ATTACHMENT 7

REGULATORY CORRESPONDENCE

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION

RTMENT OF ENVIRONMENTAL PROTE Site Remediation Program 401 E. State Street, 6th Floor P. O. Box 028 Trenton, New Jersey 08625-0028 Tel. #(609) 292-1250 Fax. #(609) 777-1914

W. Michael McCabe Site Administrator Jersey City PPG Chromium Sites 12/12/12

BOB MARTIN

Commissioner

APPROVAL

Re: Spectra Energy Excavation Management Plan and Addendum Hudson County Chromium Sites 63 (PI #G000008691) and 65 (PI #G000008693) One Burma Road Jersey City, New Jersey

Dear Mr. McCabe:

The New Jersey Department of Environmental Protection (Department) has reviewed the Spectra Energy Excavation Management Plan (the Plan) distributed on November 6, 2012 and the Plan Addendum dated November 26, 2012 for the Spectra pipeline installation at 1 Burma Road (Hudson County Chromium Sites 63/65) in Jersey City, New Jersey. The Department hereby approves the Plan and Plan Addendum, effective the date of this letter.

The Department will consider the remediation of chromate chemical production waste (CCPW) complete, within the limits of the pipeline excavation corridor proposed in the Plan at the subject property, if implemented in accordance with the Plan. All relevant information to document the remediation of CCPW as outlined in the Plan, including a final survey to document the extent of the pipeline excavation corridor, shall be incorporated in the Remedial Action Report (RAR) for Sites 63/65 to be submitted at a future date. Should additional information become available subsequent to the date of this letter that indicates the presence of CCPW beyond the presumed limits outlined in the Plan, the CCPW must be addressed accordingly.

Please note that the Department's approval is based solely on the Plan's adequacy in addressing the CCPW and related constituents within the pipeline trench corridor, and does not consider the potential presence of any other non-CCPW contamination on Sites 63/65. Furthermore, the Department did not assess any of the protective measures for the installed pipeline or indemnification for potential impacts to the pipeline.

If you have any questions regarding this matter, contact me at (609) 984-2905.

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor Sincerely,

In

Thomas J. Cozzi, Assistant Director Site Remediation DEP

C: Brian McPeak, Project Manager Dave Doyle, DEP

150 Warren Street Suite 201 Jersey City, NJ 07302 Toll Free: (888) 568-7269

Texas Eastern Transmission, LP Algonquin Gas Transmission, LLC

EXCAVATION MANAGEMENT PLAN ADDENDUM

NJ-NY EXPANSION PROJECT 1 BURMA ROAD, JERSEY CITY

NOVEMBER 26, 2012

INTRODUCTION

Spectra Energy has received a certificate from the Federal Energy Regulatory Commission to construct a natural gas pipeline, in order to expand its service in the New Jersey – New York Metropolitan Area. A segment of the pipeline is aligned through Jersey City, parallel to the New Jersey Turnpike Extension.

The alignment runs through the property at 1 Burma Road. This property is one of a group of sites under investigation due to the historic use of chromite ore processing residue (COPR) as fill at these properties. The property at 1 Burma Road is referred to by the New Jersey Department of Environmental Protection (NJDEP) as Chromium Sites 63 and 65. PPG is working under a Judicial Consent Order (JCO) issued by the Superior Court of New Jersey to investigate and remediate chromium and a suite of other metals determined to be associated with COPR, at this property and others.

PPG has sampled soil and groundwater at the property as part of its Remedial Investigation (RI) and plans to conduct additional investigative activities in Fall 2012. PPG has indicated it plans to prepare a Remedial Action Workplan (RAW) for submittal to the NJDEP in early 2013, and implement remedial activities as early as Spring 2013.

A meeting was held on October 22, 2012 between the NJDEP, representatives of the Superior Court, PPG, and Spectra. On November 6, 2012, Spectra distributed an excavation management plan with a cross section describing the steps Spectra will take to remove all fill material that could contain COPR and chromium at concentrations above applicable standards. At a subsequent meeting on November 16, 2012, the NJDEP (by phone) and PPG requested clarification of certain aspects of Spectra's proposed excavation and pipeline installation plan.

PURPOSE

Spectra plans to begin construction of the pipeline through the 1 Burma Road property in November or December 2012. This Excavation Plan Addendum addresses the remaining issues raised by the NJDEP and PPG.

PROCEDURES

The proposed alignment of the pipeline through the 1 Burma Road property is shown on the alignment sheets in Attachment A. Attachment B shows the area that will be occupied by the proposed valve station and accompanying structure.

Excavation Depth

The NJDEP and PPG indicated that they are satisfied that Spectra's proposed depth of remediation will remove all detected chromium exceedances and any potential COPR along the alignment, and that for most of the alignment on the property, will remove all historic fill down to the native geologic material. In the northern part of the property, the excavation will not extend down to the bottom of the historic fill. The NJDEP requested that Spectra inspect the trench bottom in this portion for the presence of COPR and remove it if encountered. (PPG's investigations to date indicate that the presence of COPR at these depths is highly unlikely.) PPG indicated they would probably want to have a representative present during trench excavation, which is acceptable to Spectra. The NJDEP and PPG understand that Spectra will install the pipe immediately after trench excavation, and that there will be no provisions for surveying by third parties, post-excavation sampling or subsequent over-excavation based on sampling results.

Excavation Width

Spectra proposes to excavate a trench 11 feet wide, remove all excavated material for off-site disposal, and fill the trench with soil that meets the criteria defining certified clean fill in the NJDEP's Alternate and Clean Fill Guidance. Spectra has determined that PPG can safely conduct future remedial activities within 5.5 feet of the center line, and 3 feet from the edge, of the installed pipe. These activities can include excavation and sheet pile driving. Spectra's transmission division will provide oversight and guidance during PPG's anticipated remedial activities in proximity to the pipeline. Spectra will hold separate discussions with PPG regarding indemnification for potential impacts to the pipeline.

Spectra has informed PPG that equipment can be staged over the pipeline for future remedial work. Spectra has specific requirements for driving heavy equipment over its pipelines, including the use of mats and other weight-spreading techniques. Spectra's transmission division will provide oversight and guidance during any such activities.

Valve Station

The dimensions of the footprint of the proposed valve station are approximately 30 by 50 feet and are depicted in Attachment B. The footprint of the valve station will be excavated to a depth of 6.5 feet and all historic fill within this footprint will be removed. The excavation area will be backfilled with certified clean fill. PPG can safely excavate or drive sheeting to the edges of this valve station footprint.

Tetra Tech, on behalf of PPG Industries, Inc. (PPG) and Shaw have prepared the following responses to the NJDEP comments for the Site 63 and 65 Remedial Investigation Report. A response to each of the comments has been provided below each comment in bold text.

The RI report did not include any discussion of the presence of CCPW (including chromate ore processing residue [COPR]) other than identification of COPR in the boring logs provided in Appendix B. This issue of not identifying CCPW/COPR within the body of RI reports has been brought to the attention of PPG in the past on other sites (e.g., Site 114 off-site borings, Site 16 RIR). The presence and/or absence of CCPW (including COPR) needs to be identified, pursuant to Judicial Consent Order (JCO), in the text, tables, and figures in this, and subsequent reports, for all sites.

Response: The presence of CCPW/COPR has been added to the text, figures, and appendix of the RIR.

GENERAL COMMENTS

1. As per N.J.A.C. 7:26E-1.5 and 7:26E-4.8, all RIR submittals must be accompanied by a Remedial Investigation Report Form, and must be certified by PPG. The Department has commented numerous times on the need for PPG submittals to be accompanied by the appropriate certifications. Henceforward, reports submitted without the applicable certification and form will be considered not having been submitted to the Department, and will no longer be reviewed.

Response: The Remedial Investigation Report Form will be included in the final submission of the RIR.

2. Delineation has not been completed for PPG-related contamination present at either Site 63 or at Site 65 (the Sites) in either soils or groundwater. Additional investigation is required to complete the delineation. In addition, chromate chemical processing waste (CCPW) was detected in several borings without there being "clean" (non-CCPW-containing) borings between the boring location and the site perimeter. The extent of all CCPW must be fully identified.

Response: Based on the technical memorandum, conference calls, and discussions with NJDEP further delineation was conducted in December 2012 and January 2013. Delineation was performed according to the Technical Memorandum sent to NJDEP on July 16, 2012 with minor revisions as discussed with NJDEP. The delineation included the collection of soil samples from additional soil borings, installation and sampling of monitoring wells (deep and shallow), and the collection of soil samples for SPLP analysis. The results of the delineation are incorporated into the revised RIR in a separate section.

3. In the discussion of historic activities undertaken at the Sites, mention is made of historic sampling performed which indicated the presence of hexavalent chromium at concentrations greater than the current remedial standard, as well as the presence of CCPW. Those discussions suggest that some or all of these soils and/or CCPW remain on-site. Historic data associated with soils remaining on-site must be presented in the RIR in tables and figures as per N.J.A.C. 7:26E-4.8(c).

Response: Available historical data from sampling events after the Interim Remedial Action has been incorporated in Figures 6, 7a, 7b and 7c of the RIR. Text has been updated to incorporate historical data. An Appendix will present the available historical data as well as historical figures.

4. PPG may wish to develop site-specific impact-to-groundwater soil remedial standards (IGWSRS), consistent with one of the Department-approved methods identified at <u>http://www.nj.gov/dep/srp/guidance/rs/</u>. In addition, the discussions of IGWSRS exceedances should include evaluation of the groundwater elevation, as IGWSRS only apply to soils in the vadose zone.

Response: Site Specific IGWs were calculated with data obtained from the delineation data collected in December 2012. Text regarding this site specific IGW will be found in Section 4 as well in an Appendix. The figures, tables, and text will evaluate the soil samples in the vadose zone in relation to the IGWSRS.

5. The RIR must discuss data quality issues, including how those issues impact the findings of the Remedial Investigation. The RIR should discuss how the outcome of the validation reports presented in Appendix F impact the findings, and what impact samples having detection limits that were greater than remedial standards have on the conclusions presented in the RIR.

Response: The investigation was conducted in accordance with the approved RIWP that required the use of Method 6010. The laboratory reported the results to the Reporting Limit initially and after discussions with NJDEP and the laboratory the results of the laboratory analysis were reported to the Method Detection Limit. Additional text has been added to Section 2. The delineation sampling conducted in December 2012 and January 2013 will utilize Method 6020 that has a lower quantitation level for the metals of concern. The text in Section 2 and 4 has been revised based on the change to how the laboratory reported the data.

6. An updated receptor evaluation is required to accompany the final RIR.

Response: An updated receptor evaluation has been added to the RIR based on the NJDEP Receptor Evaluation Forms submitted during this remedial investigation.

7. As per an email dated 21 February 2011 from Environmental Remediation and Financial Services, LLC (ERFS, consultant to Jersey City), the City has no comments on the RIR at this time.

Response: Comment noted.

SECTION-SPECIFIC COMMENTS

1. <u>Title page:</u> Date should be January 2012, not January 2011. Please revise.

Response: The change has been made.

2. <u>List of Tables, page iii</u>: Table 13 is not listed. Please add.

Response: Table 13 is has been listed.

3. <u>Executive Summary, page ES-1, third and fifth paragraphs</u>: Note that the remedial criteria for CCPW-related metals are remedial standards for these Sites (and all sites governed by the 2009 Judicial Consent Order), not screening criteria. Please revise the text here and throughout the RIR to use the correct terminology.

Response: Text has been revised in the **RIR** to reflect the reference to CCPW-related metals remedial standards.

4. <u>Section 1.2.1, page 2, last paragraph</u>: The RIR should provide figures which show the nature and extent, including location and depth, of all Interim Remedial Measures performed to date at the Sites.

Response: See the response to General Comment 3

5. <u>Section 2.1, page 4, first bullet</u>: The text states that "Disposable, dedicated plastic trowels and paper bowls were used for soil sampling and homogenization." However, throughout the report reference is made to the usage of stainless steel trowels and stainless steel bowls for sample collection and homogenization activities. Please clarify the method which was used for sample collection and homogenization during this investigation.

Response: The text in Section 2.0 has been revised to disposable, dedicated plastic trowels and paper bowls for sample collection and homogenization activities.

6. <u>Section 2.1, page 4, second bullet</u>: Please note that henceforward, the method of sealing the borings should be consistent with the requirements of N.J.A.C. 7:9D-3.4.

Response: Comment noted.

7. <u>Section 2.1, page 4, last bullet</u>: Please confirm that all borings which were moved as described in this bullet have their positions accurately depicted on all applicable figures provided in the RIR.

Response: The locations/positions of the borings are accurately depicted on the figures.

8. <u>Section 2.2.1, page 6, last paragraph</u>: Please provide detail on how the high-density polyethylene (HDPE) liner was repaired.

Response: Text was added in Section 2.0 to describe how the liner was repaired.

9. <u>Section 2.3.1, page 6, second paragraph, first sentence</u>: Please provide the rationale for determining the placement of the wells screens in relation to the water table.

Response: The rationale for placement of the well screen was in accordance with the **RIWP** - 5 feet of well screen placed immediately below the water table or within visually impacted soils where appropriate. The text in Section 2.0 has been revised to include the rationale from the **RIWP**.

10. <u>Section 2.3.1, page 7</u>: Monitoring Well Certification Forms A and B should be provided in the RIR.

<u>Response:</u> Appendix C will be updated with the Monitoring Well Certification Forms provided by the driller.

11. <u>Section 2.3.3, page 7, first paragraph</u>: Figure 4 is identified incorrectly as "contour map". Figure 4 is "Cross-Section B-B" and Figure 5 is the correct "Contour Map" figure. Please correct.

Response: The text was corrected according to the comment.

12. <u>Section 2.3.4, page 7, first paragraph</u>: Please provide the rationale for not sampling all the wells during a single sampling event. For future sampling events, please sample all wells during the same time event.

Response: Text has been added to Section 2.0 to address the two sampling dates at the site. For the delineation sampling event the groundwater was sampled in a single sampling event in January 2013.

13. <u>Section 2.5, page 8</u>: Please include the investigation-derived waste (IDW) disposal documentation (e.g., manifests) in Appendix E, as is indicated by the text.

Response: Appendix E has been updated.

14. <u>Section 2.6.2, page 9, second paragraph</u>: Sentence states that "Trip blanks were not retained during this sampling event since volatile organic compounds were analyzed." Since volatile organic compounds were not analyzed, this statement is assumed to be a typographical error. Please clarify and/or correct this sentence to reflect rationale for not collecting trip blanks during this sampling event.

Response: Trip blanks were collected daily according to the **RIWP**. The text has been changed accordingly.

15. <u>Section 2.6.2, page 9, third paragraph</u>: The 3-step decontamination procedure identified is not consistent with the 3-step decontamination procedure established for PPG sites under the Quality Assurance Project Plan (AECOM, June 2010), which the March 2011 Remedial Investigation Work Plan for the Sites indicated would be used during implementation of the Remedial Investigation. Please discuss the results of the field blank samples for all environmental media as they relate to the adequacy of the revised decontamination procedure.

Response: Text has been added to the report in Section 2.0 to address the comment.

16. <u>Section 2.6.3</u>, page 9, third sentence: Please elaborate on which "quality control criteria" failed, and how this affects the dataset.

Response: Laboratory quality control requirements for the analysis of hexavalent chromium failed and the laboratory reanalyzed for hexavalent chromium as required by the laboratory method. Text has been added to Section 2.0 to address the comment.

17. <u>Section 3.4.1, page 11, second paragraph, eighth sentence</u>: The text states that "One industrial groundwater well was identified." Please disclose the details and any findings surrounding this industrial well in both the RIR and in the updated Receptor Evaluation.

Response: Text in Section 3.0 has been revised based on the information in the Receptor Evaluation Form.

18. <u>Section 3.5.2, page 11</u>: This report section should be renumbered to Section 3.4.2.

Response: This change has been made to the text.

19. <u>Section 4 and subsequent subsections</u>: The RIR should present information on the limits and extent of CCPW observed during installation of the Remedial Investigation sampling program. See General Comment 2.

Response: See response to General Comment 2. References to locations where COPR/CCPW was located will be incorporated throughout the document (mainly in Section 4.0) and figures.

20. <u>Section 4.0, page 12, second paragraph</u>: See General Comment 4 and Section-Specific Comment 3.

Response: See response to General Comment 4 and Section-Specific Comment 3.

21. <u>Sections 4.1.1, page 12</u>: It is noted that antimony contamination has not been fully delineated either vertically (e.g., 063_C009a) or horizontally (e.g., 063_B012, 063_B015, 063_D010, 065_A007065_A009). See General Comment 2. See also General Comments 4 and 5.

Response: See the response to General Comments 2 and 4.

22. <u>Section 4.1.3, page 13</u>: It is noted that hexavalent chromium contamination has not been fully delineated horizontally (063_B013). See General Comment 2.

Response: See the response to General Comment 2.

23. <u>Section 4.1.4, page 13</u>: It is noted that nickel contamination has not been fully delineated horizontally (063_B003a, 063_B013, 063_B014, 063_C011, 063_C012, 063_D009, 063_D010, 063_E003, 065_A005, 065_A006, 065_A007, 065_A008, 065_A0 9, 065_A 11, 065_A 12, 065_A 13, 065_A 14, 065_A 15). See General Comment 2. See also General Comments 4 and 5.

Response: See the response to General Comments 2, 4 and 5.

24. <u>Section 4.1.5, page 13, second paragraph</u>: An evaluation of the data set indicates that approximately 18 percent of the thallium samples had detection levels higher than the applicable remedial standards. Please describe how this impacts the findings of the Remedial Investigation. See General Comment 5.

Response: See response to General Comment 5. There are few concerns related to the impact of quantitation levels for thallium.

25. <u>Section 4.1.6, page 13</u>: It is noted that vanadium contamination has not been fully delineated either vertically (e.g., 063_C009a, 063_D006) or horizontally (e.g., 063_B003a, 063_B009a, 063_B013, 063_B014, 063_C003, 063_C011, 063_D009, 065_A005, 065_A006, 065_A008, 065_A009, 065_A011, 065_A013). See General Comment 2.

Response: See the response to General Comment 2.

26. <u>Section 4.2.1, page 14</u>: Please discuss the implications of four of the seven groundwater samples having non-detectable antimony results where the laboratory reporting limit is greater than the groundwater quality standards. See General Comment 5.

Response: See response to General Comment 5.

27. <u>Section 4.2.3, page 14</u>: It is stated that "Seven...samples contained hexavalent chromium", while Table 10 illustrates that there are three samples with hexavalent chromium detections. Further, it is reported that the hexavalent chromium samples collected on August 4, 2011 were analyzed beyond the acceptable holding time, and these samples were re-collected for subsequent analysis. Please discuss whether the analytical results of the hexavalent chromium groundwater samples collected on August 4, 2011 are valid and useable results and correct/modify the text as appropriate. Please include in this discussion the implications of the reanalyzed sample having a detection limit in excess of the groundwater quality standard for total chromium. See General Comment 5. In addition, the last sentence is incongruous and should be removed, as the allergic contact dermatitis endpoint is for soils, not groundwater.

Response: See response General Comment 5. Text has been added to Section 4.0 to address the non-compliance of the holding time for the hexavalent chromium samples. The last sentence of Section 4.2.3 has been removed.

28. <u>Section 4.2.4, page 14</u>: The text states that "Three samples had concentrations of nickel that exceeded...screening criteria..." while Tables 9 and 10 illustrate that there are two samples which have nickel exceedances. Please correct text to reflect data. Also please correct the typographical error in the last sentence.

Response: The text in Section 4.2.4 and Tables 9 and 10 have been corrected. Typographical error in the last sentence has been corrected.

29. <u>Section 4.3, page 15, first paragraph</u>: It is not appropriate to compare surface water results to groundwater quality criteria, nor is it appropriate to compare surface water results collected from a fresh water-containing feature to marine surface water quality standards. Therefore, use of the most stringent of the fresh surface water, marine surface water, and groundwater criterion for each contaminant results in an overly conservative assessment of surface water quality at the Sites. Please reevaluate the data based on comparison of the analytical results to the fresh surface water criteria, and revise this section of the RIR accordingly.

Response Section 4.3 will be revised according to the correct criteria.

30. <u>Section 4.4, page 15</u>: It is not appropriate to compare sediment samples to soil remediation standards. See Section-Specific Comment 46. Please reevaluate data against sediment screening levels and revise this section of the RIR accordingly.

Response: See response to Site-Specific Comment 46. Sediment samples will be compared to the NJDEP Ecological Screening Criteria that is presented in Table 4.

31. <u>Section 4.4, page 16</u>: The text states that "Antimony and vanadium were not detected...where sediment was obtained." Please correct this sentence, as vanadium detections were discussed in preceding paragraph.

Response: Text in Section 4.4 has been modified.

32. <u>Section 5.0, page 17:</u> The title of section is "Receptor Evaluation and Baseline Ecological Evaluation". There does not appear to be a portion of this section related to "receptor evaluations" and only focuses on environmentally sensitive natural resources (ESNRs). Section 3.4.1 of the RIR mentions the presence of an industrial well in proximity to the Sites. This well should be treated as a potential receptor and must be evaluated as such.

Response: This section of the RIR will be revised to include appropriate receptor evaluations. Based on the Receptor Evaluation Form no wells are located within $\frac{1}{2}$ mile of the site.

33. <u>Section 5.1.1, page 17, second paragraph</u>: The reference to Appendix J-1 should be updated. Also, the referenced Figure 4 does not distinguish land used for recreational purposes, per the legend. Please revise as necessary.

Response: This section will be revised based on the comment.

34. <u>Section 5.2, page 18, second paragraph</u>: The statement "the majority of the Site is covered with a liner, which is topped with gravel" is not consistent with the information provided in the cross sections presented as Figures 3 and 4. Please revise text for accuracy.

Response: The text will be revised to indicate approximately half of the site is covered with a liner.

35. <u>Section 5.2</u>, page 18, third paragraph: The statement "no surface water impacts are expected" must be removed unless the completed groundwater delineation supports it. Note that the groundwater delineation must include an evaluation of the subsurface infrastructure which may act as a preferential pathway for site-related contamination (as had been indicated would be done in Section 3.7.4.1 of the March 2011 Remedial Investigation Work Plan).

Response: With the completion of the delineation investigation, the subsurface infrastructure (mainly within Burma Road) will be evaluated along with the groundwater delineation. The RIR text will be revised with these results.

36. <u>Section 5.3</u>, pages 18-19: Since the surface water and sediment samples that were collected from a catch basin and storm sewer contained site-related contaminants, the location(s) of the outfall(s) to which the sewer and catch basin are tied need(s) to be included in the receptor evaluation.

Response:

37. <u>Section 6.0, pages 20-21</u>: The second sentence states that remedial actions were previously performed in 1988 and 1989; however, the RIR does not present any level of detail regarding the extent of those remedial actions, nor does it include post-remedial data collected during implementation of those interim remedial actions. The extent of, and residual contaminants associated with, the earlier remedial actions should be included in throughout the RIR and also be summarized in the conclusions section of the report.

Additionally, the "Conclusions" section of the RIR should describe the completeness of the delineation of all contaminants detected in each media at the Sites in concentrations in excess of remedial criteria, as well as a summary of concerns arising from the data quality assessment. See General Comments 2 and 5.

Response: See response to General Comments 2, 3, and 5. Section 6.0 has been modified to reflect the findings through the field investigation during the delineation activities in December 2012 and January 2013. Text has been added to Section 6.0 to address data quality assessments.

38. <u>Section 6.0, page 20, Soil, fourth and sixth bullets</u>: See General Comment 4.

Response: See response to General Comment 4.

39. <u>Section 6.0, page 20, Groundwater, third bullet</u>: The sentence states that "One sample had an estimated concentration of 16.8 ug/L that the screening criteria." This sentence is unclear, please modify.

Response. Sentence has been revised to be clear.

