sample ID	Origin	Manual Diluti	Result	Status	Date / Time	
1	Unknown	CRI	A)	TOCSSMC	1.000	SSM-TC:0.07911m	Completed	10/16/2013	
2	Unknown	HSTD		TOCSSMC	1.000	SSM-TC:5.120mg/	Completed	10/16/2013	
3	Unknown	ICV		TOCSSMC	1.000	SSM-TC:2.013mg/	Completed	10/16/2013	
4	Unknown	CCV		TOCSSMC	1.000	SSM-TC:2.515mg/	Completed	10/16/2013	
5	Unknown	GP75181-M	OCLK	TOCSSM.m	1.000	SSM-TC:0.00255m	Completed	10/16/2013	
6	Unknown	GP75181-B2	J	TOCSSM.m	1.000	SSM-TC:0.1951mg	Completed	10/16/2013	
7	Unknown	JB50090-4R		TOCSSM.m	1.000	SSM-TC:3,404mg/	Completed	10/16/2013	orewaye.
8	Unknown	JB50090-4R	(B)	TOÇSSM.m	1.000	SSM-TC:3.606mg/	Completed	10/16/2013	(8.
9	Unknown	JB24887-1	Ĭ	TOCSSM.m	1.000	SSM-TC:0.01213m	Completed	10/16/2013	
10	Unknown	JB24887-1		TOCSSM.m	1.000	SSM-TC:0.01147m	Completed	10/16/2013	
11	Unknown	CCV	1	TOCSSMC	1.000	SSM-TC:2.521mg/	Completed	10/16/2013	

D31016\$1.70C

TOLLK

423384

VA 10/17413

10/16/2013 3:49:58 PM

TUCLK

ACCUTEST:

est:	To	tal	Organic	Carbon
'rodu				

Units = mg/kg

Balance ID: 739

GN Batch ID <u>UN93334</u>
Date <u>IDII6 | 13</u>

73101651.70c

Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

1.0000

1.0000 1.0000

1.0000

1.0000

Analyst____/A

¿DL = 1000 mg/kg or 100 mg/kg (circle one)

Sample ID	Sample Weight	Bottle #	Sample Description & comments
CRI			
MSTD			
IW			
ccv			
4P757B1 -mB1	1.000 0		
	0000		
GP75781 - BZ	10000		
	1.0000		
JB50090-4R	10.4.065		Overlange . Kenn at 0.19
	0.4034		0
	0.4144		*
	0.4114		
JB50090-4R	01034		
·	0.1015		
	0.1064		
	0.080		
JB 24887-1	1-0000		7824390-1 (100c-50) MOL TV=10000m
	1.0000	,	
1624887-1	1.0000		1624890-1
I		1	

Analyst: VA Manager Review: Comments:	Date: <u> </u>	QCReviewer:	Date	<u> </u>	
BSP = 100 UL B	20000 Me-CIL	-> 1:00	n Silica	Send	TV= 2000 melle
	(Gluces)			7

1624890-1

JB 24390 -1

Form: GN058-01 Rev. Date: 11/11/08

JB24387-1

1624887-1

ACCUTEST.

est: Total Organic Carbon

Units = mg/kg
Balance ID: $\beta - 34$

'roduct: TOC

Method: Corp. Eng. 81 M/SW848 9060 M or EPA Region 2 Lloyd Kahn (circle one)

Date 10/16/13

GN Batch ID (外

tDL = 1000 mg/kg or 100 mg/kg (circle one)

Analyst______

Sample ID	Sample Weight	Bottle #	Sample Description & comments
1824887-1	1.0000		JB24 890-1
	1.0000		
1B24887-1	1-0000		JB24390-1
	1.0000		
ecv			
JB24887-1	1.0000		1824890-1
	1.0000		
JB24887-2	1.000		1624890-2 TV=50pm molV
	1.000		
CCV	,		

nalyst: <i>∨A</i>	Date: 1016113 QCRevi	ewer:	Date:
anager Review:	Date:	· · · · · · · · · · · · · · · · · · ·	
omments:			

Form: GN058-01 Rev. Date: 11/11/08

MDL Schedule Log

Product:	TOC-LK	•
Matrix:	50	
Instrument:	TOC-D	
Sample #:	JB 24887-1 (MDL or	MDLVER x 7
Concentration:	/ DODY 10/16/130 mg/L or	mg/kg or
Prep:	STD B (GNE10-37711-TOC)
Sample #:		MDLVER x
Concentration:		mg/kg or
Prep:	IML OF 50,000 mg/c (bu	
	7 100 mc DI 17,0	
Date:	10/16/13	
Analyst:	VA	

Form: GN278-02

Batch #:

Revised: 10/16/12

instr.information

Instrument Options Catalyst

TOC/SSM/Sparge Kit/ Regular Sensitivity

<u>Sample</u>

Sample Name: Sample ID: Origin:

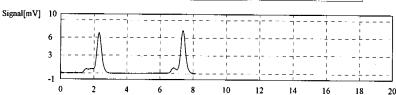
CRI

Status Chk. Result TOCSSMCAL.met

Completed

Unknown SSM-TC	1.000	1.000mg/uL	 	 SSM-TC:0.07911mg/L

1. Det


Anal.: SSM-TC

1 16.18 16.18 0.1175n 2 0.000 0.000 0.00081n 3 16.38 16.38 0.1190n	ւg/L 100.0mg 100սL	d31009s1.2013_10_09_10_01_03.cal	10/16/2013 9:47:48 AM 10/16/2013 10:02:13 AM 10/16/2013 10:14:22 AM

Mean Conc. CV Conc

0.07911mg/L

85.72%

Time[min]

<u>Sample</u>

Sample Name: Sample ID:

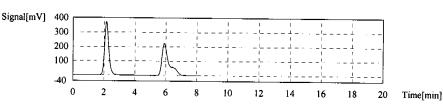
HSTD

Origin: Status Chk. Result

TOCSSMCAL.met Completed

Unknown SSM-TC 1.000 1.000mg/uL

1. Det


Anal.: SSM-TC

7.				Strate Control	AF Self Tools		- 1	maga a sa
î	707.9	707.9	5.108mg/L	100.0mg	100uL	d31009s1.2013 10	09 10 01 03.cal	10/16/2013 10:31:26 AM
2]	711.2	711.2	5.132mg/L	100.0mg	100uL	d31009s1.2013_10	09_10_01_03.cal	10/16/2013 10:38:55 AM

