Supplemental Soil Remedial Investigation Report Garfield Avenue Group PPG, Jersey City, New Jersey

# **Appendix D**

Northern Morris Canal Investigation – Berry Lane Park to Communipaw Avenue Technical Memorandum

#### **Technical Memorandum**

| То      | Brian McPeak, Site Administrator Project Manager                                                                                              | Page 1                                  |  |  |  |  |  |  |  |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|
| CC      | Tom Cozzi (NJDEP), David Doyle (NJDEP), Prabal Amin (W<br>McGuire (PPG), Scott Mikaelian (AECOM), Al LoPilato (AEC<br>Carissa Johnson (AECOM) | * * * * * * * * * * * * * * * * * * * * |  |  |  |  |  |  |  |
| Subject | Northern Morris Canal Investigation – Berry Lane Park to Communipaw Avenue                                                                    |                                         |  |  |  |  |  |  |  |
| From    | Bill Spronz and Bob Cataldo (AECOM)                                                                                                           |                                         |  |  |  |  |  |  |  |
| Date    | October 10, 2012                                                                                                                              |                                         |  |  |  |  |  |  |  |

AECOM is providing this summary for our investigation of the former channel of the Morris Canal on behalf of PPG Industries, Inc. ("PPG"). The investigation was conducted from the northern boundary of Berry Lane Park north to Communipaw Avenue in Jersey City, New Jersey (**Figure 1**) to provide the following information:

- Identify the location and depth of the former Morris Canal in this area; and,
- Determine whether Chromium Chemical Production Waste ("CCPW") is present within the former channel of the former Morris Canal.

#### Background

The Morris Canal was formerly operated in this part of Jersey City in the late 1800s to early 1900s. Historic evidence indicated that the canal was abandoned and filled with miscellaneous fill material beginning sometime in the 1920s. Remedial Investigations ("RIs") conducted on Hudson County Chrome Site 114 by PPG, and within Berry Lane Park by the Jersey City Redevelopment Agency ("JCRA") reported that CCPW-impacted materials were identified within the fill used to abandon the former canal channel in several areas on and adjacent to Site 114.

JCRA conducted an RI within the former Morris Canal channel within Berry Lane Park in May and June 2011. The JCRA RI identified CCPW material, primarily green-gray mud, within the former canal channel from just north of the New Jersey Transit Hudson-Bergen Light Rail ("Light Rail") northward through Berry Lane Park. JCRA advanced soil borings within a series of transects crossing the former canal channel at approximately 200-foot intervals throughout Berry Lane Park. The northernmost soil boring transect completed by JCRA was located about 60 feet south of the northern Berry Lane Park Boundary. Green-gray mud was identified within the former canal channel and analytical sampling confirmed that CCPW material was present at this transect location.

Based upon the results of the Morris Canal RI conducted by JCRA, PPG initiated RI work to determine whether CCPW is present in the former Morris Canal channel north of Berry Lane Park.

#### **Scope of Work**

AECOM, at the request of PPG, conducted two phases of RI work along the former channel of the Morris Canal north of Berry Lane Park. RI work was conducted in 2011 to look for visual evidence of CCPW and a more focused phase of RI work was conducted in 2012 to include analytical sampling for hexavalent chromium ("Cr<sup>+6</sup>").

#### PPG 2011 Northern Canal RI

The RI was conducted within and adjacent to the former Morris Canal channel north of Berry Lane Park in September 2011. The RI was conducted within the area bounded by the northern property line of Berry Lane Park at the southern end and extending to Communipaw Avenue at the northern end (Figure 2). Three transects were completed across the former canal channel at a spacing of about 175 feet apart. Each transect consisted of five soil borings spaced about 20 feet apart. Each soil boring was advanced to a depth of approximately five feet below the bottom of the former Morris Canal channel (if identified) or to a depth of approximately 20 feet below ground surface ("bgs") if the bottom of the former canal channel could not be identified. Soil samples were collected continuously from ground surface to the total depth of each boring and visually evaluated for evidence of CCPW by an experienced field geologist trained in the identification of CCPW materials. The soil boring logs generated during this investigation are included in **Appendix A**.

The purpose of this investigation was to identify the former canal channel and to visually inspect the fill material within the former canal channel for the presence of CCPW. No CCPW was identified during this RI. Three soil samples were collected during this 2011 RI and analyzed hexavalent chromium ("Cr<sup>+6</sup>").

#### PPG 2012 Northern Canal RI

Based upon the findings from the JCRA and PPG Morris Canal RI work in 2011, PPG proposed a more focused RI targeting the area from the northern Berry Lane Park boundary and extending northward to PPG's southernmost 2011 Morris Canal RI transect. This RI was conducted to characterize the nature and extent of CCPW and included both visual and analytical assessment of the fill material within and adjacent to the former Morris Canal channel.

Three transects spaced about 70 feet apart were completed across the former Morris Canal channel (Figure 2). Each transect consisted of five soil borings spaced about 20 feet apart and advanced to a depth of 25 feet bgs. Soil samples were collected continuously from the ground surface to 25 feet bgs for visual characterization of the fill material. Analytical samples were collected at four foot depth intervals in each soil boring and submitted to an NJDEP certified laboratory for Cr<sup>+6</sup> analysis. The analytical samples were biased toward visual evidence of potential CCPW or CCPW-impacted material if/when it was observed. The soil boring logs generated during this investigation are included in **Appendix A**.

#### Air Monitoring and Waste Disposal

Air monitoring for the 2011 and 2012 RIs was conducted by the AECOM field crew in accordance with the project Health and Safety Plan using two Thermo MIE Personal Data Ram ("DR") 1000 real time aerosol monitors for dust and particulate monitoring (action level 0.167 mg/m3) and a PID MiniRae 2000 to monitor for volatile organic compounds ("VOCs"). One DR 1000 and the PID were utilized within the work zone to monitor personal exposure. The remaining dust monitoring was placed slightly downwind to identify potential off-site impacts. Potential dust generating tasks were carefully monitored and dust was minimized by using a clean water mist during pavement cutting and soft-dig activities. Based on field and instrumental observations mitigation of dust was successful.

Investigation derived waste ("IDW") materials were placed in 55-gallon drums and transported to a secure drum pad on Site 114 (2011 RI) and Site 132 (2012 RI) for temporary storage prior to disposal. These drums were properly labeled and manifested off-site to a regulated disposal facility. Because this area is under the same EPA ID as Site 114, these wastes were handled as part of the larger Site 114 waste removal program. Therefore, there were no Northern Canal Boring site-specific manifests or bills-of-lading generated specific to this RI work.

#### **Findings**

#### PPG 2011 Northern Canal RI

The approximate limits of the canal were identified along the three transects completed during the 2011 northern canal RI (**Figure 2**). The horizontal extent of the former Morris Canal Channel was defined by boring pairs NTB-A1/A2, NTB-B1/B2 and NTB-C5/C1 along the west side and NTB-A3/A4, NTB-B4/B5 and NTB-C3/C4 along the east side of the former canal channel.

Based upon observations during JCRA's Berry Lane Park RI and PPG's Northern Canal RIs, a soft black organic clay to silty clay was deemed the common marker for material deposited on the bottom of the former canal channel. Therefore, the canal bottom was considered the bottom of this black clay layer. The canal bottom was encountered at depths ranging from about 11.5 feet in borings NTB-A2 and B2 to about 18 feet in boring NTB-B3 (**Figure 3**). The deepest area of the former canal appears to be located along the line of borings NTB-A3, B3 and C1.

Groundwater was encountered during drilling at depths ranging from 3 feet bgs at boring NTB-A5 to 10 feet bgs at borings NTB-A1, A3, and C1. Groundwater samples were not collected as part of this investigation.

No CCPW or CCPW-impacted materials were observed in any of the soil borings advanced during the 2011 investigation. Three analytical samples were collected from the fill material within the former Morris Canal channel on September 28, 2011 **(Table 2)**. Based upon the analytical results,  $Cr^{+6}$  was not detected above the laboratory method detection limit ("MDL") in two of the soil samples and was detected at an estimated concentration of 1.1 J milligrams-per-kilogram ("mg/kg") in one soil sample **(Table 3)**. The interim NJDEP Chromium Soil Cleanup Criteria ("CrSCC") concentration for  $Cr^{+6}$  is 20 mg/kg.

#### PPG 2012 Northern Canal RI

The approximate limits of the canal were identified along the three transects completed during the 2012 northern canal RI (**Figure 2**). The horizontal extent of the former Morris Canal Channel was defined by boring pairs NSB-D1/D2, NSB-E1/E2 and NSB-F1/F2 along the west side and NSB-D4/D5, NSB-E4/E5 and NSB-F4/F5 along the east side of the former canal channel.

The canal bottom was encountered at depths ranging from 10.5 feet in boring NSB-F2 to 17 feet in boring NSB-D2 (**Figure 3**). The deepest area of the canal appears to be located along the line of borings NSB-D2, E3, and F4.

Groundwater was encountered during drilling at depths ranging from 4.5 feet bgs in boring NSB-D5 to 6.6 feet bgs in borings NSB-D1 and F5. Groundwater samples were not collected as part of this investigation.

No CCPW or CCPW-impacted materials were observed in any of the soil borings advanced during the 2012 investigation. Eighty-four analytical samples were collected from the 15 soil borings during August 20-28, 2012 (**Figure 2 and Table 2**). Based upon the analytical results, Cr<sup>+6</sup> was not detected at a concentration greater than the CrSCC in any of the samples (**Table 3**).

#### Data Quality Assurance/Quality Control

Soil samples collected as part of the Northern Canal investigation were sent to Test America Laboratories in Edison, NJ (2011 RI) and Accutest Laboratories in Dayton, NJ (2012 RI), which are NJDEP certified laboratories. The Cr<sup>+6</sup> analyses were performed in accordance with NJDEP-approved analytical protocols (**Table 4**).

All laboratory data packages were reviewed in accordance with the FSP-QAPP (AECOM, 2010a) and the NJDEP validation Standard Operating Procedures ("SOPs") for Cr<sup>+6</sup> and inorganic data. The validation procedures for all Cr<sup>+6</sup> data included full validation, which involved a comprehensive review of both summary forms and raw data.

Quality control issues identified during validation are provided in the individual data validation reports that are included in **Appendix B**. Results of the data validation indicated that, in general, the analytical data were of adequate quality to meet the project objectives. There were some minor quality assurance/quality control ("QA/QC") issues identified during data validation that resulted in qualifying some of the data as estimated. These issues were related to Matrix Spike ("MS") results, high percent moisture, and laboratory and field duplicate precision issues. The majority of the QA/QC non-conformances resulted in potential low bias for reported analytical results for the soil samples.

Based upon the data validation results, the data are acceptable and usable for the purpose of this investigation.

#### **Conclusions**

The former Morris Canal channel north of Berry Lane Park to Communipaw Avenue was identified and delineated within each of the six soil boring transects conducted during RI work that was completed in September 2011 and August 2012. No visual evidence of CCPW was identified in any of the borings. The fill material encountered within the former canal channel included a mixture of ash, cinder, sand, silt and other miscellaneous urban fill material, consistent with the non-indigenous fill common throughout this part of Jersey City. Groundwater was generally encountered between three feet and 10 feet bgs during the investigations.

Analytical results from the three soil samples collected during the 2011 investigation and the 84 soil samples collected during the 2012 investigation demonstrated that no evidence of CCPW-impacted material was present and that no Cr<sup>+6</sup> is present at concentrations exceeding the NJDEP 20 mg/kg CrSCC within or adjacent to the former Morris Canal channel north of Berry Lane Park. Based upon the RI conducted by JCRA within Berry Lane Park and the Northern Canal RI conducted by PPG, it is evident that CCPW and CCPW impacted material is limited to Berry Lane Park and does not extend north of the Berry Lane Park boundary.

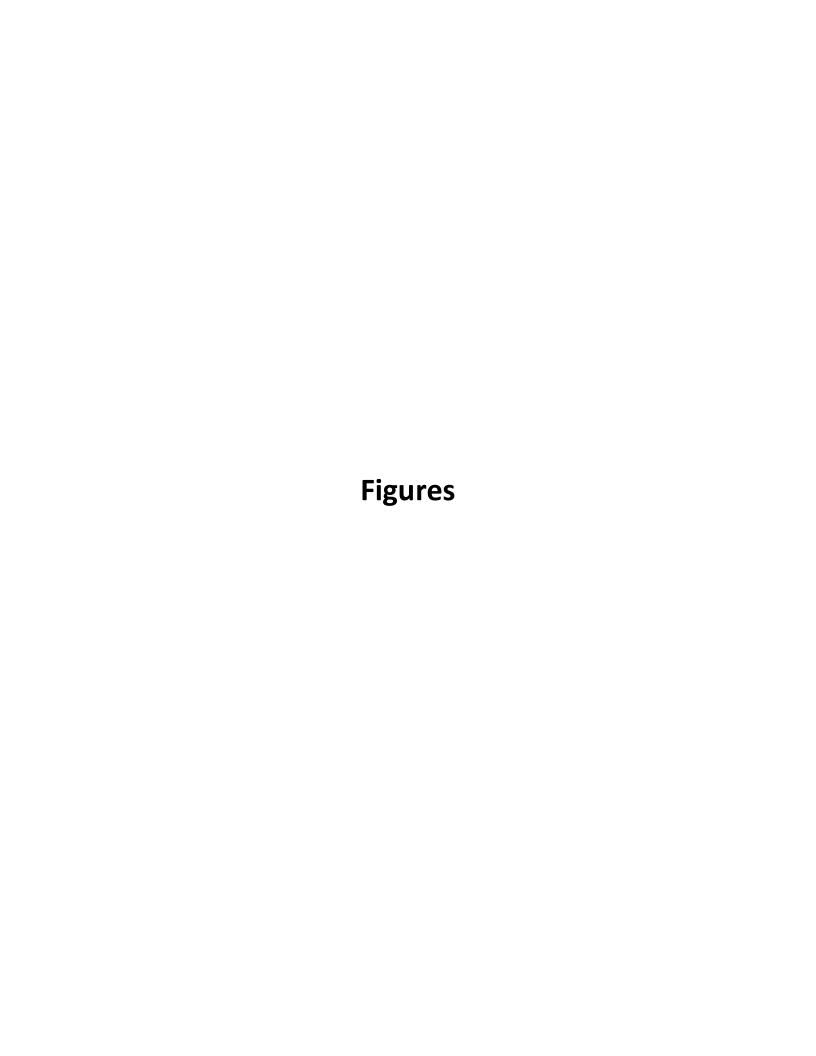
#### Attachments:

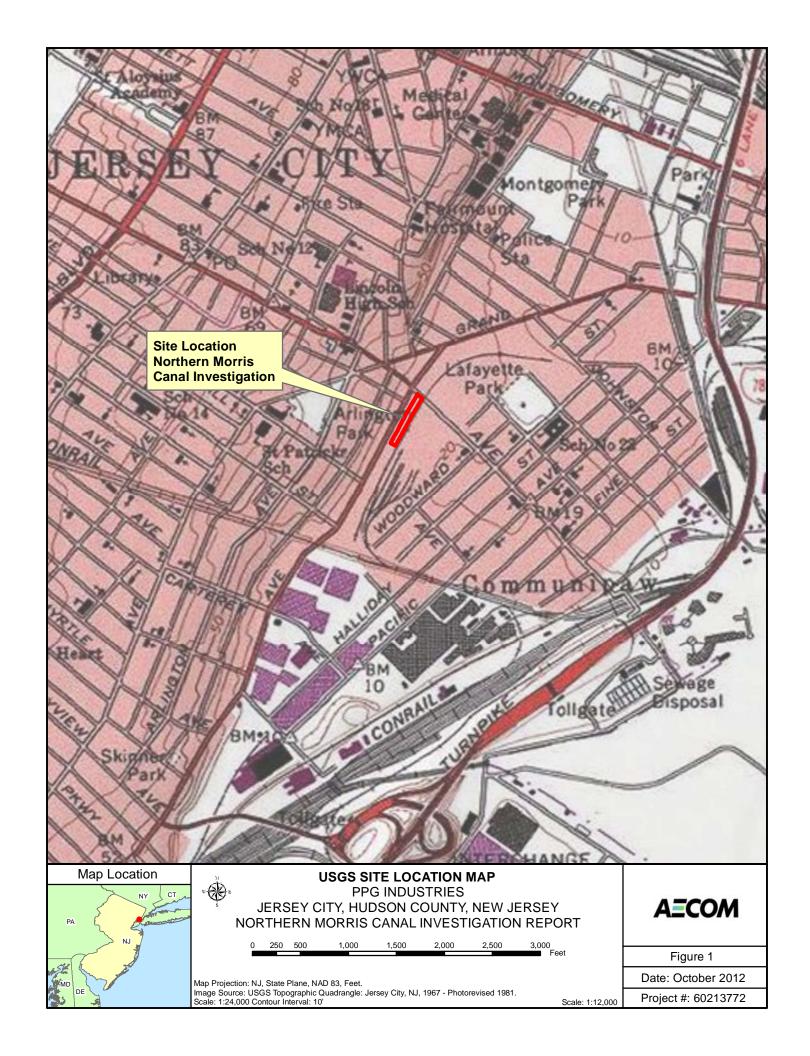
Figure 2: Soil Comparison to NJDEP CrSCC

Figure 3: Northern Morris Canal – Former Channel Profiles

Table 1: Sample Investigation Details

Table 2: Soil Sample Summary


Table 3: Analytical Results Summary Table


Table 4: Analytical Methods/Quality Assurance Summary Table

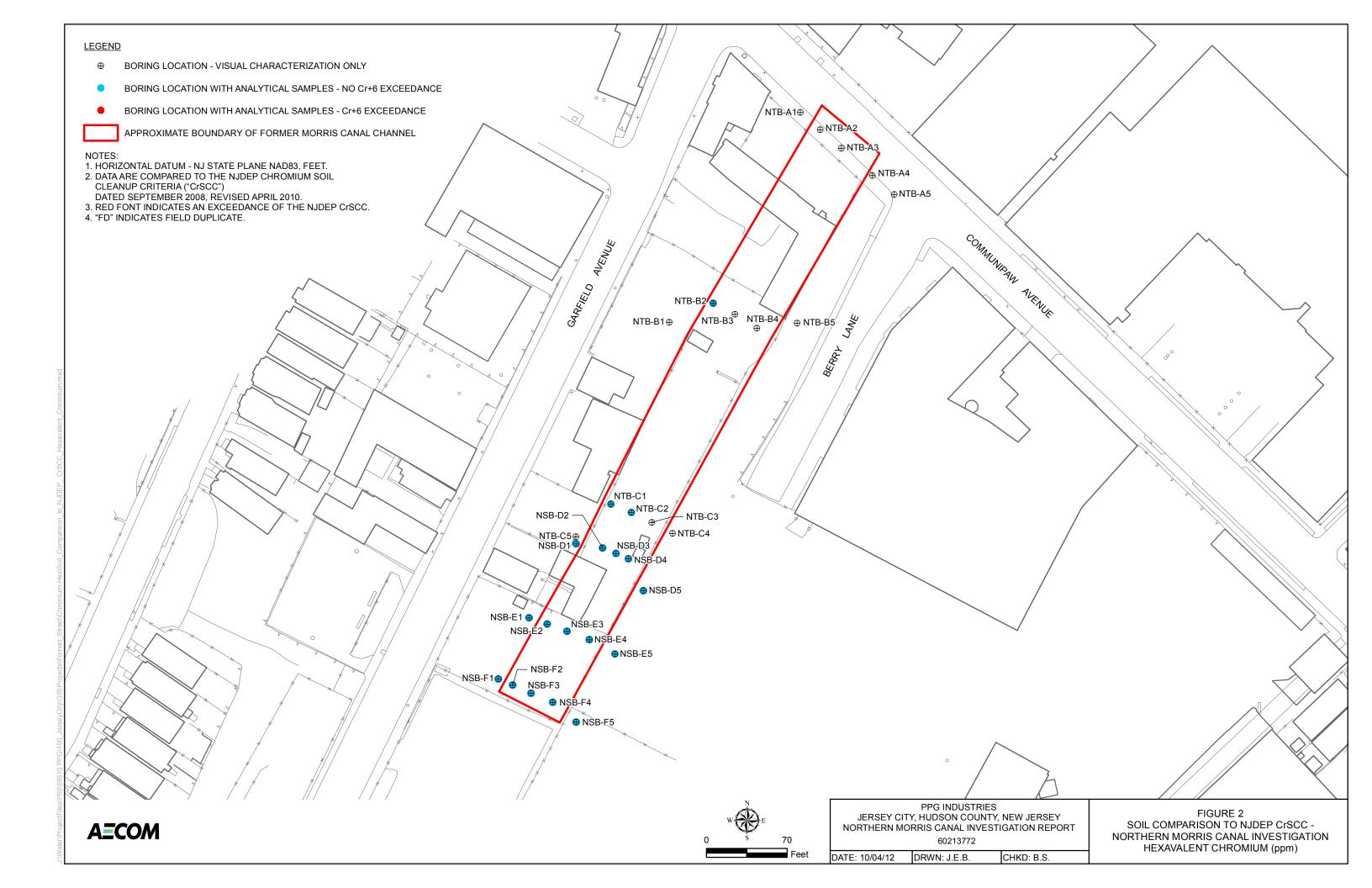
Appendix A: Soil Boring Logs

Appendix B: Compiled Lab Reports, DV Reports, and NJDEP Full Data

**Deliverables Form** 







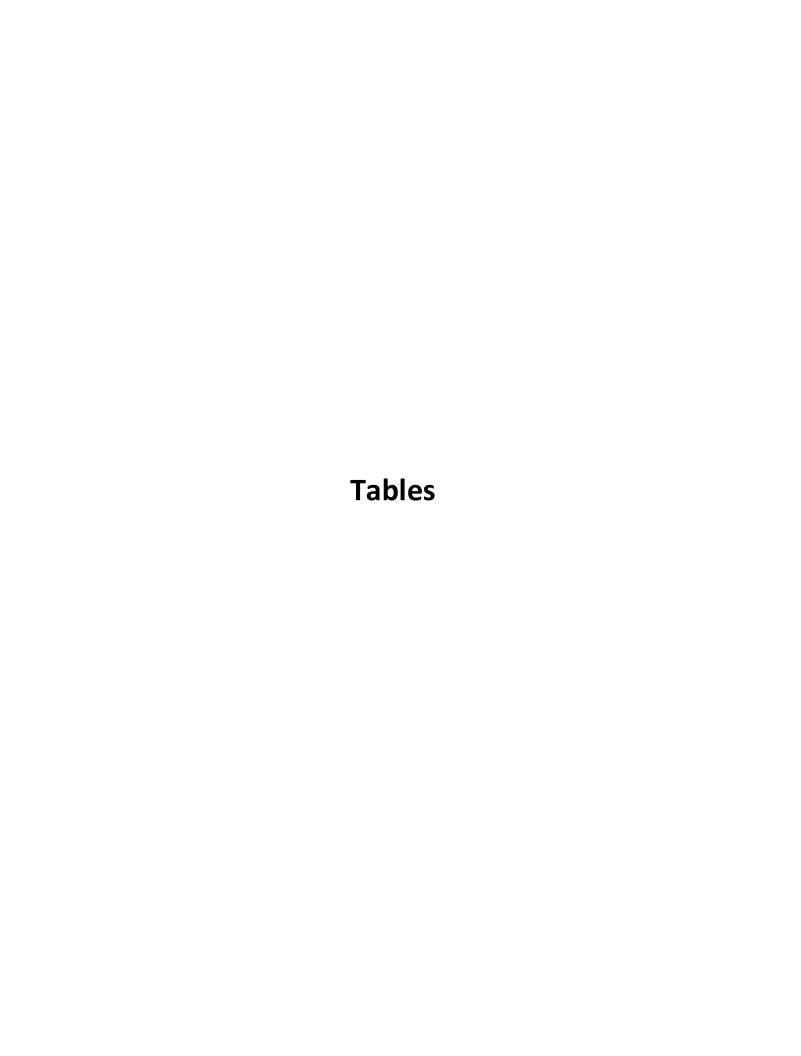



Figure 3

Northern Morris Canal - Former Channel Profiles
PPG Industries, Jersey City, New Jersey
Northern Morris Canal Investigation





# Table 1 Sample Investigation Details PPG Industries, Jersey City, New Jersey Northern Morris Canal Investigation

| Location     | Utility Markout<br>Date | Soft Dig<br>Date | GeoProbe<br>Date | Total Boring<br>Depth<br>(ft bgs) | COPR Depth<br>(ft bgs) | Green-Gray<br>Mud<br>(ft bgs) | Peat<br>(ft bgs) | Coal Tar, Ash, Oil or<br>other Petroleum                              | Comments                                                    |
|--------------|-------------------------|------------------|------------------|-----------------------------------|------------------------|-------------------------------|------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|
| Northern Cal | 9/27/11                 | 9/28/11          | 9/29/11          | 15                                |                        |                               |                  | Ash, tar odor                                                         | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NTB-A2       | 9/27/11                 | 9/27/11          | 9/29/11          | 20                                |                        |                               |                  | Cinders                                                               | No COPR/GGM. Canal Bottom at 11.5 ft.                       |
| NTB-A3       | 9/27/11                 | 9/27/11          | 9/29/11          | 20                                |                        |                               |                  | Black Cinders, Ash,<br>Naphthalene odor with<br>sheen                 | No COPR/GGM. Canal Bottom at 15.5 ft.                       |
| NTB-A4       | 9/27/11                 | 9/27/11          | 9/29/11          | 15                                |                        |                               |                  |                                                                       | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NTB-A5       | 9/27/11                 | 9/27/11          |                  | 5                                 |                        |                               |                  |                                                                       | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NTB-B1       | 9/27/11                 | 9/30/11          | 9/30/11          | 15                                |                        |                               |                  | Ash                                                                   | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NTB-B2       | 9/27/11                 | 9/28/11          | 9/28/11          | 15                                |                        |                               |                  | Cinders                                                               | No COPR/GGM. Canal Bottom at 11.5 ft.                       |
| NTB-B3       | 9/27/11                 | 9/28/11          | 9/28/11          | 20                                |                        |                               |                  | Cinders                                                               | No COPR/GGM. Canal Bottom at 18.5 ft.                       |
| NTB-B4       | 9/27/11                 | 9/28/11          | 9/28/11          | 20                                |                        |                               |                  | Black Cinders                                                         | No COPR/GGM. Canal Bottom at 12.5 ft.                       |
| NTB-B5       | 9/27/11                 | 9/30/11          | 9/30/11          | 20                                |                        |                               |                  | Coal                                                                  | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NTB-C1       | 9/27/11                 | 9/28/11          | 9/28/11          | 20                                |                        |                               |                  | Naphthalene Odor                                                      | No COPR/GGM. Canal Bottom at 17.5 ft.                       |
| NTB-C2       | 9/27/11                 | 9/28/11          | 9/28/11          | 15                                |                        |                               |                  | Cinders and Ash                                                       | No COPR/GGM. Canal Bottom at 14 ft.                         |
| NTB-C3       | 9/27/11                 | 9/28/11          | 9/28/11          | 20                                |                        |                               |                  | Black Cinders, Ash                                                    | No COPR/GGM. Canal Bottom at 16 ft.                         |
| NTB-C4       | 9/27/11                 | 9/29/11          | 9/29/11          | 15                                |                        |                               |                  | Black Cinders, Ash and Silt                                           | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NTB-C5       | 9/27/11                 | 9/30/11          | 9/30/11          | 20                                |                        |                               |                  | Ash                                                                   | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NSB-D1       | 8/8/2012                | 8/21/12          | 8/21/12          | 25                                |                        |                               |                  | Coal, ash, cinders                                                    | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NSB-D2       | 8/8/2012                | 8/21/12          | 8/21/12          | 25                                |                        |                               |                  | Coal, slag, ash, cinders;<br>strong petroleum odor                    | No COPR/GGM. Canal bottom at 16.9 ft                        |
| NSB-D3       | 8/8/2012                | 8/21/12          | 8/22/12          | 25                                |                        |                               |                  | Coal, ash, cinders, slag,<br>moderate petroleum odor,<br>slight sheen | No COPR/GGM Canal bottom<br>at 15.7 ft                      |
| NSB-D4       | 8/8/2012                | 8/22/12          | 8/22/12          | 25                                |                        |                               |                  | Slight petroleum odor                                                 | No COPR/GGM. Canal bottom at 11.9 ft                        |
| NSB-D5       | 8/8/2012                | 8/20/12          | 8/20/12          | 25                                |                        |                               |                  | Ash, cinders, slag, slight naphthalene odor                           | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NSB-E1       | 8/8/2012                | 8/24/12          | 8/24/12          | 25                                |                        |                               |                  | Coal, slight petroleum<br>odor                                        | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NSB-E2       | 8/8/2012                | 8/24/12          | 8/24/12          | 25                                |                        |                               |                  | Coal, ash                                                             | No COPR/GGM. Canal bottom at<br>13 ft                       |
| NSB-E3       | 8/8/2012                | 8/24/12          | 8/24/12          | 25                                |                        |                               |                  | Coal, slight petroleum odor, tar paper                                | No COPR/GGM. Canal bottom at<br>16 ft                       |
| NSB-E4       | 8/8/2012                | 8/24/12          | 8/27/12          | 25                                |                        |                               |                  | Coal                                                                  | No COPR/GGM. Canal bottom at 15.4 ft                        |
| NSB-E5       | 8/8/2012                | 8/21/12          | 8/21/12          | 5.5                               |                        |                               |                  | Coal, slag, ash, cinders                                              | Refusal at 5.5 ft. No COPR/GGM. No Canal Bottom encountered |
| NSB-F1       | 8/8/2012                | 8/27/12          | 8/27/12          | 25                                |                        |                               |                  | -                                                                     | No COPR/GGM. No Canal<br>Bottom encountered                 |
| NSB-F2       | 8/8/2012                | 8/28/12          | 8/28/12          | 25                                |                        |                               |                  | Coal                                                                  | No COPR/GGM. Canal bottom at<br>10.5 ft                     |
| NSB-F3       | 8/8/2012                | 8/28/12          | 8/28/12          | 25                                |                        |                               |                  | Coal, ash, cinders                                                    | No COPR/GGM. Canal bottom at 11.5 ft                        |
| NSB-F4       | 8/8/2012                | 8/28/12          | 8/28/12          | 25                                |                        |                               |                  | Coal, slight petroleum odor, slight sheen.                            | No COPR/GGM. Canal bottom at 15.7 ft                        |
| NSB-F5       | 8/8/2012                | 8/20/12          | 8/21/12          | 25                                |                        |                               |                  | -                                                                     | No COPR/GGM. No Canal<br>Bottom encountered                 |

Rottes.

