			Clien	t Sample ID:	PPG63/65_SW03R	PPG63/65_SW03R2	PPG63/65_SW04	PPG 63/65_SW13	PPG63/65_SW14	PPG63/65_SW14R	PPG63/65_SW18	PPG63/65_DUP (SW 18)	PPG63/65_SW20	PPG 63/65_SW48	PPG 63/65_SW67	PPG63/65_SW68
			Sample Eleva	ation (ft msl)	6-6.5	6-6.5	6-6.5	4.0-4.5	7.0-7.5	5.5-6	4.6-5.1	4.6-5.1	-0.2 - (0.3)	6-6.5	3-3.5	4.7-5.2
			Sample D	epth (ft bgs)		1.2-1.7	1.5-2	3.0-3.5	0-0.5	1.5-2.0	3.0-3.5	3.0-3.5	7.3-7.8	1.6-2.1	4.0-4.5	2.3-2.8
				Excavated:	EXCAVATED	EXCAVATED			EXCAVATED	EXCAVATED					EXCAVATED	
			Lak	Sample ID:	JB85756-2	JB87265-3	JB69910-8	JB72034-5A	JB73580-1A	JB84702-3	JB74463-1	JB74463-3	JB74943-1	JB81181-1	JB83884-2	JB84487-4
			Da	te Sampled:	1/6/2015	1/29/2015	6/19/2014	7/18/2014	8/7/2014	12/18/2014	8/19/2014	8/19/2014	8/22/2014	11/6/2014	12/11/2014	12/17/2014
				Matrix:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil	Soil
	NJ Non-	NJ Residential	NJ Default													
	Residential Direct Contact Soil (NJAC	Direct Contact Direct Contact Soil (NJAC	Impact to Groundwater Soil Screening													
Analyte	7:26D 9/17)	7:26D 9/17)	(11/13)	Units	R Q	R Q		R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q
Chromium, Hexavalent	20	-	-	mg/kg	241 NJ- / 97 NJ-	37.9 NJ / 21.4	0.45	21.1 NJ-	109 NJ- / 86.3 NJ+	89.8 NJ+	<0.47 NJ-	<0.48 NJ-	26.8 *NJ- / 55.2 NJ-	<0.48 NJ- / <0.48 NJ-	<0.46 NJ- / <0.46 NJ-	116 *NJ+
Chromium	120,000	-	-	mg/kg	4,290	580	40.4	1010 NJ+	9,360	285	70.5	57.9	1,740	22.4 EJ	144	14,700
Antimony	450	31	6	mg/kg	12.5 NJ-	<2.3 NJ-	<2.1 NJ-	<2.1	<4.9 ^a	<2.3 NJ-	5.1 NJ-	8.6 NJ-	8.1 NJ-	<2.2 NJ-	<2.3 NJ-	18.2 NJ-
Nickel	23,000	1,600	205*	mg/kg	24.1	19.4	12.5	14.5	15.6	17.6	22.3	36.3	21.8	17.7	36	23.7
Thallium	-	-	3	mg/kg	<1.3	<1.1	<1.1	<1.0	<2.4 ^a	<1.2	<1.2	<1.2	<1.2	<1.1	<1.2	<4.1
Vanadium	1,100	390**	NA	mg/kg	77.2 EJ	42.4	21.1	32.4	28.7 ^a	23.9	17.5	22.4	34.5	35.2	14.5	31.6
Iron, Ferrous	-	-	-	%	-	-		-	-	-	-	-	-	0.79	-	-
Redox Potential Vs H2	-	-	-	mV	229	327	376	243	201	301	272	239	435	-84.7	128	144
Solids, Percent	-	-	-	%	80.8	89.2	90	83	85.1	83.6	84.8	83.4	82.4	83.1	86.7	71.1
Sulfide Screen	-	-	-		-	-	-	-	-	-	-	-	-	NEGATIVE	-	-
Total Organic Carbon	-	-	-	mg/kg	-	-	-	-	219,000 J	-	-	-	-	5,640	-	-
рН	-	-	-	su	7.54	8.68	8.5	8.38	9.88	8.71	7.11	7.12	8.05	9.87	7.75	9.5

Analytical Data Qualifiers:

- < The analyte was not detected at the stated reporting limit.
- * Duplicate analysis not within control limits; indeterminate bias direction.
- J The reported result is an estimated value.
- *J Duplicate analysis not within control limits; result is estimated with indeterminate bias direction.
- EJ The reported value is estimated because of the presence of interference; indeterminate
- bias direction.