69 of 79 ACCUTEST JB50090R

Mean Conc. CV Conc

5.120mg/L 0.33%

<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result

ICV

TOCSSMCAL.met Completed

I I mlan a mark	0001.00	 				
Unknown	SSM-IC	 1.000	1.000mg/uL	 	 	SSM-TC:2.013mg/L

1. Det

Anal.: SSM-TC

1 275,0 2 282.8	275.0 1.985mg/L 282.8 2.041mg/L	100.0mg 100uL 100.0mg 100uL		09s1.2013_10_09 19s1.2013_10_09		cal			/2013 10:4 /2013 11:0				
Mean Conc. CV Conc	2.013mg/L 1.98%	Signal[mV] 200 140 70		\\ 		- [··	1 1 1	 	- 		1		
		-20	0 2	2 4	6	8	10	12	14	16	18	20	Time[min]

<u>Sample</u>

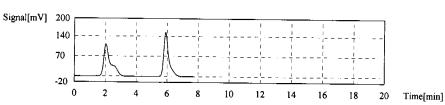
Sample Name: Sample ID: Origin:

CCV

TOCSSMCAL.met Status Chk. Result Completed

		1.19	
Unknown SSM-TC	1,000		
Olikilowii SSM-1C	1.000	1.000mg/uL	 \$\$M-TC:2.515mg/L

1. Det


Anal.: SSM-TC

· · · ·		3"	iku T	C. 14000	THE STATE OF THE S		and the second of the	Mary Street
1	348.9	348.9	2.518mg/L	100.0mg	100uL	d31009s1.2013	10 09 10 01 03 cal	 10/16/2013 11:10:21 AM
2	348.2	348.2	2.513mg/L	100.0mg	100uL	d31009s1.2013	10_09_10_01_03.cal	 10/16/2013 11:37:04 AM

d31016e1 toc tly

Mean Conc. CV Conc

2.515mg/L 0.14%

<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result GP75181-MB2 TOCLK TOCSSM.met Completed

Unknown SSM-TC	1.000	1.000mg/uL	 SSM-TC:0.00255mg/L

1. Det

Anal.: SSM-TC

1 3.280 2 3.563	3.280 0.00245mg/L 3.563 0.00265mg/L	1000mg 1000uL 1000mg 1000uL	d31009s d31009s	1.2013_10_ 1.2013_10_	09_10_01_0 09_10_01_0	3.cal			6/2013 11: 6/2013 12:				
Mean Conc. CV Conc	0.00255mg/L 5.66%	Signal[mV] 10				- + - <u>1</u>		 		 			
		-1 () 2	4	6	8	10	+ 	14	16	18	20	Time[min]

<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result

GP75181-B2

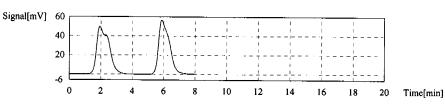
TOCSSM.met Completed

				 ···
Unknown SSM-TC			 	
Olikilowii SSM-TC	1.000	1.000mg/uL		SSM-TC:0.1951mg/L

1. Det

Anal.: SSM-TC

			100			* /
	270.1 270.1	0.1949mg/L	1000mg 1	000uL	d31009s1.2013_10_09_10_01_03.cal	10/16/2013 12:16:22 PM
2	270.5 270.5	0.1952mg/L	1000mg 1	000uL	d31009s1.2013_10_09_10_01_03.cal	10/16/2013 12:10:22 PM


71 of 79
ACCUTEST

JB50090R

LABORATORIES

31016c1 toc tly

Mean Conc. CV Conc 0.1951mg/L 0.10%

<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result

JB50090-4R


TOCSSM.met Completed

s Completed Result

Unknown SSM-TC	 1.000 1.000mg/uL	 SSM-TC:3.404mg/L

1. Det

Anal.: SSM-TC

<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result

JB50090-4R

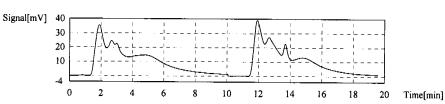
TOCSSM.met Completed

			1.7	·
Unknown SSM-TC	1.000	1.000mg/uL	 	SSM-TC:3.606mg/L

1. Det

Anal.: SSM-TC

1	521.8	521.8	3.641 mg/L	103.4mg	103uL	d31009s1.201	3 10 09 10 01 03 cal	 10/16/2013 2:24:06 PM	4
2	502.3	511.7	3.571 mg/L	101.5mg	101uL	d31009s1.201	3_10_09_10_01_03.cal	 10/16/2013 2:42:56 PM	+


_

TOC-Control L Report

d31016s1.toc.tb

Mean Conc. CV Conc

3.606mg/L 1.38%

<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result

JB24887-1

TOCSSM.met Completed

S Complete
Result

Unknown SSM-TC	1.000	1.000mg/uL	SSM-TC:0.01213mg/L

1. Det

Anal.: SSM-TC

*-						
1 18.20 2 15.21	18.20 0.01321mg/L 15.21 0.01105mg/L	1000mg 1000uL 1000mg 1000uL	d31009s1.2013_10_09_10 d31009s1.2013_10_09_10		10/16/2013 2:52:25 PM 10/16/2013 3:03:04 PM	<u>-</u>
Mean Conc. CV Conc	0.01213mg/L 12.57%	Signal[mV] 10 6 3			† - -	
		0	2 4 6	8 10	12 14 16	18 20 Time[min]

Sample

Sample Name: Sample ID: Origin: Status Chk. Result

JB24887-1

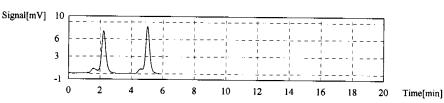
TOCSSM.met Completed

	_
Unknown SSM-TC 1.000 1.000mg/uL SSM-TC.0	
1.000 1,000mg/m2	.01147mg/L

1. Det

Anal.: SSM-TC

	e and explored		***
1 15.57 15.57 0.0	1131mg/L 1000mg 1000uL	d31009s1.2013 10 09 10 01 03.cal	10/16/2013 3:11:18 PM
2 16.01 16.01 0.0	1163mg/L 1000mg 1000uL		10/16/2013 3:17:55 PM


73 of 79
ACCUTEST.