It bgs = feet below ground surface

COPR = Chromium Ore Processing Residue

GGM = Green-Gray Mud

MGP = Manufactured Gas Plant

NA = Not Available

NAPL = Non-Aqueous Phase Liquids

# **Table 2**Soil Sample Summary PPG Industries, Jersey City, New Jersey Northern Morris Canal Investigation

|                  |                                      |                            |                        |                              |          |             | 0                          | 1                            | 2                                      |
|------------------|--------------------------------------|----------------------------|------------------------|------------------------------|----------|-------------|----------------------------|------------------------------|----------------------------------------|
| Sample Location  | Sample ID                            | Lab Sample ID              | Sample Date            | Sample Depth                 | Matrix   | Sample Type | Easting                    | inates <sup>1</sup> Northing | Analysis <sup>2</sup> Cr <sup>+6</sup> |
| GARIS-NSB        |                                      |                            |                        |                              |          |             |                            |                              |                                        |
| NSB-D1           | NSB-D1-1.0-1.5                       | JB14312-1R                 | 8/21/2012              |                              | SO<br>SO | N           | 611992.7581                | 685153.5252                  | 1                                      |
| NSB-D1<br>NSB-D1 | NSB-D1-4.0-4.5<br>NSB-D1-7.7-8.2     | JB14312-5R<br>JB14312-6R   | 8/21/2012<br>8/21/2012 |                              | SO<br>SO | N<br>N      | 611992.7581<br>611992.7581 | 685153.5252<br>685153.5252   | 1                                      |
| NSB-D1           | NSB-D1-12.0-12.5                     | JB14312-2                  |                        | 12 - 12.5 ft                 | SO       | N           | 611992.7581                | 685153.5252                  | 1                                      |
| NSB-D1           | NSB-D1-16.0-16.5                     | JB14312-3R                 |                        | 16 - 16.5 ft                 | SO       | N           | 611992.7581                | 685153.5252                  | 1                                      |
| NSB-D1           | NSB-D1-20.0-20.5                     | JB14312-4R                 |                        | 20 - 20.5 ft                 | SO       | N           | 611992.7581                | 685153.5252                  | 1                                      |
| NSB-D2           | NSB-D2-3.0-3.5                       | JB14312-8R                 | 8/21/2012              |                              | SO SO    | N           | 612015.7078                | 685150.019                   | 1                                      |
| NSB-D2<br>NSB-D2 | NSB-D2-3.0-3.5X<br>NSB-D2-6.0-6.5    | JB14312-9R<br>JB14312-10R  | 8/21/2012<br>8/21/2012 |                              | SO<br>SO | FD<br>N     | 612015.7078<br>612015.7078 | 685150.019<br>685150.019     | 1                                      |
| NSB-D2           | NSB-D2-0.0-0.5                       | JB14312-7                  |                        | 11.3 - 11.8 ft               | SO       | N           | 612015.7078                | 685150.019                   | 1                                      |
| NSB-D2           | NSB-D2-15.0-15.5                     | JB14404-14                 |                        | 15 - 15.5 ft                 | SO       | N           | 612015.7078                | 685150.019                   | 1                                      |
| NSB-D2           | NSB-D2-16.6-17.1                     | JB14404-13                 |                        | 16.6 - 17.1 ft               | SO       | N           | 612015.7078                | 685150.019                   | 1                                      |
| NSB-D2           | NSB-D2-20.0-20.5                     | JB14404-15                 |                        | 20 - 20.5 ft                 | SO       | N           | 612015.7078                | 685150.019                   | 1                                      |
| NSB-D3<br>NSB-D3 | NSB-D3-3.0-3.5<br>NSB-D3-6.5-7.0     | JB14312-11<br>JB14404-12   | 8/21/2012<br>8/22/2012 |                              | SO<br>SO | N<br>N      | 612027.2754<br>612027.2754 | 685145.1991<br>685145.1991   | 1 1                                    |
| NSB-D3           | NSB-D3-0.5-7.0                       | JB14404-11                 |                        | 10.8 - 11.3 ft               | SO       | N           | 612027.2754                | 685145.1991                  | 1                                      |
| NSB-D3           | NSB-D3-15.0-15.5                     | JB14404-10                 |                        | 15 - 15.5 ft                 | SO       | N           | 612027.2754                | 685145.1991                  | 1                                      |
| NSB-D3           | NSB-D3-21.0-21.5                     | JB14404-9                  |                        | 21 - 21.5 ft                 | SO       | N           | 612027.2754                | 685145.1991                  | 1                                      |
| NSB-D4           | NSB-D4-1.0-1.5                       | JB14312-12R                | 8/21/2012              |                              | SO       | N           | 612037.9996                | 685140.6203                  | 1                                      |
| NSB-D4<br>NSB-D4 | NSB-D4-6.0-6.5<br>NSB-D4-10.5-11.0   | JB14404-7<br>JB14404-6     | 8/22/2012              | 6 - 6.5 ft<br>10.5 - 11 ft   | SO<br>SO | N<br>N      | 612037.9996<br>612037.9996 | 685140.6203<br>685140.6203   | 1                                      |
| NSB-D4           | NSB-D4-10.3-11.0                     | JB14404-5                  |                        | 12 - 12.5 ft                 | SO       | N           | 612037.9996                | 685140.6203                  | 1                                      |
| NSB-D4           | NSB-D4-16.5-17.0                     | JB14404-4                  |                        | 16.5 - 17 ft                 | SO       | N           | 612037.9996                | 685140.6203                  | 1                                      |
| NSB-D4           | NSB-D4-20.0-20.5                     | JB14404-3                  |                        | 20 - 20.5 ft                 | SO       | N           | 612037.9996                | 685140.6203                  | 1                                      |
| NSB-D5           | NSB-D5-3.0-3.5                       | JB14201-11R                | 8/20/2012              |                              | SO       | N           | 612050.9892                | 685112.8573                  | 1                                      |
| NSB-D5           | NSB-D5-3.0-3.5X                      | JB14201-10                 | 8/20/2012              |                              | SO<br>SO | FD          | 612050.9892                | 685112.8573                  | 1                                      |
| NSB-D5<br>NSB-D5 | NSB-D5-6.4-6.9<br>NSB-D5-12.0-12.5   | JB14201-9R<br>JB14201-8R   | 8/20/2012<br>8/20/2012 | 6.4 - 6.9 π<br>12 - 12.5 ft  | SO<br>SO | N<br>N      | 612050.9892<br>612050.9892 | 685112.8573<br>685112.8573   | 1                                      |
| NSB-D5           | NSB-D5-15.0-15.5                     | JB14201-8K<br>JB14201-7    |                        | 15 - 15.5 ft                 | SO       | N           | 612050.9892                | 685112.8573                  | 1                                      |
| NSB-D5           | NSB-D5-18.0-18.5                     | JB14201-6                  |                        | 18 - 18.5 ft                 | SO       | N           | 612050.9892                | 685112.8573                  | 1                                      |
| NSB-D5           | NSB-D5-20.0-20.5                     | JB14201-5                  |                        | 20 - 20.5 ft                 | SO       | N           | 612050.9892                | 685112.8573                  | 1                                      |
| NSB-E1           | NSB-E1-2.0-2.5                       | JB14656-21                 | 8/24/2012              |                              | SO       | N           | 611951.8557                | 685089.5156                  | 1                                      |
| NSB-E1<br>NSB-E1 | NSB-E1-4.0-4.5<br>NSB-E1-10.0-10.5   | JB14656-19<br>JB14656-15   | 8/24/2012              | 4 - 4.5 ft<br>10 - 10.5 ft   | SO<br>SO | N<br>N      | 611951.8557<br>611951.8557 | 685089.5156<br>685089.5156   | 1                                      |
| NSB-E1           | NSB-E1-12.5-13.0                     | JB14656-14                 |                        | 12.5 - 13 ft                 | SO       | N           | 611951.8557                | 685089.5156                  | 1                                      |
| NSB-E1           | NSB-E1-16.0-16.5                     | JB14656-13                 |                        | 16 - 16.5 ft                 | SO       | N           | 611951.8557                | 685089.5156                  | 1                                      |
| NSB-E1           | NSB-E1-20.0-20.5                     | JB14656-12                 | 8/24/2012              | 20 - 20.5 ft                 | SO       | N           | 611951.8557                | 685089.5156                  | 1                                      |
| NSB-E2           | NSB-E2-1.0-1.5                       | JB14656-18                 | 8/24/2012              | _                            | SO SO    | N           | 611967.4453                | 685084.064                   | 1                                      |
| NSB-E2<br>NSB-E2 | NSB-E2-1.0-1.5X<br>NSB-E2-4.0-4.5    | JB14656-17<br>JB14656-16   | 8/24/2012<br>8/24/2012 |                              | SO<br>SO | FD<br>N     | 611967.4453<br>611967.4453 |                              | 1                                      |
| NSB-E2           | NSB-E2-4.0-4.5<br>NSB-E2-12.5-13.0   | JB14656-16<br>JB14656-9    |                        | 12.5 - 13 ft                 | SO       | N           | 611967.4453                | 685084.064                   | 1                                      |
| NSB-E2           | NSB-E2-16.0-16.5                     | JB14656-8                  |                        | 16 - 16.5 ft                 | SO       | N           | 611967.4453                |                              | 1                                      |
| NSB-E2           | NSB-E2-21.0-21.5                     | JB14656-7                  | 8/24/2012              | 21 - 21.5 ft                 | SO       | N           | 611967.4453                | 685084.064                   | 1                                      |
| NSB-E3           | NSB-E3-0.5-1.0                       | JB14656-11                 | 8/24/2012              |                              | SO       | N           | 611984.8521                |                              | 1                                      |
| NSB-E3           | NSB-E3-4.0-4.5                       | JB14656-10                 | 8/24/2012              |                              | SO       | N           | 611984.8521                | 685077.7517                  | 1                                      |
| NSB-E3<br>NSB-E3 | NSB-E3-5.5-6.0<br>NSB-E3-10.0-10.5   | JB14656-6<br>JB14656-5     | 8/24/2012              | 5.5 - 6 ft<br>10 - 10.5 ft   | SO<br>SO | N<br>N      | 611984.8521<br>611984.8521 | 685077.7517<br>685077.7517   | 1                                      |
| NSB-E3           | NSB-E3-16.0-16.5                     | JB14656-4                  |                        | 16 - 16.5 ft                 | SO       | N           | 611984.8521                |                              | 1                                      |
| NSB-E3           | NSB-E3-20.0-20.5                     | JB14656-3                  |                        | 20 - 20.5 ft                 | SO       | N           | 611984.8521                |                              | 1                                      |
| NSB-E4           | NSB-E4-1.0-1.5                       | JB14656-2                  | 8/24/2012              | 1 - 1.5 ft                   | SO       | N           | 612004.1717                | 685070.3873                  | 1                                      |
| NSB-E4           | NSB-E4-4.0-4.5                       | JB14656-1                  | 8/24/2012              |                              | SO SO    | N           | 612004.1717                |                              | 1                                      |
| NSB-E4<br>NSB-E4 | NSB-E4-6.5-7.0<br>NSB-E4-12.0-12.5   | JB14769-11<br>JB14769-9    | 8/27/2012              | 6.5 - 7 ft<br>12 - 12.5 ft   | SO<br>SO | N<br>N      | 612004.1717<br>612004.1717 |                              | 1                                      |
| NSB-E4           | NSB-E4-16.0-16.5                     | JB14769-9<br>JB14769-8     |                        | 16 - 16.5 ft                 | SO       | N           | 612004.1717                |                              | 1                                      |
| NSB-E4           | NSB-E4-16.0-16.5X                    |                            |                        | 16 - 16.5 ft                 | SO       | FD          | 612004.1717                | 685070.3873                  | 1                                      |
| NSB-E4           | NSB-E4-21.0-21.5                     | JB14769-6                  | 8/27/2012              | 21 - 21.5 ft                 | SO       | N           | 612004.1717                | 685070.3873                  | 1                                      |
| NSB-E5           | NSB-E5-3.0-3.5                       | JB14201-12                 | 8/20/2012              |                              | SO       | N           | 612026.3606                |                              | 1                                      |
| NSB-F1<br>NSB-F1 | NSB-F1-1.0-1.5<br>NSB-F1-4.0-4.5     | JB14769-5<br>JB14769-4     | 8/27/2012<br>8/27/2012 |                              | SO<br>SO | N<br>N      | 611925.2525<br>611925.2525 |                              | 1                                      |
| NSB-F1           | NSB-F1-4.0-4.5<br>NSB-F1-10.0-10.5   | JB14769-4<br>JB14769-3     |                        | 4 - 4.5 π<br>10 - 10.5 ft    | SO       | N           | 611925.2525                |                              | 1                                      |
| NSB-F1           | NSB-F1-16.0-16.5                     | JB14769-2                  |                        | 16 - 16.5 ft                 | SO       | N           | 611925.2525                |                              | 1                                      |
| NSB-F1           | NSB-F1-20.0-20.5                     | JB14769-1                  |                        | 20 - 20.5 ft                 | SO       | N           | 611925.2525                |                              | 1                                      |
| NSB-F2           | NSB-F2-1.0-1.5                       | JB14858-7                  | 8/28/2012              |                              | SO       | N           | 611937.7696                |                              | 1                                      |
| NSB-F2<br>NSB-F2 | NSB-F2-4.0-4.5<br>NSB-F2-10.5-11.0   | JB14858-6<br>JB14858-5     | 8/28/2012<br>8/28/2012 | 4 - 4.5 ft<br>10.5 - 11 ft   | SO<br>SO | N<br>N      | 611937.7696<br>611937.7696 |                              | 1 1                                    |
| NSB-F2           |                                      | JB14858-5<br>JB14858-4R    |                        | 10.5 - 11 π<br>10.5 - 11 ft  | SO       | N           | 611937.7696                |                              | 1                                      |
| NSB-F2           | NSB-F2-15.0-15.5                     | JB14858-3                  |                        | 15 - 15.5 ft                 | SO       | N           | 611937.7696                |                              | 1                                      |
| NSB-F2           | NSB-F2-17.8-18.3                     | JB14858-2R                 |                        | 17.8 - 18.3 ft               | SO       | N           | 611937.7696                |                              | 1                                      |
| NSB-F2           | NSB-F2-21.5-22.0                     | JB14858-1                  |                        | 21.5 - 22 ft                 | SO       | N           | 611937.7696                |                              | 1                                      |
| NSB-F3           | NSB-F3-1.0-1.5                       | JB14858-14R                | 8/28/2012<br>8/28/2012 |                              | SO<br>SO | N<br>N      | 611953.4491                | 685023.9789                  | 1 1                                    |
| NSB-F3<br>NSB-F3 | NSB-F3-4.0-4.5<br>NSB-F3-10.0-10.5   | JB14858-13R<br>JB14858-10R |                        | 4 - 4.5 π<br>10 - 10.5 ft    | SO       | N           | 611953.4491<br>611953.4491 |                              | 1                                      |
| NSB-F3           | NSB-F3-15.0-15.5                     | JB14858-9R                 |                        | 15 - 15.5 ft                 | SO       | N           | 611953.4491                | 685023.9789                  | 1                                      |
| NSB-F3           | NSB-F3-20.0-20.5                     | JB14858-8R                 |                        | 20 - 20.5 ft                 | SO       | N           | 611953.4491                | 685023.9789                  | 1                                      |
| NSB-F4           | NSB-F4-0.0-0.5                       | JB14858-18R                | 8/28/2012              |                              | SO       | N           | 611972.5371                |                              | 1                                      |
| NSB-F4           | NSB-F4-6.0-6.5                       | JB14858-16                 | 8/28/2012              |                              | SO<br>SO | N           | 611972.5371                | 685016.1391                  | 1                                      |
| NSB-F4<br>NSB-F4 | NSB-F4-10.0-10.5<br>NSB-F4-16.0-16.5 | JB14858-15R<br>JB14858-12R |                        | 10 - 10.5 ft<br>16 - 16.5 ft | SO<br>SO | N<br>N      | 611972.5371<br>611972.5371 | 685016.1391<br>685016.1391   | 1                                      |
| NSB-F4           | NSB-F4-20.0-20.5                     | JB14858-11                 |                        | 20 - 20.5 ft                 | SO       | N           | 611972.5371                |                              | 1                                      |
| NSB-F5           | NSB-F5-0.0-0.5                       | JB14201-4R                 | 8/20/2012              |                              | SO       | N           | 611992.8182                |                              | 1                                      |
| NSB-F5           | NSB-F5-4.0-4.5                       | JB14201-3R                 | 8/20/2012              |                              | SO       | N           | 611992.8182                |                              | 1                                      |
|                  | NSB-F5-8.0-8.5                       | JB14201-2R                 | 8/20/2012              |                              |          | N           |                            | 684999.0962                  | 1                                      |
| NSB-F5           | NSB-F5-12.0-12.5                     | JB14201-1R                 |                        | 12 - 12.5 ft                 | SO<br>SO | N           |                            | 684999.0962                  | 1                                      |
| NSB-F5<br>NSB-F5 | NSB-F5-16.0-16.5<br>NSB-F5-20.0-20.5 | JB14312-15R<br>JB14312-13R |                        | 16 - 16.5 ft<br>20 - 20.5 ft | SO<br>SO | N<br>N      | 611992.8182<br>611992.8182 | 684999.0962<br>684999.0962   | 1                                      |
| NTB              |                                      |                            | S, 21, 2012            | 0.0 10                       |          | 1           |                            | 23.333.0302                  | -                                      |
| NTB-B2           | NTB-B2-2.0                           | 460-31791-3                | 9/28/2011              | 2 - 2.5 ft                   | SO       | N           | 612111.56                  | 685362.06                    | 1                                      |
| NTB-C1           | NTB-C1-11.0                          | 460-31791-2                |                        | 11 - 11.5 ft                 | SO       | N           | 612022.95                  | 685188.14                    | 1                                      |
| NTB-C2           | NTB-C2-12.0                          | 460-31791-1                | 9/28/2011              | 12 - 12.5 ft                 | SO       | N           | 612040.59                  | 685180.79                    | 1                                      |

#### Notes:

Sample Type = N indicates normal original sample; FD indicates duplicate sample.

Cr<sup>+6</sup> = Hexavalent Chromium

<sup>1 -</sup> Coordinate datum New Jersey State Plane North American Datum 1983 (NAD83), feet

<sup>2 -</sup> Analyses include: Cr<sup>+6</sup> = SW7196



# Table 3 Analytical Results Summary Table PPG Industries, Jersey City, New Jersey Northern Morris Canal Investigation

|                                                                                        |                                                                                                                                                                               |                                                                                          |                                                                           | Analyte<br>CAS RN<br>Units                                                 | CHROMIUM (HEX<br>18540-29<br>mg/kg      |   |
|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------|---|
|                                                                                        |                                                                                                                                                                               |                                                                                          |                                                                           | MSSRS                                                                      | 20                                      |   |
| Location ID                                                                            | Sample ID                                                                                                                                                                     | Lab ID                                                                                   | Depth Interval                                                            | Collection Date                                                            | R                                       | Q |
| NSB-D1                                                                                 | NSB-D1-1.0-1.5                                                                                                                                                                | JB14312-1R                                                                               | 1 - 1.5 ft                                                                | 8/21/2012                                                                  | 1.8 J                                   |   |
| NSB-D1                                                                                 | NSB-D1-4.0-4.5                                                                                                                                                                | JB14312-5R                                                                               | 4 - 4.5 ft                                                                | 8/21/2012                                                                  | 4.3 J                                   |   |
| NSB-D1                                                                                 | NSB-D1-7.7-8.2                                                                                                                                                                | JB14312-6R                                                                               | 7.7 - 8.2 ft                                                              | 8/21/2012                                                                  | 0.35 J                                  |   |
| NSB-D1                                                                                 | NSB-D1-12.0-12.5                                                                                                                                                              | JB14312-2                                                                                | 12 - 12.5 ft                                                              | 8/21/2012                                                                  | 0.42 J                                  |   |
| NSB-D1                                                                                 | NSB-D1-16.0-16.5                                                                                                                                                              | JB14312-3R                                                                               | 16 - 16.5 ft                                                              | 8/21/2012                                                                  | 1.6 J                                   |   |
| NSB-D1                                                                                 | NSB-D1-20.0-20.5                                                                                                                                                              | JB14312-4R                                                                               | 20 - 20.5 ft                                                              | 8/21/2012                                                                  | 0.46 J                                  |   |
| NSB-D2                                                                                 |                                                                                                                                                                               | JB14312-8R                                                                               | 3 - 3.5 ft                                                                | 8/21/2012                                                                  | 3.0 J                                   |   |
| NSB-D2                                                                                 |                                                                                                                                                                               | JB14312-9R                                                                               | 3 - 3.5 ft                                                                | 8/21/2012                                                                  | 2.1 J                                   |   |
| NSB-D2                                                                                 | +                                                                                                                                                                             | JB14312-10R                                                                              | 6 - 6.5 ft                                                                | 8/21/2012                                                                  | < 0.19 UJ                               |   |
| NSB-D2                                                                                 | +                                                                                                                                                                             | JB14312-10K<br>JB14312-7                                                                 | 11.3 - 11.8 ft                                                            |                                                                            | 0.41 J                                  |   |
|                                                                                        | +                                                                                                                                                                             |                                                                                          |                                                                           | 8/21/2012                                                                  | < 0.20 U                                |   |
| NSB-D2                                                                                 |                                                                                                                                                                               | JB14404-14                                                                               | 15 - 15.5 ft                                                              | 8/22/2012                                                                  |                                         |   |
| NSB-D2                                                                                 | +                                                                                                                                                                             | JB14404-13                                                                               | 16.6 - 17.1 ft                                                            | 8/22/2012                                                                  | 0.27 J                                  |   |
| NSB-D2                                                                                 | +                                                                                                                                                                             | JB14404-15                                                                               | 20 - 20.5 ft                                                              | 8/22/2012                                                                  | 1.2                                     |   |
| NSB-D3                                                                                 | NSB-D3-3.0-3.5                                                                                                                                                                | JB14312-11                                                                               | 3 - 3.5 ft                                                                | 8/21/2012                                                                  | 12.9 J                                  |   |
| NSB-D3                                                                                 | NSB-D3-6.5-7.0                                                                                                                                                                | JB14404-12                                                                               | 6.5 - 7 ft                                                                | 8/22/2012                                                                  | 0.43 J                                  |   |
| NSB-D3                                                                                 | NSB-D3-10.8-11.3                                                                                                                                                              | JB14404-11                                                                               | 10.8 - 11.3 ft                                                            | 8/22/2012                                                                  | 1.3 J                                   |   |
| NSB-D3                                                                                 | NSB-D3-15.0-15.5                                                                                                                                                              | JB14404-10                                                                               | 15 - 15.5 ft                                                              | 8/22/2012                                                                  | < 0.22 U                                |   |
| NSB-D3                                                                                 | NSB-D3-21.0-21.5                                                                                                                                                              | JB14404-9                                                                                | 21 - 21.5 ft                                                              | 8/22/2012                                                                  | 0.47                                    |   |
| NSB-D4                                                                                 | NSB-D4-1.0-1.5                                                                                                                                                                | JB14312-12R                                                                              | 1 - 1.5 ft                                                                | 8/21/2012                                                                  | 2.3 J                                   |   |
| NSB-D4                                                                                 | +                                                                                                                                                                             | JB14404-7                                                                                | 6 - 6.5 ft                                                                | 8/22/2012                                                                  | < 0.17 U                                |   |
| NSB-D4                                                                                 | +                                                                                                                                                                             | JB14404-6                                                                                | 10.5 - 11 ft                                                              | 8/22/2012                                                                  | 0.57                                    |   |
| NSB-D4                                                                                 | +                                                                                                                                                                             | JB14404-5                                                                                | 12 - 12.5 ft                                                              | 8/22/2012                                                                  | 1.1                                     |   |
| NSB-D4<br>NSB-D4                                                                       | +                                                                                                                                                                             | JB14404-5<br>JB14404-4                                                                   | 16.5 - 17 ft                                                              | 8/22/2012                                                                  | 0.64                                    |   |
|                                                                                        | †                                                                                                                                                                             |                                                                                          |                                                                           |                                                                            |                                         |   |
| NSB-D4                                                                                 | +                                                                                                                                                                             | JB14404-3                                                                                | 20 - 20.5 ft                                                              | 8/22/2012                                                                  | 1.1                                     |   |
| NSB-D5                                                                                 | +                                                                                                                                                                             | JB14201-11R                                                                              | 3 - 3.5 ft                                                                | 8/20/2012                                                                  | 0.57 J                                  |   |
| NSB-D5                                                                                 | +                                                                                                                                                                             | JB14201-10                                                                               | 3 - 3.5 ft                                                                | 8/20/2012                                                                  | 0.27 J                                  |   |
| NSB-D5                                                                                 |                                                                                                                                                                               | JB14201-9R                                                                               | 6.4 - 6.9 ft                                                              | 8/20/2012                                                                  | 0.28 J                                  |   |
| NSB-D5                                                                                 | NSB-D5-12.0-12.5                                                                                                                                                              | JB14201-8R                                                                               | 12 - 12.5 ft                                                              | 8/20/2012                                                                  | 0.71 J                                  |   |
| NSB-D5                                                                                 | NSB-D5-15.0-15.5                                                                                                                                                              | JB14201-7                                                                                | 15 - 15.5 ft                                                              | 8/20/2012                                                                  | 0.22 J                                  |   |
| NSB-D5                                                                                 | NSB-D5-18.0-18.5                                                                                                                                                              | JB14201-6                                                                                | 18 - 18.5 ft                                                              | 8/20/2012                                                                  | 0.17 J                                  |   |
| NSB-D5                                                                                 | NSB-D5-20.0-20.5                                                                                                                                                              | JB14201-5                                                                                | 20 - 20.5 ft                                                              | 8/20/2012                                                                  | 0.71 J                                  |   |
| NSB-E1                                                                                 | NSB-E1-2.0-2.5                                                                                                                                                                | JB14656-21                                                                               | 2 - 2.5 ft                                                                | 8/24/2012                                                                  | 1.3 J                                   |   |
| NSB-E1                                                                                 |                                                                                                                                                                               | JB14656-19                                                                               | 4 - 4.5 ft                                                                | 8/24/2012                                                                  | 9.2 J                                   |   |
| NSB-E1                                                                                 | +                                                                                                                                                                             | JB14656-15                                                                               | 10 - 10.5 ft                                                              | 8/24/2012                                                                  | < 0.13 UJ                               |   |
| NSB-E1                                                                                 | <del> </del>                                                                                                                                                                  | JB14656-14                                                                               | 12.5 - 13 ft                                                              | 8/24/2012                                                                  | 0.17 J                                  |   |
|                                                                                        | +                                                                                                                                                                             |                                                                                          |                                                                           | 1. 1.                                                                      |                                         |   |
| NSB-E1                                                                                 | +                                                                                                                                                                             | JB14656-13                                                                               | 16 - 16.5 ft                                                              | 8/24/2012                                                                  | < 0.13 UJ                               |   |
| NSB-E1                                                                                 | +                                                                                                                                                                             | JB14656-12                                                                               | 20 - 20.5 ft                                                              | 8/24/2012                                                                  | < 0.13 UJ                               |   |
| NSB-E2                                                                                 | +                                                                                                                                                                             | JB14656-18                                                                               | 1 - 1.5 ft                                                                | 8/24/2012                                                                  | < 0.14 UJ                               |   |
| NSB-E2                                                                                 | NSB-E2-1.0-1.5X                                                                                                                                                               | JB14656-17                                                                               | 1 - 1.5 ft                                                                | 8/24/2012                                                                  | 4.6 J                                   |   |
| NSB-E2                                                                                 | NSB-E2-4.0-4.5                                                                                                                                                                | JB14656-16                                                                               | 4 - 4.5 ft                                                                | 8/24/2012                                                                  | 4.8 J                                   |   |
| NSB-E2                                                                                 | NSB-E2-12.5-13.0                                                                                                                                                              | JB14656-9                                                                                | 12.5 - 13 ft                                                              | 8/24/2012                                                                  | 0.46 J                                  |   |
| NSB-E2                                                                                 | NSB-E2-16.0-16.5                                                                                                                                                              | JB14656-8                                                                                | 16 - 16.5 ft                                                              | 8/24/2012                                                                  | < 0.13 UJ                               |   |
| NSB-E2                                                                                 | NSB-E2-21.0-21.5                                                                                                                                                              | JB14656-7                                                                                | 21 - 21.5 ft                                                              | 8/24/2012                                                                  | < 0.13 UJ                               |   |
| NSB-E3                                                                                 | NSB-E3-0.5-1.0                                                                                                                                                                | JB14656-11                                                                               | 0.5 - 1 ft                                                                | 8/24/2012                                                                  | 1.2 J                                   |   |
| NSB-E3                                                                                 | NSB-E3-4.0-4.5                                                                                                                                                                | JB14656-10                                                                               | 4 - 4.5 ft                                                                | 8/24/2012                                                                  | 0.92 J                                  |   |
| NSB-E3                                                                                 | NSB-E3-5.5-6.0                                                                                                                                                                | JB14656-6                                                                                | 5.5 - 6 ft                                                                | 8/24/2012                                                                  | < 0.17 UJ                               |   |
| NSB-E3                                                                                 | +                                                                                                                                                                             | JB14656-5                                                                                | 10 - 10.5 ft                                                              | 8/24/2012                                                                  | < 0.19 UJ                               |   |
| NSB-E3                                                                                 | +                                                                                                                                                                             | JB14656-4                                                                                | 16 - 16.5 ft                                                              | 8/24/2012                                                                  | < 0.14 UJ                               |   |
| NSB-E3                                                                                 | †                                                                                                                                                                             | JB14656-3                                                                                | 20 - 20.5 ft                                                              | 8/24/2012                                                                  | 2.6 J                                   |   |
|                                                                                        | <del> </del>                                                                                                                                                                  |                                                                                          | 20 - 20.5 ft<br>1 - 1.5 ft                                                | 1. 1.                                                                      | 2.6 J                                   |   |
| NSB-E4                                                                                 | <del> </del>                                                                                                                                                                  | JB14656-2                                                                                |                                                                           | 8/24/2012                                                                  |                                         |   |
| NSB-E4                                                                                 | <del> </del>                                                                                                                                                                  | JB14656-1                                                                                | 4 - 4.5 ft                                                                | 8/24/2012                                                                  | 1.1 J                                   |   |
| NSB-E4                                                                                 |                                                                                                                                                                               | JB14769-11                                                                               | 6.5 - 7 ft                                                                | 8/27/2012                                                                  | < 0.18 U                                |   |
| NSB-E4                                                                                 | +                                                                                                                                                                             | JB14769-9                                                                                | 12 - 12.5 ft                                                              | 8/27/2012                                                                  | 0.34 J                                  |   |
| NSB-E4                                                                                 | +                                                                                                                                                                             | JB14769-8                                                                                | 16 - 16.5 ft                                                              | 8/27/2012                                                                  | 0.21 J                                  |   |
| NSB-E4                                                                                 | +                                                                                                                                                                             | JB14769-7                                                                                | 16 - 16.5 ft                                                              | 8/27/2012                                                                  | 0.39 J                                  |   |
| NSB-E4                                                                                 | NSB-E4-21.0-21.5                                                                                                                                                              | JB14769-6                                                                                | 21 - 21.5 ft                                                              | 8/27/2012                                                                  | < 0.13 U                                |   |
| NSB-E5                                                                                 | NSB-E5-3.0-3.5                                                                                                                                                                | JB14201-12                                                                               | 3 - 3.5 ft                                                                | 8/20/2012                                                                  | 0.82 J                                  |   |
|                                                                                        | NSB-F1-1.0-1.5                                                                                                                                                                | JB14769-5                                                                                | 1 - 1.5 ft                                                                | 8/27/2012                                                                  | 1.6                                     |   |
| NSB-F1                                                                                 |                                                                                                                                                                               | JB14769-4                                                                                | 4 - 4.5 ft                                                                | 8/27/2012                                                                  | 3.4                                     |   |
|                                                                                        | NSB-F1-4.0-4.5                                                                                                                                                                |                                                                                          | 10 - 10.5 ft                                                              | 8/27/2012                                                                  | 1.2                                     |   |
| NSB-F1<br>NSB-F1<br>NSB-F1                                                             |                                                                                                                                                                               | JB14769-3                                                                                | 10 - 10.5 IL                                                              |                                                                            |                                         |   |
| NSB-F1<br>NSB-F1                                                                       | NSB-F1-10.0-10.5                                                                                                                                                              | JB14769-3<br>JB14769-2                                                                   | _                                                                         | 8/27/2012                                                                  | 0.16 J                                  |   |
| NSB-F1<br>NSB-F1<br>NSB-F1                                                             | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5                                                                                                                                          | JB14769-2                                                                                | 16 - 16.5 ft                                                              | 8/27/2012<br>8/27/2012                                                     |                                         |   |
| NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F1                                                   | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5<br>NSB-F1-20.0-20.5                                                                                                                      | JB14769-2<br>JB14769-1                                                                   | 16 - 16.5 ft<br>20 - 20.5 ft                                              | 8/27/2012                                                                  | < 0.14 U                                |   |
| NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F1                                                   | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5<br>NSB-F1-20.0-20.5<br>NSB-F2-1.0-1.5                                                                                                    | JB14769-2<br>JB14769-1<br>JB14858-7                                                      | 16 - 16.5 ft<br>20 - 20.5 ft<br>1 - 1.5 ft                                | 8/27/2012<br>8/28/2012                                                     | < 0.14 U<br>2.8 J                       |   |
| NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F2<br>NSB-F2                               | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5<br>NSB-F1-20.0-20.5<br>NSB-F2-1.0-1.5<br>NSB-F2-4.0-4.5                                                                                  | JB14769-2<br>JB14769-1<br>JB14858-7<br>JB14858-6                                         | 16 - 16.5 ft<br>20 - 20.5 ft<br>1 - 1.5 ft<br>4 - 4.5 ft                  | 8/27/2012<br>8/28/2012<br>8/28/2012                                        | < 0.14 U<br>2.8 J<br>2.6 J              |   |
| NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F2<br>NSB-F2<br>NSB-F2                     | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5<br>NSB-F1-20.0-20.5<br>NSB-F2-1.0-1.5<br>NSB-F2-4.0-4.5<br>NSB-F2-10.5-11.0                                                              | JB14769-2<br>JB14769-1<br>JB14858-7<br>JB14858-6<br>JB14858-5                            | 16 - 16.5 ft<br>20 - 20.5 ft<br>1 - 1.5 ft<br>4 - 4.5 ft<br>10.5 - 11 ft  | 8/27/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012                           | < 0.14 U 2.8 J 2.6 J 0.60 J             |   |
| NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F2<br>NSB-F2<br>NSB-F2<br>NSB-F2           | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5<br>NSB-F1-20.0-20.5<br>NSB-F2-1.0-1.5<br>NSB-F2-4.0-4.5<br>NSB-F2-10.5-11.0<br>NSB-F2-10.5-11.0X                                         | JB14769-2<br>JB14769-1<br>JB14858-7<br>JB14858-6<br>JB14858-5<br>JB14858-4R              | 16 - 16.5 ft<br>20 - 20.5 ft<br>1 - 1.5 ft<br>4 - 4.5 ft<br>10.5 - 11 ft  | 8/27/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012              | < 0.14 U 2.8 J 2.6 J 0.60 J 3.3 J       |   |
| NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F2<br>NSB-F2<br>NSB-F2<br>NSB-F2           | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5<br>NSB-F1-20.0-20.5<br>NSB-F2-1.0-1.5<br>NSB-F2-4.0-4.5<br>NSB-F2-10.5-11.0<br>NSB-F2-10.5-11.0X<br>NSB-F2-15.0-15.5                     | JB14769-2<br>JB14769-1<br>JB14858-7<br>JB14858-6<br>JB14858-5                            | 16 - 16.5 ft 20 - 20.5 ft 1 - 1.5 ft 4 - 4.5 ft 10.5 - 11 ft 15 - 15.5 ft | 8/27/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012 | < 0.14 U 2.8 J 2.6 J 0.60 J 3.3 J 1.8 J |   |
| NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F2<br>NSB-F2<br>NSB-F2<br>NSB-F2<br>NSB-F2 | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5<br>NSB-F1-20.0-20.5<br>NSB-F2-1.0-1.5<br>NSB-F2-4.0-4.5<br>NSB-F2-10.5-11.0<br>NSB-F2-10.5-11.0X<br>NSB-F2-15.0-15.5                     | JB14769-2<br>JB14769-1<br>JB14858-7<br>JB14858-6<br>JB14858-5<br>JB14858-4R              | 16 - 16.5 ft<br>20 - 20.5 ft<br>1 - 1.5 ft<br>4 - 4.5 ft<br>10.5 - 11 ft  | 8/27/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012              | < 0.14 U 2.8 J 2.6 J 0.60 J 3.3 J       |   |
| NSB-F1<br>NSB-F1<br>NSB-F1<br>NSB-F1                                                   | NSB-F1-10.0-10.5<br>NSB-F1-16.0-16.5<br>NSB-F1-20.0-20.5<br>NSB-F2-1.0-1.5<br>NSB-F2-4.0-4.5<br>NSB-F2-10.5-11.0<br>NSB-F2-10.5-11.0X<br>NSB-F2-15.0-15.5<br>NSB-F2-17.8-18.3 | JB14769-2<br>JB14769-1<br>JB14858-7<br>JB14858-6<br>JB14858-5<br>JB14858-4R<br>JB14858-3 | 16 - 16.5 ft 20 - 20.5 ft 1 - 1.5 ft 4 - 4.5 ft 10.5 - 11 ft 15 - 15.5 ft | 8/27/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012<br>8/28/2012 | < 0.14 U 2.8 J 2.6 J 0.60 J 3.3 J 1.8 J |   |