40. <u>Section 6.0, page 21, Groundwater, first bullet</u>: The text states "Five groundwater samples detected nickel." This is in conflict with data presented in Tables 9 and 10 of this report. Please verify correct number of samples with detectable concentrations of nickel, and modify the text and tables as appropriate.

Response: Text in Section 6.0, and Tables 9 and 10 have been revised.

41. <u>Section 6.0, page 21, Groundwater, third bullet</u>: The highest hexavalent chromium concentration is listed as "21.8 ug/L" for this sampling event. However, this sample was out of the hold time and cannot be validated at this concentration. In addition, the re-run sample result was 100 ug/L (U – non-detect). While there is no hexavalent chromium criterion for these Sites, please assign an asterisk (*) with this sample to denote that the sample result was out of lab compliance hold-time. See Section-Specific Comment 27.

Response: Text in Section 6.0 has been revised. See response to Section-Specific Comment 27.

42. <u>Section 6.0, page 21, Sediment and Surface Water bullets</u>: See Section-Specific Comment 29 and Section-Specific Comment 30.

Response: See response to Site-Specific Comments 29, 30 and 46. Text in Section 6.0 has been modified.

43. <u>Tables, General:</u> Please apply a constant number of significant figures throughout the values reported within all tables. There are currently inconsistencies with the number of significant figures reported, which could be the difference between an exceedance of a screening criteria/standard or not.

Response: Tables have been revised to be consistent with two significant digits.

44. <u>Table 1</u>: Please provide northing, easting, and elevation data for all soil borings (e.g., 063_C012, 063_D011).

Response: Table 1 has been modified accordingly to provide the northing, easting and elevation for all soil borings.

45. <u>Table 3</u>: Please include date the groundwater elevations were obtained. It is unclear if these measurements were from the August or September sampling event.

Response: Table 3 has been modified accordingly to show the date of the sampling event.

46. <u>Table 4</u>: Table 4 shows soil remediation standards as sediment screening levels. Sediment screening levels should be obtained from the NJDEP Ecological Screening Criteria table (<u>http://www.nj.gov/dep/srp/guidance/ecoscreening/esc_table.pdf</u>). Also, please provide a definition for "SWFWAC" and remove the term "SWFWHH," which is not used in the table, from the notes. Also please explain why the groundwater quality standards were used as a "screening level" for surface water when a surface water quality criterion for (trivalent) chromium exists (and can be found at N.J.A.C. 7:9B-1.14(f)), and why a marine surface water criterion was selected for nickel when the drainage swales contain only fresh water.

Response: Table 4 has been revised to include the acronyms and definitions. Table 4 has been revised to include the Sediment Screening Criteria. Text has been added to Section 4.0 to address the reasoning behind choosing the screening criteria.

47. <u>Tables 5 and 9:</u> It is noted that there are samples which are non-detect (U) with detection limits that exceed the applicable standard. Please flag these outliers within Table 5 and Table 9. Also, see General Comment 5.

Response: Tables 5 and 9 have been revised based on the comment.

48. <u>Table 10</u>: Please add a note to indicate that the hexavalent chromium samples listed in the table were out of holding-time and are non-compliant with laboratory quality standards. Also, see General Comment 5.

Response: A note has been added to Table 10 to indicate which samples were noncompliant based on the holding-time requirements.

49. <u>Table 11</u>: See Section Specific Comment 46.

Response: Table 11 has been revised accordingly. See Response to Section Specific Comment 46

50. Figures 2 and 5: Please correct the road name to the south of the Sites on these figures.

Response: Figures have been updated.

51. <u>Figures 10, 11, 12 and 13</u>: The isoconcentration maps included with this report illustrate the undefined boundary of groundwater contamination at the Sites. The current groundwater plume is not bound by any data in the southeastern direction, which is also the direction offsite toward the nearest body of water (Upper New York Bay). Please take these isoconcentration maps into consideration during further groundwater plume delineation activities.

Response: Comment noted.

52. <u>Appendix B</u>: There are borings shown on the figures for which there are no boring logs (e.g., 063_B003a, 063_D011). Additionally, the information in the "Field notes and sample summary" does not always accurately reflect the information presented in the "Burmeister System Soil Description" (e.g., 065_A004, 063_B010, 063_B013, 063_004a, 063_C011, 063_E005). Please revise the RIR to ensure all field data is accurately reflected in the figures, tables, text, and appendices.

Response: Appendix B has been fixed to include all boring logs.

53. <u>Appendix G</u>: See General Comment 5 regarding detection limits being sufficient to determine compliance with remedial standards. Please revise data presentation as necessary.

Response: See the response to General Comment 5. Data will be presented with the new detection limits.

54. <u>Appendix H</u>: It is noted that the "screening criteria" identified are promulgated remedial standards. See General Comment 5 regarding detection limits being sufficient to determine compliance with remedial standards. Please revise data presentation as necessary.

Response: See the response to General Comment 5.

55. <u>Appendix I</u>: See Section-Specific Comment 29. Also see General Comment 5 regarding detection limits being sufficient to determine compliance with remedial standards, and revise data presentation as necessary.

Response: See response Section Specific Comment 29 and General Comment 5.

56. <u>Appendix J</u>: See Section-Specific Comment 30.

Response: Appendix J has been modified according to comment. See response to Site-Specific Comment 30.

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION

ARTMENT OF ENVIRONMENTAL PROT Site Remediation Program 401 E. State Street, 6th Floor P. O. Box 028 Trenton, New Jersey 08625-0028 Tel. #(609) 292-1250

BOB MARTIN Commissioner

4/11/13

W. Michael McCabe Site Administrator Jersey City PPG Chromium Sites

Re: Remedial Investigation Report Non-Residential Chromate Chemical Production Waste Sites – Sites 063 and 065; PI# G000008791 and PI# G000008693 Burma Road, Jersey City, New Jersey

Dear Mr. McCabe:

The New Jersey Department of Environmental Protection (Department) has completed review of the *Remedial Investigation Report, Sites 063 and 065; Jersey City, New Jersey* (RIR) prepared by Tetra Tech for PPG Industries dated March 2013.

The Department has determined that the RIR is administratively complete and approvable provided the following conditions are met. Note that each of the below-listed conditions must be addressed as identified in the specific bullet:

- PPG will finalize and resubmit the RIR to include the below listed corrections and submit the final RIR to the Department consistent with the timeframes established in the Master Schedule. Items to be addressed in the final RIR include:
 - Submittal of an updated and appropriately signed RIR Form consistent with the delineation limitations identified below. Please utilize the most current version (3/25/13) of the RIR Form, available on the Department's website. In addition, the form should be corrected to reflect the current site use (vacant), Section M (formerly Section K) should be corrected to reflect that a groundwater investigation was triggered pursuant to N.J.A.C. 7:26E-3.7 and 4.4(a), and responses for all questions within Section N (Ecological Receptors) should be provided;
 - Submittal of an updated and appropriately signed Receptor Evaluation form for soils at the sites pursuant to N.J.A.C. 7:26E-4.9(a)2. Please utilize the most current version (5/7/12) of the Receptor Evaluation Form, available on the Department's website. In addition, please update the reference in the first paragraph of Section 5.0, since the receptor evaluations are provided in Appendix G;
 - Submittal of full data deliverable packages and electronic data deliverables pursuant to N.J.A.C. 7:26E-1.6(a)5.

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor

- PPG indicated during a February 19, 2013 meeting that the remedial action for the sites would be comprised of full excavation, as depicted on Figure 20 of the RIR. Therefore, the Department will allow the remedial limits to be finalized as follows during the pre-design phase of the remedy. The approach for the pre-design investigation (PDI) must be incorporated into the Remedial Action Work Plan (RAWP) and PDI results submitted to the Department consistent with the timeframes established in the Master Schedule.
 - <u>Soil</u>: Finalize via pre-excavation or pre-design sampling the remedial limits to the north/northwest of boring 063_E005 (visible CCPW), to the north/northwest of borings 063_B013 and 063_C014 (vanadium, hexavalent chromium, and visible CCPW) and to the east of 063_B003 (vanadium and visible CCPW); and,
 - Impact to Groundwater (IGW): If PPG intends to use the evaluation of historic fill as part of their Impact to Groundwater Soil Remediation Standard (IGWSRS) determination; multiple lines of evidence should be supplied. Otherwise, the remediation of IGWSRS exceedances must be incorporated into the RAWP/remedial design.
- Since groundwater contamination has been confirmed, additional groundwater remedial investigation is required. The findings may be reported in a groundwater RIR addendum. The groundwater delineation may be completed following implementation of the soil remedy. During the investigation of groundwater, PPG must determine the locations and invert depths of all utilities in the vicinity of impacted groundwater and compare those data to the horizontal and vertical limits of the impacted plume to determine if there is a potential for contaminant migration along utility bedding and/or infiltration into utilities. An updated Receptor Evaluation and Ecological Evaluation, based on groundwater delineation results, must be also completed and submitted with the groundwater RIR addendum.

If you have any questions regarding this matter, contact me at (609) 984-2905.

Sincerely,

lan

Thomas J. Cozzi, Assistant Director Site Remediation DEP

C: Brian McPeak, Project Manager Dave Doyle, DEP

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Site Remediation Program 401 E. State Street, 6th Floor P. O. Box 028 Trenton, New Jersey 08625-0028 Tel. #(609) 292-1250

BOB MARTIN Commissioner

7/10/13

CHRIS CHRISTIE Governor

KIM GUADAGNO Lt. Governor

> M. Michael McCabe Site Administrator Jersey City PPG Chromium Sites

CONDITIONAL APPROVAL

Re: Remedial Action Work Plan Non-Residential Chromate Chemical Production Waste Sites Hudson County Chromate Sites 63 and 65 1 Burma Road Jersey City, New Jersey SRP - PI #G00000891 and #G000008693

Dear Mr. McCabe:

The New Jersey Department of Environmental Protection (Department) has completed review of the *Remedial Action Work Plan; Non-Residential Chromate Chemical Production Waste Sites; Hudson County Chromate Sites 63 and 65, 1 Burma Road, Jersey City, New Jersey* (RAWP) prepared by CB&I for PPG Industries dated April 2013 and the Response to Comments memorandum, submitted electronically on 26 June 2013.

The Department hereby approves the RAWP, conditional upon: 1) the submittal of the Final RAWP, 2) the submittal of a complete and appropriately signed RAWP Form, and 3) the submittal (consistent with the timeframes established in the Master Schedule dated June 14, 2013) of specific design deliverables requested by the Department including but not limited to the proposed excavation cut lines, the Air Monitoring Plan (AMP) and traffic safety/control plan.

If you have any questions regarding this matter, contact me at (609) 984-2905.

Sincerely,

Thomas J. Cozzi, Assistant Director Site Remediation DEP

C: Brian McPeak, Project Manager Dave Doyle, DEP

MEMORANDUM

То:	Tom Gibbons, PMP
From:	William Moran
	Marshall King, PE
Subject:	Response to Comments regarding Draft Cutlines and Tables from Weston Solutions dated
	November 14 and December 19, 2013
Project:	PPG, Site 63/65, 1 Burma Road, Jersey City, NJ
Report Date:	January 9, 2014

We have reviewed Weston Solution's (Weston's) comments and conditional acceptance of the cutlines and tables for Sites 063 and 065. As indicated in the comments from Weston and as specified in our cutline tables, additional post excavation samples will be required for both depths and sidewall confirmation of remediation. This will be performed in the Remedial Action phase of the project.

The cut line cross-sections will be revised as noted in Weston's comments such that the final version issued for bid as part of the final bid documents will accurately depict the excavation limits.

We would like to address the following comments specifically, using the topic headings presented by Weston:

Weston Comments:

General:

• For ease of use by the excavation contractor, it is recommended that the cut lines be revised to reflect elevations rather than depths.

CB&I: Cutline figures reflecting elevations have been provided to contractors in the bid specification package.

• Comments on the site-specific impact-to-groundwater soil remediation standard for nickel will be provided in a separate email responding directly to that submittal.

Boring/Sample Locations Missing from Table 2 (related to CCPW elevations):

The following boring locations are shown on Figure 5, but not on Table 2. The review of the extent of excavation cannot be completed without knowing the proposed excavation depths at these locations. Please provide backup information to support the proposed excavation depths at these specific locations: *CB&I: Generally, proposed excavation depths are based on observations/sampling conducted at the boring locations as well as on a Kreiging algorithm that takes into account information from surrounding sample locations.*

· 065_A010SS

CB&I: Proposed Excavation Depth= 0 ft bgs - Surficial sediment and surface water sample location with depth of 0 to 0.5 ft only. No CCPW observed at this location.

063_C013A

CB&I: Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location. As CCPW was not identified at this location, the nickel hit reported for this location is being attributed to other fill materials utilized by NJTP during the construction of the roadway and is not related to CCPW, therefore PPG is not responsible for its remediation.

· 063_C014A

CB&I: Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location. As CCPW was not identified at this location, the nickel hit reported for this location is being attributed to other fill materials utilized by NJTP during the construction of the roadway and is not related to CCPW, therefore PPG is not responsible for its remediation.

063_E005CB

CB&I: Proposed Excavation Depth= 0 ft bgs - Surficial sediment and surface water sample location with depth of 0 to 0.5 ft only.

063_F005

CB&I: Proposed Excavation Depth= 2.5 ft bgs - CCPW observed from 0 to 2.5 ft bgs during installation of MW-9 in this location.

• 063_E008 or 063_F008 (unclear on Figure 5)

CB&I: Locations is 063_E008 and it appears that it was never actually drilled or sampled. No data is available from previous submittals by others.

063 F009

CB&I: Location is also named 063_MW-12 on plans. No data is available from previous submittals by others. Data from CB&I installation of MW-12 = Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location and no CCPW-related metals reported in laboratory analytical samples. • 063 F010A

CB&I: Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location and no CCPW-related metals reported in laboratory analytical samples.

(Backup information was not provided, as requested; therefore, Weston remains unable to determine whether the excavation depths proposed in these areas is adequate.) **CB&I:** Backup information provided above.

It is noted that no samples were collected in the area along cross-section E-E' between stations 3+00 and 4+00. Based on information presented on Table 1, at 063_ED09 [ED009], chromate chemical process waste (CCPW) is present between 0 and 2.5 feet below ground surface (ft bgs) and contamination through 4 ft bgs. Likewise, at 063_ED10 [ED010], CCPW is present between 1 and 4 ft bgs. Therefore, these sampling locations cannot serve as sidewall samples documenting the completeness of remedial action, and the portion of the site between them should be assessed for the presence of CCPW/CCPW-related contamination, and included in the Areas Requiring Remediation, as appropriate.

CB&I: The extents of Areas Requiring Remediation have been modified to account for the observed CCPW. See also Figure 20 of approved RI report.

<u>Excavation Depths Not Presented on Cutlines</u>: Please provide elevation (depth) values on Figure 5 for the following areas:

- Areas centered on 063_C006 and 063_C007
- · Areas centered on CD014 and 063_B010a
- Line connecting BD006 to CD017 (excavation depths not identified on revised drawings)
- Line connecting 063-B011 to near CD018
- Area DD007 to 063_C010 and northwest to the excavation boundary

CB&I: Figure 5 has been updated to provide values on the contours centered around the above locations.

It is noted that elevation lines are not shown on Figure 5 in the area along cross-sections C-C' and D-D' between stations 3+00 and 4+00. Figure 5 indicates that this is not included in the area requiring remediation; however, the C-C' and D-D' cross-sections and data collected from the margins of this area suggest differently. See Boring/Sample Locations Missing from Table 2 (related to CCPW elevations) specific to cross-section E-E' between stations 3+00 and 4+00.

CB&I: The extents of Areas Requiring Remediation have been modified to account for the observed CCPW.

<u>Contamination Beyond Proposed Excavation Limits</u>: The following boring locations have identified CPPW and/or site-related contaminant(s) present at concentration(s) greater than remediation standards which are not captured by the proposed limits of the excavation. The remedial limits must be expanded to achieve remedial goals for the site.

• The cross sections must be revised to address those locations which require excavation which are not indicated as such:

o Southwestern corner of Site 63

§ AD001: The thickness of CCPW at the identified "edge" of the excavation suggests that the remedial excavation may need to be extended to the south and west in this area. Table 1 shows top of clean at 6.5 ft bgs; bottom of CCPW at 4.5 ft bgs; and no recovery noted on the boring log from 5-6.5 ft bgs.

CB&I: The extents of Areas Requiring Remediation have been modified to account for the observed CCPW.

A cross section needs to be developed for the area to the northeast of the Spectra easement at the northeast corner of Site 63 (i.e., associated with sample locations 063_C013, BD009, BD010, 063_B014, AD011, 063_C014). This could be shown as an extension of cross-section B-B', or could be a "stand-alone" cross section.

CB&I: Cross section F-F' added to cut sheet figures.

• AD002: Since no clean sample was observed beyond 7.0 ft bgs (hexavalent chromium [Cr+6], antimony [Sb], thallium [TI], and vanadium [V] all exceed their respective remedial criteria at 7.0 ft bgs), PPG may need to extend the vertical extent of the remedial excavation beyond the proposed depth of approximately 7.5 ft bgs. Documentation of the adequacy of the remedial extent must be provided for this location by collection of clean confirmation samples.

CB&I: Acknowledged, a base post-excavation sample will be needed at this location.

• 065_A006: PPG must identify how the exceedance of the thallium default impact to groundwater soil remediation standard (IGWSRS) will be addressed in this area. Table 2 shows bottom of CCPW at 1.5 ft bgs and top of clean at 3.8 ft bgs, with a proposed excavation depth of approximately 5.5 ft bgs on Figure 3 cross-section. However, Table 5A in the March 2013 Remedial Investigation Report (RIR), notes TI at 5.6U [above IGW] at 8.2 ft bgs.

CB&I: As demonstrated in the attached package, the analysis of this Thallium issue through compliance averaging shows that this location is not a concern. This sample result is a non-detect. Thallium was not detected in 318 out of 328 RIR samples and not detected in any of 272 Remedial Design Boring samples. The maximum detectable concentration of Thallium was 1 ppm. Since the average for Thallium across the site is well below the Impact to Groundwater Soil Screening Level (IGWSSL), we believe that the depth of excavation in the area should 3.8 ft bgs as per the top of clean sample result for this location.

• AD003: PPG must extend the vertical extent of the remedial excavation, with documentation of the adequacy of the remedial extent by clean confirmation samples. The excavation in this location is proposed

to a depth of approximately 8.5 ft bgs, however, Cr+6, Sb, and Tl exceed criteria at 8.5 ft bgs, and no deeper clean sample is present at this location.

CB&I: Acknowledged, a base post-excavation sample will be needed at this location.

BD008: PPG must extend the vertical extent of the remedial excavation at this location (adjacent to the pipeline) with documentation of the adequacy of the remedial extent by clean confirmation samples. The proposed excavation depth approximately 4.5 ft bgs; however, Sb and Tl exceed criteria at 6.5 ft bgs and there is no clean sample deeper than 6.5 ft bgs.

CB&I: Acknowledged, a base post-excavation sample will be needed at this location.

 \cdot 063_C004a: The proposed excavation depth at this location is approximately 5.5 ft bgs per the cross section E-E' at station 1+25. PPG must extend the vertical extent of remedial excavation at this location to 6.7 ft bgs (Table 2 lists top of clean at 6.7 ft bgs).

CB&I: The cut sheet and profiles have been revised to reflect an excavation depth of 6.7 ft bgs.

• DD009: The proposed excavation depth at this location is approximately 2.5 ft bgs per the cross section D-D' at station 4+97. PPG must extend the vertical extent of remedial excavation at this location to 5.5 ft bgs (Table 2 lists top of clean at 5.5 ft bgs).

CB&I: The cut sheet and profiles have been revised to reflect an excavation depth of 5.5 ft bgs.

• ED011: The cross-section shows only about 5.0 ft to be excavated; however, no clean sample was detected deeper than beyond 5.0 ft bgs (Sb, Tl, and V all exceed criteria at 5.0 ft bgs). PPG must document clean condition at the final terminal depth at this location through the use of confirmation sample(s). Note, this location is close to 063_C009a, which requires excavation to 15.5 ft bgs at a minimum (see next bullet). *CB&I: Acknowledged, a base post-excavation sample will be needed at this location.*

• 063_C009a: PPG must document clean condition at the terminal depth at this location. The proposed terminal depth at this location is approximately 15.5 ft bgs, V exceeds residential criteria at 15.0 ft bgs, but no clean sample was obtained deeper than 15.0 ft bgs. Also the elevation on Figure 5 is unreadable. **CB&I:** As demonstrated in the attached package, the analysis of this Vanadium hit through compliance averaging shows that this location is not a concern. Furthermore, given the large clean interval between CCPW in this area and this sample, it appears that this hit is unrelated to the CCPW located above it. This hit should not define the excavation depth at this location. This excavation should extend only to a depth of 6.9 ft bgs where a base post-excavation sample should be collected.

This same rationale also applies to the vanadium hit observed at a depth of 15-15.5-ft in 063_D006 where no excavation should occur as no CCPW was observed and no metals exceedences were reported in shallower samples.

• 063_C013: PPG must extend the excavation to this area, and the cut lines must be revised, to address the Ni exceedance of site-specific IGW at the surface (<0.5 ft bgs).

CB&I: Acknowledged, a base post-excavation sample will be needed at this location. Cross section F-F' added to cut sheet figures.

Miscellaneous Questions about the Cross-Sections (Figures 3 & 4):

• Please revise cross section B-B' between stations 0+00 and 0+75 and to the northeast of the Spectra easement to reflect changes based on the response to Contamination Beyond Proposed Excavation Limits, above.

CB&I: Cross section B-B' revised and cross section F-F' created.

<u>Required Post-Excavation Sampling</u>: Sidewall and bottom samples are required, consistent with the requirements of the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil (August 2012). Areas where confirmation sampling requirements have not been met include, but are not necessarily limited to:

• Southwestern corner of site (north and east of 063_D003) – sidewall samples.

• Southeastern corner of the site (near 063_B004) – sidewall samples. (While sidewall samples were proposed along the sidewall parallel to Burma Road, Sidewall samples are also required in the portion of the excavation sidewall that is perpendicular to Burma Road)

• The "cutout" within the area between grid points D7, D9, B9, and B7 – sidewall samples.

• Excavation centered on 063_F005 – sidewall samples, and if a clean sample has not yet been obtained from the 2.5-3 ft bgs interval, a bottom sample will also be required. (A bottom sample is required and was not identified on Drawing C-8)

• Excavation shown on the NJTA Berm beyond the northern limit of Site 63- sidewall and bottom samples.

 \cdot Note sidewall samples are also required for the small excavation centered around 063_C013, which was added to the revised drawings.

CB&I: Acknowledged. Additional post-excavation sampling will be required during the completion of remedial activities.

The following boring locations have their deepest soil sample showing site-related contaminant(s) present at concentration(s) greater than the respective most stringent soil remediation standard without a deeper clean sample present or planned sufficiently close. Confirmation samples are required at the proposed terminal depth of excavation consistent with the sample locations identified below. Note that Figure 5 and the cross-sections on Figures 3 & 4 may need to be edited based on the responses to these locations:

- AD002: at or deeper than 7.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- 065_A006: deeper than 8.2 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- AD003: deeper than 8.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- BD008: deeper than 6.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- ED011: deeper than 5.0 ft bgs (see Contamination Beyond Proposed Excavation Limits, above).
- 063_C009a: deeper than 15 ft bgs; see Contamination Beyond Proposed Excavation Limits, above.

• 063_C013: deeper than 0.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above. CB&I: The need for additional post-excavation sampling is acknowledged and most of these locations were noted in Table 1 by identifying the top of clean for these locations as ND.

<u>Small excavation areas</u>: The following comments apply to excavation areas on the northwest side of the Spectra pipeline easement:

The excavation area in the southwestern portion of the site near 063_F005 and 063_MW09 [0-2.5' deep volume 9.3 cu. yd.] is not shown on Figure 2. See Required Post-Excavation Sampling, above. **CB&I:** Acknowledged. Figure 2 has been revised. Additional post-excavation sampling will be required during the completion of remedial activities.