JB50090R

LABORATORIES

Mean Conc. CV Conc

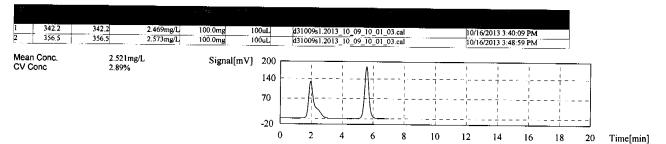
0.01147mg/L 1.96%

<u>Sample</u>

Sample Name: Sample ID: Origin:

CCV

TOCSSMCAL.met Completed


Status

Chk. Result

Unknown	SSM-TC	1	1.000	1.000mg/uL	 	 	SSM-TC:2.521mg/L	

1. Det

Anal.: SSM-TC

SSMLTO. 1000 - 1700

	Туре	Sample Nam	Sample ID	Origin	Manual Diluti	Result	Status	Date / Time
_ 1'	Unknown	JB24887-1	(A)	TOCSSM.m	1.000	SSM-TC:0.01290m	Completed	10/16/2013
2	Unknown	JB24887-1	Ĭ	TOCSSM.m	1.000	SSM-TC:0.01095m	Completed	10/16/2013
3	Unknown	JB24887-1		TOCSSM.m	1.000	SSM-TC:0.06023m	Completed	10/16/2013
4	Unknown	JB24887-1		TOCSSM.m	1.000	SSM-TC:0.01039m	Completed	10/16/2013
5	Unknown	JB24887-1		TOCSSM.m	1.000	SSM-TC:0.00927m	Completed	10/16/2013
6	Unknown	JB24887-2	MDL-V	TOCSSM.m	1.000	SSM-TC:0.00575m	Completed	10/16/2013
7	Unknown	CCV	ý	TOCSSMC	1.000	SSM-TC:2.499mg/	Completed	10/16/2013

D3101652.70C

TOCK

an 93334

UA LOTITHIS

1864 - 13 Property of 1 /44/44

√ /

75 of 79 ACCUTEST JB50090R

7.5

TOC-Control L Report

d31016s2 toc tly

instr.information

Instrument Options Catalyst

TOC/SSM/Sparge Kit/ Regular Sensitivity

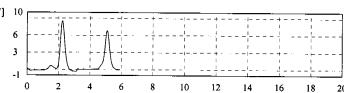
<u>Sample</u>

Sample Name: Sample ID: Origin:

JB24887-1

Origin: Status Chk. Result TOCSSM.met

Completed


•			
Unknown SSM-TC	1.000	1.000mg/uL	 SSM-TC:0.01290mg/L

1. Det

Anal.: SSM-TC

1	20.29	20.29	0.01472mg/L	1000mg	1000uL	d31009s1.2013 10 09 10 01 03.cal	10/16/2013 3:57:56 PM
2_	15.25	15.25	0.01108mg/L	1000mg	1000uL	d31009s1.2013_10_09_10_01_03.cal	10/16/2013 4:06:04 PM

Mean Conc. CV Conc 0.01290mg/L 19.93% Signal[mV] 10

Time[min]

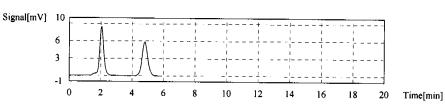
<u>Sample</u>

Sample Name: Sample ID: Origin: JB24887-I

Origin: TOCSSM.met
Status Completed
Chk. Result

University Property and			<u> </u>	
Unknown SSM-TC	1.000	1.000mg/uL		SSM-TC:0.01095mg/L

1. Det


Anal.: SSM-TC

1	15.47	15.47	0.01124mg/L	1000mg	1000uL	d31009s1.2013_10_09_10_01_03.cal	10/16/2013 4:32:17 PM
2	14.66	14.66	0.01066mg/L	1000mg	1000uL	d31009s1.2013_10_09_10_01_03.cal	10/16/2013 4:39:21 PM

10/16/2013 6:39:12 PM

Mean Conc. CV Conc

0.01095mg/L 3.77%

<u>Sample</u>

Sample Name: Sample ID: Origin: Status

JB24887-1

TOCSSM.met

Chk. Result

Completed

Unknown SSM-TC	1.000	1.000mg/uL	 SSM-TC:0.06023mg/L

1. Det

Anal.: SSM-TC

1 16.35 2 14.94	16.35 0.01188mg/L 149.4 0.1086mg/L	1000mg 1000uL 100.0mg 100uL			09_10_01_03 09_10_01_03				6/2013 4:4 6/2013 4:5				
Mean Conc. CV Conc	0.06023mg/L 113.54%	Signal[mV] 10 6 - 3 -			- · · · · - · · · · · · · · · · · · · ·	- + - 		+ · -		+ 	 		
		-1 <u>-</u>	2	4	6	8	10	12	14	16	18	20	Time[min]

<u>Sample</u>

Sample Name: Sample ID: Origin: Status Chk. Result

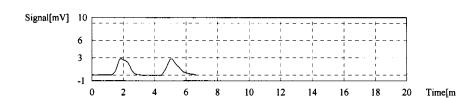
JB24887-1

TOCSSM.met Completed

Unknown SSM-TC:0.01039mg/L

1. Det

Anal.: SSM-TC


12.80			
1 13.89 13.89	0.01010mg/L 1000mg	1000uL d31009s1.2013_10_09_10_01_03.cal	10/16/2013 5:03:52 PM
2 14.70 14.70	0.01069mg/L 1000mg	1000uL d31009s1.2013_10_09_10_01_03.cal	10/16/2013 5:10:27 PM

77 of 79 ACCUTEST JB50090R

d31016s2.toc.tlx

Mean Conc. CV Conc

0.01039mg/L 3.98%

Sample 5 4 1

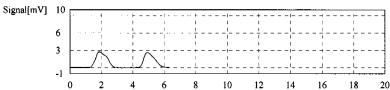
Sample Name: Sample ID: Origin: Status

JB24887-1

TOCSSM.met Completed

Chk. Result

7.64				
Tiplopano.	COM TO	1.000	1.000mg/uL	N TC000 OT 1420
Unknown	SSIVI-1C	1.000	1.000mg/uL	SSM-TC:0.00927mg/L


1. Det

Anal.: SSM-TC

1 13.14 13.14 0.00956mg/L 1000mg 1000uL d31009s1.2013_10_09_10_01_03.cal 10/16/2013_5:15:12_PM							
2 12.34 12.34 0.00898mg// 1000mg 1000mJ d31009c1.2013.10.09.10.01.03.cel 10/16/2013.5:22:22.PM	1 13.14	13.14	0.00956mg/L	1000mg	1000uL	d31009s1.2013_10_09_10_01_03.cal	
	2 12.34	12.34	0.00898mg/L	1000mg	1000uL	d31009s1.2013_10_09_10_01_03.cal	10/16/2013 5:22:22 PM