#### Table 3

# Analytical Results Summary Table PPG Industries, Jersey City, New Jersey Northern Morris Canal Investigation

|             |                  |             |                | Analyte         | CHROMIUM ( | HEXAVALENT) |
|-------------|------------------|-------------|----------------|-----------------|------------|-------------|
|             |                  |             |                | CAS RN          | 18540      | )-29-9      |
|             |                  |             |                | Units           | mg         | /kg         |
|             |                  |             |                | MSSRS           | 2          | 0           |
| Location ID | Sample ID        | Lab ID      | Depth Interval | Collection Date | R          | Q           |
| NSB-F3      | NSB-F3-4.0-4.5   | JB14858-13R | 4 - 4.5 ft     | 8/28/2012       | 7.7        | J           |
| NSB-F3      | NSB-F3-10.0-10.5 | JB14858-10R | 10 - 10.5 ft   | 8/28/2012       | 1.3        | J           |
| NSB-F3      | NSB-F3-15.0-15.5 | JB14858-9R  | 15 - 15.5 ft   | 8/28/2012       | 1.8        | J           |
| NSB-F3      | NSB-F3-20.0-20.5 | JB14858-8R  | 20 - 20.5 ft   | 8/28/2012       | 3.8        | J           |
| NSB-F4      | NSB-F4-0.0-0.5   | JB14858-18R | 0 - 0.5 ft     | 8/28/2012       | 3.1        | J           |
| NSB-F4      | NSB-F4-6.0-6.5   | JB14858-16  | 6 - 6.5 ft     | 8/28/2012       | 0.53       | J           |
| NSB-F4      | NSB-F4-10.0-10.5 | JB14858-15R | 10 - 10.5 ft   | 8/28/2012       | 2.0        | J           |
| NSB-F4      | NSB-F4-16.0-16.5 | JB14858-12R | 16 - 16.5 ft   | 8/28/2012       | 0.72       | J           |
| NSB-F4      | NSB-F4-20.0-20.5 | JB14858-11  | 20 - 20.5 ft   | 8/28/2012       | 0.60       | J           |
| NSB-F5      | NSB-F5-0.0-0.5   | JB14201-4R  | 0 - 0.5 ft     | 8/20/2012       | 0.67       | J           |
| NSB-F5      | NSB-F5-4.0-4.5   | JB14201-3R  | 4 - 4.5 ft     | 8/20/2012       | 0.86       | J           |
| NSB-F5      | NSB-F5-8.0-8.5   | JB14201-2R  | 8 - 8.5 ft     | 8/20/2012       | < 0.14     | UJ          |
| NSB-F5      | NSB-F5-12.0-12.5 | JB14201-1R  | 12 - 12.5 ft   | 8/20/2012       | 2.5        | J           |
| NSB-F5      | NSB-F5-16.0-16.5 | JB14312-15R | 16 - 16.5 ft   | 8/21/2012       | 0.40       | J           |
| NSB-F5      | NSB-F5-20.0-20.5 | JB14312-13R | 20 - 20.5 ft   | 8/21/2012       | 0.49       | J           |
| NTB-B2      | NTB-B2-2.0       | 460-31791-3 | 2 - 2.5 ft     | 9/28/2011       | < 0.56     | U           |
| NTB-C1      | NTB-C1-11.0      | 460-31791-2 | 11 - 11.5 ft   | 9/28/2011       | < 0.61     | U           |
| NTB-C2      | NTB-C2-12.0      | 460-31791-1 | 12 - 12.5 ft   | 9/28/2011       | < 0.80     | U           |

#### Notes

All results are reported in milligrams per kilogram (mg/kg).

Depths are presented in feet below ground surface (bgs).

CAS-RN = Chemical Abstract Service Registry Number.

Sample Type = N indicates normal original sample; FD indicates duplicate sample.

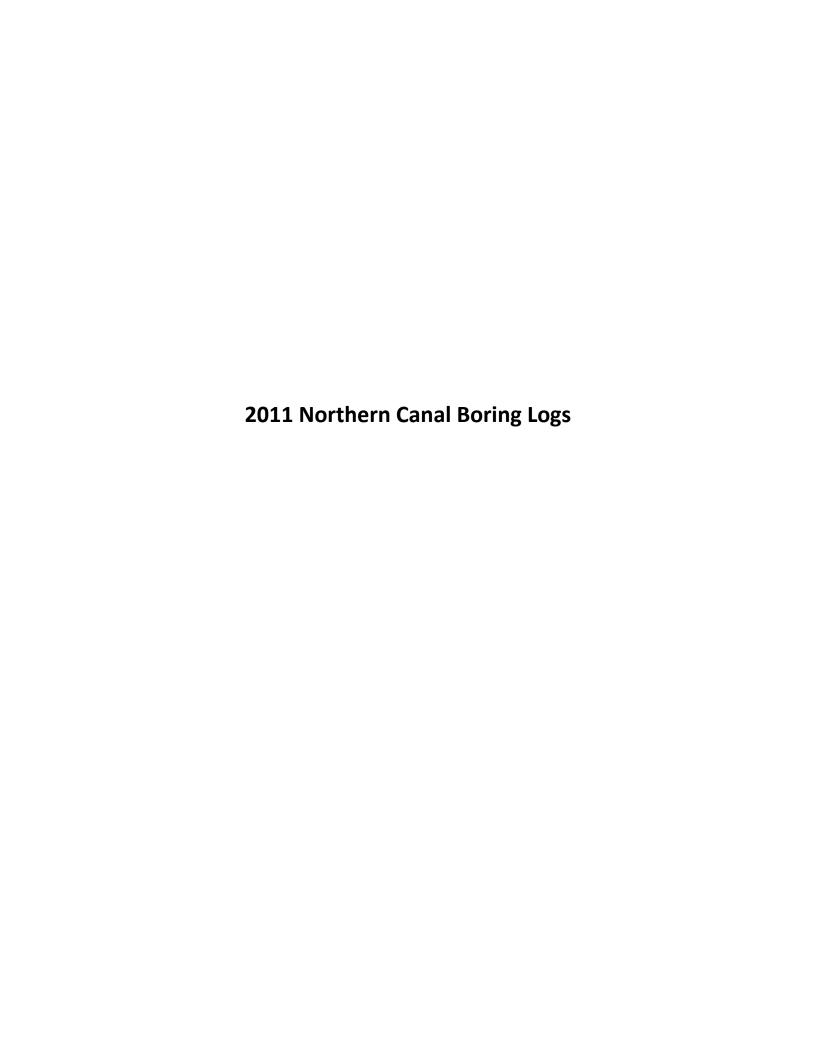
CrSCC = Chromium Soil cleanup Criteria

Bold values indicate that the result exceeds the CrSCC.

- B Indicates that the analyte was detected at a concentration less than the Practical Quantitation Limit but greater than or equal to the Instrument Detection Limit.
- $\ensuremath{\mathsf{E}}$  Indicates that the value is estimated because of the presence of interference.
- J Indicates that the analyte was detected at a concentration less than the Method Detection Limit and is estimated.
- M Indicates a non-detect result exceeding either the CrSCC.
- $\ensuremath{\text{N}}$  Indicates that the sample recovery is not within control limits.
- $\ensuremath{\mathsf{R}}$  Indicates that the result for this analyte has been rejected.
- U Indicates that the analyte was not detected at the reported Method Detection Limit.
- $\ensuremath{^*}$  Indicates that the duplicate analysis not within control limits.

 $\ensuremath{\mathsf{A}}$  blank result value indicates the analysis was not requested.




#### Table 4 **Analytical Methods/Quality Assurance Summary Table** PPG Industries, Jersey City, New Jersey **Northern Morris Canal Investigation**

|                                       |                                            |                              |                     |                   |                                                       |         | Numl                | oer Collecte                | ed                           |        |
|---------------------------------------|--------------------------------------------|------------------------------|---------------------|-------------------|-------------------------------------------------------|---------|---------------------|-----------------------------|------------------------------|--------|
| Parameter                             | Laboratory                                 | Method <sup>1</sup>          | Container           | Preservation      | Holding Time                                          | Samples | Field<br>Duplicates | Trip<br>Blanks <sup>2</sup> | Field<br>Blanks <sup>3</sup> | MS/MSD |
| PPG North Canal Bo                    | orings from 2011                           | •                            | •                   | •                 | 1                                                     | ľ       | · ·                 | •                           | •                            |        |
| Hexavalent<br>Chromium <sup>4,5</sup> |                                            | SW846 3060A/7196A            | 1 x 8 oz. glass     | Cool 4°C (± 2 °C) | 30 days to extract, 24 hr from extraction to analysis | 3       | 0                   | -                           | 0                            | 1      |
| Eh⁵                                   | Test America<br>Laboratories,<br>Edison NJ | Standard Methods(SM)<br>2580 | 1 x 4-oz. glass jar | Cool 4°C (± 2 °C) | At time of extraction for Cr+6                        | 3       | 0                   | -                           | 0                            | -      |
| pH⁵                                   | Luisoit No                                 | SW846 9045C                  | 1 x 4-oz. glass jar | Cool 4°C (± 2 °C) |                                                       | 3       | 0                   | -                           | 0                            | -      |
| TAL Metals                            |                                            | SW846 3050B/ 6020            | 1 v 1 oz glassian   | Cool 49C (1.2.9C) |                                                       | 3       | 0                   | -                           | 0                            | 1      |
| Mercury                               |                                            | SW846 7471                   | 1 x 4-oz. glass jar | Cool 4°C (± 2 °C) | 28 days                                               | 3       | 0                   | -                           | 0                            | 1      |
| PPG North Canal Bo                    | orings from 2012                           |                              |                     |                   |                                                       |         |                     |                             |                              |        |
| Hexavalent<br>Chromium <sup>4,5</sup> | Accutest Laboratories,                     | SW846 3060A/7196A            | 1 x 8 oz. glass     | Cool 4°C (± 2 °C) | 30 days to extract, 24 hr from extraction to analysis | 122     | 6                   | -                           | 6                            | 6      |
| Eh⁵                                   | Dayton, NJ                                 | D1498-76                     | 1 x 4-oz glass jar  | Cool 4°C (± 2 °C) | At time of extraction                                 | 81      | 4                   | -                           | 6                            | -      |
| pH⁵                                   |                                            | SM 4500B                     | 1 x 4-oz. glass jar | Cool 4°C (± 2 °C) | for Cr+6                                              | 81      | 4                   | -                           | 6                            | -      |

#### Notes

- The laboratory held NJ certification at the time of analysis for the methods indicated pursuant to N.J.A.C. 7:18.
- Trip Blanks applicable to VOCs only.
- For soils, field blanks were collected either once per day or 10% of the total number of samples collected, but not more than once per day. Hexavalent chromium ("Cr<sup>+6</sup>") sample analysis included pH and Eh (oxidation reduction potential). The pH and Eh were not validated, but rather the information was used in the Cr<sup>+6</sup> validation.
- Sulfide, Total Organic Carbon ("TOC"), pH, Eh, and Ferrous Iron were analyzed on a case-by-case basis when the Cr<sup>+6</sup> MS analysis did not meet the acceptable QC criteria. These parameters were not validated, but rather the information was used in the Cr<sup>+6</sup> validation.

Appendix A
Boring Logs



30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-A1**

Dogg, 1

|                                         |                                  | Page: 1                           |
|-----------------------------------------|----------------------------------|-----------------------------------|
| Project Name: Northern Transect Borings | Drilling Company: SGS            |                                   |
| Project Number: 60213772                | Drilling Method: Geoprobe/Vactor | Coordinates (NJSPNAD83) x:        |
| Date Started Drilling: 9/28/2011        | Rig Type: 6610DT/Vactor          | Coordinates (NJSPNAD83) y:        |
| Date Finished Drilling: 9/29/2011       | Core Size: 2 in                  | Boring Total Depth: 15 ft         |
| Logged By: M. Merdinger                 | Project Manager: Robert Cataldo  | Depth to Water: 10.0 ft           |
| Physical Location: Berry Lane           |                                  |                                   |
|                                         |                                  | (Note bgs = below ground surface) |
|                                         | 1                                |                                   |

| Logged By: M. Merdinger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Project Manager:     | Robert Cataldo                               | Depth to Water: 10.0 ft                           |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------|---------------------------------------------------|------------------|
| Physical Location: Berry Lane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                              | (Note bgs = below ground su                       | rfano)           |
| Depth Range (ft bgs) Recovery (ft/ft) PID Moisture Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | USCS Graphic Log     | Sui                                          | face Cover and Thickness:                         | Sample<br>Number |
| 0 dry 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fill                 | White CONCRETE,                              |                                                   |                  |
| 0 dry 3 moist 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fill Fill            | Tan (7.5YR 4/6) fine<br>Gravel, loose. No od | to medium SAND, little rounded fine               |                  |
| 0 moist 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      | Brown (10YR 4/3) fir                         | ne to medium SAND, some Silt, little fine to      |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | loose. Slight sweet of                       | ill (brick, concrete), trace Ash at 5.0 ft, odor. |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                              |                                                   |                  |
| Column   C |                      |                                              |                                                   |                  |
| <u>0</u> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                                              |                                                   |                  |
| moist 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Fill                 | No Recovery                                  |                                                   |                  |
| © -8 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                              |                                                   |                  |
| ¥ 9 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                              |                                                   |                  |
| 3.3 43.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                              |                                                   |                  |
| 10 3.3 wet 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Fill                 | Brown (10YR 4/3) fir                         | ne to medium SAND, some Silt, little fine to      |                  |
| 0 moist 10 moist 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SP-GP                | \odor.                                       | ill (brick, concrete), trace ash, loose. Tar      |                  |
| 0 wet 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SP                   | Weak Red (10YR 4/                            | 4) fine SAND and rounded GRAVEL, dense.           |                  |
| 0 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | Reddish Brown (2.5)                          | YR 4/4) fine to medium SAND, trace coarse         |                  |
| wet 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SP                   | Sand, loose. Slight 1<br>No Recovery         | ar odor.                                          |                  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | End of boring at 15 f                        | ·                                                 |                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | Life of boiling at 13 i                      | ı.                                                |                  |
| <u>8</u> 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                              |                                                   |                  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                              |                                                   |                  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                              |                                                   |                  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                              |                                                   |                  |
| \frac{\frac{1}{2}}{21} - \frac{1}{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                              |                                                   |                  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                                              |                                                   |                  |
| 9 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                              |                                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                              |                                                   |                  |
| ## 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                              |                                                   |                  |
| 26 Z 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                              |                                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                              |                                                   |                  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                              |                                                   |                  |
| · I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                                              |                                                   |                  |
| 89 - 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                              |                                                   |                  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                              |                                                   |                  |
| 99 - 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                              |                                                   |                  |
| 32 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                              |                                                   |                  |
| 33 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                                              |                                                   |                  |
| <u>5</u> 34 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                              |                                                   |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                              |                                                   |                  |
| Comments: No COPR/GGM identifited at 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | this location. No ca | nal bottom encountered.                      |                                                   |                  |

# **Boring ID: NTB-A2**

| Project N                  | umber: 6                                      | 02137        | 772                 | Borings     | Drilling I   |                | eoprobe/Vactor             | Coordinates (NJSPNAD83) x:                                                           | Page:            |  |  |  |  |  |
|----------------------------|-----------------------------------------------|--------------|---------------------|-------------|--------------|----------------|----------------------------|--------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
|                            | ted Drillin                                   |              |                     |             |              | : 6610DT/      | Vactor                     | Coordinates (NJSPNAD83) y:                                                           |                  |  |  |  |  |  |
|                            | <mark>shed Drilli</mark><br>B <b>y:</b> M. Me |              |                     |             | Core Siz     |                | Robert Cataldo             | Boring Total Depth: 20 ft Depth to Water: 6.5 ft                                     |                  |  |  |  |  |  |
|                            | Location:                                     |              |                     |             | Projecti     | vianager: r    | Robert Cataluo             | Deptif to water: 6.5 it                                                              |                  |  |  |  |  |  |
| nysicai                    | Location.                                     | DCIT         | y Lanc              |             |              |                |                            | (Note bgs = below ground su                                                          | rface)           |  |  |  |  |  |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft)                           | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS         | Graphic<br>Log | Sui                        | rface Cover and Thickness:                                                           | Sample<br>Number |  |  |  |  |  |
| 1 -                        |                                               | 0            | dry                 | 1           | Fill         |                | White CONCRETE,            |                                                                                      |                  |  |  |  |  |  |
| <u>'</u>                   |                                               |              | dry<br>dry          | 3           | Fill<br>Fill |                |                            | Brown (10YR 3/2) SILT, some fine Sand, ravel, loose. No odor.                        |                  |  |  |  |  |  |
| 2                          |                                               | 0            | moist               | 3           | Fill         |                | Black ASPHALT, de          | ense. No odor.                                                                       |                  |  |  |  |  |  |
| 3 -                        |                                               | 0            |                     |             |              |                |                            | R 4/1) SILT, some to little fine to medium                                           |                  |  |  |  |  |  |
|                            |                                               | 0            |                     |             |              |                | Sand, little Fill (conc    | crete, cobbles, brick), loose. No odor.                                              |                  |  |  |  |  |  |
| 4                          |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 5                          | 2                                             | 0            |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 6 -                        |                                               | 0            | moiet               | 6           | Fill         |                | Very Dark Cray (Cla        | ey1 3/0) to Black fine SAND and Ash, some                                            |                  |  |  |  |  |  |
|                            |                                               |              | moist<br>to         | 0           | 1-111        |                | Cinders, little Silt and   | d Fill (glass, brick), soft/loose, moist to wet                                      |                  |  |  |  |  |  |
| 7                          |                                               |              | wet                 |             | Fill         |                | at 6.5ft. No odor          | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                              |                  |  |  |  |  |  |
| 8 -                        |                                               |              | wet                 | 6           | FIII         |                | No Recovery                |                                                                                      |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 9                          |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 10                         | 1.8                                           | 0.1          |                     |             |              |                | .,                         |                                                                                      |                  |  |  |  |  |  |
| <sub>11</sub> –            |                                               | 0            | wet                 | 6           | Fill         |                | Very Dark Gray (Gle        | ey1 3/0) to Black fine SAND and Ash, some d Fill (glass, brick), soft/loose. No odor |                  |  |  |  |  |  |
|                            |                                               |              | wet                 | 12          | CANAL        |                | Black (2.5Y 2.5/1) S       | ilty CLAY, little Cinders and Fill (glass), soft.                                    |                  |  |  |  |  |  |
| 12                         |                                               |              | moist               |             | BOTTOM<br>SM |                | ¬\ No odor. (Canal bot)    | ttom)                                                                                |                  |  |  |  |  |  |
| 3                          |                                               |              | moist               | 10 L        | SM           |                | Dark Brown (10YR 3         | 8/3) fine SAND and Silt, slight mottling,                                            |                  |  |  |  |  |  |
| 14                         |                                               |              |                     |             |              |                | No Recovery                | Juoi. /                                                                              |                  |  |  |  |  |  |
| 14                         |                                               |              |                     |             |              |                | ,                          |                                                                                      |                  |  |  |  |  |  |
| 15                         | 2.8                                           | 0            |                     | 10          | 014.00       |                | Deals Description (40)/D 0 | 2/2) fine to see a CAND and fine                                                     |                  |  |  |  |  |  |
| 16                         |                                               | 0            | wet                 | 10          | SM-SP<br>SM  |                |                            | 8/3) fine to coarse SAND and fine to medium le Silt, dense. No odor.                 |                  |  |  |  |  |  |
| <br>17                     |                                               | 0            | moist               | 10          | SIVI         |                | Weak Red (10YR 4/-         | 4) medium to fine SAND and Silt, some                                                |                  |  |  |  |  |  |
| 17                         |                                               |              |                     |             |              |                | sub-round fine Grave       | el, dense. No odor.                                                                  |                  |  |  |  |  |  |
| 18                         |                                               |              | moist               | 10          | SM           |                | No Recovery                |                                                                                      |                  |  |  |  |  |  |
| 19 _                       |                                               |              | 1110131             | 10          | Olvi         |                | Noncovery                  |                                                                                      |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 20                         |                                               |              |                     | -           |              |                | End of boring at 20 f      | ft                                                                                   |                  |  |  |  |  |  |
| 21 _                       |                                               |              |                     |             |              |                | Life of boiling at 20 i    | it.                                                                                  |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 23                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 24                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 25                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 26                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 27 –                       |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 28                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 29                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 30 _                       |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 31                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 32                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 33                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 34                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
| 35                         |                                               |              |                     |             |              |                |                            |                                                                                      |                  |  |  |  |  |  |
|                            |                                               |              |                     |             |              | 1              |                            |                                                                                      |                  |  |  |  |  |  |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