 N -The matrix spike sample recovery in the associated QC sample is not within QC limits.
- J+ The result is estimated and may be biased high.
- J- The result is estimated and may be biased low.
- R The reported result is rejected.

Footnotes:

SW108R, SW136, SW137- No data due to CCPW nodules at this location;

Sample held at lab.

*Nickel site specific impact due to groundwater screen level method calculated using SPLP laboratory methods; SPLP = Synthetic Precipitation Leaching Procedure.

- **The use of the USEPA Regional Soil Screening Level of 390 mg/kg for vanadium is proposed as an alternative remediation standard for the site. Based on: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide-november-2015
- = No criteria or not analyzed
- ^a =Elevated detection limit due to dilution required for high interfering element
- ^b = Elevated detection limit due to dilution required for matrix interference

ft msl = feet mean sea level

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

su = standard unit

mv = millivoits

CCPW = Chromate Chemical Processing Waste

Result exceeded criteria

For additional information regarding data qualifiers please review the provided Data Validation Reports.

			Sample Eleva Sample D Lak	-	PPG63/65_SW70 2-2.5 5.0-5.5 JB84702-2 12/18/2014 Soil	PPG63/65_SW72R 6.5-7.0 0.7-1.2 JB86243-1 1/13/2015 Soil	PPG63/65_SW74 5.8-6.3 1.2-1.7 EXCAVATED JB85287-4 12/31/2014 Soil	PPG 63/65_SW74R 6-6.5 1.0-1.5 EXCAVATED JB86495-1 1/16/2015 Soil	PPG63/65_SW77 4.3-4.8 1.9-2.4 JB86141-2 1/12/2015 Soil	PPG 63/65_SW82 7.3-7.8 0.5-1.0 EXCAVATED JB86243-5A 1/13/2015 Soil	PPG63/65_SW82R 7.9-8.4 0-0.5 JB88913-5 2/26/2015 Soil	PPG63/65_SW83 5.7-6.2 1.3-1.8 JB86481-4 1/15/2015 Soil	PPG63/65_SW84 5.6-6.1 1.4-1.9 JB86481-6 1/15/2015 Soil	PPG 63/65_SW85 6.5-7 0-0.5 JB86495-2 1/16/2015 Soil	PPG63/65_SW86 5-5.5 1.5-2.0 JB87201-1 1/28/2015 Soil	PPG63/65_SW87 5-5.5 1.7-2.2 EXCAVATED JB87201-3 1/28/2015 Soil	PPG63/65_SW88 4.8-5.3 2.2-2.7 EXCAVATED JB87201-5 1/28/2015 Soil
Analyte	NJ Non- Residential Direct Contact Soil (NJAC 7:26D 9/17)	NJ Residential Direct Contact Direct Contact Soil (NJAC 7:26D 9/17)	NJ Default Impact to Groundwater Soil Screening (11/13)	Units	R Q		R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q
Chromium, Hexavalent	20	-	-	mg/kg	<0.48 NJ+	8.3 *NJ- / 7.4 *NJ-	3.1 NJ	256 *J	22.5 *NJ	16.3 *NJ- / 8.7 *NJ-	3.1 NJ- / 23	2 NJ- / 0.79 NJ-	5.7 NJ- / 0.99 NJ-	<0.51 *J	1.3 *NJ- / 0.52 NJ-	<0.44 *NJ- / 6.1 NJ-	7.4 *NJ-/ 36.1 NJ-
Chromium	120,000	-	-	mg/kg	6,420	293	13,600	6,150	1,120	597	588	1,960 *J	8,680 *J	14,600	67.7	122	1,300
Antimony Nickel Thallium	450 23,000 -	31 1,600 -	6 205* 3	mg/kg mg/kg mg/kg	6.2 NJ- 16.4 <2.3	<2.1 NJ- 26.6 <1.1	19.8 ^a NJ- 31.8 <3.7 ^a	<5.1 NJ- 33.8 <2.6	<2.6 NJ- 44.9 <1.3	<2.3 NJ- 55 <1.1	<2.3 NJ- 37.9 <1.1	<2.7 NJ- 41.7 <1.3	<7.3 NJ- ^a 21.1 <3.7 ^a	23.7 NJ- 27.5 <3.7	<2.3 NJ- 15.8 <1.2	<2.2 NJ- 16.5 <1.1	<2.8 NJ- 128 <1.4
Vanadium	1,100	390**	NA	mg/kg	62.3	51.3	80.4 ^a	107	101	109	78.1	71.6	114	90.2	43.3	30.4	184
Iron, Ferrous Redox Potential Vs H2 Solids, Percent Sulfide Screen	-		- - -	% mV %	- 61.4 84 -	- 285 88.8 -	- 340 77.9	- 306 79.9	- 342 76.7	- 289 86.8 -	- 335 88.4 -	- 354 76.2	- 254 79 -	- 276 78.9	- 301 87.2	0.79 279 90.8	- 314 72.9
Total Organic Carbon pH	-	-	-	mg/kg su	- 10.02	- 7.85	- 8.5	- 7.48	- 7.65	- 8.74	- 8.32	- 7.69	- 7.92	- 8.73	- 8.32	- 9.23	- 7.66