Mean Conc. CV Conc

0.00927mg/L 4.40%

Time[min]

<u>Sample</u>

Sample Name: Sample ID: Origin: Status

JB24887-2 MDL-V TOCSSM.met Completed

Chk. Result

	-
100 100 100 100 100 100 100 100 100 100	_
Unknown	mg/L

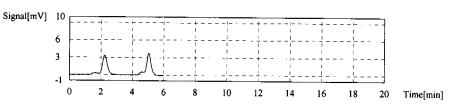
1. Det

Anal.: SSM-TC

1	7.715	7.715	0.00565mg/L,	1000mg	1000uL	d31009s1.2013_10_09_10_01_03.cal	10/16/2013 5:29:14 PM
2	8.006	8.006	0.00586mg/L	1000mg	1000uL	d31009s1,2013_10_09_10_01_03.cal	10/16/2013 5:37:21 PM

78 of 79 ACCUTEST JB50090R

10/16/2013 6:39:12 PM


. . . .

TOC-Control L Report

d31016s2 toc tlx

Mean Conc. CV Conc

0.00575mg/L 2.58%

<u>Şample</u>

Sample Name: Sample ID: Origin:

CCV

Origin: Status Chk. Result

TOCSSMCAL.met Completed

				 		í
						ı
Unknown	SSM-TC	1.000	1.000mg/uL	 10.00	SSM_TC-2 490mg/I	l

1. Det

Anal.: SSM-TC

1 349.7 2 343.0	349.7 343.0	2.524mg/L 2.475mg/L	100.0mg	100uL 100uL	d31009s1	2013_10_09 2013_10_09	9_10_01_0 9_10_01_0	3.cal			5/2013 5:59 5/2013 6:14				
Mean Conc. CV Conc	2.499 1.37%		Signal[mV] 200 140			- i · ·								
				70 -20							-		- ¦		
				0	2	4	6	8	10	12	14	16	18	20	Time[min

10/16/2013 6:39:12 PM

AECOM

APPENDIX B

Data Validation Report

Data Validation Report

Project:	Metropolitan Family Health Network Property - Site 186 Borings					
Laboratory:	Accutest, Dayton, NJ					
Laboratory Job No.:	JB50090 and JB50090R					
Analysis/Method:	Hexavalent Chromium SW846 3060A/7196					
Validation Level:	Full					
Site Location/Address:	947 Garfield Avenue, Jersey City, NJ					
AECOM Project No:	60238842.NGA.186.RAM					
Prepared by: Kristin Rut	herford /AECOM	Completed on: 10/23/2013				
Reviewed by: Mary Kozi	k /AECOM	File Name: 2013-10-23 DV Report_JB50090_R-F				

Introduction

The data were reviewed in accordance with the FSP-QAPP and the following NJDEP validation Standard Operating Procedure (SOP):

NJDEP Office of Data Quality SOP 5.A.10, Rev 3 (September 2009), SOP for Analytical Data Validation of Hexavalent Chromium - for USEPA SW-846 Method 3060A, USEPA SW-846 Method 7196A and USEPA SW-846 Method 7199.

The results of quality control data analyzed with site samples were used to assess the overall reliability of the data. The following qualifiers were used to identify data quality issues:

- U: Indicates the analyte was not detected in the sample above the sample reporting limit.
- J: Indicates the result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.
- UJ: Indicates the analyte was not detected above the reporting limit and the reporting limit was approximate.
- R: The sample result was rejected due to serious deficiencies; the presence or absence of the analyte could not be confirmed.
- RA: The sample result was rejected but is still considered usable.

Sample Information

The samples listed below were collected by AECOM on October 14, 2013 as part of the Metropolitan Family Health Network property, Site 186, 947 Garfield Avenue, Jersey City, New Jersey. Only the samples that were validated are listed below:

AECOM 2

Field ID	Laboratory ID	Matrix	Fraction
186-FB20131014 (Equipment Blank)	JB50090-1	Aqueous	Hexavalent Chromium
186-MFHT1-4-2.0-2.5	JB50090-2, -2R	Soil	Hexavalent Chromium
186-MFHT1-3-2.0-2.5	JB50090-3, -3R	Soil	Hexavalent Chromium
186-MFHT1-2-2.0-2.5	JB50090-4, -4R	Soil	Hexavalent Chromium
186-MFHT1-2.0-2.5X (Field Duplicate of 186-MFHT1-2.0-2.5)	JB50090-5, -5R	Soil	Hexavalent Chromium
186-MFHT1-2.0-2.5	JB50090-6, -6R	Soil	Hexavalent Chromium

The samples were collected following the procedures detailed in the Remedial Investigation Work Plan - Soil for Non-Residential Chromate Chemical Production Waste Site 186, Jersey City, New Jersey and the Field Sampling Plan/Quality Assurance Project Plan for Non-Residential and Residential Chromium Sites Hudson County, New Jersey (December 2011).

General Comments

The data package was complete. Quality control (QC) issues identified during validation are discussed below. Refer to the Soil Target Analyte Summary Hit List for a listing of all detected results, qualified results, and associated qualifications, where applicable.

Hexavalent Chromium

MS Results

Sample 186-MFHT1-2-2.0-2.5 (JB50090-4) was selected for the soil matrix spike analysis and used for supporting data quality recommendations. The soluble and insoluble matrix spike (MS) recoveries from the initial batch were 61.5% and 99.4%, respectively; the soluble MS recovery did not meet quality control criteria of 75-125%R. The post digestion spike (PDS) recovery was 85.8%, which met the PDS criteria of 85-115%.

Based on poor MS recoveries, less than 75%R, the MS and associated samples were reanalyzed using Method 7196. The soluble and insoluble matrix spike recoveries from the re-analysis were 60.8% and 132%, respectively; which did not meet the quality control criteria of 75-125%R. The post spike result for the re-analysis batch was recovered at 93.8%, which met the PDS criteria of 85-115%.