#### **Boring ID: NTB-A3**

Page: 1

Project Name: Northern Transect Borings Drilling Company: SGS

Project Number: 60213772

Date Started Drilling: 9/27/2011 Drilling Method: Geoprobe/Vactor Coordinates (NJSPNAD83) x: Rig Type: 6610DT/Vactor Coordinates (NJSPNAD83) y:

Date Finished Drilling: 9/29/2011 Core Size: 2 in Boring Total Depth: 20 ft Logged By: M. Merdinger Project Manager: Robert Cataldo Depth to Water: 10.0 ft

| Dhysical                                |                     |              |                     |             | Projectiv      | ianayen.       | Robert Cataldo Deptit to Water: 10.0 It                                                        |                  |
|-----------------------------------------|---------------------|--------------|---------------------|-------------|----------------|----------------|------------------------------------------------------------------------------------------------|------------------|
| Pnysicai                                | Location:           | Berry        | / Lane              |             |                |                | (Note bgs = below ground surfa                                                                 | ice)             |
| Depth<br>Range<br>(ft bgs)              | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS           | Graphic<br>Log | Surface Cover and Thickness:                                                                   | Sample<br>Number |
|                                         |                     | _            | dry                 | 1           | Fill           |                | White CONCRETE, dense. No odor.                                                                |                  |
| ਰੂ 1                                    |                     | 0            | moist               | 6           | Fill           |                | Dark Grayish Brown (10YR 4/2) SILT, some Ash, little fine Coal                                 |                  |
| ဗ်.၂<br>2 –                             |                     | 0            | to                  |             |                |                | Fragments and coarse Fill (brick, concrete), loose, moist to wet                               |                  |
| N                                       |                     | 0            | wet                 |             |                |                | at 4.5ft. No odor.                                                                             |                  |
| 3 3                                     |                     |              |                     |             |                |                |                                                                                                |                  |
| <u> </u>                                |                     | 0            |                     |             |                |                |                                                                                                |                  |
| S                                       | 2.25                | 0.1          |                     |             |                |                |                                                                                                |                  |
| IS                                      |                     | 0.1          | moist               | 6           | Fill           |                | Black CINDERS and FILL Material (glass, brick, ceramics), little                               |                  |
| 6                                       |                     |              | to                  |             |                |                | Silt and fine to medium Sand, trace Ash, medium dense. No                                      |                  |
| ଚ୍ଚି _ 7                                |                     | 0.1          | wet                 |             |                |                | odor.                                                                                          |                  |
| <sup>©</sup>  _8 −                      |                     |              | wet                 | 6           | Fill           |                | No Recovery                                                                                    |                  |
|                                         |                     |              |                     |             |                |                |                                                                                                |                  |
| <b>8</b> 9 □                            |                     |              |                     |             |                |                | -                                                                                              |                  |
| 핃 10                                    | 2                   | 0.1          |                     |             |                |                |                                                                                                |                  |
| ₩<br> -<br>  11                         |                     | 0.1          | wet                 | 6           | Fill           |                | White to Gray (Gley1 5/0) ASH and SILT, soft. No odor.                                         |                  |
| Ž                                       |                     |              |                     |             |                |                |                                                                                                |                  |
| 12                                      |                     |              | wet                 | 3           | Fill           |                | Black SILT, soft. Slight Napthalene odor.                                                      |                  |
| ပ္မ 13                                  |                     |              | wet                 | 3           | Fill           |                | No Recovery                                                                                    |                  |
|                                         |                     |              |                     |             |                |                |                                                                                                |                  |
| \$ - 15 -                               | 0.75                | 4.7          |                     |             |                |                |                                                                                                |                  |
| S 15                                    | 2.75                |              | wet                 | 12          | CANAL          |                | Black (2.5Y 2.5/1) Silty CLAY, little medium angular Gravel,                                   |                  |
| G 16                                    |                     | 0.1          | wet                 | 10          | BOTTOM         |                | $\setminus$ trace fine Sand, soft. Napthalene odor and sheen. (Canal $\setminus$ $\sqsubseteq$ |                  |
| ∯                                       |                     | 0            |                     |             | SP             |                | \bottom) Dark Brown (10YR 3/3) fine to coarse SAND and fine to medium                          |                  |
| Ё — — — — — — — — — — — — — — — — — — — |                     |              | moist               | 10          | SM             |                | \angular Gravel, some Silt, loose, No odor.                                                    |                  |
| ₩ <u>18</u>                             |                     |              | moist               | 10          | SM             |                | Weak Red (10YR 4/4) medium to fine SAND and Silt, some                                         |                  |
| <u> 19</u>                              |                     |              |                     |             |                |                | \sub-rounded fine Gravel, dense. No odor.  No Recovery                                         |                  |
| <del></del> <del> </del>                |                     |              |                     |             |                |                |                                                                                                |                  |
| HAK<br>21 –                             |                     |              |                     |             |                |                | End of boring at 20 ft.                                                                        |                  |
|                                         |                     |              |                     |             |                |                |                                                                                                |                  |
| ¥ 22                                    |                     |              |                     |             |                |                |                                                                                                |                  |
| တ္တ <u>ြ</u> 23                         |                     |              |                     |             |                |                |                                                                                                |                  |
| 티<br>뉴 24 -                             |                     |              |                     |             |                |                |                                                                                                |                  |
| <u></u>                                 |                     |              |                     |             |                |                |                                                                                                |                  |
| Ž 25<br>ω                               |                     |              |                     |             |                |                |                                                                                                |                  |
| 26                                      |                     |              |                     |             |                |                |                                                                                                |                  |
| ∑                                       |                     |              |                     |             |                |                |                                                                                                |                  |
|                                         |                     |              |                     |             |                |                |                                                                                                |                  |
| ပ် <u>28</u>                            |                     |              |                     |             |                |                |                                                                                                |                  |
| 29                                      |                     |              |                     |             |                |                |                                                                                                |                  |
| 30                                      |                     |              |                     |             |                |                |                                                                                                |                  |
| 1                                       |                     |              |                     |             |                |                |                                                                                                |                  |
|                                         |                     |              |                     |             |                |                |                                                                                                |                  |
| <sup>m</sup> 32                         |                     |              |                     |             |                |                |                                                                                                |                  |
|                                         |                     |              |                     |             |                |                |                                                                                                |                  |
| 의 - 34                                  |                     |              |                     |             |                |                |                                                                                                |                  |
|                                         |                     |              |                     |             |                |                |                                                                                                |                  |
| 1 00                                    |                     |              |                     |             |                |                |                                                                                                |                  |
| ტ<br><b>Comment</b>                     | s: No Co            | PR/G         | GM identi           | fited at    | t this locatio | n. Canal b     | bottom encountered at 17.5 ft.                                                                 |                  |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-A4**

Project Name: Northern Transect Borings | Drilling Company: SGS |
Project Number: 60213772 | Drilling Method: Geoprobe/Vactor | Coordinates (NJSPNAD83) x:
Date Started Drilling: 9/27/2011 | Rig Type: 6610DT/Vactor | Coordinates (NJSPNAD83) y:
Date Finished Drilling: 9/29/2011 | Core Size: 2 in | Boring Total Depth: 15 ft

|                                                                      | shed Drilli      |       |              |          | Core Siz      |             |                                                | Boring Total Depth: 15 ft                                                          |             |
|----------------------------------------------------------------------|------------------|-------|--------------|----------|---------------|-------------|------------------------------------------------|------------------------------------------------------------------------------------|-------------|
|                                                                      | <b>By:</b> M. Me |       |              |          | Project N     | /lanager: _ | Robert Cataldo                                 | Depth to Water: 5.7 ft                                                             |             |
| Physical                                                             | Location:        | Berr  | y Lane       |          |               |             |                                                |                                                                                    | Laurés a ch |
|                                                                      |                  |       |              |          |               |             |                                                | (Note bgs = below ground                                                           | I surface)  |
| Depth<br>Range                                                       | Recovery         | PID   | Moisture     | GA       | USCS          | Graphic     | Quid                                           | face Cover and Thickness:                                                          | Sample      |
| (ft bgs)                                                             | (ft/ft)          | (ppm) | Content      | Class    | 0303          | Log         | Suit                                           | lace Cover and Thickness.                                                          | Number      |
| ( 1 3 5 7                                                            |                  |       |              |          |               | ××××××      |                                                |                                                                                    |             |
| ¬├1 -                                                                |                  | 0     | dry<br>moist | 3        | Fill<br>Fill  |             | White CONCRETE, of the Province (10VP 4/3) SII | dense. No odor.<br>LT, some very fine Sand, little fine rounded                    |             |
| GB                                                                   |                  | 0     | moist        |          | 1 111         |             | Gravel, trace coarse                           | Sand, loose. No odor                                                               |             |
| <u> </u>                                                             |                  | U     |              |          |               |             |                                                |                                                                                    |             |
| <u>8</u> 3                                                           |                  | 0     |              |          |               |             |                                                |                                                                                    |             |
| <u></u>                                                              |                  | 0     | moist        | 3        | Fill          |             | Brown (10YR 3/3) SII                           | LT, some interbedded very fine Sand, little                                        | NTB-A4-5.0  |
| NS                                                                   |                  | _     |              |          |               |             | fine rounded Graver,                           | trace coarse Sand, loose. No odor                                                  | 1416-74-5.0 |
| 当 <u></u> 5                                                          | 2.3              | 0     | moist        | 3        | Fill          |             | COBBLE - Refusal fo                            | or Soft Dig at 4.0 ft                                                              |             |
| นีH <sub>6</sub> −                                                   |                  | 0     | moist        | 3        | Fill          |             | Dark Brown (10YR 3/                            | (3) to Reddish Brown (2.5YR 4/4) SILT,                                             |             |
| d                                                                    |                  | 0     | wet          | 9        | SP-CL         |             | some fine Sand, little                         | fine to medium angular Gravel, trace Fill                                          |             |
| <u>7</u>                                                             |                  |       | to<br>moist  |          |               |             | \(ceramic, brick), med                         | lium dense. No odor.<br>55/6) fine to medium SAND, graded to fine                  |             |
| <u> </u>                                                             |                  |       | moist        | 9        | SP-CL         |             | Sandy CLAY, loose to                           | o stiff, wet to moist at 6.8ft. No odor.                                           |             |
| ∰ _ <sub>9</sub> –                                                   |                  |       |              |          |               |             | No Recovery                                    |                                                                                    |             |
| 9                                                                    |                  | _     |              |          |               |             |                                                |                                                                                    |             |
| 8 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 -                              | 5                | 0     | 14/04        | 9        | CL            |             | Strong Brown /7 EVD                            | 5/6) fine Sandy CLAV soft to stiff of                                              |             |
| <u> </u>                                                             |                  | 0     | wet          | 9        | CL            |             | 12.8ft. No odor.                               | 5/6) fine Sandy CLAY, soft to stiff at                                             |             |
| 실<br>- 12                                                            |                  | 0     |              |          |               |             |                                                |                                                                                    |             |
| <u>ظلام</u>                                                          |                  |       |              |          |               |             |                                                |                                                                                    |             |
| ღ 13                                                                 |                  | 0     |              | 40       | 014.00        |             | M                                              | N.S. A. E. CANID. S. A.                                                            |             |
| ∯<br>- 14                                                            |                  | 0     | moist        | 10       | SM-SP         |             | Weak Red (10YR 4/4                             | i) fine to medium SAND, some fine to vel (red mudstone), trace Silt, trace Reddish |             |
| Š – 45 –                                                             |                  |       |              |          |               |             | Yellow (7.5YR 6/6) m                           | ottling, dense. No odor.                                                           |             |
| <u>S</u> 15                                                          |                  |       |              |          |               |             | End of boring at 15 ft                         |                                                                                    |             |
| 00d   13   14   14   15   15   16   17   16   17   17   17   17   17 |                  |       |              |          |               |             | End of boning at 10 it                         | •                                                                                  |             |
| ∯                                                                    |                  |       |              |          |               |             |                                                |                                                                                    |             |
| Ë                                                                    |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 18                                                                   |                  |       |              |          |               |             |                                                |                                                                                    |             |
| <u> 19</u>                                                           |                  |       |              |          |               |             |                                                |                                                                                    |             |
| <u></u>                                                              |                  |       |              |          |               |             |                                                |                                                                                    |             |
| A                                                                    |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 전 21                                                                 |                  |       |              |          |               |             |                                                |                                                                                    |             |
| ₹ <u>22</u>                                                          |                  |       |              |          |               |             |                                                |                                                                                    |             |
| ဖွဲ့                                                                 |                  |       |              |          |               |             |                                                |                                                                                    |             |
| Z                                                                    |                  |       |              |          |               |             |                                                |                                                                                    |             |
| <u> </u>                                                             |                  |       |              |          |               |             |                                                |                                                                                    |             |
| Z 25                                                                 |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 의                                                                    |                  |       |              |          |               |             |                                                |                                                                                    |             |
|                                                                      |                  |       |              |          |               |             |                                                |                                                                                    |             |
| ට <u>ි</u> 27                                                        |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 0                                                                    |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 6 20 -                                                               |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 29                                                                   |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 30                                                                   |                  |       |              |          |               |             |                                                |                                                                                    |             |
| က်<br>မူ 31                                                          |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 9 - 00 -                                                             |                  |       |              |          |               |             |                                                |                                                                                    |             |
| <sup>mi</sup> 32<br>≤                                                |                  |       |              |          |               |             |                                                |                                                                                    |             |
| S _ 33                                                               |                  |       |              |          |               |             |                                                |                                                                                    |             |
| 일<br>- 34                                                            |                  |       |              |          |               |             |                                                |                                                                                    |             |
| Z                                                                    |                  |       |              |          |               |             |                                                |                                                                                    |             |
|                                                                      |                  |       |              |          |               |             |                                                |                                                                                    |             |
| Commen                                                               | ts: No CC        | DPR/G | GM identi    | fited at | this location | n. No can   | al bottom encountered.                         |                                                                                    |             |



30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-A5**

Page: 1

|                                         |                                 | i ugo.                     |  |  |
|-----------------------------------------|---------------------------------|----------------------------|--|--|
| Project Name: Northern Transect Borings | Drilling Company: SGS           |                            |  |  |
| Project Number: 60213772                | Drilling Method: Vactor         | Coordinates (NJSPNAD83) x: |  |  |
| Date Started Drilling: 9/27/2011        | Rig Type: Vactor                | Coordinates (NJSPNAD83) y: |  |  |
| Date Finished Drilling: 9/27/2011       | Core Size: 2 in                 | Boring Total Depth: 5 ft   |  |  |
| Logged By: M. Merdinger                 | Project Manager: Robert Cataldo | Depth to Water: 3.0 ft     |  |  |
| Physical Location: Berry Lane           |                                 |                            |  |  |

| Logged E                   | By: M. Me           | rdinge       | er<br>              |             | Project I    | wanager:       | Robert Cataldo        | Depth to Water: 3.0 ft                                                         |              |
|----------------------------|---------------------|--------------|---------------------|-------------|--------------|----------------|-----------------------|--------------------------------------------------------------------------------|--------------|
| Physical                   | Location:           | Berr         | y Lane              |             |              |                |                       | (Note bgs = below ground s                                                     | surface)     |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS         | Graphic<br>Log | Su                    | rface Cover and Thickness:                                                     | Samp<br>Numb |
| 1 -                        |                     | 0            | dry<br>moist        | 3           | Fill<br>Fill | -              | Black TOPSOIL and     | d organics (grass), loose. No odor.<br>(10YR 4/2), SILT, little fine to medium |              |
| 2                          |                     | 0            | moist               | 3           | FIII         |                | Sand, trace fine rou  | nded Gravel and Fill (brick), loose. No odor.                                  |              |
| 3                          |                     | 0            |                     |             |              |                |                       |                                                                                |              |
| 4                          |                     | 0            | wet                 | 3           | Fill         |                | Dark Grayish Brown    | (10YR 4/2), SILT, little fine to medium                                        |              |
| 5                          |                     |              |                     |             |              |                | Sand, trace fine rou  | nded Gravel and Fill (brick), loose. No odor.                                  |              |
| 6                          |                     |              |                     |             |              | XXXXXXX        | End of boring at 5 ft |                                                                                |              |
| 7                          |                     |              |                     |             |              |                |                       |                                                                                |              |
| 8                          |                     |              |                     |             |              |                |                       |                                                                                |              |
| 9                          |                     |              |                     |             |              |                |                       |                                                                                |              |
| 10                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 11                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 12                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 13                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 14                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 15                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 16                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 17                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 18                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 19                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 20                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 21                         |                     |              |                     |             |              |                |                       |                                                                                |              |
|                            |                     |              |                     |             |              |                |                       |                                                                                |              |
| 23                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 24                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 25                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 26                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 27 _                       |                     |              |                     |             |              |                |                       |                                                                                |              |
| 28                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 29                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 30                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 31                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 32                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 33                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 34                         |                     |              |                     |             |              |                |                       |                                                                                |              |
| 35                         |                     |              |                     |             |              |                |                       |                                                                                |              |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-B1**

|                                         |                                 | i age. i                          |  |  |
|-----------------------------------------|---------------------------------|-----------------------------------|--|--|
| Project Name: Northern Transect Borings | Drilling Company: SGS           | -                                 |  |  |
| Project Number: 60213772                | Drilling Method: Geoprobe       | Coordinates (NJSPNAD83) x:        |  |  |
| Date Started Drilling: 9/30/2011        | Rig Type: 7720DT                | Coordinates (NJSPNAD83) y:        |  |  |
| Date Finished Drilling: 9/30/2011       | Core Size: 2 in                 | Boring Total Depth: 15 ft         |  |  |
| Logged By: M. Merdinger                 | Project Manager: Robert Cataldo | Depth to Water: 6.5 ft            |  |  |
| Physical Location: Berry Lane           | -                               | ·                                 |  |  |
|                                         |                                 | (Note has = helow ground surface) |  |  |

| Logged E                     |                               |              |                                       |             | riojecti       | viai lagei .                           | Robert Cataldo                    | Depth to Water: 6.5 ft                                                                 |                 |                  |
|------------------------------|-------------------------------|--------------|---------------------------------------|-------------|----------------|----------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------|-----------------|------------------|
| Physical                     | Physical Location: Berry Lane |              |                                       |             |                |                                        | (Note bgs = below ground surface) |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   | (Note bgs = below gr                                                                   | ound surface)   |                  |
| Depth<br>Range<br>(ft bgs)   | Recovery<br>(ft/ft)           | PID<br>(ppm) | Moisture<br>Content                   | GA<br>Class | USCS           | Graphic<br>Log                         | Sur                               | face Cover and Thickness:                                                              |                 | Sample<br>Number |
|                              | 2.25                          | 0            | dry                                   | 3           | Fill           |                                        | Black TOPSOIL and                 | organics, loose. No odor.                                                              |                 |                  |
| _1                           |                               |              | dry                                   | 6           | Fill           |                                        | Grayish Brown (10Yl               | R 3/2) fine to medium Sandy SILT and FILL rete, ash), interbedded, loose to dense, dry |                 |                  |
| 2                            |                               | 0            | moint                                 | 3           | Fill           |                                        | to moist at 1.5ft. No             |                                                                                        |                 |                  |
|                              |                               |              | moist                                 | 3           | Fill           | -                                      | Brown (10YR3/3) SII               | T, little fine to medium Sand and crushed                                              | ~/ <del> </del> |                  |
|                              |                               |              |                                       |             |                |                                        | Fill Material (brick, gl          | ass), loose. No odor                                                                   | /               |                  |
| _4                           |                               |              |                                       |             |                |                                        | No Recovery                       |                                                                                        |                 |                  |
| -5 -                         | 2.5                           | 0            |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               | 0            | moist                                 | 3           | Fill           |                                        |                                   | T, little fine to medium Sand and crushed                                              |                 |                  |
| 6                            |                               |              | moint                                 | 9           | SM             |                                        | Fill Material (brick, gl          | ass), loose. No odor.<br>R 5/6) SILT and fine Sand, trace Clay, soft,                  | _               |                  |
| 7                            |                               |              | moist                                 |             |                |                                        | moist to wet at 6.5ft.            | No odor.                                                                               |                 |                  |
| -8 -                         |                               |              | wet                                   | 11          | GP-SM<br>GP-SM |                                        | Reddish Brown and                 | Green (5YR 3/2) medium to coarse                                                       | ~/\             |                  |
|                              |                               |              | WEL                                   | '           | OI -OIVI       | 0000                                   | No Recovery                       | nd medium Sand, medium dense. No odor.                                                 | /               |                  |
| 9                            |                               |              |                                       |             |                | 600                                    | <b>a</b>                          |                                                                                        |                 |                  |
| 10                           | 3.5                           | 0            |                                       |             |                | 0000                                   |                                   |                                                                                        |                 |                  |
| 11                           |                               | 0            | wet                                   | 11          | GP-SM          |                                        | recadion brown and                | Green (5YR 3/2) medium to coarse oarse Silty Sand, medium dense. No odor.              |                 |                  |
| 12                           |                               | 0            | wet                                   | 9           | SM-CL          |                                        | Grayish Brown (10YI               | R 3/2) SILT and fine SAND, graded to Silty                                             |                 |                  |
| 13                           |                               |              |                                       |             |                |                                        | Clay, soft to medium              | stiff. No odor.                                                                        |                 |                  |
|                              |                               |              | moist                                 | 7           | PT             | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |                                   | /3) SILT and Organics, trace Wood, very                                                |                 |                  |
| 14                           |                               |              | moist                                 | 7           | PT             | 1/ 1/ 1/ 1/                            | 10000.110 0001.                   |                                                                                        | √ <del> </del>  |                  |
| 15                           |                               |              |                                       |             |                | 7 17 17                                | -                                 |                                                                                        |                 |                  |
| <sup>-</sup> 16 <sup>-</sup> |                               |              |                                       |             |                |                                        | End of boring at 15 f             | ī.                                                                                     |                 |                  |
| <br>                         |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 18                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 19                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 21                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 22                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 23                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 25                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| - 27 -                       |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 27                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 28                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 30                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 31                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 32                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 34                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
| 35                           |                               |              |                                       |             |                |                                        |                                   |                                                                                        |                 |                  |
|                              | ts: No Co                     |              | · · · · · · · · · · · · · · · · · · · | c:          |                |                                        | nal bottom encountered.           |                                                                                        |                 |                  |

# **Boring ID: NTB-B2**

|                                                                                                                                                                        | ghtsbridge Roa<br>732.564.3200 | d, Piscat    | taway, NJ 088<br>elephone | 354         |              |                                 |                                              | Borning                                                                   |         |                  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|---------------------------|-------------|--------------|---------------------------------|----------------------------------------------|---------------------------------------------------------------------------|---------|------------------|--|--|--|
|                                                                                                                                                                        | Name: No                       |              |                           | Borings     |              | Company:                        |                                              |                                                                           |         | Page: 1          |  |  |  |
|                                                                                                                                                                        | Number:                        |              |                           |             |              | Method: (                       |                                              | Coordinates (NJSPNAD83) x:                                                |         |                  |  |  |  |
|                                                                                                                                                                        | rted Drillin                   |              |                           |             |              | e: 7720D7<br>re: 2 in           | I                                            | Coordinates (NJSPNAD83) y:  Boring Total Depth: 15 ft                     |         |                  |  |  |  |
|                                                                                                                                                                        | By: M. M.                      |              |                           |             |              |                                 | Robert Cataldo                               | Depth to Water: 5.5 ft                                                    |         |                  |  |  |  |
|                                                                                                                                                                        | Location:                      |              |                           |             |              | (Note bgs = below ground surfac |                                              |                                                                           |         |                  |  |  |  |
| <b>_</b>                                                                                                                                                               |                                |              |                           |             |              |                                 |                                              | (Note bgs = below gr                                                      | ound su | urface)          |  |  |  |
| Depth<br>Range<br>(ft bgs)                                                                                                                                             | Recovery<br>(ft/ft)            | PID<br>(ppm) | Moisture<br>Content       | GA<br>Class | USCS         | Graphic<br>Log                  | Sui                                          | face Cover and Thickness:                                                 |         | Sample<br>Number |  |  |  |
| .⊢ <sub>1</sub> -                                                                                                                                                      | 2.5                            | 0            | dry<br>dry                | 3           | Fill<br>Fill | -                               | Gray (2.5Y 5/1) fine to odor.                | to medium angular GRAVEL, loose. No                                       |         |                  |  |  |  |
| - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 - 15 - 16 - 17 - 18 - 19 - 20 - 21 - 22 - 23 - 24 - 25 - 26 - 27 - 28 - 29 - 30 - 31 - 32 - 33 - 34 - 34 - 34 |                                | 0            | moist                     | 3           | Fill         |                                 | Black (2.5Y 2.5/1) SI<br>Concrete, dense, No | ILT and fine angular Gravel, little Brick and odor                        |         | NTB-B2-2.0       |  |  |  |
| _3                                                                                                                                                                     |                                |              | moist                     | 3           | Fill         |                                 | Brown (10YR 4/3) SI fragments, trace She     | ILT, some interbedded fine Sand, little Brickells, medium dense. No odor. |         |                  |  |  |  |
| 4                                                                                                                                                                      |                                |              |                           |             |              |                                 | No Recovery                                  | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                   | _       |                  |  |  |  |
| 5                                                                                                                                                                      | 1                              | 0            | wet                       | 3           | Fill         |                                 | Poddish Brown (2.5)                          | YR 4/3) SILT, little fine angular Gravel, little                          |         |                  |  |  |  |
| 6                                                                                                                                                                      |                                |              |                           |             |              |                                 | interbedded Cinders,                         | , loose, moist to wet at 5.5ft. No odor.                                  |         |                  |  |  |  |
| 7                                                                                                                                                                      | _                              |              | wet                       | 3           | Fill         |                                 | No Recovery                                  |                                                                           |         |                  |  |  |  |
| 8 -                                                                                                                                                                    | -                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 9 -                                                                                                                                                                    | -                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| - 40 -                                                                                                                                                                 | 1.0                            | 0            |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 10                                                                                                                                                                     | 1.8                            |              | wet                       | 6           | FILL         |                                 | Black-stained SILT a                         | and Cinders, little coal fragments and fine to                            |         |                  |  |  |  |
| 11                                                                                                                                                                     | -                              | 0            | wet                       | 12          | CANAL        |                                 | medium Sand, soft/lo                         |                                                                           |         |                  |  |  |  |
| 12                                                                                                                                                                     | 1                              |              | wet                       | 11          | BOTTOM<br>GP | 2000                            | 11.0 ft, soft, cohesive                      | e. No odor. (Canal bottom)                                                | /       |                  |  |  |  |
| 13                                                                                                                                                                     |                                |              | wet                       | 11          | GP<br>GP     | 100°0°                          | Reddish Brown (5YR odor.                     | R 3/2) medium angular GRAVEL, dense. No                                   |         |                  |  |  |  |
| -<br> -<br>  14   -                                                                                                                                                    | -                              |              |                           |             |              | 000                             | N. D                                         |                                                                           |         |                  |  |  |  |
| 15                                                                                                                                                                     |                                |              |                           |             |              | 0000                            | ,                                            |                                                                           |         |                  |  |  |  |
| 16                                                                                                                                                                     |                                |              |                           |             |              |                                 | End of boring at 15 f                        | t.                                                                        |         |                  |  |  |  |
| 17                                                                                                                                                                     |                                |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 1/                                                                                                                                                                     |                                |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 18                                                                                                                                                                     | _                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 19                                                                                                                                                                     | -                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 20                                                                                                                                                                     | 1                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 21 -                                                                                                                                                                   | 2.5                            |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
|                                                                                                                                                                        | 1                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 23                                                                                                                                                                     | -                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
|                                                                                                                                                                        |                                |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 25                                                                                                                                                                     |                                |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 26                                                                                                                                                                     | -                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 20 -                                                                                                                                                                   |                                |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 27                                                                                                                                                                     | 1                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 28                                                                                                                                                                     | -                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 29                                                                                                                                                                     | 1                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 30                                                                                                                                                                     | 1                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 31                                                                                                                                                                     | _                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 32                                                                                                                                                                     | +                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 33                                                                                                                                                                     | 1                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
|                                                                                                                                                                        | 1                              |              |                           |             |              |                                 |                                              |                                                                           |         |                  |  |  |  |
| 34                                                                                                                                                                     | _                              |              | 1                         |             |              |                                 |                                              |                                                                           |         | İ                |  |  |  |

Comments: No COPR/GGM identifited at this location. Canal bottom encountered at 10.9 ft.