• NJTA Berm at North End of Site 63 [Location 063_C013A analytical results report Ni up to 321 mg/kg @ surface] is not shown on Figure 2. See Required Post-Excavation Sampling, above. It may be to PPG's advantage to implement more sampling in this area to better define the anticipated limits of the remedy before revising the excavation design. However, PPG must comply with the schedule identified in Exhibit 2 of the June 14, 2013 Court submittal.

CB&I: As CCPW was not identified at this location, the nickel hit reported for this location is being attributed to other fill materials utilized by NJTP during the construction of the roadway and is not related to CCPW, therefore PPG is not responsible for its remediation.

• The soils in the vicinity of boring locations 063_C013, BD009, BD010, 063_B014, AD011, 063_C014 must be identified as an excavation area to address exceedances observed in samples collected from these borings. Requirements (see Contamination Beyond Proposed Excavation Limits, above). A cross section or sections should be developed for this area, or existing cross sections should be revised to document anticipated excavation limits. If this area has not already been fully delineated, confirmation sampling will be required for this area consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil (August 2012). (063_C014 was not included in the remedial excavation identified in this area. This excavation should also be extended to include the site-specific IGWSRS for nickel in 063_B013.)

CB&I: Acknowledged. An additional area of remediation has been added to the cut sheet figures and cross section F-F' was created. Additional post-excavation sampling will be required during the completion of remedial activities.

\\trefs01\COMMON\Moran\PPG - Chrome\Site 63-65_Reports\2013-10 - Cutsheet Deliverable\2013-01 - Formal Response_MEMORANDUM - Response to Cut Lines Comments 2013-01.doc

ATTACHMENT A

Compliance Averaging Analysis

Shaw Environmental, Inc. a CB&I company 200 Horizon Center Trenton, NJ 08691 Tel: +1 609.584.8900 Fax: +1 609.588.6300 www.CBI.com

MEMORANDUM

To:Tom Gibbons, PMPFrom:Dan DuhProject:PPG, Site 63/65, 1 Burma Road, Jersey City, NJSubject:Compliance Averaging AnalysisReport Date:January 9, 2014

Concentrations of antimony, thallium, and vanadium in pre-post excavation soil samples at Site 63-65 that serve as the post-excavation samples used to document the effectiveness and completeness of the soil remediation were collected at a post-excavation frequency and were evaluated for compliance with applicable soil remediation standards. For this evaluation, compliance averaging at the 95 percent upper confidence limit of the mean (UCL) was conducted using ProUCL Version 5.0.

Prior to performing statistical analyses, the applicable datasets were evaluated for duplicate sample results. The average concentration of duplicate results was used as the concentration for that sample. If both duplicate results were non-detect, the evaluated concentration was considered non-detect. If both duplicate results were detected concentrations, the evaluated concentration was considered detected. If one of the duplicate results was a detected concentration and the other was non-detect, the evaluated concentration was considered detected.

As the site is used for commercial or non-residential uses and as the size of the site is between 2 and 3 acres, the functional area used for the compliance averaging analysis encompasses the entire site. As average depth to groundwater in onsite borings was 2 ft bgs, impact to groundwater criteria were only applied against samples within the 0 to 2 ft interval.

Antimony

For analysis of Antimony the functional-area depth consisted of surficial soil 0 to 2 ft below ground surface (bgs). The following table summarizes the results of the compliance averaging for antimony from the surficial functional area for 0 to 2 ft bgs as defined by pre-delineation samples. Only samples characterizing the uppermost soil to be left undisturbed during remediation were used. ProUCL program output tables documenting this compliance averaging analysis are attached.

Site	Parameter	Soil Remediation Standard	ProUCL Recommende	d 95% UCL
Site 63-65				
	Antimony	IGW – 6 mg/kg	3.459	95% KM (Percentile Bootstrap) UCL

Thallium and Vanadium

For analysis of thallium and vanadium, the functional-area depth consisted of the subsurface 2 ft bgs and deeper. The following table summarizes the results of the compliance averaging for thallium and vanadium in the subsurface functional area from 2 ft bgs and deeper as defined by pre-delineation samples. ProUCL program output tables documenting this compliance averaging analysis are attached.

Site	Parameter	Soil Remediation Standard	ProUCL Recommende	ed 95% UCL
Site 63-65				
	Thallium	RDC – 5 mg/kg	0.605	95% KM (t) UCL
	Vanadium	RDC – 78 mg/kg	53.63	95% Chebyshev UCL

Conclusions

The ProUCL recommended 95% UCLs for antimony, thallium, and vanadium were all below the applicable soil remediation standards for Site 63-65.

\\trefs01\COMMON\Moran\PPG - Chrome\Site 63-65_Reports\2013-10 - Cutsheet Deliverable\2013-01 - Formal Response\Attachment A - Compliance Averaging Analysis.doc

ATTACHMENT

ProUCL Program Output Tabless

_	A	В	C		E UCL Statist	F ics for Data	G Sets with N	H on-Detects		J	K	
1												
2		User Sele	ected Options									
3	Dat	e/Time of C	omputation	1/9/2014 6:37	:16 PM							
4			From File	WorkSheet.xls	S							
<u> </u>		Fu	III Precision	OFF								
7		Confidence	Coefficient	95%								
<u>,</u> 8	Number o	of Bootstrap	Operations	2000								
9												
10	Antimony											
11												
12						General	Statistics					
13			Total	Number of Obs	servations	12			Numbe	er of Distinct	Observations	11
14				Number	of Detects	3				Number o	of Non-Detects	9
15			N	umber of Distin	ct Detects	3			Numb	er of Distind	t Non-Detects	8
16				Minim	um Detect	1.6				Minimu	m Non-Detect	0.36
17				Maxim	um Detect	10.6				Maximu	m Non-Detect	2.5
18				Variano	ce Detects	22.01				Percer	t Non-Detects	75%
19				Mea	an Detects	5.333					SD Detects	4.692
20				Media	an Detects	3.8					CV Detects	0.88
21				Skewnes	ss Detects	1.314				Κι	irtosis Detects	N/A
22				Mean of Logge	ed Detects	1.389				SD of Lo	ogged Detects	0.947
					÷							
23												
<u>23</u> 24				v	Warning: Da	ata set has	only 3 Detec	ted Values.				
23 24 25			Т	۷ his is not enou	Warning: Da gh to comp	ata set has ute meanin	only 3 Detec gful or reliab	ted Values. le statistics	and estima	tes.		
23 24 25 26			Т	V his is not enou	Warning: Da gh to comp	ata set has ute meanin	only 3 Detec gful or reliab	ted Values. le statistics	and estima	les.		
23 24 25 26 27			т	V his is not enou	Warning: Da gh to comp	ata set has ute meanin	only 3 Detec	ted Values. le statistics	and estima	les.		
23 24 25 26 27 28			т	V his is not enoug	Warning: Da gh to comp Norma	ata set has ute meanin al GOF Tes	only 3 Detec gful or reliab st on Detects	ted Values. le statistics Only	and estima	tes.		
23 24 25 26 27 28 29			T S	V his is not enoug hapiro Wilk Tes	Warning: Da gh to comp Norm st Statistic	ata set has ute meanin al GOF Tes 0.92	only 3 Detec gful or reliab st on Detects	ted Values. le statistics Only	and estima Shapiro W	ilk GOF Te	st	
23 24 25 26 27 28 29 30			T S 5% S	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit	Warning: Da gh to comp Norm st Statistic tical Value	ata set has ute meanin al GOF Tes 0.92 0.767	only 3 Detec gful or reliab st on Detects	ted Values. le statistics Only etected Data	Shapiro W	tes. Tilk GOF Te mal at 5% S	st Significance Le	evel
23 24 25 26 27 28 29 30 31			T S 5% S	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes	Narning: Da gh to comp Norm st Statistic tical Value st Statistic	ata set has ute meanin al GOF Tes 0.92 0.767 0.295	only 3 Detection gful or reliab st on Detects	ted Values. le statistics Only etected Data	and estimat Shapiro W appear Nor Lilliefors	tes. filk GOF Te mal at 5% S GOF Test	st Significance Le	evel
23 24 25 26 27 28 29 30 31 32			T S 5% S 5	his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit	Narning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512	only 3 Detection gful or reliab st on Detects De De	ted Values. le statistics Only etected Data	Shapiro W appear Nor Lilliefors	tes. Tilk GOF Te mal at 5% S GOF Test mal at 5% S	st Significance Le Significance Le	evel
23 24 25 26 27 28 29 30 31 32 33			T S 5% S 5	his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr	only 3 Detection gful or reliab st on Detects De De mal at 5% Sig	ted Values. le statistics Only tected Data stected Data	And estimat Shapiro W appear Nor Lilliefors appear Nor evel	ilk GOF Te mal at 5% S GOF Test mal at 5% S	st Significance Le Significance Le	evel
23 24 25 26 27 28 29 30 31 32 33 33 34			T S 5% S 5 5	his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec	Norma st Statistic tical Value st Statistic tical Value cted Data a	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr	only 3 Detection gful or reliab st on Detects De De nal at 5% Sig	ted Values. le statistics Only etected Data etected Data gnificance Le	And estimat Shapiro W appear Nor Lilliefors appear Nor evel	tes. Tilk GOF Te mal at 5% S GOF Test mal at 5% S mal at 5% S	st Significance Le Significance Le	evel
23 24 25 26 27 28 29 30 31 32 33 34 35			T S 5% S 5 5	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C	only 3 Detection gful or reliab st on Detects De nal at 5% Sig	ted Values. le statistics Only tected Data stected Data gnificance Le s and other l	And estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame	ilk GOF Te mal at 5% S GOF Test mal at 5% S stric UCLs	st Significance Le Significance Le	evel
23 24 25 26 27 28 29 30 31 32 33 34 35 36			T S 5% S 5 5	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta	Norma st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876	only 3 Detection gful or reliab st on Detects De De mal at 5% Sig	ted Values. le statistics Only etected Data stected Data gnificance Le	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame	tes. Tilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% k	st Significance Le Significance Le Error of Mean	evel
23 24 25 26 27 28 29 30 31 32 33 33 34 35 36 37			T 5% S 5% S	۷ his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459	only 3 Detection of the second	ted Values. le statistics Only tected Data stected Data gnificance Le s and other l	Shapiro W appear Nor Lilliefors appear Nor evel Nonparame	tes. iilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% k Percentile B	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstran) UCL	evel evel 1.019 N/A N/A
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38			T S 5% S 5 Kaplan-	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL M (z) UCL	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305	only 3 Detect gful or reliab t on Detects De mal at 5% Sig	ted Values. le statistics Only etected Data stected Data gnificance Le	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (f	tes. Tilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% KM Parcentile B 95% KM Parcentile B	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL	evel evel 1.019 N/A N/A N/A
23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33			T S 5% S 5 5 Kaplan-	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K 95% Kl	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL M (z) UCL	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 oppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686	only 3 Detect gful or reliab at on Detects De mal at 5% Sig	ted Values. le statistics Only tected Data tected Data gnificance Le s and other l	And estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (i	tes. ilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% K Percentile B 95% KM Be 95% KM C	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL potstrap t UCL pebyshev UCL	evel 1.019 N/A N/A N/A 6.071
23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40			T S 5% S 5 Kaplan-	V his is not enough hapiro Wilk Teshapiro Wilk Crit Lilliefors Tes Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL M (z) UCL rshev UCL	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994	only 3 Detect gful or reliab t on Detects De mal at 5% Sig	ted Values. le statistics Only etected Data prificance Le s and other l	And estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (F	tes. Tilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% KM Ba 95% KM Ba 95% KM CH 99% KM CH	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap t UCL potstrap t UCL nebyshev UCL	evel evel N/A N/A N/A 6.071 11.77
23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33			T S 5% S 5 Kaplan-	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL M (z) UCL rshev UCL	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994	only 3 Detects	ted Values. le statistics Only tected Data tected Data gnificance Le	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (I	tes. ilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% K Percentile B 95% KM Ch 95% KM Ch 99% KM Ch	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL potstrap t UCL nebyshev UCL	evel 1.019 N/A N/A N/A 6.071 11.77
23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42			T S 5% S 5 Kaplan-	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K 95% K Gan	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD KM (t) UCL M (z) UCL rshev UCL rshev UCL	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do	only 3 Detection	ted Values. le statistics Only tected Data stected Data gnificance Le s and other I s and other I	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (I	ies. ilk GOF Te mal at 5% S GOF Test mal at 5% S itric UCLs Standard 95% K Percentile B 95% KM Cr 99% KM Cr	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL potstrap t UCL nebyshev UCL	evel evel 1.019 N/A N/A N/A 6.071 11.77
23 24 25 26 27 28 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33			T S 5% S 5 Kaplan-	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K 95% K 95% K Gar	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL mma GOF Not Eno	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do ugh Data to	only 3 Detection gful or reliab	ted Values. le statistics Only tected Data tected Data gnificance Le s and other l s and other l ervations On DF Test	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (f	tes. ilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% KM Percentile B 95% KM Ch 95% KM Ch 99% KM Ch	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL potstrap t UCL nebyshev UCL	evel 1.019 N/A N/A N/A 6.071 11.77
23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44			T S 5% S 5 Kaplan-	V his is not enough hapiro Wilk Teshapiro Wilk Crit Lilliefors Tes Lilliefors Crit Detec Meier (KM) Sta 95% Ki 95% Ki 95% Ki 20% KM Cheby 5% KM Cheby Gan	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a distics usin Mean SD (M (t) UCL M (z) UCL rshev UCL rshev UCL rshev UCL	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do ugh Data to	only 3 Detection gful or reliab	ted Values. le statistics Only tected Data stected Data gnificance Le s and other l s and other l DF Test	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (f	tes. ilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% K Percentile B 95% KM Ct 95% KM Ct 99% KM Ct	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL ootstrap t UCL nebyshev UCL	evel evel 1.019 N/A N/A N/A 6.071 11.77
23 24 25 27 28 29 31 32 334 35 36 37 38 39 40 41 42 43 44 45			T S 5% S 5 5 Kaplan-	V his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K 95% K 95% K 95% K Gan	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL mean SD (M (t) UCL /shev UCL /shev UCL /shev UCL /shev UCL /shev UCL	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do ugh Data to Statistics or	only 3 Detectors	ted Values. le statistics Only tected Data tected Data gnificance Le s and other I s and other I prvations On DF Test ata Only	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (I	tes. iilk GOF Te mal at 5% S GOF Test mal at 5% S standard 95% KM Ch 95% KM Ch 99% KM Ch	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL potstrap t UCL nebyshev UCL	evel evel 1.019 N/A N/A 6.071 11.77
23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46			T S 5% S 5 Kaplan-	V his is not enough hapiro Wilk Teshapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K 95% K 95% K Gan Gan	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL M (z) UCL rshev UCL rshev UCL mma GOF Not Eno Gamma S hat (MLE)	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do ugh Data to Statistics or 1.902	only 3 Detectors	ted Values. le statistics Only tected Data stected Data gnificance Le s and other l ervations On DF Test ata Only	and estimation Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (f	tes. iilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% K Percentile B 95% KM Cf 95% KM Cf 99% KM Cf 99% KM Cf 99% KM Cf	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL potstrap t UCL nebyshev UCL nebyshev UCL	evel evel 1.019 N/A N/A N/A 6.071 11.77 N/A
23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 40 42 43 44 45 47			T S 5% S 5 Kaplan-	his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K 95% K 95% K Gar Gar k Theta	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL M (z) UCL /shev UCL	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do ugh Data to Statistics or 1.902 2.804	only 3 Detectors	ted Values. le statistics Only etected Data prificance Le s and other l s and other l prvations On DF Test ata Only	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (f	tes. ilk GOF Te mal at 5% S GOF Test mal at 5% S standard 95% KM Ch 95% KM Ch 95% KM Ch 99% KM Ch 95% KM Ch 95	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap t UCL botstrap t UCL bots	evel 1.019 N/A N/A N/A 6.071 11.77 N/A N/A
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 45 46 47 48 45 46 47 48 40 47 48 40 47 48 40 47 48 40 47 48 40 47 48 40 47 48 40 47 48 40 <td< td=""><td></td><td></td><td>T S 5% S 5 Kaplan-</td><td>his is not enoug hapiro Wilk Teshapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K 95% K 95% K Gan Gan k Theta nu</td><td>Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a distics usin Mean SD (M (t) UCL M (z) UCL rshev UCL rshev UCL rshev UCL rshev UCL mma GOF Not Eno Gamma S hat (MLE) hat (MLE)</td><td>ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do ugh Data to Statistics or 1.902 2.804 11.41</td><td>only 3 Detectors</td><td>ted Values. le statistics : Only tected Data tected Data gnificance Le s and other l arrations On DF Test ata Only</td><td>and estimation Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (f 95% KM (f up)</td><td>tes. ilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% KM Percentile B 95% KM Cł 95% KM Cł 99% KM Cł</td><td>st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL ootstrap) UCL botstrap t UCL nebyshev UCL</td><td>evel evel 1.019 N/A N/A N/A 6.071 11.77 N/A N/A N/A N/A</td></td<>			T S 5% S 5 Kaplan-	his is not enoug hapiro Wilk Teshapiro Wilk Crit Lilliefors Tes % Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K 95% K 95% K Gan Gan k Theta nu	Warning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value cted Data a distics usin Mean SD (M (t) UCL M (z) UCL rshev UCL rshev UCL rshev UCL rshev UCL mma GOF Not Eno Gamma S hat (MLE) hat (MLE)	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do ugh Data to Statistics or 1.902 2.804 11.41	only 3 Detectors	ted Values. le statistics : Only tected Data tected Data gnificance Le s and other l arrations On DF Test ata Only	and estimation Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (f 95% KM (f up)	tes. ilk GOF Te mal at 5% S GOF Test mal at 5% S tric UCLs Standard 95% KM Percentile B 95% KM Cł 95% KM Cł 99% KM Cł	st Significance Le Significance Le Error of Mean (M (BCA) UCL ootstrap) UCL ootstrap) UCL botstrap t UCL nebyshev UCL	evel evel 1.019 N/A N/A N/A 6.071 11.77 N/A N/A N/A N/A
23 24 25 26 27 28 29 30 1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50			T S 5% S 5 Kaplan-	his is not enoug hapiro Wilk Tes hapiro Wilk Crit Lilliefors Tes Lilliefors Crit Detec Meier (KM) Sta 95% K 95% K 95% K 95% K 95% K Gan Can k Theta nu LE Mean (bias	Varning: Da gh to comp Norm st Statistic tical Value st Statistic tical Value st Statistic tical Value cted Data a atistics usin Mean SD (M (t) UCL mma GOF Not Eno Gamma S hat (MLE) hat (MLE) corrected)	ata set has ute meanin al GOF Tes 0.92 0.767 0.295 0.512 ppear Norr g Normal C 1.629 2.876 3.459 3.305 4.686 7.994 Tests on Do ugh Data to Statistics or 1.902 2.804 11.41 N/A	etected Obse	ted Values. le statistics : Only tected Data stected Data gnificance Le s and other I s and other I prvations On DF Test ata Only	and estimat Shapiro W appear Nor Lilliefors appear Nor evel Nonparame 95% KM (I 95% KM (I u	ilk GOF Te mal at 5% S GOF Test mal at 5% S GOF Test mal at 5% S Standard 95% K Percentile B 95% KM Cf 95% KM Cf 99% KM Cf 99% KM Cf 99% KM Cf 99% KM Cf 99% KM Cf 99% KM Cf 95% KM Cf 99% KM Cf 90%	st Significance Lee Significance Lee Error of Mean (M (BCA) UCL ootstrap) UCL ootstrap t UCL nebyshev UCL	evel evel 1.019 N/A N/A N/A 6.071 11.77 N/A N/A N/A N/A N/A

	А		В		С	D		E	F	G	Н	I	J	K	L
52								Gam	na Kaplan-N	ieler (KM) Si	atistics				7 000
53								K nat (KM	0.321			A dimeter			7.699
54			۸	nrovi	mata Cl		Val	up (7 70 m	2 5 6 2			Adjusted	Level of S	Ignificance (p)	0.029
55	05	0/ C					vai	1000000000000000000000000000000000000	2.302		2.133				
56	90	0 % G	annna Ap	pioxii		1-UCL (US	se w		4.090		95% Gamin	la Aujusteu r	IN-OCL (US		5.001
57								anormal G	OF Test on [Detected Ob	envetione ()nh/			
58					S	haniro Wi		ost Statisti				Shaniro Wi		et	
59					5% Sł	napiro Wi	lk Ci	ritical Value	0.355	Det	ected Data :		ormal at 5%	Significance	evel
60					0,000	Lilliefo	rs T	est Statistic	0.189	201		Lilliefors	GOF Test		
61					5	% Lilliefor	rs Ci	ritical Value	e 0.512	Det	ected Data a	appear Logno	ormal at 5%	Significance	Level
62						D	etec	ted Data a	ppear Logno	ormal at 5% 3	Significance				
64											•				
65							Log	normal RC	OS Statistics	Using Imput	ed Non-Det	ects			
66						Mean ir	n Or	iginal Scale	e 1.435				Mea	n in Log Scale	-1.23
67						SD ir	n Or	iginal Scale	3.088				SI	D in Log Scale	1.672
68			95% t l	JCL (assume	s normali	ty of	ROS data	3.036			95% I	Percentile E	Bootstrap UCL	2.919
69					ę	95% BCA	Boo	otstrap UCI	4.06				95% Bo	ootstrap t UCL	9.92
70						95% H-I	UCL	(Log ROS) 10.11						
71										1					
72			U	CLs ι	using Lo	gnormal	Dist	ribution an	d KM Estima	tes when De	etected data	are Lognorn	nally Distrib	outed	
73						KM	l Me	an (logged) -0.388				95% H-L	JCL (KM -Log)	3.629
74						ł	KM S	SD (logged) 1.116			95% (Critical H V	alue (KM-Log)	3.13
75				KM	Standar	d Error of	f Me	an (logged	0.403						
76															
77									DL/2 S	Statistics					
78					DL/2	Normal			4 705			DL/2 Log-1	[ransforme	ed	0.145
79						Mean ir	n Or	iginal Scale	9 1.795				Mea	n in Log Scale	-0.145
80					050/ +1		n Or	iginal Scale	2.943				SI		1.143
81					95% t L	JCL (ASSI	ume	s normality) 3.32	ded for com		d biotorical r	95	% H-Stat UCL	4.97
82						s not a re	COU	nmended n	netnoa, prov	laed for com	pansons an	a historical r	easons		
83								Nonnaram	etric Distribu	ition Free II(CL Statistics	•			
84						Deter	ted	Data appe	ar Normal D	istributed at	5% Significa	nce i evel			
85						Dotot									
86									Suggested	UCL to Use					
8/						ç	95%	KM (t) UCI	3.459	1		95% KM (F	Percentile B	ootstrap) UCL	N/A
88						W	arni	ng: One or	more Recor	nmended UC	CL(s) not av	ailable!			
09								•							
90 Q1		No	te: Sugge	stions	s regard	ing the se	elect	ion of a 95°	% UCL are p	rovided to he	Ip the user t	o select the n	nost approp	oriate 95% UC	L.
92					R	ecomme	ndat	ions are ba	ised upon da	ta size, data	distribution,	and skewnes	SS.		
93		Tł	nese recor	mmer	ndations	are base	ed up	oon the res	ults of the sir	nulation stud	ies summar	zed in Singh	, Maichle, a	and Lee (2006)).
94		Howe	ever, simu	lation	is result	s will not	cove	er all Real V	Vorld data se	ets; for addition	onal insight	the user may	want to cor	nsult a statistic	cian.
95															