Since the soluble and/or insoluble MS recoveries were outside the acceptable QC limit of 75-125%, additional parameters were analyzed to determine if possible matrix interferences could be the cause for the poor matrix spike recoveries. All the soil samples were tested for pH and oxidation reduction potential (ORP) and plotted on an Eh/pH phase diagram chart. From this chart, the source sample for the matrix spike analysis was plotted below the phase change line, indicating reducing potential within the sample matrix, incapable of supporting hexavalent chromium. Analyses for ferrous iron, sulfide screen, and total organic carbon (TOC) were performed on the MS source sample to confirm the oxidizing/reducing potential within the sample matrix. The sulfide screen was reported as nondetect, indicating no reducing agents within the sample matrix; however, the ferrous iron (0.50%) and the TOC results (39,700 mg/Kg) were positive, indicating potential reducing agents within the sample matrix.

Since the MS recoveries from reanalysis batch showed no improvement, the soil hexavalent chromium results for all soil samples in this SDG were reported from the initial batch unless a higher result was reported in the reanalysis. The highest result for hexavalent chromium was reported for

AECOM 3

each sample. The reported results for hexavalent chromium in the soil samples from this SDG were qualified as estimated (J/UJ) due to the poor MS recoveries.

Laboratory Duplicate Precision

Sample 186-MFHT1-2-2.0-2.5 (JB50090-4) was selected by the laboratory to demonstrate laboratory precision capabilities. The absolute difference from the initial analysis was 0.0, which met the absolute difference criteria of less than or equal to the reporting limit (RL) for results less than 4X the RL. The absolute difference from the reanalysis (0.63 mg/kg) did not meet the absolute difference criteria of less than or equal to the RL for results less than 4X the RL. Since laboratory duplicate criteria were not met for the reanalysis, all detect values for soil hexavalent chromium samples reported from the reanalysis in this SDG were qualified as estimated (J) with the potential for bias in an unknown direction.

Field Duplicate Results

The field duplicate pair associated with the samples in this SDG was 186-MFHT1-2.0-2.5 and 186-MFHT1-2.0-2.5X.

The reportable results for hexavalent chromium (refer to the MS discussion above and the Target Analyte Hitlist in Attachment A) in the initial analysis were greater than 4X the RL in the parent and field duplicate samples. The relative percent difference criteria (<20% RPD) were met. The results for hexavalent chromium in the reanalysis were greater than 4X the RL in the parent and field duplicate samples; RPD criteria were not met. Since the results for hexavalent chromium in the field duplicate pair were reported from the initial analysis, no qualifications were required.

Data Quality and Usability

In general, these data appear to be valid and may be used for decision-making purposes. No data were rejected. Qualified results, if applicable, are presented in Attachments A and B below.

All the reported hexavalent chromium soil results in this SDG are usable as estimated values with the potential for low bias due to low soluble MS recovery, and since the MS sample matrix appears to be reducing based on the Eh-pH plot and the presence of TOC and ferrous iron.

The soil hexavalent chromium samples reported from the reanalysis are usable as estimated values, with unknown directional bias due to the poor laboratory duplicate precision.

ATTACHMENTS

Attachment A: Target Analyte Summary Hitlist(s)

Attachment B: Data Validation Report Form

Attachment A

Target Analyte Summary Hitlist(s)

AECOM Page 1 of 4

Soil Target Analyte Summary Hit List (Hexavalent Chromium)

Site Name Metropolitan Family Health Network Property, Site 186 Borings

Sampling Date October 14, 2013
Lab Name/ID Accutest, Dayton, NJ
SDG No JB50090 and JB50090R

Sample Matrix Soil Trip Blank ID NA

Field Blank ID 186-FB20131014

Field Sample ID	Lab Sample ID	Analyte	l(ma/ka)	Sample Result	Validation Sample Result (mg/kg)	IRI	Assurance	NJDEP Validation Footnote
186-MFHT1-2.0-2.5	JB50090-6	CHROMIUM (HEXAVALENT)	U	4.7	4.7	0.45	Qualify	18
186-MFHT1-2.0-2.5X	JB50090-5	CHROMIUM (HEXAVALENT)	U	5.6	5.6	0.45	Qualify	18
186-MFHT1-2-2.0-2.5	JB50090-4R	CHROMIUM (HEXAVALENT)	U	1.4	1.4	0.44	Qualify	8,18
186-MFHT1-3-2.0-2.5	JB50090-3	CHROMIUM (HEXAVALENT)	U	24.1	24.1	0.47	Qualify	18
186-MFHT1-4-2.0-2.5	JB50090-2	CHROMIUM (HEXAVALENT)	U	5.8	5.8	0.47	Qualify	18

Note: A "U" under Method Blank column indicates a nondetect result.

A "U" under the Laboratory Sample Result and Validation Sample Result columns indicates a nondetect result at the RL.

NJDEP Laboratory Footnote

- 1. The value reported is less than or equal to 3x the value in the preparation/reagent blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.
- 2. The value reported is greater than three (3) times but less than ten (10) times the value in the preparation/reagent blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to the preparation/reagent blank contamination. The "B" qualifier alerts the enduser to the presence of this analyte in the preparation/reagent blank.
- 3. The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the policy of NJDEP-DPFSR to negate the reported value as due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.

AECOM Page 2 of 4

4. The value reported is greater than three (3) times but less than ten (10) times the value in the trip/field blanks and is considered "real". However, the reported value must be quantitatively qualified "J" due to trip/field blank contamination.

- 5. The concentration reported by the laboratory is incorrectly calculated.
- 6. The laboratory failed to report the presence of the analyte in the sample.
- 7. The reported Hexavalent Chromium value was qualified because the Calibration Check Standard was not within the recovery range (90-110 percent).
- 8. In the Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of + 20 percent for sample results > 4xRL or + RL for sample results < 4xRL. Therefore, the result was qualified.
- 9. This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.
- 10. The reported value was qualified because the PVS recovery was greater than 115 percent.
- 11. The reported value was qualified because the PVS recovery was less than 85 percent.
- 12. The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.
- 13. The reported analyte was qualified because the associated Calibration Blank result was greater than the MDL.
- 14. The laboratory made a transcription error. No hits were found in the raw data.
- 15. This analyte is qualified or rejected because the laboratory exceeded the holding time for digestion and/or analysis.
- 16. The laboratory subtracted the preparation/reagent blank from the sample result. The Reviewer's calculation puts the preparation/reagent blank back into the result.
- 17. The photocopy is unreadable. Therefore, the QA reviewer cannot read the laboratory's reported concentration result.
- 18. The reported value was qualified because the predigestion spike recovery was less than 75 %, but greater than 50%.
- 19. The reported value was qualified because the predigestion spike recovery was greater than 125 percent.