30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

#### **Boring ID: NTB-B3**

Project Name: Northern Transect Borings Drilling Company: SGS

Project Number: 60213772 Drilling Method: Geoprobe Coordinates (NJSPNAD83) x:

Date Started Drilling: 9/28/2011 Rig Type: 7720DT Coordinates (NJSPNAD83) y:

Date Finished Drilling: 9/28/2011 Core Size: 2 in Boring Total Depth: 20 ft

Logged By: M. Merdinger Project Manager: Robert Cataldo Depth to Water: 7.0 ft

| Logged E                   |                     |              |                     |             | i roject ii     | iariager.      | Robert Cataldo                             | Depth to Water: 7.0 ft                                                                    |                 |
|----------------------------|---------------------|--------------|---------------------|-------------|-----------------|----------------|--------------------------------------------|-------------------------------------------------------------------------------------------|-----------------|
| Physical                   | Location:           | Berr         | y Lane              |             |                 |                |                                            | Alat has a balance and                                                                    |                 |
|                            |                     |              |                     |             |                 |                |                                            | (Note bgs = below ground                                                                  | surface)        |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS            | Graphic<br>Log | Sui                                        | rface Cover and Thickness:                                                                | Sample<br>Numbe |
| -, -                       | 3.4                 | 0            | dry                 | 3           | Fill            |                | Gray (2.5Y 5/1) fine                       | to medium angular GRAVEL, loose. No                                                       |                 |
| 1                          | 3.4                 | U            | dry                 | 3           | Fill            |                | \odor.                                     | 2.2/2) to Vary Dark Cray (40)/D.2/4) fine to                                              |                 |
| _2                         |                     | 0            |                     |             |                 |                | medium SAND little                         | R 3/2) to Very Dark Gray (10YR 3/1) fine to Cinders, Fill (concrete, brick, ceramics) and |                 |
|                            |                     | 0            |                     |             |                 |                |                                            | dry to moist at 3.0ft. No odor.                                                           |                 |
| _4 -                       |                     |              | moist               | 3           | Fill            |                | No Recovery                                |                                                                                           |                 |
| _5 -                       | 3.4                 | 0            |                     |             |                 |                |                                            |                                                                                           |                 |
| 6                          |                     | 0            | moist               | 3           | Fill            |                | Reddish Brown (5YF                         | R 3/2) to Very Dark Gray (10YR 3/1) fine to Cinders, Fill (concrete, brick, ceramics) and |                 |
| 7                          |                     | 0            | moist               | 6           | Fill            |                | Silt, medium dense.                        |                                                                                           |                 |
|                            |                     |              | wet                 | 3           | Fill            |                | Brown (10YR 4/3) SI                        | ILT and fine to medium Sand, some fine                                                    |                 |
| 8                          |                     |              |                     |             |                 |                | angular Gravel (mud                        | stone), soft. No odor.                                                                    |                 |
| 9                          |                     |              | wet                 | 3           | Fill            |                | No Recovery                                |                                                                                           |                 |
| _ <sub>10</sub> _          | 1.5                 | 0            |                     |             |                 |                |                                            |                                                                                           |                 |
|                            |                     |              | wet                 | 3           | Fill            |                | Brown (10YR 4/3) Sl<br>angular Gravel (mud | ILT and fine to medium Sand, some fine stone), soft. No odor.                             |                 |
| 12                         |                     |              | wet                 | 3           | Fill            |                | No Recovery                                |                                                                                           |                 |
| _ <sub>13</sub> _          |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 14                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
|                            | 3.5                 | 0            |                     |             |                 |                |                                            |                                                                                           |                 |
| 15                         | 3.5                 | 0            | wet                 | 3           | Fill            |                |                                            | ne to medium SAND, some Silt and fine                                                     |                 |
| 16<br>                     |                     |              |                     |             |                 |                | sub-angular Gravel,                        | soft. No odor.                                                                            |                 |
| 17                         |                     | 0            |                     |             |                 |                |                                            |                                                                                           |                 |
| 18                         |                     |              | wet                 | 3           | CANAL<br>BOTTOM |                | Black (2.5Y 2.5/1) C                       | LAY, little Silt, trace fine angular Gravel medium stiff, cohesive. No odor. (Canal       |                 |
| 19                         |                     |              | wet                 | 3           | Fill            |                | bottom)                                    | medium sun, conesive. No odor. (Canal                                                     |                 |
| 20                         |                     |              |                     |             |                 |                | No Recovery                                | 4                                                                                         |                 |
| 21                         |                     |              |                     |             |                 |                | End of boring at 20 f                      | t.                                                                                        |                 |
|                            |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
|                            |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
|                            |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
|                            |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
|                            |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
|                            |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 27                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 28                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 29                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 30                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 31                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 32                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
|                            |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 34                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
| 35                         |                     |              |                     |             |                 |                |                                            |                                                                                           |                 |
|                            |                     |              |                     |             |                 |                | bottom encountered at 17                   |                                                                                           |                 |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-B4**

|                                         |                                 | i ugo. i                   |
|-----------------------------------------|---------------------------------|----------------------------|
| Project Name: Northern Transect Borings | Drilling Company: SGS           |                            |
| Project Number: 60213772                | Drilling Method: Geoprobe       | Coordinates (NJSPNAD83) x: |
| Date Started Drilling: 9/28/2011        | Rig Type: 7720DT                | Coordinates (NJSPNAD83) y: |
| Date Finished Drilling: 9/28/2011       | Core Size: 2 in                 | Boring Total Depth: 20 ft  |
| Logged By: M. Merdinger                 | Project Manager: Robert Cataldo | Depth to Water: 7.0 ft     |
| Physical Location: Berry Lane           | _                               |                            |

| P                                       | hysical          | Location:           | Berr         | y Lane              |             |                 |                | (Note bgs = below ground syr                                                                                         | face)            |
|-----------------------------------------|------------------|---------------------|--------------|---------------------|-------------|-----------------|----------------|----------------------------------------------------------------------------------------------------------------------|------------------|
|                                         | Depth            |                     |              |                     |             |                 |                | ווינים שטים – פנים איניים וויינים וויינים שטים איניים וויינים שטים איניים וויינים שטים וויינים שטים וויינים שטים     |                  |
| F                                       | Range<br>ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS            | Graphic<br>Log | Surface Cover and Thickness:                                                                                         | Sample<br>Number |
| <u>_</u> _,                             | 1 -              | 3.3                 | 0            | dry                 | 3           | Fill            |                | Black (7.5YR 2.5/1) SILT and fine Sand, some fine angular Gravel, medium dense. No odor.                             |                  |
| SS.GF                                   | 2                |                     | 0            | dry                 | 3           | Fill            |                | Weak Red (5YR 4/4) fine SAND, interbedded with some Concrete and little Black Cinders, medium dense. No odor.        |                  |
| SRING<br>S                              | 3 -              |                     | 0            |                     |             |                 |                | Concrete and little black Cinders, medium dense. No odor.                                                            |                  |
| 1B B(                                   | 4 -              |                     |              | dry                 | 3           | Fill            |                | No Recovery                                                                                                          |                  |
| LES/N                                   | <br>5            | 3.6                 | 0            |                     |             |                 |                | ,                                                                                                                    |                  |
| OF SI                                   | 6                | 0.0                 | 0            | dry                 | 3           | Fill            |                | Weak Red (5YR 4/4) fine SAND, interbedded with some                                                                  |                  |
| OUP.                                    | 7                |                     | 0            | moist               | 6           | Fill            |                | Concrete and little Black Cinders, medium dense. No odor.  Black (7.5YR 2.5/1) and Brown (10YR 4/3) interbedded      |                  |
| E GR                                    | <br>8            |                     |              |                     |             |                 |                | CINDERS and Silt, some fine angular Gravel, little fine to coarse Sand, medium dense. No odor.                       |                  |
| NEN C                                   | 9 -              |                     |              |                     |             |                 |                |                                                                                                                      |                  |
|                                         | 10               | 3.4                 | 0            | moist               | 6           | Fill            |                | No Recovery                                                                                                          |                  |
| 품                                       | 11 -             | 3.1                 | 0            | wet                 | 6           | Fill            |                | Black (7.5YR 2.5/1) and Brown (10YR 4/3) interbedded CINDERS and SILT, some fine to coarse Sand, little fine angular |                  |
| SEY                                     | 12               |                     | 0            |                     |             |                 |                | Gravel, medium dense. No odor.                                                                                       |                  |
|                                         | 13               |                     |              | wet                 | 12          | CANAL<br>BOTTOM |                | Black (2.5Y 2.5/1) CLAY, little Silt, soft, cohesive. No odor. ((Canal bottom)                                       |                  |
| KIPP(                                   | 14               |                     |              | wet                 | 8           | CL              |                | Reddish Brown-Gray (10R 3/1) Silty CLAY, little fine Sand, trace                                                     |                  |
| WOR –                                   | 15               | 2.5                 | 0            |                     |             | CL              |                | fine angular Gravel from 13.0ft to 13.4ft, medium dense. No odor.                                                    |                  |
| SINDE .                                 | 16               |                     | 0            | wet                 | 10          | SM-GP           |                | No Recovery Reddish Brown (5YR 4/3) mottled Green SILT and fine to                                                   |                  |
| ¥MY.                                    | 17 -             |                     |              |                     |             |                 |                | medium angular Gravel, some fine Sand, dense. No odor.                                                               |                  |
| ENTS                                    | 18               |                     |              | wet                 | 10          | SM-GP           |                | No Recovery                                                                                                          |                  |
| 5                                       | 19               |                     |              | wei                 | 10          | SIVI-GF         | 00000          | No Recovery                                                                                                          |                  |
| M<br>√                                  | 20 -             |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| AKM – ,                                 | 21 -             |                     |              |                     |             |                 | 1.1.100.1      | End of boring at 20 ft.                                                                                              |                  |
| ANC                                     | 22 -             |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| GS/SI                                   | 23               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
|                                         | 24               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
|                                         | 25               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| NTS /                                   | 26               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| ¥.                                      | 27 -             |                     |              |                     |             |                 |                |                                                                                                                      |                  |
|                                         | 28               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
|                                         | 29               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| ======================================= | 30               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
|                                         | 31               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| 9                                       | 32               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| AS LA                                   | 33               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| STD                                     | 34               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| GINT                                    | 35               |                     |              |                     |             |                 |                |                                                                                                                      |                  |
| Ģ 📑                                     | omment           | s: No CC            | )PR/G        | GM identi           | fited at    | t this locatio  | n. Canal b     | pottom encountered at 12.0 ft.                                                                                       |                  |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-B5**

| Project Name: Northern Transect Borings | Drilling Company: SGS           |                            |
|-----------------------------------------|---------------------------------|----------------------------|
| Project Number: 60213772                | Drilling Method: Geoprobe       | Coordinates (NJSPNAD83) x: |
| Date Started Drilling: 9/30/2011        | Rig Type: 7720DT                | Coordinates (NJSPNAD83) y: |
| Date Finished Drilling: 9/30/2011       | Core Size: 2 in                 | Boring Total Depth: 15 ft  |
| Logged By: M. Merdinger                 | Project Manager: Robert Cataldo | Depth to Water: 5.0 ft     |
| Physical Location: Berry Lane           |                                 |                            |

|                            | <b>By:</b> M. Me    |       |                     |             | Project I | <i>l</i> lanage | r: F         | Robert Cataldo                                      | Depth to Water: 5.0 ft                                                                                    |            |  |
|----------------------------|---------------------|-------|---------------------|-------------|-----------|-----------------|--------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------|--|
| Physical                   | Location:           | Berry | y Lane              |             |           |                 |              |                                                     | (Note bgs = below ground surface)                                                                         |            |  |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) |       | Moisture<br>Content | GA<br>Class | USCS      | Graph<br>Log    |              | Sur                                                 | face Cover and Thickness:                                                                                 | Sam<br>Num |  |
| 1 -                        | 3                   | 0     | dry                 | 6           | Fill      |                 |              | Black (7.5YR 2.5/1) strace to little fine ang odor. | SILT, some Fill (coal, brick, wood, glass),<br>ular Gravel, loose, dry to moist at 1.4ft. No              |            |  |
| 3                          |                     | 0.3   | moist               | 6           | Fill      |                 | $\bigotimes$ | Brown (10YR 3/3) fin                                | e crushed FILL (glass, coal, ceramics,                                                                    |            |  |
| 4                          | _                   |       | moist               | 6           | Fill      |                 |              | No Recovery                                         | ne to coarse Sand, loose. No odor.                                                                        |            |  |
| 5                          | 3.5                 | 0     | wet                 | 6           | Fill      |                 | $\bigotimes$ | — Prown (10VP 2/2) fin                              | e crushed FILL (glass, coal, ceramics,                                                                    |            |  |
| 7                          |                     | 0     | wet                 | 8           | ML-SM     |                 |              | brick) and SILT, little<br>Grayish Brown (10YF      | fine to coarse Sand, loose. No odor.  R 3/2) fine to medium SILT and Sand, at 5.7ft, soft/loose. No odor. | /          |  |
| 8                          | -                   |       | moist               | 9           | СН        |                 |              | <u> </u>                                            | R 3/2) CLAY, trace to little Silt, cohesive,                                                              |            |  |
| 9 -                        | 4                   | 0     | moist               | 9           | СН        |                 |              | No Recovery                                         |                                                                                                           |            |  |
| 11                         | -                   | 0     | moist               | 9           | ML        |                 |              |                                                     | T, trace to little Clay, trace fine angular tled, very stiff. No odor.                                    |            |  |
| 12                         | _                   | 0     |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 13                         |                     | 0     | wet                 | 10          | SM-SP     |                 |              | Strong Brown (7.5YR                                 | R 5/6) fine to medium SAND, little Silt, Weak                                                             |            |  |
|                            | -                   |       | wet                 | 10          | SM-SP     |                 |              | Red (10R 4/4) mottlin                               | ig, loose. No odor.                                                                                       |            |  |
| 15<br>16                   |                     |       |                     |             |           | 1.2.2.2.1.      | 24-3         | End of boring at 20 ft                              | i.                                                                                                        |            |  |
| 17                         | ]                   |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 18                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 19                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 20                         | }                   |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 21                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
|                            |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 23                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 24                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 25                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 26                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 27                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 28                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 29                         |                     |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 30                         | -                   |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 31                         | -                   |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 32                         | _                   |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 33                         | _                   |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
|                            | 1                   |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |
| 34                         | 1                   |       |                     |             |           |                 |              |                                                     |                                                                                                           |            |  |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

#### **Boring ID: NTB-C1**

Project Name: Northern Transect Borings Drilling Company: SGS

Project Number: 60213772 Drilling Method: Geoprobe Coordinates (NJSPNAD83) x:

Date Started Drilling: 9/28/2011 Rig Type: 6610DT Coordinates (NJSPNAD83) y:

Date Finished Drilling: 9/28/2011 Core Size: 2 in Boring Total Depth: 20 ft

Logged By: M. Merdinger Project Manager: Robert Cataldo Depth to Water: 10.0 ft

|                            |                     |              |                     |     |                 |                | (Note bgs = below ground s                                                                                         | urface)          |
|----------------------------|---------------------|--------------|---------------------|-----|-----------------|----------------|--------------------------------------------------------------------------------------------------------------------|------------------|
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content |     | USCS            | Graphic<br>Log | Surface Cover and Thickness:                                                                                       | Sample<br>Number |
| - <sub>1</sub> -           | 2.5                 | 0            | dry<br>dry          | 3 6 | Fill<br>Fill    |                | Grayish Brown (2.5Y 5/2) medium angular GRAVEL, loose. No odor.                                                    |                  |
| 2                          |                     | 0            |                     | 3   | Fill            |                | Reddish Brown (2.5YR 4/3) fine to medium SAND, some                                                                |                  |
| 3                          |                     |              | moist               |     |                 |                | Cinders and Coal fragments, little Silt, loose. No odor.  Red BRICK foundation interbedded with Dark Reddish Brown |                  |
|                            |                     |              | moist               | 3   | Fill            |                | (5YR 3/2) fine SAND and fine rounded Gravel, medium dense. No odor.                                                |                  |
|                            | 2.4                 | 0            |                     |     |                 |                | No Recovery                                                                                                        |                  |
| 5                          | 2.4                 | 0            | moist               | 3   | Fill            |                | Red BRICK foundation interbedded with Dark Reddish Brown                                                           |                  |
| 6                          |                     |              | moist               | 3   | Fill            |                | (5YR 3/2) fine SAND and fine rounded Gravel, medium dense. No odor.                                                |                  |
| 7                          |                     |              |                     |     |                 |                | Dark Brown (7.5YR 3/2) SILT and fine Sand, little sub-rounded Gravel, medium dense. Slight napthalene odor.        |                  |
| 8                          |                     |              | moist               | 3   | Fill            |                | No Recovery                                                                                                        |                  |
| 9                          |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 10                         | 3                   | 0            | wet                 | 3   | Fill            |                | Dark Brown (7.5YR 3/2) SILT and fine Sand, little sub-rounded                                                      |                  |
| 11                         |                     | 0            |                     |     | - •••           |                | Gravel, soft. Slight napthalene odor.                                                                              | NTB-C1-11        |
| 12                         |                     | 0            |                     |     |                 |                |                                                                                                                    |                  |
| 13                         |                     |              | wet                 | 3   | Fill            |                | No Recovery                                                                                                        |                  |
| 14                         |                     |              | wet                 |     | 1 111           |                | NO NECOVERY                                                                                                        |                  |
| 15                         | 3                   | 0            |                     |     | E::             |                | Dady Davier (7.5)/D ((0) Oll Tarad San Cond little and san dad                                                     |                  |
| 16                         |                     | 0            | wet                 | 3   | Fill            |                | Dark Brown (7.5YR 3/2) SILT and fine Sand, little sub-rounded Gravel, soft. Slight napthalene odor.                |                  |
| 17                         |                     | 12.4         |                     |     |                 |                |                                                                                                                    |                  |
| 18                         |                     |              | wet                 | 12  | CANAL<br>BOTTOM | . 7 9 .        | Black-stained CLAY and fine angular Gravel, some Wood, soft.  Strong napthalene odor and sheen. (Canal bottom)     |                  |
| 19                         |                     |              | moist               | 10  | SM-GP<br>SM-GP  |                | Dark Reddish Brown (5YR 3/2) and Teal fine to medium SAND, little fine angular Gravel and Silt, dense. No odor.    |                  |
| 20 _                       |                     |              |                     |     |                 | 2000           | No Recovery                                                                                                        |                  |
| 21 _                       |                     |              |                     |     |                 |                | End of boring at 20 ft.                                                                                            |                  |
| 22                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 23                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 24                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 25                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 26                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 27 -                       |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 28                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| _ <del></del>              |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 30                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
|                            |                     |              |                     |     |                 |                |                                                                                                                    |                  |
|                            |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 32 -                       |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 33                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 34                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |
| 35                         |                     |              |                     |     |                 |                |                                                                                                                    |                  |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-C2**

| I                                       |                                 | i ugo. i                   |
|-----------------------------------------|---------------------------------|----------------------------|
| Project Name: Northern Transect Borings | Drilling Company: SGS           |                            |
| Project Number: 60213772                | Drilling Method: Geoprobe       | Coordinates (NJSPNAD83) x: |
| Date Started Drilling: 9/28/2011        | Rig Type: 7720DT                | Coordinates (NJSPNAD83) y: |
| Date Finished Drilling: 9/28/2011       | Core Size: 2 in                 | Boring Total Depth: 15 ft  |
| Logged By: M. Merdinger                 | Project Manager: Robert Cataldo | Depth to Water: 6.5 ft     |
| Physical Location: Berry Lane           |                                 |                            |

|                            |                     |              |                     |             |                |                | (Note bgs = below ground s                                                                                            | urface)          |
|----------------------------|---------------------|--------------|---------------------|-------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------|------------------|
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS           | Graphic<br>Log | Surface Cover and Thickness:                                                                                          | Sample<br>Number |
| 1 -                        | 2.8                 | 0            | dry<br>moist        | 3 6         | Fill<br>Fill   |                | Dark Brown (7.5YR 3/2) SILT, some fine angular Gravel, loose.  No odor.                                               |                  |
| 2                          |                     | 0            | IIIOISt             |             | 1 111          |                | Reddish Brown (2.5YR 4/3) fine SAND, little fine angular Gravel,                                                      |                  |
|                            |                     |              |                     |             |                |                | interbedded with some Cinders and Brick, medium dense, dry to moist at 1.0ft. No odor.                                |                  |
| 3                          |                     |              | moist               | 6           | Fill           |                | No Recovery                                                                                                           |                  |
| 4                          |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 5                          | 3.5                 | 0            | moist               | 6           | Fill           |                | Reddish Brown (2.5YR 4/3) fine SAND, little fine angular Gravel,                                                      |                  |
| 6                          |                     | 0            |                     |             |                |                | interbedded with some Cinders and Brick, medium dense. No odor.                                                       |                  |
| 7                          |                     | 0            | wet                 | 6           | Fill           |                | Gray (Gley1 5/0) to White medium to coarse CINDERS and ASH, some interbedded White Silt and Ash, loose/soft. No odor. |                  |
| 8                          |                     |              |                     |             |                |                | ASH, Some interbedded writte Siit and Ash, loose/soit. No odor.                                                       |                  |
| 9                          |                     |              | wet                 | 6           | Fill           |                | No Recovery                                                                                                           |                  |
| 10                         | 4                   | 0            | 4                   |             | F:II           |                | Crow (Clay 4 F/O) to White CINDEDC and ACU, some                                                                      |                  |
| 11                         |                     | 0            | wet                 | 6           | Fill           |                | Gray (Gley 1 5/0) to White CINDERS and ASH, some interbedded White Silt and Ash, loose/soft, wet. No odor.            |                  |
| 12                         |                     | 0            |                     |             |                |                |                                                                                                                       | NTB-C2-12        |
| 13                         |                     | 0            |                     |             |                |                |                                                                                                                       |                  |
| 14 -                       |                     |              | wet                 | 12          | CANAL          |                | Black CLAY, soft. No odor. (Canal bottom)                                                                             | 1                |
| 15                         |                     |              | wet                 | 12          | BOTTOM<br>Fill |                | No Recovery                                                                                                           |                  |
| 16                         |                     |              |                     |             |                |                | End of boring at 15 ft.                                                                                               |                  |
| 17                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 18                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| -<br>19                    |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 20                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 21                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
|                            |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 22                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 23                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 24                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 25                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 26                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 27                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 28                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 29                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 30                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 31                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 32                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 33                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
| 34                         |                     |              |                     |             |                |                |                                                                                                                       |                  |
|                            | 1                   |              |                     | 1           |                |                |                                                                                                                       |                  |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-C3**

Page: 1 Project Name: Northern Transect Borings Drilling Company: SGS Project Number: 60213772

Date Started Drilling: 9/28/2011

Date Finished Drilling: 9/28/2011 Drilling Method: Geoprobe Coordinates (NJSPNAD83) x: Coordinates (NJSPNAD83) y:

Rig Type: 7720DT Core Size: 2 in Boring Total Depth: 20 ft

|                                                                                                      | Logged E                   | B <b>y:</b> M. Me   | erdinge      | er                  | _           | Project I     | Manager:                                | Robert Cataldo Depth to Water: 6.5 ft                                                                               |                  |
|------------------------------------------------------------------------------------------------------|----------------------------|---------------------|--------------|---------------------|-------------|---------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------|
|                                                                                                      | Physical                   | Location:           | Berry        | / Lane              |             |               |                                         | (Note bgs = below ground sur                                                                                        | face)            |
|                                                                                                      | Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS          | Graphic<br>Log                          | Surface Cover and Thickness:                                                                                        | Sample<br>Number |
| _                                                                                                    | - <sub>1</sub> -           | 2.2                 | 0            | dry                 | 3           | Fill          | -                                       | Black (2.5Y 2.5/1) fine angular GRAVEL and Silt, little fine to                                                     |                  |
| GPU                                                                                                  |                            | 2.2                 | 0            | moist               | 6           | Fill          |                                         | \text{medium Sand, loose. No odor.} Black (2.5Y 2.5/1) medium to coarse CINDERS interbedded with                    |                  |
| NGS                                                                                                  | 2                          |                     | U            |                     |             | F:::          |                                         | Reddish Brown (2.5YR 4/3) SILT and fine rounded Gravel, some                                                        |                  |
| BOR                                                                                                  | 3                          |                     |              | moist               | 6           | Fill          |                                         | Concrete and Brick, dense. No odor. No Recovery                                                                     |                  |
| E E                                                                                                  | _4                         |                     |              |                     |             |               |                                         | ,                                                                                                                   |                  |
| TES                                                                                                  | _5 _                       | 4                   | 0            |                     |             |               |                                         |                                                                                                                     |                  |
| OF SI                                                                                                |                            |                     | 0            | moist               | 6           | Fill          |                                         | Black (2.5Y 2.5/1) medium to coarse CINDERS interbedded with                                                        |                  |
| ğ                                                                                                    |                            |                     | 0            | to<br>wet           |             |               |                                         | Reddish Brown (2.5YR 4/3) SILT and fine rounded Gravel, some Concrete and Brick, dense. Wet at 6.5 ft. No odor.     |                  |
| GRC                                                                                                  | 7                          |                     |              | wet                 | 6           | Fill          |                                         | Black (2.5Y 2.5/1) medium to coarse CINDERS interbedded with                                                        |                  |
|                                                                                                      | 8                          |                     | 0            |                     |             |               |                                         | White SILT and Ash, soft to loose. No odor.                                                                         |                  |
| \{\bar{\}}                                                                                           | 9                          |                     |              |                     |             | Fill          |                                         | No December                                                                                                         |                  |
| 릺                                                                                                    | 10                         | 3.2                 | 0            | wet                 | 6           | Fill          |                                         | No Recovery                                                                                                         |                  |
| GAR                                                                                                  |                            |                     | 0            | wet                 | 6           | Fill          |                                         | Black (2.5Y 2.5/1) medium to coarse CINDERS interbedded with White SILT and Ash, soft to loose. No odor.            |                  |
| SEY                                                                                                  | _<br>                      |                     | 0.4          |                     |             |               |                                         | ,                                                                                                                   |                  |
| TTINGS\STANCHAKMMY DOCUMENTS\MY EQUIS WORKIPPG_JERSEY\GARFIELD AVENUE GROUP OF SITES\NTB BORINGS\GPJ |                            |                     |              | wet                 | 6           | Fill          |                                         | Black (2.5Y 2.5/1) CLAY and medium to coarse CINDERS, little Wood Fragments and fine to medium Sand, soft. No odor. |                  |
| %\PP(                                                                                                | 14                         |                     |              | wet                 | 6           | Fill          |                                         | No Recovery                                                                                                         |                  |
| WOF                                                                                                  | 15                         | 3                   | 0            |                     |             |               |                                         |                                                                                                                     |                  |
| SINS                                                                                                 |                            |                     | 0            | wet                 | 6           | Fill          |                                         | Black (2.5Y 2.5/1) CLAY and medium to coarse CINDERS, little                                                        |                  |
| M≺E                                                                                                  |                            |                     | 0            | wet                 | 12          | Fill<br>SP    | ]XXXXXXX                                | Wood Fragments and fine to medium Sand, soft. No odor.  Stained-Black CLAY, soft. No odor. (Canal bottom)           |                  |
| NTS                                                                                                  | 17                         |                     | 0            |                     |             |               | /////////////////////////////////////// | Reddish Brown (5YR 4/4) and Gray (Gley 1 5/0) very fine Sand, trace Silt, medium dense. No odor.                    |                  |
| ÜME                                                                                                  | 18                         |                     |              | moist<br>moist      | 10          | CL<br>CL      |                                         | Strong Brown (7.5YR 5/6) CLAY and very fine Sand, dense. No                                                         |                  |
| Y D00                                                                                                | 19                         |                     |              | 1110101             |             | OL.           |                                         | \odor. No Recovery                                                                                                  |                  |
| W/W                                                                                                  | 20                         |                     |              |                     |             |               |                                         | End of boring at 20 ft.                                                                                             |                  |
| CHA                                                                                                  | 21                         |                     |              |                     |             |               |                                         | Life of borning at 20 ft.                                                                                           |                  |
| STAN                                                                                                 |                            |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| NGS/                                                                                                 | _23                        |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| E                                                                                                    |                            |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| S QN                                                                                                 | <br>                       |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| YZZ                                                                                                  |                            |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| NE I                                                                                                 |                            |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| 900                                                                                                  | 27                         |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| ن<br>د                                                                                               | 28                         |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| 16:0                                                                                                 | 29                         |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| 3/6/12                                                                                               | 30                         |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| 占                                                                                                    | 31                         |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| AB.G                                                                                                 | 32                         |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| NS F                                                                                                 |                            |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| - GINT STD US LAB.GDT - 3/6/12 16:09 - C:\DOCUMENTS AND SE                                           | 34                         |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
|                                                                                                      | 35                         |                     |              |                     |             |               |                                         |                                                                                                                     |                  |
| PPG                                                                                                  | Comment                    | ts: No Co           | DPR/G        | GM identi           | fited at    | this location | on. Canal b                             | pottom encountered at 15.5 ft.                                                                                      |                  |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-C4**

|                                                |                                 | i agoi i                   |
|------------------------------------------------|---------------------------------|----------------------------|
| <b>Project Name:</b> Northern Transect Borings | Drilling Company: SGS           | -                          |
| Project Number: 60213772                       | Drilling Method: Geoprobe       | Coordinates (NJSPNAD83) x: |
| Date Started Drilling: 9/29/2011               | Rig Type: 7720DT                | Coordinates (NJSPNAD83) y: |
| Date Finished Drilling: 9/29/2011              | Core Size: 2 in                 | Boring Total Depth: 15 ft  |
| Logged By: M. Merdinger                        | Project Manager: Robert Cataldo | Depth to Water: 5.5 ft     |
| Physical Location: Berry Lane                  |                                 |                            |

|                            | <b>By:</b> M. Me    |              |                     |             | Project | Manager:       | Robert Cataldo                             | Depth to Water: 5.5 ft                                                                                                  |                 |
|----------------------------|---------------------|--------------|---------------------|-------------|---------|----------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------|
| Physical                   | Location:           | Berry        | y Lane              |             |         |                |                                            | (Note bgs = below groun                                                                                                 | ıd surface)     |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS    | Graphic<br>Log | Su                                         | rface Cover and Thickness:                                                                                              | Sample<br>Numbe |
| 1                          | 2.5                 | 0            | dry                 | 3           | Fill    |                | Brown (10YR 3/3) S<br>Foundation, mediun   | ILT, some fine to coarse Sand and Brick n dense. No odor.                                                               |                 |
| 2                          |                     | 0            | dry                 | 6           | Fill    |                | Black (2.5Y 2.5/1) A<br>No odor.           | SH and medium to coarse Cinders, loose.                                                                                 |                 |
| 3 -                        |                     |              | dry                 | 6           | Fill    |                | No Recovery                                |                                                                                                                         |                 |
| _ <del>4</del><br>_5       | 2.5                 | 0            |                     |             |         |                |                                            |                                                                                                                         |                 |
| 6<br>-7                    |                     | 0            | wet                 | 6           | Fill    |                | Black (2.5Y 2.5/1) n<br>White SILT and Ash | nedium to coarse CINDERS interbedded with it, soft to loose. Wet at 5.5 ft. No odor.                                    |                 |
| -8<br>-9                   |                     |              | wet                 | 6           | Fill    |                | No Recovery                                |                                                                                                                         |                 |
| 10                         | 3.5                 | 0            | wet                 | 6           | Fill    |                | Black (2.5Y 2.5/1) m                       | nedium to coarse CINDERS interbedded with                                                                               |                 |
| 12                         |                     | 0            | wet<br>to<br>moist  | 9           | CL-ML   |                | White SILT and Ash<br>Dark Brown (7.5YR    | n, soft to loose. No odor.<br>3/2) fine Sandy CLAY graded to interbedded<br>it to stiff, wet to moist at 12ft. No odor. |                 |
| 13                         |                     |              | moist               | 9           | ML      |                | Gray (Gley1 5/0) SII                       | _T, little very fine Sand, slight mottling,                                                                             | /               |
| 15                         |                     |              | moist               | 9           | ML      |                | \dense, stiff. No odor<br>No Recovery      |                                                                                                                         |                 |
| 16                         |                     |              |                     |             |         |                | End of boring at 15                        | ft.                                                                                                                     |                 |
| 17                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 18                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 19                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 20                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 22                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 23                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 24                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 25                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 26                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 27                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 28                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 30                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 31                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 32                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 33                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 34                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |
| 35                         |                     |              |                     |             |         |                |                                            |                                                                                                                         |                 |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NTB-C5**