	A	В	C	D	E	F	G	Н	I	J	K	L
1					UCL Statis	tics for Data	Sets with No	on-Detects				
2				1								
3		User Seleo	cted Options									
4	Dat	e/Time of Co	omputation	1/9/2014 6:4	3:04 PM							
5			From File	WorkSheet.	xls							
6		Ful	II Precision	OFF								
7		Confidence	Coefficient	95%								
8	Number o	of Bootstrap (Operations	2000								
9												
10	Thallium											
11							o					
12			T-+-1	Number of C		General	Statistics		Nie one been		Ohaanstiana	10
13			lotal	Number of C	observations	94			Numbe	r of Distinct	Joservations	16
14			N	Numbe	er of Detects	3				Number of	Non-Detects	91
15			N	umber of Dist	Inct Detects	3			Numbe	er of Distinct	Non-Detects	14
16				IVIINI	mum Detect	I				Massian		0.32
17				Maxi	mum Detect	5.0						9.9
18				varia	nce Detects	5.431				Percent	Non-Detects	96.81%
19					ean Detects	3.517					SD Detects	2.33
20					an Detects	3.95				- Kur		0.003
21				Skewn	ess Detects	-0.808				Nur	tosis Detects	N/A
22				wear of Log	geu Delects	1.032				SD 0I LO	Jyeu Delecis	0.911
23					Warning: D	ata sot has	only 3 Detect					
24			т	his is not end	wanning. D		oful or reliabl	e etatietice	and estimat	96		
25								e statistics				
26												
27					Norm	al GOF Tes	t on Detects	Only				
28			S	hapiro Wilk T	est Statistic	0.974		01119	Shapiro Wi	lk GOF Tes		
29			5% SI	hapiro Wilk C	ritical Value	0.767	De	tected Data	appear Norr	nal at 5% Si	anificance Le	vel
30				Lilliefors T	est Statistic	0.24			Lilliefors	GOF Test		
31			5	% Lilliefors C	ritical Value	0.512	De	tected Data	appear Norr	nal at 5% Si	gnificance Le	vel
32 22				Det	ected Data a	appear Norn	nal at 5% Sig	nificance Le	evel			
33												
34 25			Kaplan-	Meier (KM) S	Statistics usir	ng Normal C	ritical Values	and other	Nonparamet	tric UCLs		
36					Mean	0.451				Standard E	Error of Mean	0.093
30					SD	0.673				95% KI	VI (BCA) UCL	N/A
37 20				95%	KM (t) UCL	0.605			95% KM (P	Percentile Bo	otstrap) UCL	N/A
39	<u> </u>			95%	KM (z) UCL	0.603				95% KM Bo	otstrap t UCL	N/A
40			ç	0% KM Chel	byshev UCL	0.729			(95% KM Che	ebyshev UCL	0.856
41			97	.5% KM Chel	byshev UCL	1.031			9	99% KM Che	ebyshev UCL	1.376
42												1
43				G	amma GOF	Tests on De	etected Obse	rvations On	ly			
44					Not End	ough Data to	Perform GC	OF Test				
45												
46					Gamma	Statistics or	Detected Da	ata Only				
47					k hat (MLE)	2.372			k	star (bias co	rrected MLE)	N/A
48				The	ta hat (MLE)	1.483			Theta	star (bias co	rrected MLE)	N/A
49				n	u hat (MLE)	14.23				nu star (bi	as corrected)	N/A
. <u>-</u> 5Ω.			MI C. Chromolia	LE Mean (bia	s corrected)	N/A	Deliverable		mal Dooroo	MLE Sd (bi	as corrected)	N/A

plus Thallium and Vanadium Output 2.xlsx

Pro UCL_Site 63-65 2 ft 1/10/2014 - 11:05 AM

	A		В		С		D	E		F	G	Н	I	J	K	L
51																
52								Ga	mma	a Kaplan-Mo	eier (KM) Si	atistics				
53								k hat (K	(M)	0.448					nu hat (KM)	84.17
54													Adjusted	d Level of Sig	gnificance (β)	0.0474
55		<u> </u>	Арр	proxim	nate Ch	ni Squ	are Val	ue (84.17	, α)	64.02		63.75				
56	95	% G	amma App	proxin	nate KI	M-UC	L (use v	when n>=	50)	0.592		95% Gamm	a Adjusted I	(M-UCL (use	e when n<50)	0.595
57													<u> </u>			
58						<u></u>		ognormal	GO		etected Ob	servations O				
59								est Statis	Stic	0.895	Det		Snapiro w		t	
60					5% S	napir			iue	0.767	Det	ected Data a	ippear Logno	COF Test	Significance L	evei
61									Stic	0.513	Det	a ata d Data a	Lilletors	GOF Test	Cianificance I	
62					5	3% LII	Dete		iue	0.512	Det	ected Data a	ippear Logno	ormal at 5%	Significance L	evei
63							Dete		а ар	pear Logno	mai at 5% a	Significance	Level			
64								anormal		Statiatica I	loing Imput	ad Non Date				
65										0.217	Jsing impu		ecis	Moon	in Log Soolo	2 205
66						IVIE				0.217						-3.205
67			05% +1			<u></u>				0.710			05%	Doroontilo P		0.255
68			95%10			25 HU				0.34			90 %			0.555
69						95 %			102	0.431				3370 00		0.554
70							/011-00		55)	0.004						
71				Cleu	usina La	oanoi	rmal Dis	tribution	and	KM Estimat	es when De	tected data	are Lognorr	nally Distrib	uted	
72						Julio	KM M	ean (logg	ed)	-1 025				95% H-U	CL (KM -Log)	0 434
73							KM		ed)	0.457			95%	Critical H Va		1 825
/4				KM	Standa	ard Fr	ror of M	ean (logg	ed)	0.0828						
75								(33	/							
76										DL/2 St	tatistics					
77					DL/2	Norm	nal						DL/2 Log-	Transformed	1	
78						Me	ean in O	riginal Sc	ale	0.766				Mean	in Log Scale	-0.469
79 00							SD in O	riginal Sc	ale	0.834				SD	in Log Scale	0.504
00 Q1					95% t I	UCL	(Assume	es normal	ity)	0.908				95%	6 H-Stat UCL	0.783
82					DL/2	is no	t a reco	mmendeo	d me	thod, provid	led for com	parisons and	historical r	easons		
83																
84								Nonpara	ame	tric Distribu	tion Free U	CL Statistics				
85						0	Detected	l Data ap	pear	Normal Dis	stributed at	5% Significa	nce Level			
86																
87										Suggested	UCL to Use	•				
88							95%	5 KM (t) U	ICL	0.605			95% KM (F	Percentile Bo	otstrap) UCL	N/A
89							Warn	ing: One	or n	nore Recom	mended UC	CL(s) not ava	ilable!			
90																
91		No	te: Sugge	stions	s regard	ding t	he selec	tion of a s	95%	UCL are pro	ovided to he	Ip the user to	select the r	nost appropr	iate 95% UCL	
92					F	Recor	mmenda	ations are	bas	ed upon dat	a size, data	distribution,	and skewne	SS.		
93		TI	nese recor	mmer	ndation	s are	based u	pon the r	esul	ts of the sim	ulation stud	ies summariz	zed in Singh	, Maichle, ar	id Lee (2006).	
94	ł	Howe	ever, simu	Ilation	is resul	ts wil	I not cov	er all Rea	al W	orld data set	ts; for addition	onal insight t	he user may	want to cons	sult a statistici	an.
95																
96																

07	<u> </u>	В	U	D	E	F	G	H		J		ĸ	L	
9/	Vanadium													
98														
99						General	Statistics						1	
100			Total	Number of C	Observations	94	Number of Distinct Observations							
101							Number of Missing Observations 0							
102					Minimum	8.4						Mean	34.03	
103					Maximum	422						Median	25.25	
104					SD	43.61				S	td. Erro	r of Mean	4.498	
05				Coefficien	t of Variation	1.282					ę	Skewness	7.825	
06														
07						Normal (GOF Test							
08			S	Shapiro Wilk	Test Statistic	0.351			Shapiro W	lik GOF	Test			
09				5% Shapiro	Wilk P Value	0		Data No	t Normal at	5% Signi	ificance	Level		
10				Lilliefors	Test Statistic	0.314			Lilliefors	GOF Te	est			
11			5	5% Lilliefors C	Critical Value	0.0914		Data No	t Normal at	5% Signi	ificance	Level		
12					Data Not	Normal at 5	5% Significa	nce Level						
13														
14					As	suming Nor	mal Distribu	tion						
15			95% No	ormal UCL				95%	UCLs (Adj	usted for	Skewn	ess)		
16				95% Stu	ident's-t UCL	41.5			95% Adjust	ed-CLT L	JCL (Cł	nen-1995)	45.3	
17									95% Modif	ied-t UCL	_ (Johns	son-1978)	42.11	
18														
19						Gamma	GOF Test							
20				A-D	Test Statistic	6.73		Ander	son-Darling	g Gamma	GOF	Test		
21				5% A-D C	Critical Value	0.761	C	ata Not Gam	ma Distribu	ited at 5%	6 Signifi	icance Lev	/el	
22				K-S	Test Statistic	0.199		Kolmog	rov-Smirno	off Gamm	na GOF	Test		
					-									
23				5% K-S (Critical Value	0.0932	C	ata Not Gam	ma Distribu	ited at 5%	5 Signifi	cance Lev	/el	
<u>23</u> 24				5% K-S (Da	Critical Value ata Not Gamr	0.0932 na Distribute	٦ ed at 5% Sig	oata Not Gam gnificance Le	ma Distribu vel	ited at 5%	5 Signifi	icance Lev	vel	
<u>23</u> 24 25				5% K-S (Da	Critical Value ata Not Gamr	0.0932 na Distribute	۵ ed at 5% Się	oata Not Gam gnificance Le	ma Distribu vel	ited at 5%	5 Signifi		vel	
23 24 25 26				5% K-S (Da	Critical Value ata Not Gamr	0.0932 na Distribute Gamma	۵ ed at 5% Si Statistics	oata Not Gam gnificance Le	ma Distribu vel	ited at 5%	6 Signifi		vel	
23 24 25 26 27				5% K-S (Da	Critical Value ata Not Gamr k hat (MLE)	0.0932 na Distribute Gamma 2.592	۵ ed at 5% Sig Statistics	oata Not Gam gnificance Le	ma Distribu vel k	star (bia:	s correc	cted MLE)	2.516	
2 <u>3</u> 24 25 26 27 28				5% K-S (Da	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE)	0.0932 na Distribute Gamma 2.592 13.13	ा ed at 5% Sig Statistics	oata Not Gam	ma Distribu vel k Theta	star (bia:	s corrects correct	cted MLE)	2.516 13.52	
2 <u>3</u> 24 25 26 27 28 29				5% K-S (Da The	k hat (MLE) k hat (MLE) ta hat (MLE) nu hat (MLE)	0.0932 na Distributo Gamma 2.592 13.13 487.2	ت ed at 5% Sig Statistics	oata Not Gam	ma Distribu vel k	star (bias star (bias star (bias	s corrects c	cted MLE) cted MLE) corrected)	2.516 13.52 473	
23 24 25 26 27 28 29 30			M	5% K-S (Da The LE Mean (bia	k hat (MLE) k hat (MLE) ata hat (MLE) nu hat (MLE) as corrected)	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03	Ed at 5% Sig	oata Not Gam	ma Distribu vel k Theta	star (bias star (bias nu star MLE Sc	s corrects c	cted MLE) cted MLE) corrected) corrected)	2.516 13.52 473 21.45	
23 24 25 26 27 28 29 30 31			M	5% K-S (Da The LE Mean (bia	k hat (MLE) k hat (MLE) ta hat (MLE) nu hat (MLE) as corrected)	0.0932 na Distributo Gamma 2.592 13.13 487.2 34.03	Ced at 5% Sig	pata Not Gam	ma Distribu vel k Theta	star (bia: star (bia: nu sta MLE Sc e Chi Squ	s corrects s corrects r (bias correct d (bias corrects)	cted MLE) cted MLE) corrected) corrected) lue (0.05)	2.516 13.52 473 21.45 423.6	
23 24 25 26 27 28 29 30 31 32			M	5% K-S (Da The LE Mean (bia sted Level of	k hat (MLE) k hat (MLE) ata hat (MLE) nu hat (MLE) as corrected)	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474	E ed at 5% Sig Statistics	pata Not Gam	Ma Distribu vel k Theta Approximat	star (bias star (bias nu star MLE Sc e Chi Squ djusted (s corrects s corrects r (bias correct d (bias course) d (bias course) chi Squ	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value	2.516 13.52 473 21.45 423.6 422.9	
23 24 25 26 27 28 29 30 31 32 33			M	5% K-S (Da The LE Mean (bia sted Level of	k hat (MLE) k hat (MLE) ta hat (MLE) nu hat (MLE) as corrected)	0.0932 na Distributo Gamma 2.592 13.13 487.2 34.03 0.0474	C ed at 5% Sig	pata Not Gam	ma Distribu vel k Theta Approximat	star (bias star (bias nu sta MLE So e Chi Squ	s correct s correct s correct r (bias c l (bias c uare Va Chi Squ	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value	2.516 13.52 473 21.45 423.6 422.9	
23 24 25 26 27 28 29 30 31 32 33 33			M	5% K-S (Da The LE Mean (bia sted Level of	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam	C ed at 5% Sig Statistics	ata Not Gam gnificance Le	Ma Distribu vel k Theta Approximat	star (bias star (bias nu star MLE Sc e Chi Squ	s corrects c	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value	2.516 13.52 473 21.45 423.6 422.9	
23 24 25 26 27 28 29 30 31 32 33 33 33 34 35	9	5% Approxir	M Adjus mate Gamma	5% K-S (Da The IE Mean (bia sted Level of	k hat (MLE) k hat (MLE) ta hat (MLE) nu hat (MLE) as corrected) Significance Ass vhen n>=50))	0.0932 na Distributo Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38	Ed at 5% Sig	pata Not Gam gnificance Le 	ma Distribu vel k Theta Approximat	star (bias star (bias nu sta MLE Sc e Chi Squ adjusted C	s correc s correc r (bias c d (bias c Jare Va Chi Squ (use wł	cted MLE) corrected) corrected) lue (0.05) are Value	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33	9	5% Approxir	M Adjus mate Gamma	5% K-S (Da The ILE Mean (bia sted Level of	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Ass when n>=50))	0.0932 na Distributo Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38	C ed at 5% Sig	pata Not Gam gnificance Le ition 95% Ad	ma Distribu vel k Theta Approximat A	star (bias star (bias nu sta MLE Sc e Chi Squ adjusted C	s corrects s corrects s corrects r (bias of uare Va Chi Squ (use wh	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value nen n<50)	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33	9	5% Approxir	M Adjus mate Gamma	5% K-S (Da The LE Mean (bia sted Level of	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Ass vhen n>=50))	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38	Ed at 5% Sig	pata Not Gam gnificance Le stion 95% Ad	ma Distribu vel k Theta Approximat A justed Gam	star (bias star (bias nu star MLE Sc e Chi Squ djusted (ima UCL	s correc s correc r (bias c J (bias c Jare Va Chi Squ (use wh	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33	9	5% Approxir	M Adjus mate Gamma	5% K-S (Da The The LE Mean (bia sted Level of a UCL (use w	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Ass when n>=50)) Test Statistic	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38 Lognorma 0.882	C ed at 5% Sig Statistics	pata Not Gam gnificance Le tition 95% Ad	ma Distribu vel k Theta Approximat justed Gam	star (bia: star (bia: nu sta MLE Sc e Chi Squ djusted (ima UCL	s correct s correct s correct r (bias of uare Va Chi Squ (use wh (use wh	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value nen n<50) est	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 33 33 33 33 33	9	5% Approxir	M Adjus mate Gamma	5% K-S (Da The IE Mean (bia sted Level of a UCL (use w Shapiro Wilk ⁻ 5% Shapiro V	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Ass vhen n>=50)) Test Statistic Wilk P Value	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38 Lognorma 0.882 2.867E-10	Ed at 5% Sig	pata Not Gam gnificance Le ition 95% Ad Shap Data Not I	ma Distribu vel k Theta Approximat justed Gam justed Gam	star (bias star (bias nu star MLE Sc e Chi Squ djusted (ima UCL gnormal at 5% Sig	s correc s correc s correc r (bias c J (bias c J are Va Chi Squ (use wh (use wh	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value hen n<50) est ce Level	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	9	5% Approxir	M Adjus mate Gamma	5% K-S (Da The The LE Mean (bia sted Level of a UCL (use w Shapiro Wilk ⁻ 5% Shapiro ¹ Lilliefors ⁻	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Ass vhen n>=50)) Test Statistic Wilk P Value Test Statistic	0.0932 na Distributo Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38 Lognorma 0.882 2.867E-10 0.149	C ed at 5% Sig Statistics	ata Not Gam gnificance Le 	ma Distribu vel k Theta Approximat justed Gam justed Gam iro Wilk Lo ognormal a iefors Logr	star (bia: star (bia: star (bia: nu sta MLE Sc e Chi Squ djusted C ma UCL gnormal at 5% Sig	s correct s correct s correct r (bias of d (bias of uare Va Chi Squ (use wh (use wh (use wh of Tes	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value nen n<50) est ce Level t	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 31 32 33 34 35 36 37 38 39 40 41	9	5% Approxir	M Adjus mate Gamma S	5% K-S (Da The The LE Mean (bia sted Level of a UCL (use w Shapiro Wilk 5% Shapiro V Lilliefors 5 % Lilliefors 0	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Ass vhen n>=50)) Test Statistic Wilk P Value Test Statistic Critical Value	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38 Lognorma 0.882 2.867E-10 0.149 0.0914	E GOF Test	ata Not Gam gnificance Le ition 95% Ad Data Not I Lill Data Not I	ma Distribu vel k Theta Approximat Approximat pusted Gam iusted Gam iro Wilk Lo cognormal a	star (bias star (bias nu star MLE Sc e Chi Squ adjusted C mma UCL gnormal at 5% Sig	s Correct s correct s correct r (bias of J (bias of J (cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value nen n<50) est ce Level t ce Level	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 31 32 33 34 35 36 37 38 39 40 41 42	9	5% Approxir	M Adjus mate Gamma S	5% K-S (Da The LE Mean (bia sted Level of a UCL (use w Shapiro Wilk ⁻ 5% Shapiro V Lilliefors C	Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Ass vhen n>=50)) Test Statistic Wilk P Value Test Statistic Critical Value Data Not L	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38 Lognorma 0.882 2.867E-10 0.149 0.0914 ognormal at	Ed at 5% Signific	ata Not Gam gnificance Le dificance Le dificance Le dificance Le dificance Le dificance Level	ma Distribu vel k Theta Approximat A justed Gam iro Wilk Lo cognormal a iefors Logr	star (bias star (bias nu star MLE Sc e Chi Squ adjusted (ama UCL gnormal at 5% Sig	s correc s correc s correc r (bias c d (bias c Jare Va Chi Squ (use wh GOF T nificanc OF Tes nificanc	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value nen n<50) est ce Level t ce Level	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 32 33 34 35 36 37 38 39 40 41 42 43	9	5% Approxir	M Adjus mate Gamma S S	5% K-S (Da The The LE Mean (bia sted Level of a UCL (use w Ghapiro Wilk ⁻ 5% Shapiro V Lilliefors ⁻ 5% Lilliefors (Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Significance (Men n>=50)) Test Statistic Wilk P Value Test Statistic Critical Value Data Not L	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38 Lognorma 0.882 2.867E-10 0.149 0.0914 ognormal at	C ed at 5% Sig Statistics	ata Not Gam gnificance Le dition 95% Ad 95% Ad Data Not I Data Not I Lill Data Not I	ma Distribu vel k Theta Approximat Approximat A iusted Gam iro Wilk Lo cognormal a iefors Logr	star (bias star (bias nu star MLE Sc e Chi Squ adjusted (ama UCL gnormal at 5% Sig	s correct s correct s correct r (bias of d (bias of d (bias of d (bias of d (cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value nen n<50) est ce Level t	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44	9	5% Approxir	M Adjus mate Gamma S	5% K-S (Da The The LE Mean (bia sted Level of a UCL (use w Shapiro Wilk ⁻ 5% Shapiro ¹ Lilliefors ⁻ 5% Lilliefors (Critical Value ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Ass vhen n>=50)) Test Statistic Wilk P Value Test Statistic Critical Value Data Not L	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38 Lognorma 0.882 2.867E-10 0.149 0.0914 ognormal at	Ed at 5% Signific	ata Not Gam gnificance Le dificance Le dificance Le dificance Le dificance Level	ma Distribu vel k Theta Approximat a justed Gam iusted Gam iusted Gam iusted Gam	star (bias star (bias nu star MLE Sc e Chi Squ djusted (ma UCL gnormal at 5% Sig hormal Ge at 5% Sig	s correc s correc r (bias c d (bias c Jare Va Chi Squ (use wh GOF T nificanc OF Tes	cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value nen n<50) est ce Level t ce Level	2.516 13.52 473 21.45 423.6 422.9 38.06	
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45	9	5% Approxir	M Adjus mate Gamma S 5	5% K-S (Da The The LE Mean (bia sted Level of a UCL (use w Ghapiro Wilk ⁻ 5% Shapiro V Lilliefors ⁻ 5% Lilliefors (Sin Lilliefor) (Sin	Critical Value ata Not Gamr ata Not Gamr k hat (MLE) eta hat (MLE) nu hat (MLE) as corrected) Significance Vhen n>=50)) Test Statistic Wilk P Value Test Statistic Critical Value Data Not L Logged Data	0.0932 na Distribute Gamma 2.592 13.13 487.2 34.03 0.0474 suming Gam 38 Lognorma 0.882 2.867E-10 0.149 0.0914 ognormal at 2.128	C ed at 5% Sig Statistics	ata Not Gam gnificance Le dition 95% Ad Data Not I Data Not I Lill Data Not I	ma Distribu vel k Theta Approximat Approximat a iusted Gam iro Wilk Lo cognormal a iefors Logr	star (bias star (bias nu star MLE Sc e Chi Squ djusted (ama UCL gnormal Ge at 5% Sig	s Correct s correct s correct r (bias of d (bias of d (bias of d (bias of d (cted MLE) cted MLE) corrected) corrected) lue (0.05) are Value nen n<50) est ce Level t ce Level t	2.516 13.52 473 21.45 423.6 422.9 38.06 38.06	

plus Thallium and Vanadium Output 2.xlsx

	А	В	С	D	E	F	G	Н		J	K	L		
147	Accuming Longermal Distribution													
148	Assuming Lognormal Distribution													
149	95% H-UCL 34.91 90% Chebyshev (MVUE) UCL 36													
150	95% Chebyshev (MVUE) UCL 39.28 97.5% Chebyshev (MVUE) UCL													
151			99%	Chebyshev (MVUE) UCL	49.17								
152														
153					Nonparame	etric Distribut	tion Free UC	L Statistics						
154				[Data do not f	ollow a Disc	ernible Distri	bution (0.0	5)					
155														
156					Nonpa	rametric Dist	ribution Free	UCLs						
157				95	% CLT UCL	41.43				95% Ja	ckknife UCL	41.5		
158			95%	Standard Bo	otstrap UCL	41.35				95% Boo	otstrap-t UCL	52.96		
159			9	5% Hall's Bo	otstrap UCL	69.23			95% I	Percentile Bo	otstrap UCL	42.32		
160			9	95% BCA Bo	otstrap UCL	47.83								
161			90% Ch	ebyshev(Me	an, Sd) UCL	47.52			95% Ch	ebyshev(Me	an, Sd) UCL	53.63		
162			97.5% Ch	ebyshev(Me	an, Sd) UCL	62.12			99% Ch	ebyshev(Me	an, Sd) UCL	78.78		
163														
164						Suggested	UCL to Use							
165			95% Che	ebyshev (Me	an, Sd) UCL	53.63								
166														
167	1	Note: Sugges	stions regard	ing the selec	tion of a 95%	UCL are pro	ovided to help	o the user to	select the m	nost appropri	ate 95% UCL			
168		These reco	ommendation	ns are based	upon the res	ults of the si	mulation stud	ies summa	rized in Singl	n, Singh, and	laci (2002)			
169			and Singh	and Singh (2	2003). Howev	ver, simulatio	ns results wil	I not cover	all Real Worl	d data sets.				
170				For ad	ditional insig	ht the user m	ay want to co	onsult a stat	istician.					
171														

From: Amend-Babcock, Laura [mailto:Laura.Amend-Babcock@WestonSolutions.com]
Sent: Wednesday, January 29, 2014 2:46 PM
To: 'bmcpeak@planningprogress.com'
Cc: Amin, Prabal; Mark Terril; Prins, Keith; Gibbons, Thomas; Michael McCabe
(jcsiteadministrator@earthlink.net); Tom Cozzi; David Doyle; David Spader; Moran, William
Subject: Sites 16 and Sites 63/65 - adequacy assessment of response to cut line comments

Brian,

Weston has completed our review of the revised cut lines and responses to comments on the draft cut lines for Linden Avenue East (Site 16) and Baldwin Oil/Burma Road (Sites 63/65), both sets of which were submitted via email link on 1/10/14. Note that our assessment of the adequacy of the responses-to-comment have been discussed with the New Jersey Department of Environmental Protection (Department), who concurs with them. Please distribute this information to the appropriate parties.