AECOM Page 3 of 4

20. The non-detected value was qualified (UJ) because the redigestion spike recovery was less than 75 percent. The possibility of a false negative exists.

- 21. The reported result was qualified or rejected because the laboratory did not record the pH value(s) of the sample in a laboratory notebook.
- 22. The reported value was qualified (J/UJ) because the sample moisture content exceeded 50 percent.
- 23. The sample result was rejected because the soluble and insoluble matrix spike recoveries were less than 50%.
- 24. The detected sample result was qualified (J) because the incorrect spike concentration was used.
- 25. The reported sample results were rejected because the predigestion spike recovery was greater than 150 percent.
- 26. The reported sample results were rejected because the redigestion spike recovery was greater than 150 percent.
- 27. The reported value was qualified (J) because the redigestion spike recovery was less than 75 percent.
- 28. The reported value was qualified (J/UJ) because the sample digestion temperature was less than 90C.
- 29. In the Field Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of = 20% for sample results > 4xRL or + RL for sample results < 4xRL. Therefore, the result was qualified.
- 30. The reported value was qualified as estimated (J/UJ) but the bias is uncertain due to both high and low MS recoveries.
- 31. The reported result was greater than the MDL but less than the RL and qualified (J) as estimated by the laboratory.
- 32. The reported value was qualified because the sample replicate precision criterion of < 20% for method 7199 was exceeded.
- 33. The reported value was qualified (J/UJ) because the laboratory control sample (LCS) recovery was less than 80%.
- 34. The reported value was qualified (J) because the laboratory control sample (LCS) recovery was greater than 120%.
- 35. The reported result was qualified because the matrix spike analysis was not performed at the proper frequency.

AECOM Page 4 of 4

36. The reported result was qualified because the laboratory duplicate analysis was not performed at the proper frequency.

- 37. The result was qualified because the cooler temperature upon sample receipt exceeded 6C.
- 38. The reported value was qualified because the redigestion spike recovery was greater than 125 percent.
- 39. The reported result was rejected because the laboratory failed to perform the reanalysis due to insufficient sample volume.
- 40. The reported results was qualified because the laboratory failed to analyze an ending CCB.
- 41. The reported result was qualified because the laboratory failed to make the proper method specific pH adjustment.
- 42. The reported result was rejected because the laboratory failed to reanalyze the MS and associated sample(s) due to failed MS recoveries.

Attachment B

Data Validation Report Form

Client Name: PPG Industries	Project Number: 60238842.NGA.186.RAM
Site Location: Metropolitan Family Health Network Property Site 186 Borings, Jersey City, NJ	Project Manager: Al LoPilato
Laboratory: Accutest, Dayton, NJ	Type of Validation: Full
Laboratory Job No: JB50090 and JB50090R	Date Checked: 10/23/13
Validator: Kristin Rutherford	Peer: Mary Kozik

ITEM	YES	NO	N/A	COMMENTS
Sample results included?	Х			
Reporting Limits met project requirements?	Х			
Field I.D. included?	Х			
Laboratory I.D. included?	Х			
Sample matrix included?	Х			
Sample receipt temperature 2-6C?	Х			
Signed COCs included?	Х			
Date of sample collection included?	Х			
Date of sample digestion included?	Х			
Holding time to digestion met criteria? (Soils -30 days from collection to digestion.)	Х			
Date of analysis included?	Х			
Holding time to analysis met criteria? (Soils -168 hours from digestion to analysis; Aqueous - 24 hours from collection to analysis.	х			
Method reference included?	Х			
Laboratory Case Narrative included?	Х			

Definitions: MDL - Method Detection Limit; %R - Percent Recovery; RL - Reporting Limit; RPD - Relative Percent Difference; RSD - Relative Standard Deviation :Corr - Correlation Coefficient.

ITEM	YES	NO	N/A	COMMENTS
Initial calibration documentation included in lab package?	х			
1) Blank plus 4 standards (7196A) or blank plus 3 standards (7199)	х			
2) Correlation coefficient of >0.995 (7196A) or>0.999 (7199)	х			
3) Calibrate daily or each time instrument is set up.	х			
Calibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 Included in Lab Package?	х			
1) %R criteria met? (90 - 110%)	х			
2) Correct frequency of one per every 10 samples	х			
3) CCS and QCS from independent source and at mid-level of calibration curve	х			
Calibration Blanks	х			
Analyzed prior to initial calibration standards and after each CCS/QCS?	х			
2) Absolute value should not exceed MDL.	х			Hexavalent chromium detected below the MDL; no qualifications.
Method Blank, Field Blanks and/or Equipment Blanks Included in Lab Package?	х			
1) Method blank analyzed with each preparation batch?	х			
2) Absolute value should not exceed MDL.	х			
Eh and pH Data	х			
1) Eh and pH data was included and plotted for all samples?	х			
Soluble Matrix Spike Data Included in Lab Package?	х			
1) Soluble Matrix %R criteria met? (75-125%R).		х		See nonconformance table below.
2) Was the spike concentration 40 mg/Kg or twice the sample concentration?		х		Spiked at 44.4 mg/kg and 44.6 mg/kg; no impact to data.
3) Was a sample spiked at the frequency of 1 per batch or 20 samples?	х			
Insoluble Matrix Spike Data Included in Lab Package?	х			
1) Insoluble Matrix %R criteria met? (75-125%R).		х		See nonconformance table below.
2) Was the spike concentration around 400 to 800 mg/Kg?		х		Spiked at 1020 mg/kg and 968 mg/kg; no impact to data.
3) Was a sample spiked at the frequency of 1 per batch or 20 samples?	х			

ITEM	YES	NO	N/A	COMMENTS
Post Digestion Spike	х			
1) Post Digestion Spike %R criteria met? (85-115%R).	х			
2) Was the spike concentration 40 mg/Kg or twice the sample concentration?	х			
3) Was a sample spiked at the frequency of 1 per batch or 20 samples?	х			
Sample Duplicate Data Included in Lab Package?	х			
1) RPD criteria met? (RPD < 20% if both results are >4x RL or control limit of RL if both results are <4x)		х		See nonconformance table below.
2) Was a sample duplicate run at the frequency of 1 per batch or 20 samples?	х			
Was a Laboratory Control Sample (LCS) Included in Lab Package?	х			
1) %R criteria met? (80-120%R).	х			
2) Was an LCS analyzed at the frequency of 1/batch or 20 samples?	х			
Were any Field Duplicate samples submitted with this SDG?	х			
Were Field duplicate RPD criteria met? (RPD<20% for sample results >4x the RL.)		х		See nonconformance table below. No qualification since RPD was acceptable for reported results.
Were all sample quantitation and reporting requirements met?	х			
1) Were all solid samples reported with percent solids >50%?	х			
2) Were any samples analyzed or reported with dilutions?		х		No dilutions.
Miscellaneous Items	х			
1) For soils by 7196A, was the pH within a range of 7.0-8.0?	х			
2) For soils by 7199, was the pH within a range of 9.0-9.5?			х	
3) For aqueous by 7196A, was the pH with a range of 1.5-2.5?	х			
4) For soils (3060A), was the digestion temperature 90-95C for at least 60 minutes?	х			
5) For 7199, was each sample injected twice and was the RPD <20?			х	