Project Name: Northern Transect Borings Drilling Company: SGS

Project Number: 60213772 Drilling Method: Geoprobe Coordinates (NJSPNAD83) x:

Date Started Drilling: 9/30/2011 Rig Type: 7720DT Coordinates (NJSPNAD83) y:

Date Finished Drilling: 9/30/2011 Core Size: 2 in Boring Total Depth: 20 ft

Logged By: M. Merdinger Project Manager: Robert Cataldo Depth to Water: 6.8 ft

|                            | <b>By:</b> M. Me    |              | er<br>er            |             |               | Manager:       | Robert Cataldo Depth to Water: 6.8 ft                                                                                     |                  |
|----------------------------|---------------------|--------------|---------------------|-------------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------|------------------|
|                            | Location:           |              |                     |             | 1.10,000.     | nanagon.       | Popular Victoria C.S.R.                                                                                                   |                  |
|                            |                     |              |                     |             |               |                | (Note bgs = below ground surface                                                                                          | e)               |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS          | Graphic<br>Log | Surface Cover and Thickness:                                                                                              | Sample<br>Number |
| -, -                       | 4.0                 | 0            | dry                 | 2           | Fill          |                | Black ASPHALT, dense. No odor.                                                                                            |                  |
| _1                         | 1.3                 |              | dry                 | 3           | Fill<br>Fill  | -              | Very Dark Gray (10YR 3/1) fine to medium SAND, some fine to medium angular Gravel, little Silt, loose. No odor.           |                  |
| 2                          |                     | 0            | moist<br>moist      | 3           | Fill          | -              | Strong Brown (7.5YR 5/6) and Brown (7.5YR 4/2) SILT, some                                                                 |                  |
| -3 -                       |                     |              |                     |             |               |                | \fine Sand, little interbedded Ash, soft. No odor.                                                                        |                  |
|                            |                     |              |                     |             |               |                | No Recovery                                                                                                               |                  |
| 4                          |                     |              |                     |             |               |                | <del> </del>                                                                                                              |                  |
| 5                          | 3                   | 0            |                     |             |               |                |                                                                                                                           |                  |
| - <sub>6</sub> -           | <u> </u>            | 0            | moist               | 3           | Fill<br>Fill  |                | Strong Brown (7.5YR 5/6) and Brown (7.5YR 4/2) SILT, some fine to coarse Sand, little interbedded Ash, soft. No odor.     |                  |
|                            | ]                   | 0            | moist<br>to         | 3           | FIII          |                | Reddish Brown (2.5YR 4/4) to Brown (2.5YR 4/1) SILT and fine                                                              |                  |
| 7                          |                     |              | wet                 |             |               |                | to medium Sand, little coarse Sand and fine angular Gravel,                                                               |                  |
| 8                          | ]                   |              |                     | _           |               |                | moist and dense. Wet and soft at 6.8ft. No odor.                                                                          |                  |
| -9 -                       |                     |              | wet                 | 3           | Fill          |                | No Recovery                                                                                                               |                  |
| -10 -                      | 4.0                 | 0            |                     |             |               |                |                                                                                                                           |                  |
| 10                         | 4.2                 |              | wet                 | 3           | Fill          |                | Reddish Brown (2.5YR 4/4) to Brown (2.5YR 4/1) SILT and fine                                                              |                  |
| 11                         |                     | 0            |                     |             |               |                | to medium Sand, little coarse Sand and fine angular Gravel,                                                               |                  |
| 12                         |                     | 0            | moist               | 9           | ML            |                | \soft. No odor.  Very Dark Gray (10YR 3/1) with slight Light Gray (10YR 7/1)                                              |                  |
| 13                         |                     | 0            |                     |             |               |                | mottling SILT, little to trace Clay, trace fine Sand from 11ft to                                                         |                  |
| 13                         | <u> </u>            |              |                     |             |               |                | 11.5ft, medium stiff to stiff. No odor.                                                                                   |                  |
| 14                         |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 15                         | 3.5                 | 0            | moist               | 9           | ML            |                | No Recovery                                                                                                               |                  |
| 16                         |                     | 0            | moist               | 8           | SP            |                | Gray (Gley1 5/0) very fine to fine SAND, little Silt, medium                                                              |                  |
|                            |                     | _            | moist               | 10          | SM-SP         |                | dense. No odor.  Reddish Gray (2.5YR 5/1) fine SAND and SILT, trace Clay,                                                 |                  |
| 17                         | <u> </u>            | 0            | moist               | 10          | SM-SP         |                | semi-cohesive. No odor.                                                                                                   |                  |
| 18                         |                     |              | moist               | 10          | OIVI-OI       |                | Reddish Brown (5YR 4/3) fine to medium SAND, little Silt, some medium Gravel (rock fragments) from 18ft to 18.5ft, medium |                  |
| 19                         |                     |              | moist               | 10          | SM-SP         |                | dense to dense. No odor.                                                                                                  |                  |
|                            |                     |              | 1110100             | '0          | OW O          |                | No Recovery                                                                                                               |                  |
| 20                         |                     |              |                     |             |               |                | End of boring at 20 ft.                                                                                                   |                  |
| 21                         |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 22 -                       |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 23                         |                     |              |                     |             |               |                |                                                                                                                           |                  |
|                            |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 24                         | -                   |              |                     |             |               |                |                                                                                                                           |                  |
| 25                         | 1                   |              |                     |             |               |                |                                                                                                                           |                  |
| 26 -                       | -                   |              |                     |             |               |                |                                                                                                                           |                  |
|                            |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 27                         | 1                   |              |                     |             |               |                |                                                                                                                           |                  |
| 28                         |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 29                         |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 30                         | -                   |              |                     |             |               |                |                                                                                                                           |                  |
|                            | 1                   |              |                     |             |               |                |                                                                                                                           |                  |
| 31                         | -                   |              |                     |             |               |                |                                                                                                                           |                  |
| 32                         |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 33                         |                     |              |                     |             |               |                |                                                                                                                           |                  |
|                            |                     |              |                     |             |               |                |                                                                                                                           |                  |
| 34                         | -                   |              |                     |             |               |                |                                                                                                                           |                  |
| 35                         |                     |              |                     |             |               |                |                                                                                                                           |                  |
| Commen                     | ts: No CC           | )PR/G        | GM identi           | fited at    | this location | n No ca        | nal bottom encountered.                                                                                                   |                  |



30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

# **Boring ID: NSB-D1**

| Project Name: PPG Garfield Ave                | Drilling Company: SGS North America |                                      |
|-----------------------------------------------|-------------------------------------|--------------------------------------|
| Project Number: 60213772                      | Drilling Method: Soft Dig/Geoprobe  | Coordinates (NJSPNAD83) x: 611992.75 |
| Date Started Drilling: 8/21/2012 10:10:00 AM  | Rig Type: Vacmaster 4000/66DT       | Coordinates (NJSPNAD83) y: 685153.5  |
| Date Finished Drilling: 8/21/2012 12:00:00 PM | Core Size: 2 in                     | Boring Total Depth: 25 ft            |
| Logged By: Ben Daniels                        | Project Manager: Chris Martell      | Depth to Water: 6.6                  |
| Physical Location: NORTHERN CANAL             |                                     |                                      |

| riiysicai                        |                     |              | 112111107           |            |                |                | (Note bgs = b                                                                                                                                                                                               | elow ground surface) |
|----------------------------------|---------------------|--------------|---------------------|------------|----------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Depth<br>Range<br>(ft bgs)       | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content |            | USCS           | Graphic<br>Log | Surface Cover and Thickness:                                                                                                                                                                                | Sample<br>ID         |
|                                  |                     | 0.0          | dry                 | 1 C        | ONCRET<br>FILL |                | CONCRETE fine to coarse FILL MATERIAL, dry , no odor                                                                                                                                                        |                      |
| — 1 —<br>- –                     |                     | 0.0          | dry                 | 3          | FILL           |                | fine to coarse SAND, and fine to coarse gravel with coal, (7.5YR 3/1) very dark gray, dry, no odor, angular                                                                                                 | NSB-D1-1.0-1.5       |
| 2<br><br>3<br>                   |                     | 0.0          | dry                 | 3          | FILL           |                | COBBLES, little fine to coarse sand and fine to coarse gravel, (7.5YR 3/1) very dark gray, dry , no odor, angular                                                                                           |                      |
| - 4<br>                          | 2.0                 | 0.0          | dry                 | 3          | FILL           |                | ASH, and cinders little fine to medium sand, dry , no odor                                                                                                                                                  | NSB-D1-4.0-4.5       |
| 5<br><br>_ 6                     | 3.2                 | 0.0          | moist               | 3          | FILL           |                | fine to coarse SAND, little fill material and fine to medium gravel, (7.5YR 3/2) dark brown, dense, moist , no odor, subangular                                                                             |                      |
| -                                |                     | 0.0          | moist               | 3          | FILL           |                | SILT, little fine to coarse sand trace fine to medium gravel, (7.5YR 5/1) gray, soft, moist to wet , no odor, Wet at 6.6                                                                                    |                      |
| - 8 -<br>9 -                     |                     |              |                     |            | FILL           |                | NO RECOVERY                                                                                                                                                                                                 | NSB-D1-7.7-8.2       |
| 10<br><br>11                     | 3                   | 0.0          | wet                 | 3          | FILL           |                | FILL MATERIAL, fine to coarse sand and fine to medium gravel, (7.5YR 6/1) gray, dense, wet, angular, Coal, glass and crushed fill.                                                                          |                      |
| — 12 —<br>- —                    |                     | 0.0          | wet                 | 3          | FILL           |                | silty CLAY, and fine to coarse sand, (5YR 2.5/1) black, medium dense, wet , no odor, interbedded                                                                                                            | NSB-D1-12.0-12.5     |
| — 13 —<br>- — —<br>— 14 —<br>- — | 3.7                 |              |                     |            | FILL           |                | NO RECOVERY                                                                                                                                                                                                 |                      |
| — 15 —<br>- —                    | 0.1                 | 0.0          | wet                 | 8          | SM             |                | fine SAND, some silt, (7.5YR 5/1) gray, dense, wet , no odor                                                                                                                                                |                      |
| 16<br>                           |                     | 0.0          | wet                 | 8          | SM             |                | fine SAND, some silt, (7.5YR 5/4) brown, dense, wet , no odor, Interbedded with gray (7.5YR 6/1) silty sand.                                                                                                | NSB-D1-16.0-16.5     |
| 17<br>                           |                     | 0.0          | wet                 | 11         | SW             |                | fine to coarse SAND, some fine to coarse gravel, (2.5YR 4/3) reddish brown, dense, wet , no odor, angular                                                                                                   |                      |
| 18<br><br>19                     |                     | 0.0          | wet                 | 8          | SW<br>SW       |                | fine SAND, fine to medium gravel, medium dense, wet , no odor, angular, Mottled Brownish yellow (10YR6/6) Light greenish gray (Gley 2 7/1)                                                                  |                      |
| 20                               | 3.1                 | 0.0          | wet                 | 10         | SM             |                | NO RECOVERY silty SAND, (7.5YR 5/4) brown, medium dense, wet, no                                                                                                                                            | NSB-D1-20.0-20.5     |
| 21<br>21<br>22                   |                     |              | wet<br>wet          | 10         | SW<br>SM       | 000000         | odor fine to coarse SAND, trace fine gravel, (2.5YR 4/3) reddish brown, dense, wet, no odor, subrounded fine SAND, little silt trace fine to coarse gravel, (7.5YR 5/4) brown, dense, wet, no odor, angular |                      |
| 23<br>23<br>24<br>24             |                     |              |                     |            |                |                | 5/4) blown, dense, wet , no odor, angular                                                                                                                                                                   |                      |
| — 25 —                           |                     |              |                     |            |                |                | End of boring at 25 ft.                                                                                                                                                                                     |                      |
| Comments                         | : No GGM/C          | OPR ide      | ntified at this     | s location | on. No cana    | l bottom enc   | ountered.                                                                                                                                                                                                   |                      |

**Boring ID: NSB-D2** 

| Project N<br>Date Star     |                     | 6021377<br><b>g:</b> 8/2 |                     |        |              | Drilling       | Company: SGS North America  Method: Soft Dig/Geoprobe  e: Vacmaster 4000/66DT  re: 2 in                                                         | Coordinates (NJSPNAD83) x: 612015.6875 Coordinates (NJSPNAD83) y: 685150 Boring Total Depth: 25 ft |                       |
|----------------------------|---------------------|--------------------------|---------------------|--------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------|
|                            | By: Ben D           |                          | 21/2012 2           | .50.00 | I IVI        |                | Manager: Chris Martell                                                                                                                          | Depth to Water: 5.9                                                                                | ι                     |
|                            |                     |                          | THERN CA            | NAL    |              |                |                                                                                                                                                 | •                                                                                                  |                       |
|                            |                     |                          |                     |        |              |                |                                                                                                                                                 | (Note bgs =                                                                                        | below ground surface) |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm)             | Moisture<br>Content |        | USCS         | Graphic<br>Log | Surface Cover and                                                                                                                               | d Thickness:                                                                                       | Sample<br>ID          |
| _<br>_ 1                   |                     | 0.0                      | dry                 | 3      | FILL         |                | fine to medium GRAVEL, some material, (7.5YR 5/1) gray, dry, organics                                                                           |                                                                                                    |                       |
| _<br>- 2 —                 |                     | 0.0                      | dry                 | 3      | FILL         |                | fine to coarse SAND, little silt tr<br>3/1) very dark gray, dry , no odd                                                                        | ace organics, (7.5YR or, medium to fine                                                            |                       |
| -<br>- 3                   |                     | 0.0                      | dry                 | 6      | FILL         |                | \angular gravel. fine to coarse SAND, with ash a Various colors (brown, white an                                                                |                                                                                                    | NSB-D2-3.0-3.5        |
| - 4 <del></del><br>- 5     | 2.3                 | 0.0                      |                     | 6      | FILL         |                | FILL MATERIAL, Slag, coal, as                                                                                                                   | h and cinders.                                                                                     | NSB-D2-3.0-3.3        |
| -<br>- 6                   |                     | 0.0                      | dry                 | 3      | FILL         |                | fine to coarse SAND, little fine t<br>material, (7.5YR 3/2) dark brow<br>no odor, angular                                                       |                                                                                                    |                       |
| - 7 —<br>- 8 —<br>- 0 —    |                     | 0.0                      | wet                 | 3 ,    | FILL<br>FILL |                | CLAY, trace silt, (N 8/) white, st<br>5.9, chalky.<br>NO RECOVERY                                                                               | iff, wet , no odor, Wet at                                                                         | NSB-D2-6.0-6.5        |
| - 9<br>-<br>- 10           | 1.8                 | 0.0                      | wet                 | 3      | FILL         |                | fine to coarse SAND, and silt tr                                                                                                                | ace fine to medium                                                                                 | -                     |
| _<br>- 11 —                |                     | 1.8                      | wet                 | 3 /    | FILL         |                | gravel, (7.5YR 3/1) very dark gr<br>subrounded                                                                                                  | · /-                                                                                               | NOD DO 44 O 44        |
| - 12<br>- 13<br>- 14       |                     | 0.0                      | wet                 | 3      | FILL<br>FILL |                | FILL MATERIAL, (5YR 2.5/1) b petroleum odor, Wood fragmen fine silty SAND, little fine to me 2.5/2) very dark brown, medium angular NO RECOVERY | ts.<br>dium gravel, (7.5YR                                                                         | NSB-D2-11.3-11.       |
| - 15 —<br>-<br>- 16 —<br>- | 2.1                 | 1.8                      | moist               | 3      | FILL         |                | CLAY, trace wood fragments ar<br>2.5/1) black, soft, moist , model<br>Bottom)                                                                   |                                                                                                    | NSB-D2-15.0-15.       |
| - 17<br>- 18<br>- 19       | 2.2                 | 0.0                      | wet                 | 11 (   | GW<br>GW     |                | fine to coarse GRAVEL, some (2.5YR 4/4) reddish brown (7.5' brown, medium dense, wet , no NO RECOVERY                                           | YR 2.5/3) very dark /                                                                              | NSB-D2-16.6-17.       |
| - 20<br>-<br>- 21          | 3.3                 | 0.0                      | wet                 | 9      | ML           |                | clayey SILT, little fine sand and (7.5YR 5/1) gray, medium stiff,                                                                               |                                                                                                    | NSB-D2-20.0-20.       |
| -<br>- 22                  |                     | 0.0                      | wet                 | 8      | SP           |                | fine SAND, (7.5YR 5/1) gray, do                                                                                                                 | ense, wet , no odor                                                                                |                       |
| - 23 —<br>-<br>- 24 —      |                     | 0.0                      | wet                 | 10     | SW           |                | fine to medium SAND, some fir<br>(5YR 4/3) reddish brown, wet ,<br>NO RECOVERY                                                                  |                                                                                                    |                       |
| – 25 —                     |                     |                          |                     |        |              |                | End of boring at 25 ft.                                                                                                                         |                                                                                                    |                       |

30 Knightsbridge Road, Piscataway, NJ 08854

**Boring ID: NSB-D3** 

Page: 1 Project Name: PPG Garfield Ave Drilling Company: SGS North America Project Number: 60213772 Drilling Method: Soft Dig/Geoprobe Coordinates (NJSPNAD83) x: 612027.25 Date Started Drilling: 8/21/2012 1:15:00 PM Rig Type: Vacmaster 4000/66DT Coordinates (NJSPNAD83) y: 685145.1875 Date Finished Drilling: 8/22/2012 9:30:00 AM Core Size: 2 in Boring Total Depth: 25 ft Logged By: Ben Daniels Depth to Water: 6.0 Project Manager: Chris Martell Physical Location: NORTHERN CANAL (Note bgs = below ground surface) Depth Recovery PID Moisture GA Graphic Sample **USCS** Range Surface Cover and Thickness: (ft/ft) (ppm) Content Class Log ID (ft bgs) BORINGS.GPJ 0.0 dry 3 FILL fine to coarse GRAVEL, and fine to medium sand little fill material, (7.5YR 4/1) dark gray, dry, no odor, angular, Trace organics. 0.0 FILL dry 3 fine to coarse SAND, and fine to coarse gravel, (7.5YR SITES/NSB 3/1) very dark gray, dry no odor, angular, ASH and 2 0.0 dry 3 **FILL** CINDERS fine to coarse SAND, and fine to coarse gravel, (7.5YR 3/1) very dark gray, (5Y 3/1) very dark gray, dry, no odor, angular, ASH and CINDERS, FILL MATERIAL, GROUP OF 3 NSB-D3-3.0-3.5 TRACE SLAG. 0.0 fine to coarse SAND, little fine to medium gravel and silt, 3 **FILL** moist JERSEY/GARFIELD AVENUE (7.5YR 3/2) dark brown, moist no odor, angular, Some 3 5 slag, little fill, glass, coal 0.0 **FILL** moist 3 fine to coarse SAND, little fine to coarse gravel and fill material, (7.5YR 3/2) dark brown, medium dense, moist 6 0.0 wet 3 **FILL** no odor, angular CLAY, little silt and fine sand, (N 7/) lght gray, stiff, wet. NSB-D3-6.5-7.0 no odor, Chalky 8 FILL NO RECOVERY EQUIS WORK/PPG 1.3 0.0 FILL CLAY, (N 7/) Ight gray, stiff, wet, no odor, Chalky wet FILL MATERIAL, coarse sand and fine gravel, loose, FILL 0.0 wet **DOCUMENTS/MY** NSB-D3-10.8-11.3 11 9.6 wet 3 FILL wet , no odor, angular CLAY, little wood fragments, (5YR 2.5/1) black, soft, wet **FILL** moderate petroleum odor, Slight sheen. 12 NO RECOVERY 13 SETTINGS/STANCHAKM/MY 14 0.7 15 3.2 wet 3 FILL CLAY, trace wood fragments, (5YR 2.5/1) black, soft. NSB-D3-15.0-15.5 wet, moderate petroleum odor, Slight sheen. (Canal **FILL** 16 (Bottom) NO RECOVERY C:\DOCUMENTS AND 17 18 19 2.6 13:39 -20 0.0 SILT, (N 5/) gray, medium stiff, wet, no odor wet 9 ML A.GDT - 10/10/12 0.0 21 wet 10 SW fine to medium SAND, (2.5YR 4/4) reddish brown, NSB-D3-21.0-21.5 dense, wet, no odor 22 0.0 wet 11 GW fine to coarse GRAVEL, some fine to coarse sand, (2.5YR 4/4) reddish brown, dense, wet, no odor, GW LOGS 23 angular NO RECOVERY 2012-09 RI PPG 24 25 End of boring at 25 ft.

Comments: No GGM/COPR identified at this location. Canal bottom encountered at 15.7 ft.

## **AECOM**

## **Boring ID: NSB-D4**

Piscataway, NJ 08854 Page: 1 Project Name: PPG Garfield Ave **Drilling Company:** SGS North America Project Number: 60213772 Drilling Method: Soft Dig/Geoprobe Coordinates (NJSPNAD83) x: 612038 Date Started Drilling: 8/21/2012 8:35:00 AM Rig Type: Vacmaster 4000/66DT Coordinates (NJSPNAD83) y: 685140.625 Date Finished Drilling: 8/21/2012 2:15:00 PM Core Size: 2 in Boring Total Depth: 25 ft Logged By: Ben Daniels Depth to Water: 5.0 Project Manager: Chris Martell Physical Location: NORTHERN CANAL (Note bgs = below ground surface) Depth Recovery PID Moisture GA Graphic Sample **USCS** Range Surface Cover and Thickness: (ft/ft) (ppm) Content Class Log ID (ft bgs) BORINGS.GPJ 0.0 dry 3 FILL fine to coarse GRAVEL, little silt trace organics, (7.5YR 4/1) dark gray, dry, no odor, angular 0.0 fine to coarse SAND, some fine to coarse gravel little NSB-D4-1.0-1.5 3 FILL SITES/NSB silt, (7.5YR 4/2) brown, angular, some fill material and 2 cobbles, trace organics. GROUP OF 3 JERSEY/GARFIELD AVENUE 1.8 0.0 **FILL** fine to coarse SAND, little clay and fine to medium wet 3 gravel, (7.5YR 6/1) gray, dense, wet, no odor, angular CLAY, (7.5YR 7/1) light gray, soft, wet, no odor, Chalky. 6 0.0 3 **FILL** wet NSB-D4-6.0-6.5 0.0 FILL NO RECOVERY 8 EQUIS WORK/PPG 2.5 0.0 3 FILL fine to coarse SAND, little silt, (7.5YR 6/1) gray, wet, no wet odor 0.0 wet 3 FILL NSB-D4-10.5-11.0 **DOCUMENTS/MY** CLAY, (7.5YR 7/1) light gray, medium soft, wet, no odor 11 12 4.3 wet 3 FILL CLAY, trace coarse sand, (7.5YR 2.5/1) black, soft, wet NSB-D4-12.0-12.5 slight petroleum odor, (Canal Bottom)
SILT, little fine sand, (7.5YR 4/1) dark gray, soft, wet , 0.0 wet 8 ML ML 13 SETTINGS/STANCHAKM/MY no odor NO RECOVERY 14 15 0.0 wet 9 CL silty CLAY, (5GY 5/1) greenish gray, stiff, wet, no odor 16 0.0 wet 10 ML SILT, little fine to medium gravel, (7.5YR 5/4) brown, NSB-D4-16.5-17.0 C:\DOCUMENTS AND very stiff, wet, no odor, subangular 17 0.0 SW fine to medium SAND, little fine to medium gravel, wet 11 (2.5YR 5/4) reddish brown, dense, wet, no odor, 18 SW angular **NO RECOVERY** 19 3.9 13:39 -20 NSB-D4-20.0-20.5 fine to medium SAND, little silt, (2.5YR 4/4) reddish wet 10 SM brown, medium dense, wet, no odor A.GDT - 10/10/12 21 0.0 fine to coarse GRAVEL, some fine to coarse sand, wet 11 GW (2.5YR 4/4) reddish brown, dense, wet, no odor fine to coarse GRAVEL, (2.5YR 4/4) reddish brown, 11 GW wet 22 dense, wet, no odor, angular LOGS 23 2012-09 RI PPG 24 NO RECOVERY GW 25 End of boring at 25 ft.

Comments: No GGM/COPR identified at this location. Canal bottom encountered at 11.9 ft.

Piscataway, NJ 08854

Comments: No GGM/COPR identified at this location. No canal bottom encountered.

## **Boring ID: NSB-D5**

Page: 1 Project Name: PPG Garfield Ave **Drilling Company:** SGS North America Project Number: 60213772 Drilling Method: Soft Dig/Geoprobe Coordinates (NJSPNAD83) x: 612051 Date Started Drilling: 8/20/2012 9:10:00 AM Rig Type: Vacmaster 4000/66DT Coordinates (NJSPNAD83) y: 685112.875 Date Finished Drilling: 8/20/2012 11:40:00 AM Core Size: 2 in Boring Total Depth: 25 ft Logged By: Ben Daniels Depth to Water: 4.5 Project Manager: Chris Martell Physical Location: NORTHERN CANAL (Note bgs = below ground surface) Depth Recovery PID Moisture GA Graphic Sample Range **USCS** Surface Cover and Thickness: Content |Class (ft/ft) (ppm) Log ID (ft bgs) BORINGS.GPJ 0.0 dry 3 FILL fine to coarse silty SAND, some fine to coarse gravel trace Organics and trace brick, (7.5YR 3/2) dark brown, loose, dry no odor, angular ASH, CINDERS, SLAG fine to coarse SAND, little fine 0.0 FILL dry 6 SITES/NSB to coarse gravel trace glass, organics, (7.5YR 3/1) very 2 dark gray, dry to wet, no odor, wet @ 4.5' GROUP OF 3 NSB-D5-3.0-3.5 JERSEY/GARFIELD AVENUE 1.9 11.1 FILL fine to coarse GRAVEL, dense, wet, slight napthalene wet 3 0.0 odor, angular 3 **FILL** fine to medium SAND, little fine gravel, (5YR 2.5/1) black, wet , no odor, angular clayey SILT, (10YR 3/2) very dark grayish brown, moist , 0.0 moist 3 FILL NSB-D5-6.4-6.9 0.0 **FILL** NO RECOVERY 8 EQUIS WORK/PPG 3.8 0.0 12 OL clayey SILT, (10YR 3/2) very dark grayish brown, dry, dry no odor **DOCUMENTS/MY** 11 12 0.0 NSB-D5-12.0-12.5 9 CLAY, (5GY 4/1) dark greenish gray, dry, no odor dry OH 13 SETTINGS/STANCHAKM/MY 0.0 SW fine to medium SAND, (5GY 6/1) greenish gray, dry, no dry 8 14 SW NO RECOVERY 15 0.0 moist 10 SW fine to coarse SAND, some fine to medium gravel, (5YR NSB-D5-15.0-15.5 4/3) reddish brown, moist, no odor, angular 0.0 moist 8 SW 16 fine to medium SAND, (5YR 6/1) gray, moist, no odor C:\DOCUMENTS AND 17 0.0 coarse GRAVEL, (7.5YR 4/3) brown, wet, no odor, 11 GP wet SW 0.0 wet 10 subangular fine to coarse SAND, little gravel, (5YR 4/3) reddish 18 NSB-D5-18.0-18.5 brown, wet, no odor, subangular, little medium to fine sub angular gravel 19 SW NO RECOVERY 3 13:39 -20 0.0 fine to coarse SAND, some gravel, (5YR 4/3) reddish NSB-D5-20.0-20.5 wet 10 SW brown, wet, no odor, subangular A.GDT - 10/10/12 21 22 LOGS 23 NO RECOVERY SW 2012-09 RI PPG 24 25 End of boring at 25 ft.