In general, responses were acceptable, with the caveats specified in the documents attached to this email. However, it is noted that the cut lines may require additional revision based on the assessments. For clarity sake, the original comment, CB&I's response, and Weston's assessment of adequacy of that response have been included in the attached memoranda.

Laura

Laura J. Amend-Babcock, P.E. Senior Technical Manager Weston Solutions, Inc. 205 Campus Drive Edison, New Jersey 08837

phone: (732) 417-5811 fax: (732) 417-5801 e-mail: <u>Laura.Amend-Babcock@westonsolutions.com</u> www.WestonSolutions.com

From: Moran, William [mailto:William.Moran@cbi.com]
Sent: Friday, January 10, 2014 3:58 PM
To: Amin, Prabal; Amend-Babcock, Laura
Cc: <u>bmcpeak@planningprogress.com</u>; Terril, Mark; Prins, Keith; Gibbons, Thomas
Subject: more downloads to sharepoint

Prabal and Laura:

There are more Data Validation Reports loaded to the sharepoint link below. Also, we have loaded our response to comments to the cutline sheets for both Site 016 and 063.

Please call with any questions. Thanks, Bill

https://shawxnet.shawgrp.com/sites/PPGJersey/Site%20174%20%20Dennis%20Collins%20Park/Forms/ AllItems.aspx

William M. Moran Program Manager II Environmental & Infrastructure Tel: 609-588-6331 Cell: 856-630-1355 Fax: 609-588-6490 william.moran@CBl.com

CB&I 200 Horizon Center Trenton, NJ 08691 USA www.CBI.com

This e-mail and any attached files may contain CB&I (or its affiliates) confidential and privileged information. This information is protected by law and/or agreements between CB&I (or its affiliates) and either you, your employer or any contract provider with which you or your employer are associated. If you are not an intended recipient, please contact the sender by reply e-mail and delete all copies of this e-mail; further, you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

CONFIDENTIALITY: This email and attachments may contain information which is confidential and proprietary. Disclosure or use of any such confidential or proprietary information without the written permission of Weston Solutions, Inc. is strictly prohibited. If you received this email in error, please notify the sender by return e-mail and delete this email from your system. Thank you.

Assessment of Adequacy of CB&I 1/10/14 Response to Comments regarding Draft Cutlines and Tables for Sites 63 and 65; Jersey City, Hudson County, New Jersey

Chicago Bridge and Iron (CB&I) responses, dated 1/10/14, to Weston 11/14/13 and 12/19/13 comments on the Site 16 cutlines are adequate, except as discussed below. For clarity and ease of use, the original comment, CB&I's response, and the assessment of the adequacy of that response is provided. *Weston's assessment of the adequacy of the response is provided in bold italic text.*

Following the assessment of adequacy of the response-to-comments is Weston's evaluation of the compliance averaging submittal provided by CB&I as an attachment to the cutline response-to-comment document.

Assessment of Adequacy of Previously-Submitted Comments

<u>General Comment</u>: For ease of use by the excavation contractor, it is recommended that the cut lines be revised to reflect elevations rather than depths.

Response: Cutline figures reflecting elevations have been provided to contractors in the bid specification package.

Adequacy of Response: Response is adequate.

<u>General Comment</u> Comments on the site-specific impact-to-groundwater soil remediation standard for nickel will be provided in a separate email responding directly to that submittal.

Response: No response provided. <u>Adequacy of Response</u>: No response was necessary.

<u>Boring/Sample Locations Missing from Table 2 (related to CCPW elevations)</u>: The following boring locations are shown on Figure 5, but not on Table 2. The review of the extent of excavation cannot be completed without knowing the proposed excavation depths at these locations. Please provide backup information to support the proposed excavation depths at these specific locations.

Response: Generally, proposed excavation depths are based on observations/sampling conducted at the boring locations as well as on a Kreiging algorithm that takes into account information from surrounding sample locations.

Adequacy of Response: Response is adequate.

• 065_A010SS

Response: Proposed Excavation Depth= 0 ft bgs Surficial sediment and surface water sample location with depth of 0 to 0.5 ft only. No CCPW observed at this location.

Adequacy of Response: Response is adequate.

• 063_C013A

Response: Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location. As CCPW was not identified at this location, the nickel hit reported for this location is being attributed to other fill materials utilized by NJTP during

the construction of the roadway and is not related to CCPW, therefore PPG is not responsible for its remediation.

<u>Adequacy of Response</u>: Response is adequate for this location on NJ Turnpike property.

• 063_C014A

Response: Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location. As CCPW was not identified at this location, the nickel hit reported for this location is being attributed to other fill materials utilized by NJTP during the construction of the roadway and is not related to CCPW, therefore PPG is not responsible for its remediation.

Adequacy of Response: Response is adequate.

• 063_E005CB

Response: Proposed Excavation Depth= 0 ft bgs - Surficial sediment and surface water sample location with depth of 0 to 0.5 ft only.

<u>Adequacy of Response</u>: Response is adequate.

• 063_F005

Response: Proposed Excavation Depth= 2.5 ft bgs - CCPW observed from 0 to 2.5 ft bgs during installation of MW-9 in this location.

<u>Adequacy of Response</u>: Response is adequate; however, post-excavation sampling will be required from beneath the CCPW.

• 063_E008 or 063_F008 (unclear on Figure 5)

Response: Locations is 063_E008 and it appears that it was never actually drilled or sampled. No data is available from previous submittals by others. <u>Adequacy of Response</u>: Response is adequate.

• 063_F009

Response: Location is also named 063_MW-12 on plans. No data is available from previous submittals by others. Data from CB&I installation of MW-12 = Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location and no CCPW-related metals reported in laboratory analytical samples.

<u>Adequacy of Response</u>: Response is adequate. Please provide soil sampling results associated with samples collected from 063_MW12.

• 063_F010A

Response: Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location and no CCPW-related metals reported in laboratory analytical samples. <u>Adequacy of Response</u>: Response is adequate. Please provide soil sampling results associated with samples collected from 063_F010A.

(Backup information was not provided, as requested; therefore, Weston remains unable to determine whether the excavation depths proposed in these areas is adequate.).

Response: Backup Information provided above. <u>Adequacy of Response</u>: Response is adequate.

It is noted that no samples were collected in the area along cross-section E-E' between stations 3+00 and 4+00. Based on information presented on Table 1, at 063_ED09 [ED009], chromate chemical process waste (CCPW) is present between 0 and 2.5 feet below ground surface (ft bgs) and contamination through 4 ft bgs. Likewise, at 063_ED10 [ED010], CCPW is present between 1 and 4 ft bgs. Therefore, these sampling locations cannot serve as sidewall samples

documenting the completeness of remedial action, and the portion of the site between them should be assessed for the presence of CCPW/CCPW-related contamination, and included in the Areas Requiring Remediation, as appropriate.

Response: The extents of Areas Requiring Remediation have been modified to account for the observed CCPW. See also Figure 20 of approved RI report. <u>Adequacy of Response</u>: Response is adequate.

Excavation Depths not Presented on Cutlines: Please provide elevation (depth) values on Figure 5 for the following areas.

- Areas centered on 063_C006 and 063_C007
- Areas centered on CD014 and 063_B010a
- Line connecting BD006 to CD017 (excavation depths not identified on revised drawings)
- Line connecting 063-B011 to near CD018
- Area DD007 to 063_C010 and northwest to the excavation boundary

Response: Figure 5 has been updated to provide values on the contours centered around the above locations.

<u>Adequacy of Response</u>: Response is adequate.

It is noted that elevation lines are not shown on Figure 5 in the area along cross-sections C-C' and D-D' between stations 3+00 and 4+00. Figure 5 indicates that this is not included in the area requiring remediation; however, the C-C' and D-D' cross-sections and data collected from the margins of this area suggest differently. See Boring/Sample Locations Missing from Table 2 (related to CCPW elevations) specific to cross-section E-E' between stations 3+00 and 4+00.

Response: The extents of Areas Requiring Remediation have been modified to account for the observed CCPW.

Adequacy of Response: Response is adequate.

<u>Contamination Beyond Proposed Excavation Limits</u>: The following boring locations have identified CPPW and/or site-related contaminant(s) present at concentration(s) greater than remediation standards which are not captured by the proposed limits of the excavation. The remedial limits must be expanded to achieve remedial goals for the site. The cross sections must be revised to address those locations which require excavation which are not indicated as such:

- Southwestern corner of Site 63
 - AD001: The thickness of CCPW at the identified "edge" of the excavation suggests that the remedial excavation may need to be extended to the south and west in this area. Table 1 shows top of clean at 6.5 ft bgs; bottom of CCPW at 4.5 ft bgs; and no recovery noted on the boring log from 5-6.5 ft bgs.

Response: The extents of Areas Requiring Remediation have been modified to account for the observed CCPW.

<u>Adequacy of Response</u>: Modifications were not observed on the cut line figures provided to Weston.

• A cross section needs to be developed for the area to the northeast of the Spectra easement at the northeast corner of Site 63 (i.e., associated with sample locations 063_C013, BD009, BD010, 063_B014, AD011, 063_C014). This could be shown as an extension of cross-section B-B', or could be a "stand-alone" cross section).

Response: Cross-section F-F' added to cut sheet figures. <u>Adequacy of Response</u>: Response is adequate. • AD002: Since no clean sample was observed beyond 7.0 ft bgs (hexavalent chromium [Cr⁺⁶], antimony [Sb], thallium [Tl], and vanadium [V] all exceed their respective remedial criteria at 7.0 ft bgs), PPG may need to extend the vertical extent of the remedial excavation beyond the proposed depth of approximately 7.5 ft bgs. Documentation of the adequacy of the remedial extent must be provided for this location by collection of clean confirmation samples.

Response: Acknowledged, a base post-excavation sample will be needed at this location.

<u>Adequacy of Response</u>: Please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

• 065_A006: PPG must identify how the exceedance of the thallium default impact to groundwater soil remediation standard (IGWSRS) will be addressed in this area. Table 2 shows bottom of CCPW at 1.5 ft bgs and top of clean at 3.8 ft bgs, with a proposed excavation depth of approximately 5.5 ft bgs on Figure 3 cross-section. However, Table 5A in the March 2013 Remedial Investigation Report (RIR), notes Tl at 5.6U [above IGW] at 8.2 ft bgs.

Response: As demonstrated in the attached package, the analysis of this Thallium issue through compliance averaging shows that this location is not a concern. This sample result is a non-detect. Thallium was not detected in 318 out of 328 RIR samples and not detected in any of 272 Remedial Design Boring samples. The maximum detectable concentration of Thallium was 1 ppm. Since the average for Thallium across the site is well below the Impact to Groundwater Soil Screening Level (IGWSSL), we believe that the depth of excavation in the area should 3.8 ft bgs as per the top of clean sample result for this location. Also note that since the concrete drainage structure on Site 065 Was installed as an IRM to temporarily cap known CCPW, it is expected that all the CCPW beneath that structure will be removed as part of the remedial action described in the cut lines.

<u>Adequacy of Response</u>: Please see comments on compliance averaging, below.
 AD003: PPG must extend the vertical extent of the remedial excavation, with documentation of the adequacy of the remedial extent by clean confirmation samples. The excavation in this location is proposed to a depth of approximately 8.5 ft bgs, however, Cr⁺⁶, Sb, and Tl exceed criteria at 8.5 ft bgs, and no deeper clean sample is present at this location.

Response: Acknowledged, a base post-excavation sample will be needed at this location.

<u>Adequacy of Response</u>: Please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

• BD008: PPG must extend the vertical extent of the remedial excavation at this location (adjacent to the pipeline) with documentation of the adequacy of the remedial extent by clean confirmation samples. The proposed excavation depth approximately 4.5 ft bgs;

however, Sb and Tl exceed criteria at 6.5 ft bgs and there is no clean sample deeper than 6.5 ft bgs.

Response: Acknowledged, a base post-excavation sample will be needed at this location.

<u>Adequacy of Response</u>: Please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

• 063_C004a: The proposed excavation depth at this location is approximately 5.5 ft bgs per the cross section E-E' at station 1+25. PPG must extend the vertical extent of remedial excavation at this location to 6.7 ft bgs (Table 2 lists top of clean at 6.7 ft bgs.

Response: The cut sheet and profiles have been revised to reflect an excavation depth of 6.7 ft bgs.

<u>Adequacy of Response</u>: Modifications were not observed on cut line Figure C-7 provided to Weston.

• DD009: The proposed excavation depth at this location is approximately 2.5 ft bgs per the cross section D-D' at station 4+97. PPG must extend the vertical extent of remedial excavation at this location to 5.5 ft bgs (Table 2 lists top of clean at 5.5 ft bgs).

Response: The cut sheet and profiles have been revised to reflect an excavation depth of 5.5 ft bgs.

<u>Adequacy of Response</u>: Modifications were not observed on cut line Figure C-7 provided to Weston.

• ED011: The cross-section shows only about 5.0 ft to be excavated; however, no clean sample was detected deeper than beyond 5.0 ft bgs (Sb, Tl, and V all exceed criteria at 5.0 ft bgs). PPG must document clean condition at the final terminal depth at this location through the use of confirmation sample(s). Note, this location is close to 063_C009a, which requires excavation to 15.5 ft bgs at a minimum (see next bullet).

Response: Acknowledged, a base post-excavation sample will be needed at this location.

<u>Adequacy of Response</u>: Please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

• 063_C009a: PPG must document clean condition at the terminal depth at this location. The proposed terminal depth at this location is approximately 15.5 ft bgs, V exceeds residential criteria at 15.0 ft bgs, but no clean sample was obtained deeper than 15.0 ft bgs. Also the elevation on Figure 5 is unreadable.

Response: As demonstrated in the attached package, the analysis of this Vanadium hit through compliance averaging shows that this location is not a concern. Furthermore, given the large clean interval between CCPW in this area and this sample, it appears that this hit is unrelated to the CCPW located above it. This hit should not define the excavation depth at this location. This excavation should extend only to a depth of 6.9 ft bgs where a base post-excavation sample should be collected. This same rationale also applies to the vanadium hit observed at a depth of 15-15.5-ft in 063_D006 where no excavation should occur as no CCPW was observed and no metals exceedences were reported in shallower samples.

<u>Adequacy of Response</u>: Please see comments on compliance averaging, below. 063_C013: PPG must extend the excavation to this area, and the cut lines must be

revised, to address the Ni exceedance of site-specific IGW at the surface (<0.5 ft bgs). Response: Acknowledged, a base post-excavation sample will be needed at this location. Cross section F-F' added to cut sheet figures.

<u>Adequacy of Response</u>: Please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

<u>Miscellaneous</u> Questions about the Cross-Sections (Figures 3 & 4): Please revise cross section B-B' between stations 0+00 and 0+75 and to the northeast of the Spectra easement to reflect changes based on the response to Contamination Beyond Proposed Excavation Limits, above.

Response: Cross section B-B' revised and cross section F-F' created. <u>Adequacy of Response</u>: Response is adequate.

<u>Required Post-Excavation Sampling</u>: Sidewall and bottom samples are required, consistent with the requirements of the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil (August 2012). Areas where confirmation sampling requirements have not been met include, but are not necessarily limited to:

- Southwestern corner of site (north and east of 063_D003) sidewall samples.
- Southeastern corner of the site (near 063_B004) sidewall samples. (While sidewall samples were proposed along the sidewall parallel to Burma Road, Sidewall samples are also required in the portion of the excavation sidewall that is perpendicular to Burma Road).
- The "cutout" within the area between grid points D7, D9, B9, and B7 sidewall samples.
- Excavation centered on 063_F005 sidewall samples, and if a clean sample has not yet been obtained from the 2.5 -3 ft bottom sample is required and was not identified on Drawing C-8).

• Excavation shown on the NJTA Berm beyond the northern limit of Site 63- sidewall and bottom samples.

• Note sidewall samples are also required for the small excavation centered around 063_C013, which was added to the revised drawings.

Response: Acknowledged. Additional post-excavation sampling will be required during the completion of remedial activities.

<u>Adequacy of Response</u>: Response is adequate. Please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil. Note that the majority of the area north of the pipeline, near and to the west of 063_C013, is not fully shown to be excavated/scraped. Portions of the surface at north end of the site showed signs of visible blooms in 2013.⁵ The surface of the entire north end of the site (north of the pipeline easement up to the identified excavation on NJTA property)

-3 ft bgs inter

should be assessed, and should be scraped with post-excavation sampling conducted if observations suggest chromium impacts in this area.

The following boring locations have their deepest soil sample showing site-related contaminant(s) present at concentration(s) greater than the respective most stringent soil remediation standard without a deeper clean sample present or planned sufficiently close. Confirmation samples are required at the proposed terminal depth of excavation consistent with the sample locations identified below. Note that Figure 5 and the cross-sections on Figures 3 & 4 may need to be edited based on the responses to these locations:

- AD002: at or deeper than 7.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- 065_A006: deeper than 8.2 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- AD003: deeper than 8.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- BD008: deeper than 6.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- ED011: deeper than 5.0 ft bgs (see Contamination Beyond Proposed Excavation Limits, above).
- 063_C009a: deeper than 15 ft bgs; see Contamination Beyond Proposed Excavation Limits, above.
- 063_C013: deeper than 0.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above.

Response: The need for additional post-excavation sampling is acknowledged and most of these locations were noted in Table 1 by identifying the top of clean for these locations as ND.

<u>Adequacy of Response</u>: Please confirm that all locations on Table 1 which are identified as "ND: will have post-excavation bottom samples. Also, please identify those locations which are not currently identified in Table 1 as "ND" which require bottom samples. Finally, please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

<u>Small excavation area</u>: The following comments apply to excavation areas on the northwest side of the Spectra pipeline easement.

• The excavation area in the southwestern portion of the site near 063_F005 and 063_MW09 [0-2.5' deep volume 9.3 cu. yd.] is not shown on Figure 2. See Required Post-Excavation Sampling, above.

Response: Acknowledged. Figure 2 has been revised. Additional post-excavation sampling will be required during the completion of remedial activities.

<u>Adequacy of Response</u>: Please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

• The excavation area in the southwestern portion of the site near 063_F005 and 063_MW09 [0-2.5' deep volume 9.3 cu. yd.] is not shown on Figure 2. See Required Post-Excavation Sampling, above.

Response: Acknowledged. Figure 2 has been revised. Additional post-excavation sampling will be required during the completion of remedial activities.

<u>Adequacy of Response</u>: Response is adequate. Please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

• NJTA Berm at North End of Site 63 [Location 063_C013A analytical results report Ni up to 321 mg/kg @ surface] is not shown on Figure 2. See Required Post-Excavation Sampling, above. It may be to PPG's advantage to implement more sampling in this area to better define the anticipated limits of the remedy before revising the excavation design. However, PPG must comply with the schedule identified in Exhibit 2 of the June 14, 2013 Court submittal.

Response: As CCPW was not identified at this location, the nickel hit reported for this location is being attributed to other fill materials utilized by NJTP during the construction of the roadway and is not related to CCPW, therefore PPG is not responsible for its remediation.

<u>Adequacy of Response</u>: Response is adequate for this location on NJ Turnpike property.

• The soils in the vicinity of boring locations 063_C013, BD009, BD010, 063_B014, AD011, 063_C014 must be identified as an excavation area to address exceedances observed in samples collected from these borings. Requirements (see Contamination Beyond Proposed Excavation Limits, above). A cross section or sections should be developed for this area, or existing cross sections should be revised to document anticipated excavation limits. If this area has not already been fully delineated, confirmation sampling will be required for this area consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil (August 2012). (063_C014 was not included in the remedial excavation identified in this area. This excavation should also be extended to include the site-specific IGWSRS for nickel in 063_B013).

Response: Acknowledged. An additional area of remediation has been added to the cut sheet figures and cross section F-F' was created. Additional post-excavation sampling will be required during the completion of remedial activities.

Adequacy of Response: Response is adequate.

Evaluation of Compliance Averaging Submittal:

The CB&I compliance averaging evaluation was not performed in accordance with the Department's *Technical Guidance for the Attainment of Remediation Standards and Site-Specific Criteria* (September 2012); and as such is unacceptable. The major deficiencies are identified below:

1. <u>Delineation</u>: CB&I does not provide a discussion/demonstration of the completeness of horizontal and vertical delineation for the site, or discuss whether or not contamination

has migrated off site. The NJDEP attainment guidance indicates delineation must be completed by single point compliance prior to conducting the compliance averaging for the direct contact and the impact to groundwater (IGW) pathways. Delineation has not yet been completed towards Burma Road (CCPW beneath the IRM installed on Site 65) nor has any chemical analysis been performed associated with the observations of surface CCPW identified for remediation on the NJ Turnpike Authority property to the north of Site 63.

- 2. <u>Functional Areas</u>: CB&I does not establish functional areas consistent with the guidance. For example, the functional depth for the direct contact pathway was defined as subsurface soils (2 ft bgs and deeper), whereas the guidance requires that the surficial zone (surface to 2 ft bgs) also be evaluated, and as a distinct depth interval.
- 3. <u>Functional Area Evaluation</u>: CB&I must assign and tabulate the data being used for each functional area, and ensure that data other than those needed for delineation are not included. CB&I must also ensure that the data set "shall not include excessive sampling of uncontaminated areas" as per guidance. It is also strongly recommended that the shape of the functional area be evaluated to determine compliance with guidance.

Shaw Environmental, Inc. a CB&I company 200 Horizon Center Trenton, NJ 08691 Tel: +1 609.584.8900 Fax: +1 609.588.6300 www.CBI.com

MEMORANDUM

То:	Tom Gibbons, PMP
From:	William Moran
	Marshall King, PE
Subject:	Response to Assessment of Adequacy Memorandum regarding Draft Cutlines and Tables
	from Weston Solutions
Project:	PPG, Site 63/65, 1 Burma Road, Jersey City, Hudson County, New Jersey
Report Date:	February 7, 2014

CB&I's responses to Weston's Assessment of Adequacy dated 29 January 2014 on the Site 63/65 cutlines follow below. Adequately addressed issues have been removed so that only open issues are included. For clarity and ease of use, the original comment, CB&I's response, the assessment of the adequacy (AOA), and the response to the AOA are provided. **CB&I's response to the assessment of the adequacy is provided in bold italic text.**

In addition, CB&I's revised compliance averaging submittal is an attachment.

Assessment of Adequacy of Previously-Submitted Comments

<u>Boring/Sample Locations Missing from Table 2 (related to CCPW elevations)</u>: The following boring locations are shown on Figure 5, but not on Table 2. The review of the extent of excavation cannot be completed without knowing the proposed excavation depths at these locations. Please provide backup information to support the proposed excavation depths at these specific locations.

Response: Generally, proposed excavation depths are based on observations/sampling conducted at the boring locations as well as on a Kreiging algorithm that takes into account information from surrounding sample locations.

Adequacy of Response: Response is adequate.

• 063_F009

Response: Location is also named 063_MW-12 on plans. No data is available from previous submittals by others. Data from CB&I installation of MW-12 = Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location and no CCPW-related metals reported in laboratory analytical samples.