AECOM Page 4 of 8

Matrix Spikes

Sample ID	Compound	Analysis Batch	Matrix Spike	-	Lower Limit	Upper Limit	PDS	PDS Limit
186-MFHT1-2-2.0-2.5	CHROMIUM (HEXAVALENT)	GP75260/GN93231	Soluble	61.5	75	125	85.8	85-115
186-MFHT1-2-2.0-2.5	CHROMIUM (HEXAVALENT)	GP75260/GN93231	Insoluble	99.4	75	125		
186-MFHT1-2-2.0-2.5	CHROMIUM (HEXAVALENT)	GP75278/GN93304	Soluble	60.8	75	125	93.8	85-115
186-MFHT1-2-2.0-2.5	CHROMIUM (HEXAVALENT)	GP75278/GN93304	Insoluble	132	75	125		

Lab Duplicates

Sample ID	Duplicate ID	Compound	Sample Result	Qual	Duplicate Result	Qual	QL	Units	Abs Diff
186-MFHT1-2-2.0-2.5	186-MFHT1-2-2.0-2.5	CHROMIUM (HEXAVALENT)	1.1		1.1		0.44	mg/kg	0
186-MFHT1-2-2.0-2.5	186-MFHT1-2-2.0-2.5	CHROMIUM (HEXAVALENT)	1.4		0.77		0.44	mg/kg	0.63

Field Duplicates

Sample ID	Duplicate ID	Compound	Sample Result	Qual	Duplicate Result	Qual	QL	Units	RPD
186-MFHT1-2.0-2.5	186-MFHT1-2.0-2.5X	CHROMIUM (HEXAVALENT)	4.7		5.6		0.45	mg/kg	17.5
186-MFHT1-2.0-2.5	186-MFHT1-2.0-2.5X	CHROMIUM (HEXAVALENT)	2.5		2.0		0.45	mg/kg	22.2

Percent Solids

Sample ID	Percent Solids (%)	Status
186-MFHT1-2-2.0-2.5	90.8	ok @50%
186-MFHT1-2.0-2.5	89.8	ok @50%
186-MFHT1-2.0-2.5X	88.8	ok @50%
186-MFHT1-3-2.0-2.5	84.9	ok @50%
186-MFHT1-4-2.0-2.5	85.5	ok @50%

AECOM Page 5 of 8

SDG#: JB50090	x - concentration	y - response
Batch: GN93231		
Cr+6 ICAL 10/15/13	0	0
Soil	0.01	0.009
(p. 49 of data pkg)	0.05	0.044
	0.1	0.089
	0.3	0.268
	0.5	0.446
	0.8	0.709
	1	0.898

(p. 49 of data pkg)

				(p. 10 01 data p
AECOM Calculated Intercept	-0.0005	OK	Reported intercept	-0.0005
AECOM Slope	0.8939	OK	Reported Slope	0.8939
AECOM Calculated r	0.99997	OK	Reported r	0.99997

LCS calculation	GP75260-B1 pgs	. 49		
Background Absorbance	0			
Total absorbance	0.787			
Total absorbance - background	0.787			
Instrument Concentration	0.881			
Sample weight (mg/kg)	0.0025			
Final Volume (L)	0.1			
Dilution Factor	1			
AECOM Calculated LCS Result (mg/Kg)	35.2	OK	Reported Result (mg/Kg)	35.2

%R = Found/True*100	p. 24				
True Value (mg/kg)		40			
AECOM Calculated %R		88.1	OK rounding	Reported %R	88.0

50

MS calculation	JB50090-4 [186-MFHT1-2-2.0-2.5] pg.		
Background reading	0		
Total absorbance	0.413		
Total absorbance - background	0.413		
Instrument Concentration	0.4626		
Sample weight (mg/kg)	0.00249		
Final Volume (L)	0.1		
Percent solids	0.908		

Dilution Factor

AECOM Calculated MS Result (mg/Kg)	1023	OK rounding	Reported Result (mg/Kg)	1020
%R = Found/True*100	JB50090-4 [186-N	MFHT1-2-2.0-2.5]	pg. 46	
True Value (mg/kg)	1020			
Native concentration (mg/Kg)	1.1			
AECOM%R	100.2	OK rounding	Reported %R	99.4
Percent Solids	JB50090-4 [186-l	MFHT1-2-2.0-2.5]	pg. 27	
Empty dish weight=	24.26			
Wet weight=	30.89			
Dry weight=	30.28			
AECOM%solids =	90.8	OK	reported %solids=	90.8
Reporting Limit	JB50090-4 [186-l	MFHT1-2-2.0-2.5]	pg. 46	
Low Standard	0.01			
Initial weight (mg/kg)	0.00247			
Final volume (L)	0.1			
Percent solids	0.908			
Dilution Factor	1			
Reporting Limit	0.45	OK rounding	Reported RL (mg/Kg)=	0.44

Sample Calculations

	JB50090-4 [186-I	MFHT1-2-2.0	-2.5] pg. 46	
Background reading	0.009			
Total absorbance	0.031			
Total absorbance - background	0.022			
Instrument Response	0.025			
Sample weight (mg/kg)	0.00247			
Final Volume (L)	0.1			
Percent solids	0.908			
Dilution Factor	1			
AECOM Calculated Result (mg/Kg)	1.1	OK	Reported Result (mg/Kg)	1.1