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

## **Boring ID: NSB-E1**

Project Name: PPG Garfield Ave Drilling Company: SGS North America

Project Number: 60213772 Drilling Method: Soft Dig/Geoprobe Coordinates (NJSPNAD83) x: 611951.875

Date Started Drilling: 8/24/2012 9:20:00 AM Rig Type: Vacmaster 4000/66DT Coordinates (NJSPNAD83) y: 685089.5

Date Finished Drilling: 8/24/2012 10:45:00 AM Core Size: 2 in Boring Total Depth: 25 ft

Logged By: Ben Daniels Project Manager: Chris Martell Depth to Water: 5.2

|                            | Ben D               |              |                     |             |         | Project i      | Manager: Chris Martell                                                 | Depth to Water: 5.2      |                      |
|----------------------------|---------------------|--------------|---------------------|-------------|---------|----------------|------------------------------------------------------------------------|--------------------------|----------------------|
| Physical                   | Location:           | NORT         | HERN CA             | NAL         |         |                |                                                                        | (Note has = h            | elow ground surface) |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS    | Graphic<br>Log | Surface Cover and                                                      |                          | Sample<br>ID         |
|                            |                     | 0.0          |                     | 2           | ASPHAL1 | ~~~~~          | ASPHALT                                                                | _                        |                      |
|                            | 1                   | 0.0          | dry                 | 3           | FILL    |                | 2 inch road gravel                                                     |                          |                      |
| - 1                        |                     | 0.0          | dry                 | 3           | FILL    |                | fine to coarse SAND, some fine t                                       |                          |                      |
| _                          |                     | 0.0          |                     | 3           | FILL    |                | material, (7.5YR 4/3) brown, dry Glass, brick, concrete.               | , no odor, angular,      |                      |
| – 2 –                      | 1                   | 0.0          | moist               | 3           | FILL    |                | fine to medium SAND, some silt                                         | and fine to coarse       | NSB-E1-2.0-2.5       |
| _                          | 1                   | 0.0          | moist               | 3           | FILL    |                | √ gravel, (7.5YR 4/3) brown, dry , n                                   |                          |                      |
| - 3 <del></del>            | 1                   | 0.0          | moist               | 3           | FILL    |                | ∖\brick, glass, coal                                                   |                          |                      |
| _                          | -                   | 0.0          | IIIOISt             |             | 1166    |                | silty SAND, little fine to medium (                                    |                          |                      |
| - 4 <del></del>            | 1                   | 0.0          | moint               | 3           | FILL    |                | \\(7.5YR 4/3) brown, moist, no ode silty SAND, some fine to coarse     | gravel and fill material | NSB-E1-4.0-4.5       |
| _                          | 1                   | 0.0          | moist               | 3           | FILL    |                | 7/(7.5YR 4/2) brown, moist , no ode                                    |                          | 1100 21 4.0 4.0      |
| - 5 —                      | 1                   | 0.0          | moist               |             |         |                | ¬∭(glass, brick, debris, shells)                                       |                          |                      |
| _                          |                     | 0.0          | moist<br>wet        | 3           | FILL    |                | FILL MATERIAL, moist , no odor                                         | , (brick, cobble,        |                      |
| - 6                        | -                   | 0.0          | WCt                 | 3           | FILL    |                | construction debris) silty SAND, and fine to coarse gr                 | avel same fill meterial  |                      |
| _                          |                     | 0.0          |                     |             | FILL    |                | (7.5YR 3/2) dark brown, moist, r                                       |                          |                      |
| - 7                        | 1                   |              |                     |             |         |                | debris, brick)                                                         | io odor, (oodi, motal,   |                      |
| -                          | 4                   |              |                     |             |         |                | silty SAND, little fine to medium                                      |                          |                      |
| - 8 <del></del>            | 4                   |              |                     |             |         |                | (7.5YR 4/2) brown, moist , no od                                       | or, angular              |                      |
| _                          | 1                   |              |                     |             |         |                | silty SAND, (7.5YR 3/2) dark brown, no odor, wet at 5.2 ft.            | wn, loose, moist to wet  |                      |
| _ 0                        |                     |              |                     |             |         |                | CLAY, (9.5/2.5Y_/1) white, stiff, v                                    | vet no odor Chalky       |                      |
| J _                        |                     |              |                     |             |         |                | SILT, some fine to coarse sand li                                      | ttle fine gravel, soft   |                      |
| 10                         | 3.5                 |              |                     |             |         |                | NO RECOVERY                                                            | <u> </u>                 |                      |
| – 10 <del>––</del>         |                     | 5.9          | wet                 | 3           | FILL    |                | silty SAND, and wood fragments                                         |                          | NSB-E1-10.0-10.5     |
| -                          | 1                   | 0.0          | moist               | 9           | CL      |                | dark brown, medium dense, wet                                          | , slight petroleum odor  |                      |
| - 11                       | 1                   |              |                     |             |         |                | silty CLAY, trace medium gravel,                                       |                          |                      |
| -                          |                     |              |                     |             |         |                | medium stiff, moist, no odor, and 10.5 ft. to 10.8 ft.                 | gular, Trace gravel at   |                      |
| – 12 <del>––</del>         |                     |              |                     |             |         |                | 10.5 11. 10 10.0 11.                                                   |                          |                      |
| _                          |                     |              |                     |             |         |                |                                                                        |                          | NSB-E1-12.5-13.0     |
| – 13 —                     |                     |              |                     |             |         |                |                                                                        |                          |                      |
| _                          |                     |              |                     |             | CL      |                | NO RECOVERY                                                            |                          |                      |
| − 14 <del>−−</del>         | 1                   |              |                     |             | OL      |                | NOTICOOVERT                                                            |                          |                      |
| _                          | 3.2                 |              |                     |             |         |                |                                                                        |                          |                      |
| − 15 <del>−−</del>         | 3.2                 | 0.0          | moist               | 9           | ML      | //////         | SILT, (7.5YR 4/1) dark gray, mois                                      | et no odor               |                      |
| _                          | -                   | 0.0          | moist               | 9           | ML      |                | SILT, (7.5YR 5/1) gray, moist , no                                     |                          |                      |
| – 16 <del>––</del>         | 1                   | 0.0          | wet                 | 8           | SW      |                | fine to medium SAND, little fine to                                    | o medium gravel,         | NSB-E1-16.0-16.5     |
| _                          | -                   | 0.0          | wet                 | 8           | SW      | *******        | $\setminus$ (7.5YR 5/1) gray, medium dense                             | , wet , no odor,         | NOD-L 1-10.0-10.5    |
| – 17 <del>––</del>         | -                   |              |                     |             |         |                | subangular                                                             | a madium graval (100     |                      |
| _                          | -                   | 0.0          |                     | 40          | 0.0     |                | fine to medium SAND, little fine to 6/1) greenish gray, dense, wet . r |                          |                      |
| – 18 <del>––</del>         | 4                   | 0.0          | moist               | 10          | SP      |                | fine SAND, (10YR 5/6) yellowish                                        |                          |                      |
| _                          | 4                   |              |                     |             | SP      |                | \no odor                                                               |                          |                      |
| – 19 <del>––</del>         | 4                   |              |                     |             |         |                | NO RECOVERY                                                            |                          |                      |
| _                          | 1                   |              |                     |             |         |                |                                                                        |                          |                      |
| - 20 <del></del>           | 2.8                 | 0.0          |                     |             |         |                |                                                                        |                          | NOD E4 00 0 00 =     |
| _                          | 1                   | 0.0          | wet                 | 11          | GW      |                | fine to medium SAND, and fine to                                       |                          | NSB-E1-20.0-20.5     |
| – 21 —                     | 1                   |              |                     |             |         |                | (2.5YR 4/3) reddish brown, dense<br>subangular                         | e, wet , no odor,        |                      |
|                            | 1                   | 0.0          | wet                 | 10          | SP      |                | medium SAND, (2.5YR 4/4) redd                                          | ish hrown dense wot      |                      |
| – 22 —                     |                     | 5.5          | wel                 | '0          | JF.     |                | no odor                                                                | ion blown, ucilse, wel,  |                      |
|                            |                     | 0.0          | wet                 | 11          | GW      |                | fine to medium GRAVEL, little fin                                      |                          |                      |
| _ ??<br>_                  |                     |              |                     |             |         | 1              | (2.5YR 4/3) reddish brown, dense                                       | e, wet , no odor,        |                      |
| – 23 —                     |                     |              |                     |             | GW      |                | angular                                                                |                          |                      |
|                            |                     |              |                     |             |         |                | NO RECOVERY                                                            |                          |                      |
| – 24 ––                    | 1                   |              |                     |             |         | . • • .        |                                                                        |                          |                      |
| _                          | 1                   |              |                     |             |         | . 6.           |                                                                        |                          |                      |
| − 25 −−                    |                     |              |                     |             |         |                | End of boring at 25 ft.                                                |                          |                      |
|                            |                     |              |                     |             |         | 1              |                                                                        |                          |                      |

## **Boring ID: NSB-E2**

30 Knightsbridge Road, Piscataway, NJ 08854 Page: 1 Project Name: PPG Garfield Ave **Drilling Company:** SGS North America Project Number: 60213772 Drilling Method: Soft Dig/Geoprobe Coordinates (NJSPNAD83) x: 611967.4375 Date Started Drilling: 8/24/2012 10:05:00 AM Rig Type: Vacmaster 4000/66DT Coordinates (NJSPNAD83) y: 685084.0625 Date Finished Drilling: 8/24/2012 1:40:00 PM Core Size: 2 in Boring Total Depth: 25 ft Logged By: Ben Daniels Depth to Water: 5.3 Project Manager: Chris Martell Physical Location: NORTHERN CANAL (Note bgs = below ground surface) Depth Recovery PID Moisture GA Graphic Sample Range **USCS** Surface Cover and Thickness: (ft/ft) (ppm) Content Class Log ID (ft bgs) BORINGS.GPJ ASPHAL **ASPHALT** 0.0 dry 3 FILL silty SAND, little fine to coarse gravel and fill material, (7.5YR 4/2) brown, dry, no odor, angular, (Glass, brick, NSB-E2-1.0-1.5 SITES/NSB coal, debris) 0.0 3 **FILL** silty SAND, some fine to coarse gravel and cobbles. moist 2 (7.5YR 4/1) dark gray, moist, no odor, little glass, GROUP OF 3 fine to medium SAND, some fine to medium gravel and 0.0 FILL moist fill material, (7.5YR 5/1) gray, moist , no odor, angular, (Glass, wood fragments, ash, debris) 0.0 NSB-E2-4.0-4.5 **FILL** moist 3 silty SAND, some fine to coarse gravel and fill material, IELD AVENUE (7.5YR 4/1) dark gray, moist, no odor, angular, (Coal, 5 0.0 ash, debris, slag) fine to medium SAND, little fine to medium gravel, **FILL** moist 3 0.0 3 FILL wet (7.5YR 4/1) dark gray, medium dense, moist to wet no 6 **JERSEYIGARFI** odor, angular, Wet at 5.3 SILT, and fine sand little fine to medium gravel, (7.5YR 4/2) brown, soft, wet, no odor, angular **FILL** NO RECOVERY 8 EQUIS WORK/PPG 0.0 3 **FILL** silty SAND, some fine to medium gravel, (7.5YR 3/1) very dark gray, dense, wet, no odor, angular, little coal **DOCUMENTS/MY** 0.0 wet 3 **FILL** fine to coarse SAND, and fine gravel trace coal, (7.5YR 11 4/1) dark gray, medium dense, wet, no odor, angular 12 0.0 CLAY, trace wood fragments and coal, (7.5YR 4/1) dark 3 **FILL** moist NSB-E2-12.5-13.0 gray, moist, no odor, (Canal bottom) 13 SETTINGS/STANCHAKM/MY FILL NO RECOVERY 14 3.2 15 3 FILL fine SAND, trace wood fragments little silt, (7.5YR 5/1) wet gray, medium dense, wet, no odor GM 16 wet 11 fine to medium SAND, some fine to medium gravel little NSB-E2-16.0-16.5 silt, (2.5YR 4/3) reddish brown, very dense, wet, no 0 odor, angular C:\DOCUMENTS AND 17 18 NO RECOVERY GM 19 0 2.8 13:39 -20 fine to coarse SAND, and fine to medium GRAVEL, wet 11 GW 8 SW (2.5YR 4/3) reddish brown, dense, wet, no odor, A.GDT - 10/10/12 wet 21 wet 11 GW àngular NSB-E2-21.0-21.5 fine to medium SAND, (10G 7/1) light greenish gray, dense, wet, no odor 22 fine to medium SAND, and fine to medium gravel, (2.5YR 4/3) reddish brown, dense, wet, no odor, LOGS 23 angular 2012-09 RI PPG 24 25 End of boring at 25 ft.

Comments: No GGM/COPR identified at this location. Canal bottom encountered at 13.0 ft.

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

**Boring ID: NSB-E3** 

Page: 1 Project Name: PPG Garfield Ave Drilling Company: SGS North America

Project Number: 60213772

Date Started Drilling: 8/24/2012 10:50:00 AM Drilling Method: Soft Dig/Geoprobe Coordinates (NJSPNAD83) x: 611984.875 Rig Type: Vacmaster 4000/66DT Coordinates (NJSPNAD83) y: 685077.75 Date Finished Drilling: 8/24/2012 11:41:00 AM Boring Total Depth: 25 ft Core Size: 2 in

Logged By: Ben Daniels Depth to Water: 5.1 Project Manager: Chris Martell

| Dareth                                         |                     |                                 |                             |           |                               |                | (Note bgs = b                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
|------------------------------------------------|---------------------|---------------------------------|-----------------------------|-----------|-------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Depth<br>Range<br>(ft bgs)                     | Recovery<br>(ft/ft) | PID<br>(ppm)                    | Moisture<br>Content         |           | USCS                          | Graphic<br>Log | Surface Cover and Thickness:                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample<br>ID    |
|                                                |                     | 0.0                             |                             | 2         | ASPHALT                       | 2 4 A 2 t      | ASPHALT                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| - 1<br>- 2<br>- 3<br>- 1                       |                     | 0.0                             | dry                         | 3         | ONCRET<br>FILL                |                | CONCRETE, and BRICK fine to coarse SAND, some fine to coarse gravel little silt, (7.5YR 3/2) dark brown, dry , no odor, angular, Some glass, brick, concrete, coal, debris                                                                                                                                                                                                                                                                                     | NSB-E3-0.5-1.0  |
| -<br>- 5 —                                     | 2.6                 | 0.0                             | moiot                       | 3         | EII I                         |                | ailty SAND come medium gravel (EVD 2/2) dark                                                                                                                                                                                                                                                                                                                                                                                                                   | NSB-E3-4.0-4.5  |
| - 6                                            | 0.8                 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | moist moist wet wet wet wet | 3 3 3 3 3 | FILL FILL FILL FILL FILL FILL |                | silty SAND, some medium gravel, (5YR 3/3) dark reddish brown, dense, moist to wet, no odor, angular, Wet at 5.1  CLAY, (7.5YR 7/1) light gray, stiff, moist, no odor, Chalky, light gray to white at 5.8 ft.  fine to coarse SAND, (7.5YR 6/1) gray, dense, wet, no odor  CLAY, (9/2.5Y_/1) white, stiff, wet, no odor, Chalky fine to coarse SAND, (7.5YR 6/1) gray, medium dense, wet, no odor  CLAY, (9.5/N) white, stiff, wet, no odor, Chalky NO RECOVERY | NSB-E3-5.5-6.0  |
| – 10 <del>––</del>                             | 0.0                 | 2.2                             | wet                         | 3         | FILL                          |                | silty CLAY, trace fill material, (5YR 2.5/1) black, soft, wet , slight petroleum odor, Trace shredded tar paper,                                                                                                                                                                                                                                                                                                                                               | NSB-E3-10.0-10. |
|                                                | 2                   | 0.0                             | wet                         | 3         | FILL                          |                | ceramic. NO RECOVERY  silty CLAY, trace fill material, (5YR 2.5/1) black, soft,                                                                                                                                                                                                                                                                                                                                                                                |                 |
| -<br>- 16                                      |                     | 0.0                             | moist                       | 3         | FILL                          |                | wet , moderate petroleum odor, (glass, rubber) (Canal Bottom)                                                                                                                                                                                                                                                                                                                                                                                                  |                 |
| - 17 —<br>- 17 —<br>- 18 —<br>- 19 —<br>- 20 — | 2.6                 | 0.0                             | wet                         | 8         | SM                            |                | silty CLAY, trace fill material, (7.5YR 4/1) dark gray, soft, moist , no odor, (rubber) fine silty SAND, trace fine to medium gravel, (7.5YR 5/1) gray, dense, wet , no odor, angular NO RECOVERY                                                                                                                                                                                                                                                              | NSB-E3-16.0-16. |
| _                                              |                     | 0.0                             | wet                         | 8         | SW                            |                | fine to medium SAND, (7.5YR 6/2) pinkish gray, dense, wet , no odor                                                                                                                                                                                                                                                                                                                                                                                            | NSB-E3-20.0-20. |
| - 21 —<br>-<br>- 22 —                          |                     | 0.0                             | wet                         | 10        | GW                            |                | fine to coarse SAND, some fine to coarse gravel, (2.5YR 4/3) reddish brown, dense, wet , no odor                                                                                                                                                                                                                                                                                                                                                               |                 |
| - 23 —<br>- 24 —<br>- 24 —                     |                     |                                 |                             |           | GW                            |                | NO RECOVERY                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| – 25 ––                                        |                     |                                 |                             |           |                               |                | End of boring at 25 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

## **Boring ID: NSB-E4**

Project Name: PPG Garfield Ave Drilling Company: SGS North America
Project Number: 60213772 Drilling Method: Soft Dig/Geoprobe Coordinates (NJSPNAD83) x: 612004.1875
Date Started Drilling: 8/24/2012 9:51:00 AM Rig Type: Vacmaster 4000/66DT Coordinates (NJSPNAD83) y: 685070.375
Date Finished Drilling: 8/27/2012 9:51:00 AM Core Size: 2 in Boring Total Depth: 25 ft
Logged By: Ben Daniels Project Manager: Chris Martell Depth to Water: 5.6

| Depth                                     | _                   | DID          |                     |    |          |                     |                                                                                                                                                                |                |
|-------------------------------------------|---------------------|--------------|---------------------|----|----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Range<br>(ft bgs)                         | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content |    | USCS     | Graphic<br>Log      | Surface Cover and Thickness:                                                                                                                                   | Sample<br>ID   |
| -<br>- 1 <del></del><br>-                 |                     | 0.0          | dry                 | 3  | FILL     |                     | fine to coarse SAND, and fine to coarse GRAVEL with cobbles, (7.5YR 3/2) dark brown, dry, no odor, angular, (concrete, brick debris, scrap metal, coal, glass) | NSB-E4-1.0-1.5 |
| - 2 —<br>-<br>- 3 —                       |                     | 0.0          | dry                 | 3  | FILL     |                     | silty SAND, some fine to coarse gravel with cobbles,                                                                                                           | _              |
| - 4 <del></del>                           | 3.1                 |              |                     |    |          |                     | (7.5YR 4/2) brown, dry , no odor, angular, Trace fill material (coal, metal, slag, brick,)                                                                     | NSB-E4-4.0-4.5 |
| - 5 —<br>_                                | <u> </u>            | 0.0          | moist               | 3  | FILL     |                     | ASH, and CINDERS, medium dense, moist , no odor,                                                                                                               |                |
| - 6 —<br>-<br>- 7 —                       |                     | 0.0          | wet                 | 3  | FILL     |                     | Trace slag, no color. CLAY, (7.5YR 8/1) white, stiff, wet, Chalky, crushed fill at 6.2 ft- 6.3ft, and 7.2 ft. to 7.3 ft. Wet 5.6 ft.                           | NSB-E4-6.5-7.0 |
| - 8 —<br>-<br>- 9 —                       |                     |              |                     |    | FILL     |                     | NO RECOVERY                                                                                                                                                    | _              |
| -<br>10 —                                 | 3.1                 |              |                     |    |          |                     |                                                                                                                                                                |                |
| - 11 —                                    |                     | 0.0          | wet<br>wet          | 3  | FILL     |                     | clayey SAND, some fine to medium gravel, (10YR 7/1) light gray, medium dense, wet , no odor, angular CLAY, (7.5YR 8/1) white, stiff, wet , no odor, Chalky     | -              |
| -                                         | -                   | 0.0          |                     | 3  | FILL     |                     | silty SAND, little clay trace fine to medium gravel,                                                                                                           | 1              |
| - 12 —<br>-<br>- 13 —                     |                     |              |                     |    |          |                     | (7.5YR 2.5/1) black, slight petroleum odor, angular, Slight sheen. Some wood fragments at 12.6 ft13.1 ft.                                                      | NSB-E4-12.0-12 |
| -<br>- 14                                 |                     |              |                     |    | FILL     |                     | NO RECOVERY                                                                                                                                                    |                |
| 15 —                                      | 3                   | 0.0          | wet                 | 3  | FILL     |                     | CLAY, some wood fragments trace coal, (5YR 3/1) very                                                                                                           |                |
| -<br>- 16 <del></del>                     |                     | 0.0          | moist               | 9  | ML       |                     | dark gray, soft, wet , no odor, (Canal Bottom) SILT, (10Y 5/1) greenish gray, stiff, moist , no odor                                                           | NSB-E4-16.0-16 |
| - 17 —<br>–                               |                     | 0.0          | wet                 | 10 | SW-SM    |                     | fine to medium silty SAND, some fine to medium gravel, (2.5YR 4/3) reddish brown, dense, wet , no odor,                                                        | _              |
| - 18 <del></del><br>-<br>- 19 <del></del> |                     |              |                     | Ų  | INKNOWI  | V                   | angular<br>NO RECOVERY                                                                                                                                         | -              |
| -<br>- 20 —                               | 3.5                 | 0.0          |                     | 40 | 014/ 014 | *,*,* * * *         | o'th OAND come fire to made in a second (O. EVD 4/4)                                                                                                           | _              |
| -<br>21 —<br>-                            |                     | 0.0          | wet                 | 10 | SW-SM    |                     | silty SAND, some fine to medium gravel, (2.5YR 4/4) reddish brown, dense, wet , no odor, angular                                                               | NSB-E4-21.0-21 |
| - 22 —<br>-<br>- 23 —                     |                     |              |                     |    |          |                     |                                                                                                                                                                |                |
| -<br>24 —<br>-                            |                     |              |                     |    | SW-SM    |                     | NO RECOVERY                                                                                                                                                    | -              |
| 25 —                                      |                     |              |                     |    |          | · · · ·   ·   ·   · | End of boring at 25 ft.                                                                                                                                        |                |



30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

## **Boring ID: NSB-E5**

Page: 1

Project Name: PPG Garfield Ave Drilling Company: SGS North America Project Number: 60213772 Drilling Method: Soft Dig/Geoprobe Coordinates (NJSPNAD83) x: 612026.375 Date Started Drilling: 8/20/2012 10:00:00 AM Coordinates (NJSPNAD83) y: 685058.25

Rig Type: Vacmaster 4000/66DT Core Size: 2 in Date Finished Drilling: 8/21/2012 8:50:00 AM Boring Total Depth: 6 ft

| Physical Location   NoRTHERN CANAL   Statistical Communication   Communicati | Logged E         | By: Ben D | aniels       | 2 172012 0 |             |      | Project M      | lanager: Chris Martell           | Depth to Water: 5.5                                        |                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|--------------|------------|-------------|------|----------------|----------------------------------|------------------------------------------------------------|----------------------|
| Depth Range (ft bgs) Recovery (ft/ft) PID (ppm) Moisture Content Class USCS Graphic Log Surface Cover and Thickness: Sample (ID)  O.0 moist 3 FILL fine to coarse SAND, some silt and fine to coarse gravel, (10YR 4/3) brown, non plastic loose, moist , no odor, angular, Trace organics  O.0 dry 3 FILL fine to coarse SAND, some gravel coal, (5Y 2.5/1) black, dry no odor, angular, Some gravel, fill (coal, slag, ash, cinders)  NSB-E5-3.0-3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Physical         | Location: | NORT         | HERN CA    | NAL         |      |                |                                  | (Note bas = b                                              | elow ground surface) |
| gravel, (10YR 4/3) brown, non plastic loose, moist, no odor, angular, Trace organics  0.0 dry 3 FILL fine to coarse SAND, some gravel coal, (5Y 2.5/1) black, dry no odor, angular, Some gravel, fill (coal, slag, ash, cinders)  NSB-E5-3.0-3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Range            |           | PID<br>(ppm) |            | GA<br>Class | USCS | Graphic<br>Log | Surface Cover and                |                                                            | Sample               |
| fine to coarse SAND, some gravel coal, (5Y 2.5/1) black, dry no odor, angular, Some gravel, fill (coal, slag, ash, cinders)  NSB-E5-3.0-3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1 <del>-</del> |           | 0.0          | moist      | 3           | FILL |                | gravel, (10YR 4/3) brown, non pl | and fine to coarse<br>lastic loose, moist , no             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                |           | 0.0          | dry        | 3           | FILL |                | dry no odor, angular, Some grav  | rel coal, (5Y 2.5/1) black,<br>rel, fill (coal, slag, ash, | NSB-E5-3.0-3.5       |
| Refusal at 6 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 4<br>- 5       |           |              |            |             |      |                |                                  |                                                            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 6 <del></del>  |           |              |            |             |      |                | Refusal at 6 ft                  |                                                            |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |           |              |            |             |      |                |                                  |                                                            |                      |