<u>Adequacy of Response</u>: Response is adequate. Please provide soil sampling results associated with samples collected from 063_MW12. <u>Response to AOR</u>: See sample results attached.

• 063_F010A

Response: Proposed Excavation Depth= 0 ft bgs - No CCPW observed at this location and no CCPW-related metals reported in laboratory analytical samples. <u>Adequacy of Response</u>: Response is adequate. Please provide soil sampling results associated with samples collected from 063_F010A. <u>Response to AOR</u>: See sample results attached.

<u>Contamination Beyond Proposed Excavation Limits</u>: The following boring locations have identified CPPW and/or site-related contaminant(s) present at concentration(s) greater than

remediation standards which are not captured by the proposed limits of the excavation. The remedial limits must be expanded to achieve remedial goals for the site. The cross sections must be revised to address those locations which require excavation which are not indicated as such:

- Southwestern corner of Site 63
 - AD001: The thickness of CCPW at the identified "edge" of the excavation suggests that the remedial excavation may need to be extended to the south and west in this area. . Table 1 shows top of clean at 6.5 ft bgs; bottom of CCPW at 4.5 ft bgs; and no recovery noted on the boring log from 5-6.5 ft bgs.

Response: The extents of Areas Requiring Remediation have been modified to account for the observed CCPW.

<u>Adequacy of Response</u>: Modifications were not observed on the cut line figures provided to Weston.

<u>Response to AOR</u>: To be addressed during meeting between the parties.

• 065_A006: PPG must identify how the exceedance of the thallium default impact to groundwater soil remediation standard (IGWSRS) will be addressed in this area. Table 2 shows bottom of CCPW at 1.5 ft bgs and top of clean at 3.8 ft bgs, with a proposed excavation depth of approximately 5.5 ft bgs on Figure 3 cross-section. However, Table 5A in the March 2013 Remedial Investigation Report (RIR), notes Tl at 5.6U [above IGW] at 8.2 ft bgs.

Response: As demonstrated in the attached package, the analysis of this Thallium issue through compliance averaging shows that this location is not a concern. This sample result is a non-detect. Thallium was not detected in 318 out of 328 RIR samples and not detected in any of 272 Remedial Design Boring samples. The maximum detectable concentration of Thallium was 1 ppm. Since the average for Thallium across the site is well below the Impact to Groundwater Soil Screening Level (IGWSSL), we believe that the depth of excavation in the area should 3.8 ft bgs as per the top of clean sample result for this location.

Also note that since the concrete drainage structure on Site 065 was installed as an IRM to temporarily cap known CCPW, it is expected that all the CCPW beneath that structure will be removed as part of the remedial action described in the cut lines.

<u>Adequacy of Response</u>: Please see comments on compliance averaging, below. <u>Response to AOR</u>: See revised compliance averaging memorandum attached. In addition, note that as the sample collected at 8.2 ft bgs is below the water table (which is at ~2 ft bgs) the IGWSSL do not apply.

• 063_C004a: The proposed excavation depth at this location is approximately 5.5 ft bgs per the cross section E-E' at station 1+25. PPG must extend the vertical extent of remedial excavation at this location to 6.7 ft bgs (Table 2 lists top of clean at 6.7 ft bgs.

Response: The cut sheet and profiles have been revised to reflect an excavation depth of 6.7 ft bgs.

<u>Adequacy of Response</u>: Modifications were not observed on cut line Figure C-7 provided to Weston.

<u>Response to AOR</u>: To be addressed during meeting between the parties. This boring location will be identified on a spot elevation table with all the other borings on the site in the contractor bid documents for the site. The

spot elevation table will include boring coordinates and final elevations for the excavation.

• DD009: The proposed excavation depth at this location is approximately 2.5 ft bgs per the cross section D-D' at station 4+97. PPG must extend the vertical extent of remedial excavation at this location to 5.5 ft bgs (Table 2 lists top of clean at 5.5 ft bgs).

Response: The cut sheet and profiles have been revised to reflect an excavation depth of 5.5 ft bgs.

<u>Adequacy of Response</u>: Modifications were not observed on cut line Figure C-7 provided to Weston.

<u>Response to AOR</u>: To be addressed during meeting between the parties.

• 063_C009a: PPG must document clean condition at the terminal depth at this location. The proposed terminal depth at this location is approximately 15.5 ft bgs, V exceeds residential criteria at 15.0 ft bgs, but no clean sample was obtained deeper than 15.0 ft bgs. Also the elevation on Figure 5 is unreadable.

Response: As demonstrated in the attached package, the analysis of this Vanadium hit through compliance averaging shows that this location is not a concern. Furthermore, given the large clean interval between CCPW in this area and this sample, it appears that this hit is unrelated to the CCPW located above it. This hit should not define the excavation depth at this location. This excavation should extend only to a depth of 6.9 ft bgs where a base post-excavation sample should be collected.

This same rationale also applies to the vanadium hit observed at a depth of 15-15.5ft in 063_D006 where no excavation should occur as no CCPW was observed and no metals exceedences were reported in shallower samples.

<u>Adequacy of Response</u>: Please see comments on compliance averaging, below. <u>Response to AOR</u>: See revised compliance averaging memorandum attached.

The following boring locations have their deepest soil sample showing site-related contaminant(s) present at concentration(s) greater than the respective most stringent soil remediation standard without a deeper clean sample present or planned sufficiently close. Confirmation samples are required at the proposed terminal depth of excavation consistent with the sample locations identified below. Note that Figure 5 and the cross-sections on Figures 3 & 4 may need to be edited based on the responses to these locations:

- AD002: at or deeper than 7.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- 065_A006: deeper than 8.2 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- AD003: deeper than 8.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- BD008: deeper than 6.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- ED011: deeper than 5.0 ft bgs (see Contamination Beyond Proposed Excavation Limits, above).

- 063_C009a: deeper than 15 ft bgs; see Contamination Beyond Proposed Excavation Limits, above.
- 063_C013: deeper than 0.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above.
 - Response: The need for additional post-excavation sampling is acknowledged and most of these locations were noted in Table 1 by identifying the top of clean for these locations as ND.

<u>Adequacy of Response</u>: Please confirm that all locations on Table 1 which are identified as "ND" will have post-excavation bottom samples. Also, please identify those locations which are not currently identified in Table 1 as "ND" which require bottom samples. Finally, please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

<u>Response to AOR</u>: Please see attached summary table of locations requiring post-excavation bottom samples. As confirmation, all the locations from Table 1 that were identified as "ND" has been included. Regarding locations 065_A006 and 063_C009a, please see compliance averaging memorandum attached.

C:\Users\marshall.king\Desktop\Site 63\Memo - Site 63-65 Response to AOR assessment - 2014-02.5doc

TABLES

 TABLE

 Summary of Post-Excavation Bottom Sample Locations

Soil Boring	EASTING	NORTHING	ELEVATION (feet msl)	top of CCPW (ft bgs)	bottom of CCPW (ft bgs)	Top of Clean (ft bgs)	top of CCPW (ft msl)	bottom of CCPW (ft msl)	Sample Elevation Interval (ft msl)
AD002	612263.7	680293.9	7.5	0	5	7	7.50	2.50	0 to 0.5*
AD003	612299.4	680342.5	7.5	0	4	8.5	7.50	3.50	-1 to -1.5*
BD008	612491.0	680647.5	7.4	0	4.5	4.5	7.40	2.90	2.5 to 2.9
BD010	612519.5	680702.2	8.3	0	4.5	6.5	8.30	3.80	1.3 to 1.8*
ED011	612308.2	680558.5	9	0	3	5	9.00	6.00	3.5 to 4*
063_C009A	680559.79	612312.58	9.14	0.00	0.00	6.9	9.14	9.14	1.7 to 2.2
063_C013	680662.77	612497.47	7.51	0.00	0.00	0.5	7.51	7.51	6.51 to 7.01
063_F005/MW-9	680662.77	612497.47		0.00	2.50	2.5	0.00	-2.50	-2.5 to -3

* Locations at which vertical delineation is not complete.

										wet Chem Analysis		
Sample ID	Lab ID	Date	Time		Antimony (mg/kg)	Chromiu m (mg/kg)	Nickel (mg/kg)	Thalliu m (mg/kg)	Vanadium (mg/kg)	Chromium (VI) (mg/kg)	pH (su)	Oxidation Reduction Potential, Dissolved (millivolts)
F-010A 0.0-0.5	460-53059-1	3/25/2013	9:05	Soil	0.54 J	34.1	18.5	0.27	44.0	0.69 U	8.53 HF	380
F-010A 0.5-1	460-53059-2	3/25/2013	9:15	Soil	0.41 U	29.0	13.6	0.21 J	32.4	0.58 U	8.49 HF	385
F-010A 1.5-2	460-53059-3	3/25/2013	9:20	Soil	0.41 U	29.3	22.2	0.23	38.4	0.56 U	8.16 HF	396
F-010A 2.5-3	460-53059-4	3/25/2013	9:35	Soil	0.88	163	46.6	0.23 U	45.2	0.67 U	8.37 HF	514
F-010A 3.5-4	460-53059-5	3/25/2013	9:45	Soil	3.0	41.2	30.7	0.52	49.4	0.63 U	7.25 HF	322
MW-12 0.0-0.5	460-52992-14	3/25/2013	13:25	Soil	0.38 U	17.7	11.5	0.18 U	17.4	0.53 U	8.62 HF	508
MW-12 0.5-1.0	460-52992-15	3/25/2013	13:30	Soil	0.46 U	941	27.2	0.22 U	44.6	0.64 U	8.32 HF	489
MW-12 3.5-4.0	460-52992-16	3/25/2013	13:40	Soil	0.52 U	44.6	14.5	0.25 U	22.3	0.71 U	7.17 HF	317
MW-12 7.5-8.0	460-53059-13	3/26/2013	11:40	Soil	0.44 U	54.1	24.7	0.30	62.3	0.60 U	7.66 HF	457
NJ Residential SR	S Soil Cleanup (Criteria		-	31	NA	1,600	5	78	NA	NA	NA
NJ Non Residentia	I SRS Soil Clea	nup Criteria			450	NA	23,000	79	1,100	NA	NA	NA
NJ Impact to GW S	Soil Screening L	evel			6	NA	31	3	NA	NA	NA	NA

TABLE SITE 063 - SOIL ANALYTICAL RESULTS

Highlighted Concentrations: Sample results do not meet NJ Impact to Groundwater Soil Remediation Standard.

J : Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

U : Indicates the analyte was analyzed for but not detected.

HF : Field parameter with a holding time of 15 minutes

ATTACHMENT A

Compliance Averaging Analysis

MEMORANDUM

To:Tom Gibbons, PMPFrom:Dan Duh
Marshall E. King, PEProject:PPG, Site 63/65, 1 Burma Road, Jersey City, NJ
Subject:Subject:Compliance Averaging AnalysisReport Date:January 9, 2014 – Revised February, 2014

Concentrations of thallium and vanadium in pre-post excavation soil samples at Site 63-65 that serve as the post-excavation samples used to document the effectiveness and completeness of the soil remediation were collected at a post-excavation frequency of one boring per 900 square feet (sf) and were evaluated for compliance with applicable soil remediation standards. On average four samples were collected from each boring in order to define vertical delineation at the location. For this evaluation, compliance averaging at the 95 percent upper confidence limit of the mean (UCL) was conducted using ProUCL Version 5.0.

Delineation

The application of compliance averaging at this site does not dismiss that additional horizontal delineation of the site may be required, however it is prefaced on the fact that the vast majority of the aerial extent of the onsite historic fill has reasonably been horizontally and vertically delineated. As the design boring program was implemented to obtain pre-post-excavation samples to demonstrate vertical delineation of CCPW-impacted historical fill, CB&I believes that it is technically appropriate to utilize compliance averaging to these vertical delineation sample results that are located well within the delineated horizontal boundaries of the impacted area. PPG has collected quadruple the number of samples that would normally have been collected from an excavation bottom to provide a timely and thorough assessment of the proposed excavation bottom extent and support the vertical delineation findings. Given the aerial extents of proposed excavation and the number of samples utilized, we believe that the addition of fringe samples from along Burma Road or the NJ Turnpike Authority property where additional horizontal delineation is required would have a statistically insignificant effect on the findings of the compliance averaging exercise.

Functional Area

The functional area of this analysis is limited to the proposed remedial extents of the proposed excavation which cover less than 2-acres. According to NJDEP guidance non-residential sites may use functional areas of this size. This entire area is impacted by CCPW, therefore there is no bias to areas that are "clean." See attached figure depicting the functional area extents. Please note that the site is basically rectangular with the site's width (~150-ft) being more than one quarter of the site's length(~540-ft). This ratio is in general accordance with NJDEP guidance.

Data from the shallowest 2 ft of soil were not included in the statistical analysis as this soil interval will be removed during site remediation activities. Only data from samples representative of soil that is to remain onsite were used (i.e. the top of clean samples located at depth below the CCPW-impacted fill layer). In addition, areas which have been delineated as being clean have not been included within the functional area. The data set utilized is limited to the samples in the attached tables.

Duplicates

Prior to performing statistical analyses, the applicable datasets were evaluated for duplicate sample results. The average concentration of duplicate results was used as the concentration for that sample. If both duplicate results were non-detect, the evaluated concentration was considered non-detect. If both duplicate results were detected concentrations, the evaluated concentration was considered detected. If one of the duplicate results was a detected concentration and the other was non-detect, the evaluated concentration was considered detected.

Thallium and Vanadium

For analysis of thallium and vanadium, the functional-area depth consisted of the subsurface 2 ft bgs and deeper. As groundwater at the site is at approximately 2-ft, this means that Impact to Groundwater Criteria do not apply and that Residential Direct Contact (RDC) standards do apply to these samples. The following table summarizes the results of the compliance averaging for thallium and vanadium in the subsurface functional area from 2 ft bgs and deeper as defined by pre-post-excavation samples. ProUCL program output tables documenting this compliance averaging analysis are attached.

Site	Parameter	Soil Remediation Standard	ProUCL Recommended 95% UCL						
Site 63-65									
	Thallium	RDC – 5 mg/kg	0.638	95% KM (t) UCL					
	Vanadium	RDC – 78 mg/kg	31.6	95% Student's-t or Modified-t UCL					

Conclusions

The ProUCL recommended 95% UCLs for thallium and vanadium were all below the applicable soil remediation standards for Site 63-65. These findings are pertinent to the following sample locations.

For Thallium, the minimum detection limits (MDLs) for two non-detect samples were reported to be above the NJDEP Residential Direct Contact Standard. These samples were:

- 065_A005, 5 to 5.5 ft bgs (<6.3 U mg/kg), and
- 065_A006, 8.2 to 8.7 ft bgs (<5.6 U mg/kg).

For the purposes of the analysis to demonstrate worst case scenario, the MDLs of these samples were taken to be the thallium concentration in the samples. As per the statistical analysis detailed above, these two samples are not statistically significant and therefore should not be used to define the vertical delineation extent of the proposed excavation at these two locations.

For Vanadium, three samples of note were reported to be above the NJDEP Residential Direct Contact Standard. These samples were:

- 063_C009a 6.4 to 6.9 ft bgs (83.9 mg/kg),
- 063_C009a 15 to 15.5 ft bgs (87.6 mg/kg), and
- 063_D006, 15 to 15.5 ft bgs (86.2 mg/kg).

As per the statistical analysis detailed above, these three samples are not statistically significant and therefore should be considered background and not be used to define the vertical delineation extent of the proposed excavation at these two locations.

\\trefs01\COMMON\Moran\PPG - Chrome\Site 63-65_Reports\2013-10 - Cutsheet Deliverable\2013-02 - AOR Response\Attachment A - compliance averaging revised\Attachment A - Compliance Averaging Analysis - revised.doc

ATTACHMENT

Compliance Averaging Input Data

Sites 63 and 65 Jersey City, New Jersey

Page 1 of 9

Sample Location:					AD001	AD004	AD005	AD006	AD007	AD008	AD	009	BD001	BD002	BD003
Sample Depth (ft bgs):					6.5-7	5.5-6	2.5-3	2.5-3	5.5-6	5-5.5	5-5.5	5-5.5	7-7.5	6.5-7	4.5-5
Client Sample ID:	BDC	Nen DEC	800 (04)	ICIM	AD001 6.5-7	AD004 5.5-6	AD005 2.5-3	AD006 2.5-3	AD007 5.5-6	AD008 5-5.5	AD009 5-5.5	AD009 5-5.5	BD001 7-7.5	BD002 6.5-7	BD003 4.5-5
Lab Sample ID:	RDC	NOIPKES	300 (01)	1011	JB44205-1	JB46800-4	JB46800-6	JB46800-11	JB46883-20	JB46883-29	JB47183-5	JB47183-5R	JB44205-5	JB43880-49A	JB46883-6
Date Sampled:					8/5/2013	9/9/2013	9/9/2013	9/9/2013	9/10/2013	9/10/2013	9/12/2013	9/12/2013	8/5/2013	8/2/2013	9/10/2013
Matrix:					Soil										
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	1.3	<0.47	3	1	<0.50	<0.52	0.83	<0.47	0.95	<0.46	<0.47
Chromium (mg/kg)	N/A	N/A	120,000	N/A	34.7	189	160	56.7	55.2	18.5	80.1		181	65.7	61.6
Antimony (mg/kg)	31	450	N/A	6	<2.3	<2.3	<2.0	<2.3	4	2.5	<2.3		<2.2	<2.3	<2.3
Nickel (mg/kg)	1,600	23,000	N/A	205**	16.8	15.4	19	19	16.6	12.9	18.1		12.9	15.1	17.5
Thallium (mg/kg)	5	79	N/A	3	<1.1	<1.2	<1.0	<1.2	<1.3	<0.98	<1.1		<1.1	<1.2	<1.1
Vanadium (mg/kg)	78	1,100	N/A	N/A	32.9	33	41.6	8.4	24.7	14.1	19.1		22.7	24.5	36.6
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A	213	16.7	176	265	281	253	282		128	147	182
Solids, Percent (%)	N/A	N/A	N/A	N/A	86.1	85.3	77.6	85.6	80	77.2	85.2		90.5	87.1	85.8
рН	N/A	N/A	N/A	N/A	9.84	9.99	8.09	7.82	7.74	7.73	8.09		10.33	9.52	9.63

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Sites 63 and 65 Jersey City, New Jersey

Page 2 of 9

Sample Location:					BD	004	BD	005	BD006	BD	007	BD	008
Sample Depth (ft bgs):					5-5.5	5-5.5	5.5-6	5.5-6	6-6.5	5-5.5	5-5.5	4.5-5	4.5-5
Client Sample ID:	PDC	Non-RES	SCC (Cr)	IGW	BD004 5-5.5	BD004 5-5.5	BD005 5.5-6	BD005 5.5-6	BD006 6-6.5	BD007 5-5.5	BD007 5-5.5	BD008 4.5-5	BD008 4.5-5
Lab Sample ID:	KDC	NOIPKES	300 (01)	1011	JB46800-37	JB46800-37R	JB46883-10	JB46883-10R	JB44447-13	JB46883-15	JB46883-15R	JB46883-24	JB46883-24R
Date Sampled:					9/9/2013	9/9/2013	9/10/2013	9/10/2013	8/8/2013	9/10/2013	9/10/2013	9/10/2013	9/10/2013
Matrix:					Soil								
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	<0.53	1.1	1.2	2.7	0.49	0.45	0.98	<0.46	<0.46
Chromium (mg/kg)	N/A	N/A	120,000	N/A	278		43.2		25	38.3		73.2	
Antimony (mg/kg)	31	450	N/A	6	<2.0		<2.3		<2.3	<2.3		<2.2	
Nickel (mg/kg)	1,600	23,000	N/A	205**	17		15.7		12.5	18.5		14.5	
Thallium (mg/kg)	5	79	N/A	3	<1.0		<1.2		<1.2	<1.2		<1.1	
Vanadium (mg/kg)	78	1,100	N/A	N/A	25.9		53.5		28.3	38.5		16.9	
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A	318		276		255	269		273	
Solids, Percent (%)	N/A	N/A	N/A	N/A	76		86		90.4	88.2		87.4	
pН	N/A	N/A	N/A	N/A	6.12		7.83		8.14	7.97		7.68	

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Sites 63 and 65 Jersey City, New Jersey

Page 3 of 9

Sample Location:					CD001	CD002	CD003	CD004	CD005	CD006	CD007	CD008	CD009	CD	010
Sample Depth (ft bgs):					7-7.5	6-6.5	3.5-4	7-7.5	5-5.5	7-7.5	4.5-5	4-4.5	4-4.5	4.5-5	4.5-5
Client Sample ID:	BDC	Non DEC	800 (00)	ICIM	CD001 7-7.5	CD002 6-6.5	CD003 3.5-4	CD004 7-7.5	CD005 5-5.5	CD006 7-7.5	CD007 4.5-5	CD008 4-4.5	CD009 4-4.5	CD010 4.5-5	CD010 4.5-5
Lab Sample ID:	RDC	NOIFRES	300 (CI)	IGW	JB43880-35A	JB43880-4A	JB43880-28A	JB44205-25	JB44205-18	JB44205-33	JB43880-39A	JB43880-41A	JB43880-44A	JB46883-1	JB46883-1R
Date Sampled:					7/31/2013	7/30/2013	7/30/2013	8/5/2013	8/2/2013	8/5/2013	8/1/2013	8/2/2013	8/2/2013	9/10/2013	9/10/2013
Matrix:					Soil										
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	<0.52	0.69	1.8	1.2	1.2	<0.44	<0.45	<0.48	0.7	<0.47	<0.47
Chromium (mg/kg)	N/A	N/A	120,000	N/A	15.3	25.7	320	46.3	28.4	46.7	12.9	15.2	34.4	17	
Antimony (mg/kg)	31	450	N/A	6	<2.0	<2.3	<2.3	<2.3	<2.3	<2.3	<2.2	<2.5	<2.3	<2.3	
Nickel (mg/kg)	1,600	23,000	N/A	205**	13.1	17.5	20.7	11.9	14.9	12.2	9.7	12.6	11.1	12	
Thallium (mg/kg)	5	79	N/A	3	<1.0	<1.2	<1.2	<1.1	<1.1	<1.1	<1.1	<1.2	<1.1	<1.1	
Vanadium (mg/kg)	78	1,100	N/A	N/A	22.2	35.5	41.3	28.5	26.2	24.5	17.4	20.6	21.5	20.3	
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A	197	241	194	290	126	224	162	194	210	258	
Solids, Percent (%)	N/A	N/A	N/A	N/A	77.2	86.5	86.2	88.9	88	91	89.1	83.4	86.5	84.8	
pH	N/A	N/A	N/A	N/A	6.98	6.88	7.86	6.95	9.53	9.31	9.7	9.04	8.69	8.84	

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Sites 63 and 65 Jersey City, New Jersey

Page 4 of 9

Sample Location:					CD	011	CD012	CD	013	CD	014	CD	015
Sample Depth (ft bgs):					4.5-5	4.5-5	5-5.5	5-5.5	5-5.5	8-8.5	8-8.5	5.5-6	5.5-6
Client Sample ID:	PDC	Non-RES	SCC (Cr)	IGW	CD011 4.5-5	CD011 4.5-5	CD012 5-5.5	CD013 5-5.5	CD013 5-5.5	CD014 8-8.5	CD014 8-8.5	CD015 5.5-6	CD015 5.5-6
Lab Sample ID:	RDC	NOIPRES	300 (CI)	1011	JB46800-42	JB46800-42R	JB46800-17	JB46800-21	JB46800-21R	JB44447-33	JB44447-33R	JB44447-30	JB44447-30R
Date Sampled:					9/9/2013	9/9/2013	9/9/2013	9/9/2013	9/9/2013	8/8/2013	8/8/2013	8/8/2013	8/8/2013
Matrix:					Soil								
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	<0.48	<0.48	<0.47	<0.47	0.61	3.6	10.2	<0.47	<0.47
Chromium (mg/kg)	N/A	N/A	120,000	N/A	19.7		26	23.3		483		28.4	
Antimony (mg/kg)	31	450	N/A	6	<2.4		<2.3	<2.3		<2.0		<2.3	
Nickel (mg/kg)	1,600	23,000	N/A	205**	14.4		13.7	13.9		19.5		11.6	
Thallium (mg/kg)	5	79	N/A	3	<1.2		<1.2	<1.2		<1.0		<1.2	
Vanadium (mg/kg)	78	1,100	N/A	N/A	25.8		20.8	21.2		41.1		18.3	
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A	178		154	201		159		155	
Solids, Percent (%)	N/A	N/A	N/A	N/A	82.5		84.5	84.4		78.1		85	
pН	N/A	N/A	N/A	N/A	8.65		8.32	7.53		8.7		7.91	