AECOM Page 7 of 8

SDG#: JB50090R	x - concentration	y - response		
Batch: GN93304	0	0		
Cr+6 ICAL 10/16/13	0	0		
Soil	0.01	0.009		
(p. 53 of data pkg)	0.05	0.044		
	0.1 0.3	0.091 0.267		
	0.5 0.8	0.448 0.701		
	1	0.701		
		0.901		(p. 53 of data pkg)
AECOM Calculated Intercept	-0.0002	OK	Reported intercept	-0.0002
AECOM Slope	0.8922	OK	Reported Slope	0.8922
AECOM Calculated r	0.99985	OK	Reported r	0.99985
ALGOW Galdwater	0.00000	OIC	Reported i	0.00000
LCS calculation	GP75278-B1 pgs	. 53		
Background Absorbance	0			
Total absorbance	0.852			
Total absorbance - background	0.852			
Instrument Concentration	0.955			
Sample weight (mg/kg)	0.0025			
Final Volume (L)	0.1			
Dilution Factor	1			
AECOM Calculated LCS Result (mg/Kg)	38.2	ОК	Reported Result (mg/Kg)	38.2
%R = Found/True*100	p. 24			
True Value (mg/kg)	40			
AECOM Calculated %R	95.5	OK	Reported %R	95.5
MO palaulatian	IDEANA ID MAA	MEUTA COCC	1 5 0	
MS calculation		-MFHT1-2-2.0-2.5] pg. აა	
Background reading Total absorbance	0 0.511			
Total absorbance - background Instrument Concentration	0.511 0.5729			
Sample weight (mg/kg)	0.00247			
Final Volume (L)	0.1			
Percent solids	0.908			
Dilution Factor	50	01/	Description Description (1971)	4000
AECOM Calculated MS Result (mg/Kg)	1277	OK rounding	Reported Result (mg/Kg)	1280

AECOM Page 8 of 8

%R = Found/True*100	JB50090-4R [186-MFHT1-2-2.0-2.5] pg. 24			
True Value (mg/kg)	968			
Native concentration (mg/Kg)	1.4			
AECOM%R	131.8	OK rounding	Reported %R	132.0
Percent Solids	JB50090-4R [186	-MFHT1-2-2.0-2.5	5] pg. 30	
Empty dish weight=	24.26			
Wet weight=	30.89			
Dry weight=	30.28			
AECOM%solids =	90.8	OK	reported %solids=	90.8
Reporting Limit	JB50090-4R [186	-MFHT1-2-2.0-2.5	5] pg. 53	
Low Standard	0.01			
Initial weight (mg/kg)	0.00247			
Final volume (L)	0.1			
Percent solids	0.908			
Dilution Factor	1			
Reporting Limit	0.45	OK rounding	Reported RL (mg/Kg)=	0.44

Sample Calculations

Sample Calculations				
	JB50090-4R [186	-MFHT1-2-	2.0-2.5] pg. 53	
Background reading	0.011			
Total absorbance	0.038			
Total absorbance - background	0.027			
Instrument Response	0.030			
Sample weight (mg/kg)	0.00247			
Final Volume (L)	0.1			
Percent solids	0.908			
Dilution Factor	1			
AECOM Calculated Result (mg/Kg)	1.4	OK	Reported Result (mg/Kg)	1.4

AECOM

APPENDIX C
Sidewalk Closure Permit

JERSEY CITY TRAFFIC PERMIT # 10181318

575 Rt. 440, J C NJ 07305 Phone: 201.547.4470 Fax: 201.547.4703

GARFIELD#947 Eng Pmt 13-1086

sidewalk closed, also UNION side

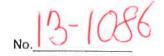
0700-1630 10/22/2013-11/18/2013 F

by of Entact LLC, 70 Carteret Av JC NJ 07305 (603) 204-8863 for replacement.

Call South pickmaster @201.376.3375 for offduty PD

THIS PERMIT MUST BE KEPT ONSITE SHOWN, IF REQUESTED, TO ENFORCEMENT PERSONNEL.

THIS PERMIT IS NOT VALID unless the applicant agrees to the following: traffic control devices shall be furnished, erected, maintained and removed by the contractor in accordance with the "Manual of Uniform Traffic Control Devices (FHWA)" and the "Barricade Manual (City of Jersey City)". Said applicant shall take precautions to prevent accident to life, limb or property. The applicant agrees to save the City, its officers, agents employees as their interest may appear, harmless from any and all loss or damage to any third person or party, or from any cost that may in any matter arise through the granting of this permit or the performance of any work done thereunder. All work must be done subject to all laws, ordinances and standards of the MUTCD.


UPON 3 DAYS NOTICE, CITY WORK WILL SUPERCEDE THIS PERMIT.

Monte Zucker

Cc: Engineering, South District

CITY OF JERSEY CITY
Street/Sidewalk Opening and Occupancy Permit

ONPORAIT SE	Control of the contro			Rev. 3/10
Work Requested	() Sewer() Combined/Sanitary() Storm Sewer) PS- Electric	() Other
SITE: 947 (House #)	6ARTIELD (Street Name)	AUR	Teksey ((Property Owner)	(Phone)
- 2.1	(Street Name)		(Street Name)	u ::
Start Date: 10-2	2-13 Duration: 1 Ma	n//days Ho	ours from 700	_am to <u>450</u> pm
i e	signalized intersection? (and the second second	~	
	NTACT LLC			
En	TACT LLC	T.6	IMBEL	
70	(Company Address)	ST. JE	Company owners in	127907 3 05
Phone:	03-204-886	Fax: 724	1-520-	-8540
And the second s	act: MATT BEN			
OFFICIAL USE ONL	Y			
Sewer: () ι	nder 2" () 3" & al Inder 6" () 8" & al () water / () sewer	bove (Approved Pl bove (Approved Pl	lan required) lan required) Water leak letter is	ssued()
	Approved by:	Qe	(Date)	10/18/13
STREET/SIDWALK	OPENING:	0	E /	A 115
() Attached	Administr	ration fee \$50.00 its amount	(ALL PERMITS) (\$50.00 ea. +	Adm; fee) Total \$////
+	Issued by pulloc	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(Date) 10/18/20R
STREET/SIDEWAL		U		
() Obtain Occu	pancy Permit within 30 days			
	Issued by:	M	(Date & No.)_\(2181318
BUILDING CONSTR	UCTION OFFICIAL:			

St. or Ave. Disapproved Borings
Test Pits Permit No. Date: Approved Sidewalk UST R.O.W. ₫(Sidewalk UST or Building 3 Cap 947 GARFIELD AVIZ ш≥ша S Sewer Date_ --MAIN SEWER--R.O.W. sidewalk R.O.W. sidewalk New o ☐ Water Opening Size Proposed work: INSPECTOR Comments: Applicant Address St. or Ave,