Analytical Data Qualifiers:

- < The analyte was not detected at the stated reporting limit.
- * Duplicate analysis not within control limits; indeterminate bias direction.
- J The reported result is an estimated value.
- *J Duplicate analysis not within control limits; result is estimated with indeterminate bias direction.
- EJ The reported value is estimated because of the presence of interference; indeterminate bias direction.
- N -The matrix spike sample recovery in the associated QC sample is not within QC limits.
- J+ The result is estimated and may be biased high.
- J- The result is estimated and may be biased low.
- R The reported result is rejected.

Footnotes:

SW108R, SW136, SW137- No data due to CCPW nodules at this location;

Sample held at lab.

*Nickel site specific impact due to groundwater screen level method calculated using SPLP laboratory methods; SPLP = Synthetic Precipitation Leaching Procedure.

- **The use of the USEPA Regional Soil Screening Level of 390 mg/kg for vanadium is proposed as an alternative remediation standard for the site. Based on: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide-november-2015
- = No criteria or not analyzed
- ^a =Elevated detection limit due to dilution required for high interfering element
- ^b = Elevated detection limit due to dilution required for matrix interference

ft msl = feet mean sea level

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

su = standard unit

mv = millivoits

CCPW = Chromate Chemical Processing Waste

Result exceeded criteria

For additional information regarding data qualifiers please review the provided Data Validation Reports.