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Sites 63 and 65 Jersey City, New Jersey

Page 5 of 9

Sample Location:					CD016	CD017	CD	018	CD	019	DD001	DD002	DD003	DD004	DD
Sample Depth (ft bgs):					5-5.5	6-6.5	4.5-5	4.5-5	4-4.5	4-4.5	7-7.5	6-6.5	4-4.5	5-5.5	4-4.5
Client Sample ID:	PDC	Non-RES	800 (07)	IGW	CD016 5-5.5	CD017 6-6.5	CD018 4.5-5	CD018 4.5-5	CD019 4-4.5	CD019 4-4.5	DD001 7-7.5	DD002 6-6.5	DD003 4-4.5	DD004 5-5.5	DD005 4-4.5
Lab Sample ID:	RDC	NOIPKES	300 (01)	1011	JB44447-17	JB44447-1	JB47185-2	JB47185-2R	JB47183-1	JB47183-1R	JB43880-8A	JB44205-29	JB44205-9	JB43880-20A	JB47183-10
Date Sampled:					8/8/2013	8/8/2013	9/12/2013	9/12/2013	9/12/2013	9/12/2013	7/31/2013	8/5/2013	8/5/2013	8/1/2013	9/12/2013
Matrix:					Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	<0.47	2.6	<0.44	0.49	<0.45	<0.45	<0.47	<0.46	1	<0.48	<0.48
Chromium (mg/kg)	N/A	N/A	120,000	N/A	25.6	168	69.0 ^a		216		20.1	24.1	48.2	49.3	34.3
Antimony (mg/kg)	31	450	N/A	6	<2.4	<2.3	<2.1		<2.3		<2.3	<2.2	<2.4	<2.4	<2.4
Nickel (mg/kg)	1,600	23,000	N/A	205**	14.6	19.2	12.7 ^a		11.3		14.3	14.4	16.5	17.9	14.5
Thallium (mg/kg)	5	79	N/A	3	<1.2	<1.1	<2.1 ^a		<1.1		<1.2	<1.1	<1.2	<1.2	<1.2
Vanadium (mg/kg)	78	1,100	N/A	N/A	23.5	44.5	28		24.1		28.2	27.7	27.2	35.1	27.8
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A	193	296	275		284		216	214	120	194	147
Solids, Percent (%)	N/A	N/A	N/A	N/A	84.6	89.7	90.2		89.6		85.4	86.4	83.8	83.2	84
рН	N/A	N/A	N/A	N/A	8.67	8.33	7.92		8.01		7.81	8.46	9.42	8.8	9.7

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Sites 63 and 65 Jersey City, New Jersey

Page 6 of 9

Sample Location:						DD	006	DD	007	DD008
Sample Depth (ft bgs):					4-4.5	4.5-5	4.5-5	5-5.5	5-5.5	5-5.5
Client Sample ID:	RDC	Non-RES	SCC (Cr)	IGW	DD005 4-4.5	DD006 4.5-5	DD006 4.5-5	DD007 5-5.5	DD007 5-5.5	DD008 5-5.5
Lab Sample ID:	RDC	NOIPKES	300 (01)	1011	JB47183-10R	JB44447-65	JB44447-65R	JB44447-38	JB44447-38R	JB44447-9
Date Sampled:					9/12/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/9/2013
Matrix:					Soil	Soil	Soil	Soil	Soil	Soil
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	<0.48	1.7	<0.53	1.2	0.57	<0.47
Chromium (mg/kg)	N/A	N/A	120,000	N/A		71.7		18.8		19.9
Antimony (mg/kg)	31	450	N/A	6		<2.0		<2.3		<2.5
Nickel (mg/kg)	1,600	23,000	N/A	205**		15.6		10.4		16
Thallium (mg/kg)	5	79	N/A	3		<1.0		<1.1		<1.2
/anadium (mg/kg)	78	1,100	N/A	N/A		28		19.3		20.4
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A		134		217		141
Solids, Percent (%)	N/A	N/A	N/A	N/A		75.8		88.9		85.4
H	N/A	N/A	N/A	N/A		8.47		8.9		8.38

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Sites 63 and 65 Jersey City, New Jersey

Page 7 of 9

Sample Location:					DD	009	ED001	ED002	ED003	ED	004	ED005	ED	006
Sample Depth (ft bgs):					5.5-6	5.5-6	5-5.5	4-4.5	4-4.5	4.5-5	4.5-5	4-4.5	* 4.5-5	4.5-5
Client Sample ID:	BDC	Nen DEC	800 (0-)	ICIN	DD009 5.5-6	DD009 5.5-6	ED001 5-5.5	ED002 4-4.5	ED003 4-4.5	ED004 4.5-5	ED004 4.5-5	ED005 4-4.5	* ED006 4.5-5	ED006 4.5-5
Lab Sample ID:	RDC	NOIFRES	300 (CI)	1011	JB44447-21	JB44447-21R	JB43880-14A	JB43880-24A	JB43880-16A	JB44447-50	JB44447-50R	JB44205-45	* JB44447-62	JB44447-62R
Date Sampled:					8/8/2013	8/8/2013	7/31/2013	7/29/2013	8/1/2013	8/6/2013	8/6/2013	8/6/2013	8/7/2013	8/7/2013
Matrix:					Soil	Soil								
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	<0.48	<0.48	1.6	<0.47	<0.47	<0.46	0.72	<0.47	4.6	11.5
Chromium (mg/kg)	N/A	N/A	120,000	N/A	15.5		21.6	32.4	92.8	283		38.7	152	
Antimony (mg/kg)	31	450	N/A	6	<2.4		<2.6	<2.3	<2.4	<2.4		<2.3	<2.2	
Nickel (mg/kg)	1,600	23,000	N/A	205**	15.1		14.2	18.7	15.2	17.2		12.6	13.8	
Thallium (mg/kg)	5	79	N/A	3	<1.2		<1.3	<1.2	<1.2	<1.2		<1.2	<1.1	
Vanadium (mg/kg)	78	1,100	N/A	N/A	19.4		23.7	30.9	26.8	40.3		21.3	24.5	
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A	238		276	224	246	53		84	131	
Solids, Percent (%)	N/A	N/A	N/A	N/A	83.3		80.1	84.4	84.6	87.1		86	88.5	
pН	N/A	N/A	N/A	N/A	7.89		7.07	8.32	8.78	10.28		10.07	9.57	

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Sites 63 and 65 Jersey City, New Jersey

Page 8 of 9

Sample Location:					ED007	ED008	ED	0009	ED	010	ED	012	ED013	FD001	ED
Sample Depth (ft bgs):					4-4.5	4.5-5	4-4.5	4-4.5	4-4.5	4-4.5	4.5-5	4.5-5	5.5-6	6-6.5	4.5-5
Client Sample ID:	PDC	Non-RES	SCC (Cr)	IGW	ED007 4-4.5	ED008 4.5-5	ED009 4-4.5	ED009 4-4.5	ED010 4-4.5	ED010 4-4.5	ED012 4.5-5	ED012 4.5-5	ED013 5.5-6	FD001 6-6.5	FD002 4.5-5
Lab Sample ID:	KDC	NOIPKES	300 (CI)	1011	JB44205-37	JB44205-21	JB44447-53	JB44447-53R	JB44447-69	JB44447-69R	JB44447-45	JB44447-45R	JB44447-5	JB44205-42	JB44447-58
Date Sampled:					8/6/2013	8/6/2013	8/6/2013	8/6/2013	8/7/2013	8/7/2013	8/7/2013	8/7/2013	8/9/2013	8/6/2013	8/6/2013
Matrix:					Soil										
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	<0.46	<0.47	<0.46	<0.46	4.7	0.54	0.69	<0.54	0.53	<0.46	7.4
Chromium (mg/kg)	N/A	N/A	120,000	N/A	16.5	16	18.6		143		46.3		647	18.6	214
Antimony (mg/kg)	31	450	N/A	6	<2.3	<2.4	<2.3		<2.3		<2.0		<2.0	<2.4	<2.2
Nickel (mg/kg)	1,600	23,000	N/A	205**	12.5	14.8	13.9		18.9		34.2		18.8	15.6	21.4
Thallium (mg/kg)	5	79	N/A	3	<1.1	<1.2	<1.2		<1.2		<1.0		<1.0	<1.2	<1.1
Vanadium (mg/kg)	78	1,100	N/A	N/A	21.3	21.6	23.5		27.7		37.8		35	23	47.8
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A	162	276	161		177		177		127	284	176
Solids, Percent (%)	N/A	N/A	N/A	N/A	87.7	84.4	87.2		84.1		74.5		75	86.2	88.1
pН	N/A	N/A	N/A	N/A	9.14	8.95	8.93		8.82		8.95		8.35	8.02	9.18

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Sites 63 and 65 Jersey City, New Jersey

Page 9 of 9

Sample Location:		Non-RES	SCC (Cr)			FD004		
Sample Depth (ft bgs):				IGW	4.5-5	4.5-5	4.5-5	
Client Sample ID:	BDC				FD002 4.5-5	FD004 4.5-5	FD004 4.5-5	
Lab Sample ID:	RDC				JB44447-58R	JB44447-25	JB44447-25R	
Date Sampled:					8/6/2013	8/8/2013	8/8/2013	
Matrix:					Soil	Soil	Soil	
Chromium, Hexavalent (mg/kg)	N/A	N/A	20	N/A	7.7	0.65	<0.50	
Chromium (mg/kg)	N/A	N/A	120,000	N/A		58.8		
Antimony (mg/kg)	31	450	N/A	6		<2.0		
Nickel (mg/kg)	1,600	23,000	N/A	205**		13		
Thallium (mg/kg)	5	79	N/A	3		<0.99		
Vanadium (mg/kg)	78	1,100	N/A	N/A		23.9		
Redox Potential Vs H2 (mV)	N/A	N/A	N/A	N/A		158		
Solids, Percent (%)	N/A	N/A	N/A	N/A		79.9		
pН	N/A	N/A	N/A	N/A		8.75		

NOTE:

RDC = NJ Residential Direct Contact

Non-Res = NJ Non-residential Direct Contact

SCC (Cr) = Chromium Soil Cleanup Criteria

IGW = NJ Impact to Ground Water Default Screening Values

^a Elevated detection limit due to dilution required for high interfering element.

* Sample did not pass 2nd QA & QC. See Table 2 for Rerun.

Summary of Pre-Post-Excavation Samples Used for Compliance Averaging

Sites 63 and 65 Jersey City, New Jersey

Page 1 of 4

LOCATION	MINIMUM	STANDARD/	063_B005	063_B006	063_B007	063_B010	063_B011	063_B012	063_C004a
SAMPLE ID	STANDARD/	SCREENING	063_B005_3.3	063_B006_6.5	063_B007_5.0	063_B010_5.0	063_B011_5.0	063_B012_5.0	063_C004a_6.7
SAMPLE_DATE	SCREENING	CRITERIA	20110719	20110715	20110719	20110728	20110728	20110711	20110722
TOP OF SAMPLE	CRITERIA	SOURCE	3.3	6.5	5	5	5	5	6.7
Metals (MG/KG)									
ANTIMONY	6* / 31	IGW SSL* / RDC SRS	5.9 J	0.93 UJ	0.93 UJ	5.8 UJ	1 UJ	0.58 UJ	1.1 UJ
CHROMIUM	120000	CrSCC	2610	14.9 J	83	2950	74.1 J	14.7	9.8
NICKEL	31* / 1600	IGW SSL* / RDC SRS	14.7	11.2	14.5	22.5	14.1	13.1	9.8
THALLIUM	3* / 5	IGW SSL* / RDC SRS	2.7 U	1 U	1 U	1.3 U	1.1 U	0.32 U	1.2 U
VANADIUM	78	RDC SRS	35.5	18.5	28	32	27.6	23.2 J	15.3
Miscellaneous Parameters (MG/KG)					•				
HEXAVALENT CHROMIUM	20	CrSCC	0.56 UJ	1 J	0.56 UJ	3	0.57 U	0.55 UJ	0.61 U
Miscellaneous Parameters (MV)					•				
OXIDATION REDUCTION POTENTIAL	NC	NA	289	379	408	341	417	455	465
Miscellaneous Parameters (S.U.)									
PH	NC	NA	10.8	8.41	9.32	9.16	8.4	8.2	8.38

U = NON DETECT J = ESTIMATED IGW SSL = DEFAULT IMPACT TO GROUNDWATER SOIL SCREENING LEVEL

RDC SRS = RESIDENTIAL DIRECT CONTACT SOIL REMEDIATION STANDARD CrSCC = NJDEP CHROMIUM SOIL CLEANUP CRITERIA (FEB 2007/SEPT 2008)

Summary of Pre-Post-Excavation Samples Used for Compliance Averaging

Sites 63 and 65 Jersey City, New Jersey

Page 2 of 4

LOCATION	MINIMUM	STANDARD/	063_C005	063_C006	063_C007	063_C009	063_C009a	063_C009a	063_C009a
SAMPLE ID	STANDARD/	SCREENING	063_C005_7.5	063_C006_6.5	063_C007_8.0	063_C009_5.0	063_C009a_6.4	063_C009a_10.0	063_C009a_15.0
SAMPLE_DATE	SCREENING	CRITERIA	20110713	20110713	20110713	20110720	20110727	20110727	20110727
TOP OF SAMPLE	CRITERIA	SOURCE	7.5	6.5	8	5	6.4	10	15
Metals (MG/KG)									
ANTIMONY	6* / 31	IGW SSL* / RDC SRS	0.93 UJ	0.98 UJ	1.1 UJ	1 UJ	9.4 UJ	0.91 UJ	6.6 J
CHROMIUM	120000	CrSCC	479 J	39.9 J	12.9 J	70.1	3830	49.6	3570
NICKEL	31* / 1600	IGW SSL* / RDC SRS	12.9 J	15.1 J	13.4	9.6	13.1	10.7	15.8
THALLIUM	3* / 5	IGW SSL* / RDC SRS	1 U	1.1 U	1.2 U	1.1 U	1 U	1 U	1 U
VANADIUM	78	RDC SRS	19	21	16.5	18.5	83.9	23.7	87.6
Miscellaneous Parameters (MG/KG)									
HEXAVALENT CHROMIUM	20	CrSCC	1.4 J	0.58 U	0.61 U	0.59 U	4.2	1.1 J	8.1
Miscellaneous Parameters (MV)									
OXIDATION REDUCTION POTENTIAL	NC	NA	265	287	375	433	332	347	429
Miscellaneous Parameters (S.U.)						•		• • • • • • • • • • • • • • • • • • •	
PH	NC	NA	9.79	9.41	8.2	9.13	9.62	9.43	10.1

U = NON DETECT J = ESTIMATED IGW SSL = DEFAULT IMPACT TO GROUNDWATER SOIL SCREENING LEVEL

RDC SRS = RESIDENTIAL DIRECT CONTACT SOIL REMEDIATION STANDARD CrSCC = NJDEP CHROMIUM SOIL CLEANUP CRITERIA (FEB 2007/SEPT 2008)

Summary of Pre-Post-Excavation Samples Used for Compliance Averaging

Sites 63 and 65 Jersey City, New Jersey

Page 3 of 4

LOCATION	MINIMUM	STANDARD/	063_C010	063_D005	063_D006	065_A005	065_A005	065_A006	065_A006
SAMPLE ID	STANDARD/	SCREENING	063_C010_6.4	063_D005_1.8	063_D006_15.0	065_A005_5.0	065_A005_5.0-D	065_A006_3.8	065_A006_8.2
SAMPLE_DATE	SCREENING	CRITERIA	20110727	20110714	20110712	20110801	20110801	20110801	20110801
TOP OF SAMPLE	CRITERIA	SOURCE	6.4	1.8	15	5	5	3.8	8.2
Metals (MG/KG)									
ANTIMONY	6* / 31	IGW SSL* / RDC SRS	1 UJ	0.93 UJ	0.57 UJ	1.4 UJ	5.7 UJ	5.1 UJ	12.7 UJ
CHROMIUM	120000	CrSCC	14.4	104 J	46.5	7060	9090	7640	12400
NICKEL	31* / 1600	IGW SSL* / RDC SRS	13.7	14.5	13.8	14.4	18.5 J	21.1 J	22.7 J
THALLIUM	3* / 5	IGW SSL* / RDC SRS	1.1 U	1 U	1 J	1.6 U	6.3	2.8 U	5.6
VANADIUM	78	RDC SRS	17.8	34.6	86.2	40.2	52.4 J	28.9 J	52.8 J
Miscellaneous Parameters (MG/KG)									
HEXAVALENT CHROMIUM	20	CrSCC	0.59 U	0.54 U	0.55 U	0.66 U	0.75 J	12.9	4.2
Miscellaneous Parameters (MV)									
OXIDATION REDUCTION POTENTIAL	NC	NA	486	372	334	201	213	224	214
Miscellaneous Parameters (S.U.)		• • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • •				
PH	NC	NA	7.92	8.58	8.94	10.4	10.3	11.3	11.7

U = NON DETECT J = ESTIMATED IGW SSL = DEFAULT IMPACT TO GROUNDWATER SOIL SCREENING LEVEL RDC SRS = RESIDENTIAL DIRECT CONTACT SOIL REMEDIATION STANDARD

CrSCC = NJDEP CHROMIUM SOIL CLEANUP CRITERIA (FEB 2007/SEPT 2008)

Summary of Pre-Post-Excavation Samples Used for Compliance Averaging

Sites 63 and 65 Jersey City, New Jersey

Page 4 of 4

LOCATION	MINIMUM	STANDARD/	065_A008	065_A009	065_A011	065_A013
SAMPLE ID	STANDARD/	SCREENING	065_A008_5.0	065_A009_2.5	065_A011_5.0	065_A013_5.0
SAMPLE_DATE	SCREENING	CRITERIA	20110801	20110801	20110728	20110728
TOP OF SAMPLE	CRITERIA	SOURCE	5	2.5	5	5
Metals (MG/KG)						
ANTIMONY	6* / 31	IGW SSL* / RDC SRS	3.2 J	1 UJ	3.1 J	1.9 J
CHROMIUM	120000	CrSCC	1490 J	73.7	31.2	22.3
NICKEL	31* / 1600	IGW SSL* / RDC SRS	7.7 J	10.1	14.4	12.5
THALLIUM	3* / 5	IGW SSL* / RDC SRS	1.1 U	1.1 U	1.1 U	1.1 U
VANADIUM	78	RDC SRS	16.2	13.7	23.4	14.4
Miscellaneous Parameters (MG/KG)						
HEXAVALENT CHROMIUM	20	CrSCC	5.5	0.57 U	0.58 U	0.59 U
Miscellaneous Parameters (MV)						
OXIDATION REDUCTION POTENTIAL	NC	NA	376	467	430	479
Miscellaneous Parameters (S.U.)						
PH	NC	NA	10.3	8.2	8.26	8.3

U = NON DETECT J = ESTIMATED IGW SSL = DEFAULT IMPACT TO GROUNDWATER SOIL SCREENING LEVEL RDC SRS = RESIDENTIAL DIRECT CONTACT SOIL REMEDIATION STANDARD CrSCC = NJDEP CHROMIUM SOIL CLEANUP CRITERIA (FEB 2007/SEPT 2008)

ATTACHMENT

ProUCL Program Output Tables
	A	В	С	D E		F	G	Н	I	J	K		L					
1				UCL	. Statis	tics for Unc	ensored Full	Data Sets										
2																		
3		User Sele	cted Options															
4	Da	te/Time of Co	omputation	2/7/2014 2:28:11 F	РМ													
5			From File	WorkSheet.xls														
6		Ful	Il Precision	OFF														
7		Confidence	Coefficient	95%														
8	Number of	of Bootstrap (Operations	2000														
9																		
10																		
11	Vanadium																	
12																		
13	3 General Statistics																	
14			Total	Number of Observation	ations	82	Number of Distinct Observations 72											
15									Numbe	r of Missing C	Observations	()					
16				Min	nimum	8.4					Mean	2	8.94					
17				Max	timum	87.6					Median	2	4.6					
18					SD	14.35				Std. E	rror of Mean	-	1.584					
10				Coefficient of Var	riation	0.496					Skewness	2	2.426					
20																		
20						Normal C	Normal GOF Test											
21			S	hapiro Wilk Test St	atistic	0.765	0.765 Shapiro Wilk GOF Test											
22			ļ	5% Shapiro Wilk P	Value	0		Data Not Normal at 5% Significance Level										
23				Lilliefors Test St	atistic	0.208			Lilliefors	GOF Test								
24			5	% Lilliefors Critical	0.0978		Data No	t Normal at	5% Significar	nce Level								
20				Da	ita Not	Normal at 5	% Significar	ice Level		0								
20																		
27					As	suming Norr	nal Distributi	on										
20			95% No	ormal UCL				95%	UCLs (Adju	usted for Ske	wness)							
20				95% Student's-	t UCL	31.57			95% Adjuste	ed-CLT UCL	(Chen-1995)	3	2					
31									95% Modifi	ed-t UCL (Jo	hnson-1978)	3	1.64					
32																		
32						Gamma	GOF Test											
34				A-D Test St	atistic	1.973		Ander	son-Darling	Gamma GO	F Test							
35				5% A-D Critical	Value	0.754	Da	ata Not Gam	ma Distribu	ted at 5% Sig	nificance Lev	/el						
36				K-S Test St	atistic	0.154		Kolmog	grov-Smirno	ff Gamma G	OF Test							
37				5% K-S Critical	Value	0.0988	Da	ata Not Gam	ma Distribu	ted at 5% Sig	nificance Lev	/el						
38				Data Not	Gamn	na Distribute	ed at 5% Sig	nificance Le	vel									
39																		
40						Gamma	Statistics											
<u>4</u> 1				k hat	(MLE)	5.804			k	star (bias cor	rected MLE)	Ę	5.6					
12				Theta hat	(MLE)	4.986			Theta	star (bias cor	rected MLE)	Ę	5.167					
42				nu hat	(MLE)	951.9				nu star (bia	as corrected)	91	8.4					
43			MI	E Mean (bias corre	ected)	28.94				MLE Sd (bia	as corrected)	1	2.23					
44									Approximate	e Chi Square	Value (0.05)	84	.9					
45	<u> </u>		Adjus	sted Level of Signifi	cance	0.0471			A	djusted Chi S	quare Value	84	7.8					
40				-														
47					Ass	suming Gam	ma Distribut	ion										
40	g	5% Approxir	nate Gamma	UCL (use when n>	>=50))	31.3		95% Ad	justed Gam	ma UCL (use	when n<50)	3	1.34					
49 E0				-	,,					`	,	[
50																		

	A		В			С			D		E		F		G			Н		I			J			Κ		L	
51										Lognori	ognormal GOF Test																		
52	Shapiro Wilk Test Statistic									0.958		Shapiro Wilk Lognormal GOF Test																	
53	5% Shapiro Wilk P Value									0.031	7			Da	ata No	t Lo	gnorm	nal a	t 5%	6 Signi	fica	ance	e Leve						
54	Lilliefors Test Statistic								0.123					L	.illie	fors L	ogno	orm	al GO	FΤ	est								
55	5% Lilliefors Critical Value								Value	0.0978	3			Da	ata No	t Lo	gnorm	nal a	t 5%	% Signi	fica	ance	e Leve						
56	Data Not Lognormal at 5% Significance Level																												
57																													
58												Lognor	mal	Statist	ics														
59							Μ	1inir	num o	f Log	gged	Data	2.128										Mean	of I	logo	jed Da	ta	3.27	6
60							Ma	axir	num o	f Log	gged	Data	4.473										SD	of I	logo	jed Da	ta	0.40	3
61																													
62	Assuming Lognormal Distribution																												
63	95% H-UCL								31.12							9	0%	Che	ebyshe	v (I	ΜVΙ	JE) UC	CL	32.67	'				
64	95% Chebyshev (MVUE) UCL								34.46							97.	.5%	Che	ebyshe	v (I	ΜVΙ	JE) UC	CL	36.96	3				
65	99% Chebyshev (MVUE) UCL 41.86																												
66																													
67	Nonparametric Distribution Free UCL Statistics																												
68	Data do not follow a Discernible Distribution (0.05)																												
69																													
70											N	lonpa	rametric [Distr	ibution	ree	e UC	Ls											
71									ç	95%	CLT	UCL	31.54		95% Jackknife UCL								CL	31.57	/				
72						95	5% S	Star	dard E	Boots	strap	UCL	31.56										95% E	loot	tstra	ap-t UC	CL	32.24	ŀ
73							95	5% ł	Hall's E	Boots	strap	UCL	32.32							9	5% F	Per	centile	Bo	otst	rap UC	CL	31.66	\$
74							95	5%	BCA E	Boots	strap	UCL	32.05																
75					9	90%	Che	bys	hev(M	lean	, Sd)	UCL	33.69		95% Chebyshev(Mean, Sd) UCL								CL	35.84	ŀ				
76					97	.5%	Che	ebys	hev(M	lean	, Sd)	UCL	38.83							99%	% Ch	neby	/shev(l	Mea	an,	Sd) UC	CL	44.7	
77																													
78													Suggest	ed L	JCL to	Use													
79								ç	95% St	tude	nt's-1	t UCL	31.57		or 95% Modified-t UCL								31.64	ŀ					
80																													
81		Note	e: Sug	gest	tions	s rega	ardir	ng t	he sele	ectio	on of	a 95%	5 UCL are	pro	vided to	o hel	lp the	user	to s	elect t	he m	nost	appro	pria	ate	95% U	CL.		
82		Т	hese r	есо	mme	enda	tions	s ar	e base	ed up	oon t	he res	ults of the	sim	nulation	n stud	dies	summa	ariz	ed in S	Singł	h, S	ingh, a	nd	laci	(2002)		
83					and	d Sin	gh a	and	Singh	(200	03). H	Howev	ver, simula	ation	is resul	lts wi	ill not	cover	r all	Real \	Worl	d da	ata set	s.					
01									For a	nddit	iona	l insig	ht the use	r ma	ay want	t to c	onsu	lt a sta	atist	cian.									
04								_																					

	A	В	С	D	E	F	G	Н	I	J	K	L						
1				UC	L Statist	tics for Data	Sets with N	on-Detects										
2																		
3		User Selec	cted Options	\$														
4	Dat	te/Time of Co	omputation	2/7/2014 2:28:44	I PM													
5			From File	WorkSheet.xls														
6		Ful	I Precision	OFF														
7		Confidence	Coefficient	95%														
8	Number o	of Bootstrap (Operations	2000														
9																		
10	Thallium																	
11																		
12						General	Statistics											
13			Tota	I Number of Obse	rvations	82	Number of Distinct Observations 12											
14				Number of	Detects	3				Number of N	Non-Detects	79						
15			N	umber of Distinct	Detects	3			Numbe	r of Distinct I	Non-Detects	10						
16				Minimun	n Detect	1				Minimum	Non-Detect	0.32						
17				Maximun	n Detect	5.6				Maximum	Non-Detect	2.8						
18				Variance	Detects	5.431				Percent I	Non-Detects	96.34%						
19				Mean	Detects	3.517					SD Detects	2.33						
20				Median	3.95					CV Detects	0.663							
21				Skewness	Detects	-0.808				Kurte	osis Detects	N/A						
22				Mean of Logged	Detects	1.032				SD of Log	ged Detects	0.911						
23																		
24	Warning: Data set has only 3 Detected Values.																	
25	This is not enough to compute meaningful or reliable statistics and estimates.																	
26																		
27																		
28					Norm	al GOF Tes	t on Detects	Only	<u>.</u>									
29				Shapiro Wilk Test	Statistic	0.974			Shapiro Wi									
30			5% 5			0.767	De	etected Data	appear Norn	nal at 5% Sig	Inificance Lev	/el						
31					Statistic	0.24			Lilletors									
32			5	5% Lilliefors Critic	al Value	0.512	De	etected Data	appear Norn	nal at 5% Sig	Inificance Lev	/el						
33				Detecte	a Data a	ippear Norn	ial at 5% Sig		evel									
34			Kanlan															
35			Kapian-	-Meler (KM) Statis			ritical value	s and other	Nonparamet			0.104						
36					Mean	0.466				Standard E	rror of Mean	0.104						
37					SD (1) LICL	0.620				95% KM		IN/A						
38				95% KM		0.626			90% NN (P		tetrop + UCL	N/A						
39				90% KM Chaburk		0.030				50/ KM Ch-		0.017						
40			07	90% KM Chebysh		0.770						0.917						
41			97		ev UCL	1.112			Į		bysnev UCL	1.490						
42						Tooto on Da	tootod Obc-	nations O-	by									
43				Gamr		vice Dete to	Derform CC		ıy									
44								JEIUSL										
45					Gamma	Statistics or		ata Only										
46				ما را		2 270				star (bias acr		NI/A						
47				K Na		2.3/2	K star (Dias corrected MLE)											
48						1/ 22			metas			N/A						
49			N /			N/A					s corrected)	N/A						
50			íVi		rrected)	IN/A				IVILE SO (DIA	s corrected)	IN/A						

	А	В	С	D	E	F	G	Н	I	J	K	L		
51														
52		Gamma Kaplan-Meier (KM) Statistics												
53					k hat (KM)	0.429					nu hat (KM)	70.44		
54		Adjusted Level of Significance (β)												
55		Ар	proximate Ch	i Square Val	ue (70.44, α)	52.11			Adjusted Ch	i Square Val	ue (70.44, β)	51.83		
56	95%	% Gamma Ap	proximate Kl	M-UCL (use v	when n>=50)	0.629		95% Gamm	a Adjusted k	KM-UCL (use	when n<50)	0.633		
57														
58				Lo	ognormal GC	F Test on D	etected Obs	ervations O	nly					
59			S	Shapiro Wilk	Fest Statistic	0.895			Shapiro Wi	ilk GOF Test	<u> </u>			
60			5% S	hapiro Wilk C	Critical Value	0.767	Dete	ected Data a	ippear Logno	ormal at 5% S	Significance L	evel		
61				Lilliefors	Test Statistic	0.313			Lilliefors	GOF Test				
62			5	5% Lilliefors C	Critical Value	0.512	Dete	ected Data a	ippear Logno	ormal at 5% S	Significance L	evel		
63	3 Detected Data appear Lognormal at 5% Significance Level													
64														
65				Lo	gnormal RO	S Statistics	Using Impute	ed Non-Dete	ects					
66				Mean in O	riginal Scale	0.213				Mean	in Log Scale	-3.657		
67				SD in O	riginal Scale	0.763				SD	in Log Scale	2.025		
68		95% t	UCL (assume	es normality o	of ROS data)	0.354			95%	Percentile Bo	ootstrap UCL	0.37		
69				95% BCA Bc	otstrap UCL	0.43		otstrap t UCL	0.754					
70	95% H-UCL (Log ROS) 0.43													
71														
72		U	CLs using Lo	ognormal Dis	tribution and	KM Estimat	tes when De	tected data	are Lognorn	nally Distribu	ited			
73				KM M	ean (logged)	-1.012	95% H-UCL (KM -Log)							
74				KM	SD (logged)	0.481	95% Critical H Value (KM-Log)							
75			KM Standa	rd Error of M	ean (logged)	0.0917								
76						51 /2 0								
77						DL/2 S	tatistics		D . (2)					
78			DL/2	Normal		0.000		0.504						
79				Mean in O	riginal Scale	0.692				Mean	in Log Scale	-0.504		
80			050/ 11	SD in O	riginal Scale	0.681				SD	In Log Scale	0.401		
81			95% t	UCL (Assume	es normality)	0.817				95%	H-Stat UCL	0.709		
82			DL/2	is not a reco	mmenaea m	etnoa, provid	ded for comp	barisons and	a nistorical re	easons				
83					Nonnoromo	trio Distribu	tion Erec LIC							
84				Dataataa	Nonparame		tion Free UC	-L Statistics						
85				Deleciel				5% Significa						
86						Suggested								
87				05%					05% KM /F	orcontilo Po	ototron) UCI	NI/A		
88				90 //		0.030	mondod UC	(c) not ave				N/A		
89				wain	ing. One of i									
90		Note: Sugge	etions regard	ting the selec	tion of a 95%		ovided to hel	In the user to	select the n	nost appropri	ate 95% LICI			
91		Note: Ougge		Recommende	ations are had			distribution	and skewned					
92		These reco	mmendation	s are based i	inon the recu	Its of the sim	ulation studi	es summari	zed in Singh	Maichle an	d I ee (2006)			
93	Ц		Ilations recul	ts will not co		Interest of the sill	ts: for additio	nal insight t		want to cons	ult a statistici	an		
94		Swever, Silli						nai məiyin l	ne user may		סטוג מ סנמנוסנוכו	uii.		
95														

MEMORANDUM

То:	Tom Gibbons, PMP
From:	William Moran
	Marshall King, PE
Subject:	Meeting Minutes - Assessment of Adequacy Memorandum regarding Draft Cutlines and
	Tables from Weston Solutions
Project:	PPG, Site 63/65, 1 Burma Road, Jersey City, Hudson County, New Jersey
Report Date:	March 13, 2014

On February 26, 2014, CB&I and Weston met to review outstanding issues noted in Weston's Assessment of Adequacy dated 29 January 2014 on the Site 63/65 cutlines. Previously addressed issues have been removed so that only open issues are included. For clarity and ease of use, the original comment, CB&I's response, the assessment of the adequacy (AOA), the response to the AOA are provided, along with the outcome of the meeting. **The outcome of the meeting is provided in bold italic text.**

In addition, CB&I's revised compliance averaging submittal is an attachment.

Assessment of Adequacy of Previously-Submitted Comments

<u>Contamination Beyond Proposed Excavation Limits</u>: The following boring locations have identified CPPW and/or site-related contaminant(s) present at concentration(s) greater than remediation standards which are not captured by the proposed limits of the excavation. The remedial limits must be expanded to achieve remedial goals for the site. The cross sections must be revised to address those locations which require excavation which are not indicated as such:

- Southwestern corner of Site 63
 - AD001: The thickness of CCPW at the identified "edge" of the excavation suggests that the remedial excavation may need to be extended to the south and west in this area. . Table 1 shows top of clean at 6.5 ft bgs; bottom of CCPW at 4.5 ft bgs; and no recovery noted on the boring log from 5-6.5 ft bgs.

Response: The extents of Areas Requiring Remediation have been modified to account for the observed CCPW.

<u>Adequacy of Response</u>: Modifications were not observed on the cut line figures provided to Weston.

<u>Response to AOR</u>: To be addressed during meeting between the parties.

<u>Meeting Outcome:</u> Matter resolved during meeting. Weston accepted that the Areas Requiring Remediation extents had been modified to account for CCPW identified in AD001.

• 065_A006: PPG must identify how the exceedance of the thallium default impact to groundwater soil remediation standard (IGWSRS) will be addressed in this area. Table 2 shows bottom of CCPW at 1.5 ft bgs and top of clean at 3.8 ft bgs, with a proposed excavation depth of approximately 5.5 ft bgs on Figure 3 cross-section. However, Table 5A in the March 2013 Remedial Investigation Report (RIR), notes Tl at 5.6U [above IGW] at 8.2 ft bgs.

Response: As demonstrated in the attached package, the analysis of this Thallium issue through compliance averaging shows that this location is not a concern. This sample result is a non-detect. Thallium was not detected in 318 out of 328 RIR samples and not detected in any of 272 Remedial Design Boring samples. The maximum detectable concentration of Thallium was 1 ppm. Since the average for Thallium across the site is well below the Impact to Groundwater Soil Screening Level (IGWSSL), we believe that the depth of excavation in the area should 3.8 ft bgs as per the top of clean sample result for this location.

Also note that since the concrete drainage structure on Site 065 was installed as an IRM to temporarily cap known CCPW, it is expected that all the CCPW beneath that structure will be removed as part of the remedial action described in the cut lines.

Adequacy of Response: Please see comments on compliance averaging, below.

<u>Response to AOR</u>: See revised compliance averaging memorandum attached. In addition, note that as the sample collected at 8.2 ft bgs is below the water table (which is at \sim 2 ft bgs) the IGWSSL do not apply.

<u>Meeting Outcome</u>: Weston requested that the site be split into 0.5acre functional areas for comparison with residential standards. See revised compliance averaging memorandum attached.

• 063_C004a: The proposed excavation depth at this location is approximately 5.5 ft bgs per the cross section E-E' at station 1+25. PPG must extend the vertical extent of remedial excavation at this location to 6.7 ft bgs (Table 2 lists top of clean at 6.7 ft bgs.

Response: The cut sheet and profiles have been revised to reflect an excavation depth of 6.7 ft bgs.

<u>Adequacy of Response</u>: Modifications were not observed on cut line Figure C-7 provided to Weston.

<u>Response to AOR</u>: To be addressed during meeting between the parties. This boring location will be identified on a spot elevation table with all the other borings on the site in the contractor bid documents for the site. The spot elevation table will include boring coordinates and final elevations for the excavation.

<u>Meeting</u> <u>Outcome</u>: Matter resolved during meeting. Weston accepted that the cutsheet and profiles had been modified to account for vertical extent of remedial excavation at this location.

• DD009: The proposed excavation depth at this location is approximately 2.5 ft bgs per the cross section D-D' at station 4+97. PPG must extend the vertical extent of remedial excavation at this location to 5.5 ft bgs (Table 2 lists top of clean at 5.5 ft bgs).

Response: The cut sheet and profiles have been revised to reflect an excavation depth of 5.5 ft bgs.

<u>Adequacy of Response</u>: Modifications were not observed on cut line Figure C-7 provided to Weston.

<u>Response to AOR</u>: To be addressed during meeting between the parties.

<u>Meeting</u> <u>Outcome</u>: Matter resolved during meeting. Weston accepted that the cutsheet and profiles had been modified to account for vertical extent of remedial excavation at this location.

• 063_C009a: PPG must document clean condition at the terminal depth at this location. The proposed terminal depth at this location is approximately 15.5 ft bgs, V exceeds residential criteria at 15.0 ft bgs, but no clean sample was obtained deeper than 15.0 ft bgs. Also the elevation on Figure 5 is unreadable.

Response: As demonstrated in the attached package, the analysis of this Vanadium hit through compliance averaging shows that this location is not a concern. Furthermore, given the large clean interval between CCPW in this area and this sample, it appears that this hit is unrelated to the CCPW located above it. This hit should not define the excavation depth at this location. This excavation should extend only to a depth of 6.9 ft bgs where a base post-excavation sample should be collected.

This same rationale also applies to the vanadium hit observed at a depth of 15-15.5ft in 063_D006 where no excavation should occur as no CCPW was observed and no metals exceedences were reported in shallower samples.

<u>Adequacy of Response</u>: Please see comments on compliance averaging, below. <u>Response to AOR</u>: See revised compliance averaging memorandum attached.

<u>Meeting Outcome</u>: Weston requested that the site be split into 0.5acre functional areas for comparison with residential standards. See revised compliance averaging memorandum attached.

The following boring locations have their deepest soil sample showing site-related contaminant(s) present at concentration(s) greater than the respective most stringent soil remediation standard without a deeper clean sample present or planned sufficiently close. Confirmation samples are required at the proposed terminal depth of excavation consistent with the sample locations identified below. Note that Figure 5 and the cross-sections on Figures 3 & 4 may need to be edited based on the responses to these locations:

- AD002: at or deeper than 7.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- 065_A006: deeper than 8.2 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- AD003: deeper than 8.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- BD008: deeper than 6.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above
- ED011: deeper than 5.0 ft bgs (see Contamination Beyond Proposed Excavation Limits, above).
- 063_C009a: deeper than 15 ft bgs; see Contamination Beyond Proposed Excavation Limits, above.

• 063_C013: deeper than 0.5 ft bgs; see Contamination Beyond Proposed Excavation Limits, above.

Response: The need for additional post-excavation sampling is acknowledged and most of these locations were noted in Table 1 by identifying the top of clean for these locations as ND.

<u>Adequacy of Response</u>: Please confirm that all locations on Table 1 which are identified as "ND" will have post-excavation bottom samples. Also, please identify those locations which are not currently identified in Table 1 as "ND" which require bottom samples. Finally, please ensure post-excavation sampling is performed consistent with the Department's Technical Guidance for Site Investigation of Soil, Remedial Investigation of Soil, and Remedial Action Verification Sampling for Soil.

<u>Response to AOR</u>: Please see attached summary table of locations requiring post-excavation bottom samples. As confirmation, all the locations from Table 1 that were identified as "ND" has been included. Regarding locations 065_A006 and 063_C009a, please see compliance averaging memorandum attached.

<u>Meeting Outcome</u>: Weston requested that the site be split into 0.5acre functional areas for comparison with residential standards. See revised compliance averaging memorandum attached.

\\trefs01\COMMON\Moran\PPG - Chrome\Site 63-65_Reports\2013-10 - Cutsheet Deliverable\2013-03 - Post Meeting\Memo - Site 63-65 Response to AOR assessment - 2014-03.doc

TABLES

ATTACHMENT A

Compliance Averaging Analysis

From: Amend-Babcock, Laura [mailto:Laura.Amend-Babcock@WestonSolutions.com]
Sent: Friday, April 4, 2014 2:12 PM
To: 'bmcpeak@planningprogress.com' <bmcpeak@planningprogress.com>
Cc: Vale, Lou <Lou.Vale@cbi.com>; Michael McCabe (jcsiteadministrator@earthlink.net)
<jcsiteadministrator@earthlink.net>; Mark Terril <terril@ppg.com>; Prins@ppg.com; Gibbons, Thomas
<thomas.gibbons@cbi.com>; David Doyle <David.Doyle@dep.state.nj.us>; Amin, Prabal
<Prabal.Amin@WestonSolutions.com>
Subject: RE: Site 063 - Revised Cutlines

The revised cut lines and responses for Sites 63/65 are acceptable, as is the revised compliance averaging submittal. If you have any questions, please notify me.

Laura

Laura J. Amend-Babcock, P.E. Senior Technical Manager Weston Solutions, Inc. 205 Campus Drive Edison, New Jersey 08837

phone: (732) 417-5811 fax: (732) 417-5801 e-mail: <u>Laura.Amend-Babcock@westonsolutions.com</u> www.WestonSolutions.com

From: Amin, Prabal Sent: Sunday, March 16, 2014 12:54 PM To: Amend-Babcock, Laura Subject: FW: Site 063 - Revised Cutlines

Prabal N. Amin, P.E. Weston Solutions, Inc. 205 Campus Drive Edison, NJ 08837 <u>prabal.amin@westonsolutions.com</u> Voice: 732-417-5857 Fax: 732-417-5801

From: Moran, William [mailto:William.Moran@cbi.com]
Sent: Saturday, March 15, 2014 9:44 AM
To: <u>bmcpeak@planningprogress.com</u>; 'Mike McCabe'; Terril, Mark; Prins, Keith; Gibbons, Thomas; Amin, Prabal; Doyle, David
Cc: King, Marshall E.
Subject: Site 063 - Revised Cutlines

The revised cutlines for Site 063 are posted at the link below

https://shawxnet.shawgrp.com/sites/PPGJersey/Site%206365%20%20RAWP/Forms/AllItems.aspx?Root Folder=%2fsites%2fPPGJersey%2fSite%206365%20%20RAWP%2fRevised%20Cutlines%20%2d%20March %202014&FolderCTID=&View=%7b26F6E0E5%2dF6EA%2d4826%2dB86E%2dC9C36C1655CD%7d

William M. Moran Program Manager III Environmental & Infrastructure Tel: 609-588-6331 Cell: 856-630-1355 Fax: 609-588-6490 william.moran@CBI.com

CB&I 200 Horizon Center Trenton, NJ 08691 USA www.CBI.com

This e-mail and any attached files may contain CB&I (or its affiliates) confidential and privileged information. This information is protected by law and/or agreements between CB&I (or its affiliates) and either you, your employer or any contract provider with which you or your employer are associated. If you are not an intended recipient, please contact the sender by reply e-mail and delete all copies of this e-mail; further, you are notified that disclosing, copying, distributing or taking any action in reliance on the contents of this information is strictly prohibited.

From: Amin, Prabal [mailto:Prabal.Amin@WestonSolutions.com]
Sent: Monday, April 28, 2014 9:54 AM
To: <u>bmcpeak@planningprogress.com</u>; Cozzi, Tom; Doyle, David; Spader, David
Cc: McCabe, Michael (jcsiteadministrator@earthlink.net); Ciara O'Connell; Garrison, Alanna; Keith Prins; Terril, Mark; Dave Tomsey; Gibbons, Thomas
Subject: RE: Site 63/65 - Revised AMP

Based on the clarification provided in the revised air monitoring plan (AMP) for Site 63/65 per the e-mail correspondences below, and consultation with the NJDEP Bureau of Environmental Radiation on the radiological monitoring components of the AMP, the NJDEP has informed Weston that the revised AMP for Site 63/65 is considered acceptable.

Thank you.

Prabal

Prabal N. Amin, P.E.

Weston Solutions, Inc. 205 Campus Drive Edison, NJ 08837 prabal.amin@westonsolutions.com Voice: 732-417-5857 Fax: 732-417-5801

From: <u>bmcpeak@planningprogress.com</u> [mailto:bmcpeak@planningprogress.com]
Sent: Sunday, April 27, 2014 12:21 PM
To: Cozzi, Tom; Doyle, David; Spader, David
Cc: McCabe, Michael (jcsiteadministrator@earthlink.net); Ciara O'Connell; Garrison, Alanna; Amin, Prabal; Keith Prins; Terril, Mark; Dave Tomsey
Subject: FW: Site 63/65 - Revised AMP

I am pleased to forward the attached revised air monitoring plan for Site 63/65. I know that Emilcott and CBI worked diligently over the last several days and that the effort was vetted with Weston at critical points. Hopefully that collaboration has resulted in a submittal that meets all applicable regulatory requirements.

PPG has mobilized to remediate this site and the approval of the air monitoring plan needs to be completed before that work can begin. With that in mind, I expect that we will have discussions early Monday to chart a course forward.

Brian McPeak Planning Progress, LLC Site Administrator | Project Manager Chromium Cleanup Partnership <u>bmcpeak@planningprogress.com</u> From: Gibbons, Thomas [mailto:thomas.gibbons@cbi.com]
Sent: Saturday, April 26, 2014 10:21 PM
To: bmcpeak@planningprogress.com
Cc: Prins, Keith; Terril, Mark; Michael McCabe (jcsiteadministrator@earthlink.net); Dave Tomsey; Amin, Prabal; Cozzi, Tom; Stewart, John C
Subject: Site 63/65 - Revised AMP

Brian,

The revised AMP is attached for review and distribution. The revised plan includes updated action levels for total VOCs, a new section on radiological air monitoring, and six new appendices covering CB&I's radiological policies and procedures.

Thomas M. Gibbons, PMP PPG Project Manager, NGA Sites Environment & Infrastructure Cell: 917-593-4836 Email: <u>thomas.gibbons@cbi.com</u>

CB&I 200 Horizon Center Boulevard Trenton, NJ 08691 USA www.CBI.com