					PPG63/65_SW89	PPG63/65_SW94	PPG63/65_SW95	PPG63/65_SW96	PPG63/65_SW97	PPG63/65_SW98	PPG63/65_SW99	PPG63/65_SW100	PPG63/65_SW101	PPG63/65_SW102	PPG63/65_SW103	PPG63/65_SW104	PPG63/65_SW105
			Sample Eleva	ation (ft msl)	5.2-5.7	5.5-6	0-0.5	5.5-6.0	0.3-0.8	5.2-5.7	1.5-2.0	0.8-1.3	4.7-5.2	2-2.5	4.5-5	2.3-2.8	4.7-5.2
			Sample D	epth (ft bgs)	1.9-2.4	0.9-1.4	6.4-6.9	0.8-1.3	6.0-6.5	2.3-2.8	6.2-6.7	5.9-6.4	2.8-3.3	5.5-6.0	3.0-3.5	3.4-3.9	2.4-2.9
				Excavated:													
			Lak	Sample ID:	JB87265-1	JB87981-1	JB87981-3	JB87981-5	JB87981-6	JB88086-1	JB88086-2	JB88086-3	JB88134-1	JB88134-2	JB88308-2	JB88308-3	JB88725-2
			Da	te Sampled:	1/29/2015	2/10/2015	2/10/2015	2/10/2015	2/10/2015	2/11/2015	2/11/2015	2/11/2015	2/12/2015	2/12/2015	2/13/2015	2/13/2015	2/22/2015
				Matrix:	Soil	Soil	Soil	Soil	Soil	Soil							
	<u> </u>	T I		I IVIALITA.	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011	3011
	NJ Non-	NJ Residential	NJ Default														
	Residential	Direct Contact	Impact to														
	Direct Contact	Direct Contact	Groundwater														
	Soil (NJAC	Soil (NJAC	Soil Screening														
Analyte	7:26D 9/17)	7:26D 9/17)	(11/13)	Units	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q	R Q
Characterista Have valent	·	1	•		18.3 NJ /	2.0	-0.50	4.7	4.0	90.3 NJ-/	<0.57 NR/	<0.52 NJ-/	<0.48 *NJ- /	1.5 *NJ-/	0.75 NJ+/	38.9 NJ+ /	<0.53 NJ- /
Chromium, Hexavalent	20	-	-	mg/kg	21.2	3.8	<0.53	1.7	1.2	221 *NJ-	19.7 *NJ-	<0.52 *NJ-	12.6 NJ+	101 NJ+	10.5 *NJ+	73.7 *NJ+	<0.53 NJ-
Chromium	120,000	-	-	mg/kg	314	83.7	54.7	35.5	17.8	12,900	8,500	22.8	12,100	11,000	783	2,930	16.2
			_														
Antimony	450	31	6	mg/kg	<2.3 NJ-	<2.2 NJ-	24.4 NJ-	<2.1 NJ-	<2.6 NJ-	11.8 NJ-	26.2 NJ-	<2.5 NJ-	25.7	29.8	<2.6 NJ-	7.2 NJ-	<2.6 NJ-
Nickel	23,000	1,600	205*	mg/kg	21.6	13	17	12.5	13.4	19.5	19.6	33.5	21.9	26.5	219	20.4	13.2
Thallium	-	-	3	mg/kg	<1.1	<1.1	<1.3	<1.1	<1.3	<3.6	<2.9	<1.3	<3.5	<3.1	<1.3	<1.2	<1.3
Vanadium	1,100	390**	NA	mg/kg	34.3	44.9	23.1	40.9	17.4	44.5	41.4	17	131	37.2	23.7	24.6	18
Iron, Ferrous	_	_	-	%	-	_	_	-	_	_	_	-	0.2	-	_	-	_
Redox Potential Vs H2	-	-	-	mV	505	339	70.1	235	125	230	103	150	202	129	164	139	325
Solids, Percent	-	-	-	%	87.5	90.7	75.2	91.2	74.8	79.6	69.6	77.5	82.7	68.5	80.8	80.9	76.1
Sulfide Screen	-	-	-		-	-	-	-	-	-	-	-	NEGATIVE	-	-	-	-
Total Organic Carbon	-	-	-	mg/kg	-	-	-	-	-	-	-	-	346,000 J	-	-	-	-
pH	-	-	-	su	7.76	8.67	8.01	8.15	8.19	8.86	10.87	8.2	8.71	10.65	9.1	10.71	7.66

Analytical Data Qualifiers:

- < The analyte was not detected at the stated reporting limit.
- * Duplicate analysis not within control limits; indeterminate bias direction.
- J The reported result is an estimated value.
- *J Duplicate analysis not within control limits; result is estimated with indeterminate bias direction.
- EJ The reported value is estimated because of the presence of interference; indeterminate bias direction.
- N -The matrix spike sample recovery in the associated QC sample is not within QC limits.
- J+ The result is estimated and may be biased high.
- J- The result is estimated and may be biased low.
- R The reported result is rejected.

Footnotes:

SW108R, SW136, SW137- No data due to CCPW nodules at this location;

Sample held at lab.

*Nickel site specific impact due to groundwater screen level method calculated using SPLP laboratory methods; SPLP = Synthetic Precipitation Leaching Procedure.

- **The use of the USEPA Regional Soil Screening Level of 390 mg/kg for vanadium is proposed as an alternative remediation standard for the site. Based on: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide-november-2015
- = No criteria or not analyzed
- ^a =Elevated detection limit due to dilution required for high interfering element
- ^b = Elevated detection limit due to dilution required for matrix interference

ft msl = feet mean sea level

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

su = standard unit

CCPW = Chromate Chemical Processing Waste

Result exceeded criteria

For additional information regarding data qualifiers please review the provided Data Validation Reports.

			Clien	t Sample ID:	PPG63/65_SW106	PPG63/65_SW108	PPG63/65_SW109	PPG63/65_SW115	PPG63/65_WCCG	
			Sample Eleva	ation (ft msl)	1.3-1.8	6-6.5	9.9.5	7-7.5	6.2-6.7	
			Sample D	epth (ft bgs)	5.8-6.3	2.8-3.3	0.5-1	0.5-1	0.8-1.3	
				Excavated:		EXCAVATED				
			Lak	Sample ID:	JB88725-3	JB88913-1A	JB88913-2	JB89093-2	JB85013-6	
			Da	te Sampled:	2/22/2015	2/26/2015	2/26/2015	2/27/2015	12/23/2014	
				Matrix:	Soil	Soil	Soil	Soil	Soil	
	T			1						
	NJ Non-	NJ Residential	NJ Default							
	Residential	Direct Contact	Impact to							
	Direct Contact	Direct Contact	Groundwater							
	Soil (NJAC	Soil (NJAC	Soil Screening							
Analyte	7:26D 9/17)	7:26D 9/17)	(11/13)	Units	R Q	R Q	R Q		R Q	
Chromium, Hexavalent	20	_	-	mg/kg	<0.54 NJ- /	59.6 NJ- /	3.9 NJ- /	8.2 *NJ- /	432 *NJ- /	
					<0.54 NR	65.7	8.4	12.7 *NJ-	103 NJ-	
Chromium	120,000	-	-	mg/kg	25.5	1,220	242	332	54,600	
Antimony	450	31	6	no a /l ca	24 N.I	-0.0 N.I	-0.4 N.I	-0 0 N I	<35 ^b NJ-	
Antimony Nickel	450		6	mg/kg	3.1 NJ- 17.9	<2.3 NJ- 40.7	<2.4 NJ- 32	<2.2 NJ- 33.6	<35 NJ- 69.7	
	23,000	1,600	205*	mg/kg						
Thallium	-	-	3	mg/kg	<1.4	<1.1	<1.2	<1.1	<18 ^b	
Vanadium	1,100	390**	NA	mg/kg	22	77.7	39.5	51	337	
Iron, Ferrous		_	_	%	_	_	_	_	_	
Redox Potential Vs H2	_	_	-	m۷	123	307	300	327	214	
Solids, Percent	_	_	-	%	73.4	89.5	88.2	85.8	58.6	
Sulfide Screen	-	-	-		-	-	-	-	-	
Total Organic Carbon	-	-	-	mg/kg	-	-	-	-	-	
рН	-	-	-	su	7.86	8.05	8.35	7.96	7.69	

Analytical Data Qualifiers:

- < The analyte was not detected at the stated reporting limit.
- * Duplicate analysis not within control limits; indeterminate bias direction.
- J The reported result is an estimated value.
- *J Duplicate analysis not within control limits; result is estimated with indeterminate bias direction.
- EJ The reported value is estimated because of the presence of interference; indeterminate bias direction.
- N -The matrix spike sample recovery in the associated QC sample is not within QC limits.
- J+ The result is estimated and may be biased high.
- J- The result is estimated and may be biased low.
- R The reported result is rejected.

Footnotes:

SW108R, SW136, SW137- No data due to CCPW nodules at this location;

Sample held at lab.

*Nickel site specific impact due to groundwater screen level method calculated using SPLP laboratory methods; SPLP = Synthetic Precipitation Leaching Procedure.

- **The use of the USEPA Regional Soil Screening Level of 390 mg/kg for vanadium is proposed as an alternative remediation standard for the site. Based on: https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide-november-2015
- = No criteria or not analyzed
- ^a =Elevated detection limit due to dilution required for high interfering element
- ^b = Elevated detection limit due to dilution required for matrix interference

ft msl = feet mean sea level

ft bgs = feet below ground surface

mg/kg = milligram per kilogram

su = standard unit

mV = millivolts

CCPW = Chromate Chemical Processing Waste

Result exceeded criteria

For additional information regarding data qualifiers please review the provided Data Validation Reports.