30 Knightsbridge Road, Piscataway, NJ 08854

## **Boring ID: NSB-F1**

| Project N                  | ame: PP<br>umber: 6 | 021377       | '2                  |        |                      | Drilling                                     |                                                                                                                     | pordinates (NJSPNAD83    |                      |
|----------------------------|---------------------|--------------|---------------------|--------|----------------------|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|
|                            |                     |              | 7/2012 1:3          |        |                      |                                              |                                                                                                                     | oordinates (NJSPNAD83)   |                      |
|                            |                     |              | 27/2012 2           | :55:00 | PM                   | Core Siz                                     |                                                                                                                     | oring Total Depth: 25 ft |                      |
|                            | y: Ben D            |              |                     |        |                      | Project                                      | Manager: Chris Martell De                                                                                           | epth to Water: 5.1       |                      |
| Physical                   | _ocation:           | NORI         | HERN CA             | NAL    |                      |                                              |                                                                                                                     | (Note has = h            | elow ground surface) |
| <b>5</b>                   |                     |              |                     |        |                      |                                              |                                                                                                                     | (HOLE 983 – P.           | cion ground surface, |
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content |        | USCS                 | Graphic<br>Log                               | Surface Cover and Thi                                                                                               | ckness:                  | Sample<br>ID         |
|                            |                     | 0.0          | moist               | 2      | ASPHAL1              |                                              | ASPHALT                                                                                                             |                          |                      |
| - 1 <del></del>            |                     | 0.0          | moist               | 3      | FILL                 |                                              | silty SAND, some fine to coarse gra<br>(7.5YR 4/2) brown, moist to dry, no                                          | odor, angular,           | NSB-F1-1.0-1.5       |
| - 2 <del>-</del>           |                     | 0.0          |                     | 3      | FILL                 |                                              | (Brick, ceramic, debris, metal, coal, BRICK, Remains of brick wall.                                                 | wood fragments)          |                      |
| - 3 <del></del><br>-       |                     | 0.0          | dry                 | 3      | FILL                 |                                              | silty SAND, little fine to medium grav<br>(7.5YR 4/1) dark gray, dry, no odor,                                      |                          |                      |
| - 4 <del></del>            | 1 0                 | 0.0          | moist               | 3      | FILL                 |                                              | coal, sandy SILT, trace fine to medium gr                                                                           |                          | NSB-F1-4.0-4.5       |
| - 5 <del></del>            | 1.8                 | 0.0          | moist               | 3      | FILL                 |                                              | dark brown, moist , no odor, subang<br>fragments, coal, brck)                                                       | uiai, (WUUU              |                      |
| _<br>_ 6 —                 |                     | 0.0          | wet                 | 3      | FILL                 |                                              | fine to coarse SAND, little silt, (7.5Y medium dense, moist to wet, no od                                           |                          |                      |
| - 7 <del>-</del><br>- 7 -  |                     |              |                     |        | FILL                 |                                              | \(\coal,\), wet at 5.1 ft.<br>CLAY, trace wood fragments, (5Y 8/<br>no odor, Chalky.<br>NO RECOVERY                 | (1) white, stiff, wet ,  |                      |
| - 8<br>- 9<br>9            | 1.5                 |              |                     |        |                      |                                              |                                                                                                                     |                          |                      |
| – 10 <del>––</del>         | 1.0                 | 0.0          | wet                 | 3      | FILL                 |                                              | silty CLAY, little wood fragments and                                                                               | d brick (7.5YR 4/1)      | NSB-F1-10.0-10       |
| _<br>_ 11 —                |                     |              | WOL                 |        |                      |                                              | dark gray, soft, wet , no odor, Trace                                                                               | nails.                   |                      |
| _<br>_ 12 <del></del>      |                     | 0.0          | wet<br>wet<br>wet   | 3 3    | FILL<br>FILL<br>FILL |                                              | COAL, trace wood fragments, dense<br>fine to coarse SAND, little fine to me<br>(6/2) pinkish gray, medium dense, we | edium gravel, (7.5YR //  |                      |
| - 13 —<br>- 13 —           |                     | 0.0          | wet                 |        | FILL                 |                                              | fine to coarse SAND, some fine to m<br>brick, (2.5YR 4/8) red, medium dens<br>subangular<br>NO RECOVERY             | nedium gravel and        |                      |
| - 14<br>-<br>- 15          | 2.9                 |              |                     |        |                      |                                              | NO NEGOVERY                                                                                                         |                          |                      |
| 13                         |                     | 0.0          | moist               | 3      | CL                   | <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i> | CLAY, (7.5YR 4/1) dark gray, stiff, n                                                                               | noist , no odor          |                      |
| – 16 <del>––</del>         |                     | 0.0          | moist               | 9      | CL                   |                                              | silty CLAY, (7.5YR 6/1) gray, very st                                                                               | iπ, moist , no odor      |                      |
| - 10<br>-<br>- 17          |                     | 0.0          | moist               | 10     | ML                   |                                              | SILT, little fine gravel, (2.5YR 3/1) d                                                                             |                          | NSB-F1-16.0-16       |
| _                          |                     | 0.0          | wet                 | 10     | SP                   |                                              | (7.5YR 5/6) strong brown, very stiff, angular, Mottled Strong Brown and (                                           | Gray (7.5YR 5/1)         |                      |
| – 18 <del>––</del>         |                     | 0.0          | moist               | 9      | ML                   |                                              | fine SAND, (7.5YR 5/6) strong brown wet, no odor                                                                    | . //                     |                      |
| - 19 - <del></del>         |                     |              |                     |        | ML                   |                                              | clayey SILT, (7.5YR 6/2) pinkish gra<br>odor<br>NO RECOVERY                                                         | y, stiff, moist , no     |                      |
| – 20 —                     | 3.2                 | 0.0          | wet                 | 10     | SP                   |                                              | fine SAND, little silt, (7.5YR 5/4) bro                                                                             | wn, dense. wet . no      | NSB-F1-20.0-20       |
| -<br>- 21<br>-             |                     |              |                     |        |                      |                                              | odor                                                                                                                | , , ,                    |                      |
| – 22 —<br>–                |                     | 0.0          | wet                 | 11     | GW                   | .75.                                         | fine SAND, and fine to medium grav                                                                                  |                          |                      |
| - 23 —<br>_                |                     | 0.0          | wet                 | 11     | SW<br>SW             |                                              | reddish brown, wet, no odor, subang<br>fine to medium SAND, some fine to                                            | medium gravel,           |                      |
| - 24 - <del>-</del>        |                     |              |                     |        | J.,                  |                                              | (2.5YR 5/4) reddish brown, dense, wangular NO RECOVERY                                                              | ver, no odor,            |                      |
| - 25                       |                     |              |                     |        |                      |                                              | End of boring at 25 ft.                                                                                             |                          |                      |
|                            |                     |              | 1                   | 1      |                      | 1                                            | =                                                                                                                   |                          |                      |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

## **Boring ID: NSB-F2**

Page: 1

| Project Name: PPG Garfield Ave               | Drilling Company: SGS North America | Ĭ                                     |
|----------------------------------------------|-------------------------------------|---------------------------------------|
| Project Number: 60213772                     | Drilling Method: Soft Dig/Geoprobe  | Coordinates (NJSPNAD83) x: 611937.75  |
| Date Started Drilling: 8/28/2012 12:57:00 PM | Rig Type: Vacmaster 4000/66DT       | Coordinates (NJSPNAD83) y: 685031.125 |
| Date Finished Drilling: 8/28/2012 2:05:00 PM | Core Size: 2 in                     | Boring Total Depth: 25 ft             |
| Logged By: Ben Daniels                       | Project Manager: Chris Martell      | Depth to Water: 5.0                   |
| Physical Location: NORTHERN CANAL            |                                     |                                       |

| Physical                   | Location:           | NORT         | HERN CA             | ANAL    |                 |                | (Note bgs =                                                                                                                                               | below ground surface) |
|----------------------------|---------------------|--------------|---------------------|---------|-----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Depth<br>Range<br>(ft bgs) | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content |         | USCS            | Graphic<br>Log | Surface Cover and Thickness:                                                                                                                              | Sample<br>ID          |
|                            |                     | 0.0          | dry                 | 2       | ASPHALT<br>FILL |                | medium to coarse GRAVEL, little silty sand, (7.5YR 4/2)                                                                                                   |                       |
| - 1 <del>-</del>           | _                   | 0.0          | dry                 | 3       | FILL            |                | brown, dry , no odor, angular<br>silty SAND, some fine to coarse gravel little cobbles,<br>(7.5YR 4/2) brown, dry , no odor, Some brick, coal,            | NSB-F2-1.0-1.5        |
| - 2 <del>-</del>           |                     | 0.0          | moist               | 3       | FILL            |                | glass, debris<br>silty SAND, little fine to coarse gravel and fill material,<br>(7.5YR 4/3) brown, moist , no odor, angular, (Glass,                      | _                     |
| - 3<br>1                   |                     |              |                     |         |                 |                | brick, coal, metal) Trace organics                                                                                                                        |                       |
| . 4<br>. 5                 | 1.1                 |              |                     |         |                 |                |                                                                                                                                                           | NSB-F2-4.0-4.5        |
| - 5 -<br>- 6               |                     | 0.0          | wet                 | 3       | FILL            |                | silty SAND, little fine to medium gravel and fill material, (5YR 4/1) dark gray, loose, wet , no odor, angular, (Brick, coal, wood fragments) Wet at 5ft. | -                     |
|                            |                     |              |                     |         | FILL            |                | NO RECOVERY                                                                                                                                               |                       |
| - 8 <del>-</del>           |                     |              |                     |         |                 |                |                                                                                                                                                           |                       |
| — 9 —                      |                     |              |                     |         |                 |                |                                                                                                                                                           |                       |
| - 10<br>-                  | 2.2                 | 0.0          | wet<br>wet          | 3 7     | FILL            |                | silty SAND, some wood fragments little clay, (7.5YR 4/1) dark gray, loose, wet , no odor, (Dark gray to black)                                            | NSB-F2-10.5-11.0      |
| 11<br>12                   |                     |              |                     |         |                 |                | (Canal Bottom) CLAY, (7.5YR 4/1) dark gray, medium stiff, wet , no odor                                                                                   |                       |
| -<br>13                    |                     |              |                     |         | ОН              |                | NO RECOVERY                                                                                                                                               |                       |
| -<br>14<br>                |                     |              |                     |         |                 |                |                                                                                                                                                           |                       |
| — 15 —<br>-                | 3.3                 |              | moist               | 7       | ОН              |                | CLAY, (7.5YR 3/1) very dark gray, stiff, moist, no odor, Trace organics.                                                                                  | NSB-F2-15.0-15.5      |
| — 16 —<br>-         -      |                     |              | moist               |         | ML              |                | SILT, (7.5YR 5/6) strong brown, very stiff, moist, no odor, Mottled strong brown and light greenish gray (Gley                                            |                       |
| - 17 <del>-</del>          |                     |              | wet<br>wet          | 8<br>10 | SM<br>ML        |                | 2 5BG 7/1).<br>fine silty SAND, (5YR 5/2) reddish gray, very dense, wet                                                                                   | _                     |
| — 18 —                     |                     |              | wet                 | 10      | GM<br>GM        |                | no odor \[ SILT, little fine gravel, (7.5YR 5/6) strong brown, stiff, wet, no odor, subangular \]                                                         | NSB-F2-17.8-18.3      |
| — 19 —<br>·         -      |                     |              |                     |         | CIVI            |                | fine SAND, little fine to medium gravel and silt, (2.5YR 5/2) weak red, dense, wet , no odor, angular NO RECOVERY                                         |                       |
| — 20 —                     | 3.3                 |              | wet                 | 10      | SP              |                | fine SAND, (2.5YR 5/2) weak red, dense, wet , no odor                                                                                                     | -                     |
|                            |                     |              | wet                 | 11      | GW              |                | fine to coarse SAND, and fine to coarse gravel, (2.5YR 5/3) reddish brown, dense, wet, no odor, angular                                                   |                       |
| — 22 —                     |                     |              |                     |         |                 |                |                                                                                                                                                           | NSB-F2-21.5-22.0      |
| - 23<br>                   |                     |              |                     |         | GW              |                | NO RECOVERY                                                                                                                                               |                       |
| 24<br>25                   |                     |              |                     |         |                 |                |                                                                                                                                                           |                       |
| 20                         |                     |              |                     |         |                 |                | End of boring at 25 ft.                                                                                                                                   |                       |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

## **Boring ID: NSB-F3**

Page: 1

| Drilling Company: SGS North America | -                                                                                                     |
|-------------------------------------|-------------------------------------------------------------------------------------------------------|
| Drilling Method: Soft Dig/Geoprobe  | Coordinates (NJSPNAD83) x: 611953.4375                                                                |
| Rig Type: Vacmaster 4000/66DT       | Coordinates (NJSPNAD83) y: 685024                                                                     |
| Core Size: 2 in                     | Boring Total Depth: 25 ft                                                                             |
| Project Manager: Chris Martell      | Depth to Water: 5.5                                                                                   |
|                                     |                                                                                                       |
|                                     | <b>Drilling Method:</b> Soft Dig/Geoprobe <b>Rig Type:</b> Vacmaster 4000/66DT <b>Core Size:</b> 2 in |

| riiysicai                                                           | Location.           | INOINI       | TILIXIN OF          | III         |                             |                    | (Note bgs = b                                                                                                                                        | elow ground surface) |
|---------------------------------------------------------------------|---------------------|--------------|---------------------|-------------|-----------------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Depth<br>Range<br>(ft bgs)                                          | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS                        | Graphic<br>Log     | Surface Cover and Thickness:                                                                                                                         | Sample<br>ID         |
| (ft bgs)                                                            |                     | 0.0          | dry                 | 3           | ASPHAL <sup>-</sup><br>FILL |                    | ASPHALT silty SAND, some fine to coarse gravel and fill material, (7.5YR 4/4) brown, dry , no odor, angular, (ceramic, coal, brick), trace organics. | NSB-F3-1.0-1.5       |
| 2                                                                   |                     | 0.0          | dry                 | 3           | FILL                        |                    | ASH, and CINDERS, dry , no odor, Little slag.                                                                                                        |                      |
| 5 — 4 —<br>5 — 5 —                                                  | 2.9                 | 0.0          | moist               | 3           | FILL                        |                    | silty SAND, little fine to medium gravel and fill material, (7.5YR 4/1) dark gray, moist , no odor, angular, (Ash,                                   | NSB-F3- 4.0-4.5      |
|                                                                     |                     | 0.0          | moist               | 3           | FILL                        |                    | cinders, coal, brick, glass, metal) silty SAND, little fine to medium gravel, (7.5YR 4/2)                                                            |                      |
| - 6 −                                                               |                     | 0.0          | wet                 | 3           | FILL                        |                    | brown, loose, moist to wet , no odor, angular, Wet at 5.5                                                                                            |                      |
| 5 — 3 —<br>5 — 4 —<br>6 — 5 —<br>6 — 7 —                            |                     |              | wet                 | 3           | FILL                        |                    | \tag{rt}, Trace slag. fine to coarse SAND, (7.5YR 4/1) dark gray, medium dense, wet, no odor CLAY, (7.5YR 6/1) gray, medium stiff, wet, no odor,     |                      |
| 8 —<br>9 —<br>5 — 10 —                                              |                     |              | wet                 | 3           | FILL<br>FILL                |                    | Chalky. fine to coarse SAND, (7.5YR 5/1) gray, medium dense, wet , no odor, Crushed fill. NO RECOVERY                                                |                      |
| <u> </u>                                                            | 1.3                 |              |                     |             |                             |                    |                                                                                                                                                      |                      |
| 10 —                                                                | 1.0                 | 131          | wet                 | 3           | FILL                        |                    | fine to coarse SAND, some fine to medium gravel little                                                                                               | NSB-F3-10.0-10.5     |
| 11 —                                                                |                     | 0.0          | wet                 | 3           | FILL                        |                    | fill material, loose, wet , strong sulfur odor, angular,                                                                                             |                      |
|                                                                     |                     | 5.3          | wet                 | 3           | FILL                        |                    | \(\(\)(Wood fragments, paper) \(\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                  |                      |
| 11 — 12 — 13 — 14 — 15 — 16 — 17 — 18 — 18 — 18 — 18 — 18 — 18 — 18 |                     |              |                     |             | FILL                        |                    | CLAY, little fill material, (5YR 2.5/1) black, soft, wet , no odor, (Rubber), (Canal bottom) NO RECOVERY                                             |                      |
| 2 — 14 —<br>2 — — —<br>5 — 15 —                                     | 0.7                 | 0.0          | wat                 | 10          | CM                          |                    | silty SAND, some fine to medium gravel. (2 EVD 4/2)                                                                                                  | NSB-F3-15.0-15.5     |
| <u> </u>                                                            |                     | 0.0          | wet                 | 10          | SM                          |                    | silty SAND, some fine to medium gravel, (2.5YR 4/2) weak red, dense, wet, no odor, angular                                                           | 19.01-0.01-0.0       |
| 16 —<br>— 17 —                                                      |                     |              |                     |             | SM                          |                    | NO RECOVERY                                                                                                                                          |                      |
| <u> </u>                                                            |                     |              |                     |             |                             |                    |                                                                                                                                                      |                      |
| 18 —                                                                |                     |              |                     |             |                             |                    |                                                                                                                                                      |                      |
| 3 -                                                                 |                     |              |                     |             |                             |                    |                                                                                                                                                      |                      |
| 19 —                                                                |                     |              |                     |             |                             |                    |                                                                                                                                                      |                      |
| 20 —                                                                | 3.2                 |              |                     |             |                             |                    |                                                                                                                                                      |                      |
|                                                                     |                     |              | wet                 | 10          | SM                          |                    | silty SAND, little fine gravel, (5YR 5/2) reddish gray,                                                                                              | NSB-F3-20.0-20.5     |
| 2 — 19 — — — — — — — — — — — — — — — — —                            |                     |              | wet                 | 9           | ML                          |                    | dense, wet , no odor, angular<br>SILT, (5YR 5/1) gray, stiff, wet , no odor                                                                          |                      |
| <u> </u>                                                            |                     |              | wet                 | 11          | GW                          | <del>, • • .</del> | fine to coarse SAND, and fine to coarse gravel, (2.5YR                                                                                               |                      |
| 22 —                                                                |                     |              | ******              | '           | ∪ v v                       |                    | 4/3) reddish brown, dense, wet, no odor, angular                                                                                                     |                      |
| 22 —                                                                |                     |              |                     |             |                             |                    | -                                                                                                                                                    |                      |
|                                                                     |                     |              |                     |             | O\4/                        |                    | NO DECOVERY                                                                                                                                          |                      |
| íl (, -                                                             |                     |              |                     |             | GW                          |                    | NO RECOVERY                                                                                                                                          |                      |
| 24 —                                                                |                     |              |                     |             |                             |                    |                                                                                                                                                      |                      |
| 23 — 23 — — 24 — — — — — — — — — — — — — — — —                      |                     |              |                     |             |                             | • • • • • •        | End of boring at 25 ft.                                                                                                                              |                      |
|                                                                     |                     | 05- : :      |                     | <u> </u>    |                             |                    |                                                                                                                                                      |                      |
| Comments                                                            | : No GGM/C          | OPR ide      | ntified at this     | s locatio   | on. Canal bo                | ottom encou        | ıntered at 11.5 ft.                                                                                                                                  |                      |

30 Knightsbridge Road, Piscataway, NJ 08854

## **Boring ID: NSB-F4**

| Project N                          | ame: PP             | G Garfi      | eld Ave             |        |          | Drilling         | Company: SGS North America                                                                                                 |                                             |                      |
|------------------------------------|---------------------|--------------|---------------------|--------|----------|------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------|
|                                    | umber: 6            |              |                     |        |          |                  | Method: Soft Dig/Geoprobe                                                                                                  | Coordinates (NJSPNAD83                      | x: 611972.5625       |
|                                    |                     |              | 8/2012 9:0          | 5:00 A | M        |                  | e: Vacmaster 4000/66DT                                                                                                     | Coordinates (NJSPNAD83)                     |                      |
|                                    |                     |              | 28/2012 1           |        |          |                  | ze: 2 in                                                                                                                   | Boring Total Depth: 25 ft                   |                      |
|                                    | By: Ben D           |              |                     |        |          |                  | Manager: Chris Martell                                                                                                     | Depth to Water: 5.0                         |                      |
|                                    |                     |              | THERN CA            | NAL    |          |                  |                                                                                                                            |                                             |                      |
|                                    | _ <del>_</del>      |              |                     |        |          |                  |                                                                                                                            | (Note bgs = be                              | elow ground surface) |
| Depth<br>Range<br>(ft bgs)         | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content |        | USCS     | Graphic<br>Log   | Surface Cover and                                                                                                          | Thickness:                                  | Sample<br>ID         |
|                                    |                     | 0.0          | dry                 | 3      | FILL     |                  | silty SAND, little fine to medium (7.5YR 3/2) dark brown, dry , no                                                         | gravel and fill material,                   | NSB-F4-0.0-0.5       |
| - 1 <del></del><br>- 2 <del></del> |                     | 0.0          | dry                 | 3      | FILL     |                  | organics. Debris. fine silty SAND, little fine to med material, (7.5YR 3/1) very dark g angular, (Metal, coal, trace organ | ium gravel and fill<br>gray, dry , no odor, |                      |
| - 3<br>- 4<br>                     | 2.6                 | 0.0          | dry                 | 3      | FILL     |                  | fine to coarse GRAVEL, some or dry , no odor, angular, slag, coal                                                          |                                             |                      |
| – 5 –                              |                     | 0.0          | wet                 | 3      | FILL     |                  | _ silty SAND, some fine to mediun                                                                                          | n gravel, (7.5YR 2.5/2)                     |                      |
| - 6 <del>-</del>                   |                     | 0.0          | wet                 | 3      | FILL     |                  | very dark brown, loose, wet , no CLAY, (2.5YR 8/1) white, soft, w                                                          | odor, Wet at 5 ft.                          | NSB-F4-6.0-6.5       |
| - 7 —<br>-<br>- 8 —                |                     |              |                     |        | FILL     |                  | NO RECOVERY                                                                                                                |                                             |                      |
| - 0 —<br>- 9 —<br>-                |                     |              |                     |        |          |                  |                                                                                                                            |                                             |                      |
| – 10 <del>––</del>                 | 2.4                 | 0.0          | wot                 | 3      | FILL     |                  | CLAV (2 EVD 9/1) white mediu                                                                                               | m soft wat no oder                          | NSB-F4-10.0-10       |
| _                                  |                     | 0.0          | wet wet             | 3      | FILL     |                  | CLAY, (2.5YR 8/1) white, mediuntly.                                                                                        | in soit, wet , no odor,                     | 14-10.0-10           |
| – 11 <del>––</del>                 |                     | 0.0          | wet                 | 3      | FILL     |                  | fine to coarse SAND, (5YR 4/1)                                                                                             | dark gray, medium                           |                      |
| _                                  |                     | 0.7          |                     | 3      | FILL     |                  | ¬ \dense, wet , no odor, Crushed fill                                                                                      | I. / —                                      |                      |
| - 12<br>-                          |                     | 0.1          | wet                 | 3      | FILL     |                  | CLAY, (2.5YR 8/1) white, medium Chalky. clayey SILT, some fine to medium                                                   | m gravel trace fill                         |                      |
| 13<br><br>14                       |                     |              |                     |        |          |                  | material, (5YR 2.5/1) black, soft, odor, and staining, angular, Trac NO RECOVERY                                           |                                             |                      |
| _<br>_ 15                          | 2.3                 |              |                     |        |          |                  |                                                                                                                            |                                             |                      |
| 10                                 |                     | 0.0          | wet                 | 3      | FILL     |                  | fine to medium SAND, little silt a                                                                                         |                                             |                      |
| – 16 <del>––</del>                 |                     | 0.0          | wet                 | 3      | FILL     |                  | gravel, (5YR 2.5/1) black, soft, w<br>Little fill material (slag, metal)                                                   | vet, no odor, angular,                      |                      |
| .5                                 |                     | 0.0          | wet                 | 3      | FILL     |                  | CLAY, trace wood fragments, (5)                                                                                            | YR 2.5/1) black, soft.                      | NSB-F4-16.0-16       |
| - 17 <del></del>                   |                     | 0.0          | moist<br>moist      | 7      | OH<br>ML |                  | wet , no odor, (Canal Bottom)                                                                                              | , , , , , , , , , , , , , , , , , , ,       |                      |
|                                    |                     | 0.0          | wet                 | 10     | SP       | $H \overline{H}$ | fine to coarse SAND, little silt an                                                                                        | d fine gravel, (5YR                         |                      |
| – 18 <del>––</del>                 |                     | 0.0          | moist               | 9      | ML       | ]                | 2.5/1) black, dense, wet, no odd                                                                                           | ir, subrourided, Siight                     |                      |
| -<br>- 19 —                        |                     | 0.0          |                     |        | ML       |                  | CLAY, (7.5YR 3/1) very dark gra<br>SILT, (10G 6/1) greenish gray, s<br>fine SAND, (2.5YR 5/2) weak red                     | tiff, moist , no odor                       |                      |
| _                                  | 2.4                 |              |                     |        |          |                  | SILT, (10BG 5/1) greenish gray,                                                                                            | stiff, moist, no odor                       |                      |
| – 20 <del>–</del>                  | 3.1                 | 0.0          | 1.404               | 10     | CN4      |                  | NO RECOVERY                                                                                                                |                                             | NSB-F4-20.0-20       |
| _                                  |                     | 0.0          | wet<br>moist        | 10     | SM<br>ML |                  | fine silty SAND, (7.5YR 5/2) brow                                                                                          |                                             | 1130-1 4-20.0-20     |
| – 21 —<br>–                        |                     | 0.0          | wet                 | 8      | SM       |                  | clayey SILT, (10YR 5/6) yellowis<br>moist , no odor, Mottled Yellowis<br>gray (Gley 2 5BG 6/1)                             | h brown and greenish                        |                      |
| - 22<br>-                          |                     | 0.0          | wet                 | 11     | SW       |                  | fine silty SAND, (5YR 5/2) reddis<br>odor<br>fine to coarse SAND, some fine                                                | /                                           |                      |
| - 23<br>-<br>- 24                  |                     |              |                     |        | SW       |                  | (2.5YR 5/3) reddish brown, dens<br>angular<br>NO RECOVERY                                                                  |                                             |                      |
| _<br>- 25                          |                     |              |                     |        |          |                  | End of horizon at 25 ft                                                                                                    |                                             |                      |
|                                    |                     |              |                     |        |          |                  | End of boring at 25 ft.                                                                                                    |                                             |                      |
|                                    | l                   |              | 1                   |        |          | 1                |                                                                                                                            |                                             |                      |

30 Knightsbridge Road, Piscataway, NJ 08854 732.564.3200 office telephone

## **Boring ID: NSB-F5**

Page: 1

| Project Name: PPG Garfield Ave               | Drilling Company: SGS North America |                                        |
|----------------------------------------------|-------------------------------------|----------------------------------------|
| Project Number: 60213772                     | Drilling Method: Soft Dig/Geoprobe  | Coordinates (NJSPNAD83) x: 611992.8125 |
| Date Started Drilling: 8/20/2012 1:45:00 PM  | Rig Type: Vacmaster 4000/66DT       | Coordinates (NJSPNAD83) y: 684999.125  |
| Date Finished Drilling: 8/21/2012 8:35:00 AM | Core Size: 2 in                     | Boring Total Depth: 25 ft              |
| Logged By: Ben Daniels                       | Project Manager: Chris Martell      | Depth to Water: 6.6                    |
| Physical Location: NORTHERN CANAL            |                                     |                                        |

|                                |                     |              |                     |             |      |                | (Note bgs = b                                                                                                                                                                                       | elow ground surface) |
|--------------------------------|---------------------|--------------|---------------------|-------------|------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Depth<br>Range<br>(ft bgs)     | Recovery<br>(ft/ft) | PID<br>(ppm) | Moisture<br>Content | GA<br>Class | USCS | Graphic<br>Log | Surface Cover and Thickness:                                                                                                                                                                        | Sample<br>ID         |
| - 1<br>- 1<br>- 2              |                     | 0.0          | dry                 | 3           | FILL |                | fine to coarse SAND, little fine to coarse gravel trace organics, (10YR 5/3) brown, non plastic medium dense, dry, no odor, angular, Trace organics.                                                | NSB-F5-0.0-0.5       |
| - 3 —<br>- 3 —<br>- 4 —        |                     | 0.0          | dry                 | 3           | FILL |                | fine to coarse SAND, some fine to coarse gravel trace organics, (10YR 4/1) dark gray, non plastic medium dense, dry, no odor, angular, Little fine to coarse angular gravel. Debris (brick, trash). | NSB-F5-4.0-4.5       |
| - 5 —<br>- 6 —<br>- 7 —        | 3.9                 | 0.0          | moist               | 3           | FILL |                | fine to coarse SAND, some silt, (7.5YR 3/1) very dark gray, non plastic dense, moist to wet, no odor, Moist to wet at 6.6ft. Very Dark Gray (7.5YR 3/1) to black.                                   |                      |
| - 8<br>- 9                     |                     |              |                     |             | FILL |                | NO RECOVERY                                                                                                                                                                                         | NSB-F5-8.0-8.5       |
| - 10<br>-<br>- 11              | 3                   | 0.0          | moist               | 3           | OL   |                | silty CLAY, (7.5YR 4/1) dark gray, stiff, moist , no odor                                                                                                                                           |                      |
| _<br>_ 12 <del></del>          |                     | 0.0          | wet                 | 3           | SW   | ******         | fine to medium SAND, dense, wet , no odor                                                                                                                                                           |                      |
|                                |                     | 0.0          | moist               | 3           | OL   |                | silty CLAY, (7.5YR 4/1) dark gray, stiff, moist , no odor                                                                                                                                           | NSB-F5-12.0-12.5     |
| — 13 —<br>- —<br>— 14 —<br>- — | 2.0                 |              |                     |             | OL   |                | NO RECOVERY                                                                                                                                                                                         |                      |
| — 15 —                         | 3.8                 | 0.0          | wet                 | 10          | SM   |                | fine to medium silty SAND, little fine to medium gravel,                                                                                                                                            |                      |
| - 16 —<br>- 17 —               |                     | 0.0          | wet                 | 12          | CH   |                | (7.5YR 3/2) dark brown, medium dense, wet, no odor, subrounded, at 15ft silty sand little medium to fine sub rounded gravel wet CLAY, (5BG 5/1) greenish gray, stiff, wet to moist no odor          | NSB-F5-16.0-16.5     |
|                                |                     | 0.0          | wet                 | 10          | ML   |                | SILT, (7.5YR 5/6) strong brown, stiff, wet to moist no odor                                                                                                                                         |                      |
| - 19 <del></del>               | 3.8                 |              |                     |             | ML   |                | NO RECOVERY                                                                                                                                                                                         |                      |
| 20<br>21<br>22<br>23           |                     | 0.0          | wet                 | 10          | SW   |                | fine to medium SAND, little coarse sand and silt, (5YR 4/3) reddish brown, dense, wet , no odor                                                                                                     | NSB-F5-20.0-20.5     |
| — 23 —<br>- — —<br>— 24 —      |                     |              |                     |             | SW   |                | NO RECOVERY                                                                                                                                                                                         |                      |
| — 25 —                         |                     |              |                     |             |      | · · · · · · ·  | End of boring at 25 ft.                                                                                                                                                                             |                      |

| Appendix B  NJDEP Full Data Deliverables Form, Lab Reports, and Da | ta Validation Reports |
|--------------------------------------------------------------------|-----------------------|
|                                                                    |                       |
|                                                                    |                       |
|                                                                    |                       |
|                                                                    |                       |



# **New Jersey Department of Environmental Protection**Site Remediation Program

## FULL LABORATORY DATA DELIVERABLES FORM

☐ Non-LSRP (Existing Cases) ☐ LSRP ☐ Subsurface Evaluator

**Date Stamp** 

|                                                                                                               |                          |                                      | (For Department use or | ıly)        |
|---------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|------------------------|-------------|
| SECTION A. SITE NAME AND LOCATION                                                                             | N                        |                                      |                        |             |
| Site Name:                                                                                                    |                          |                                      |                        |             |
| List all AKAs:                                                                                                |                          |                                      |                        |             |
| Street Address:                                                                                               |                          |                                      |                        |             |
| Municipality:                                                                                                 |                          |                                      |                        |             |
| County:                                                                                                       | Zip Cod                  | de:                                  |                        |             |
| Mailing Address if different than street addr                                                                 | ess:                     |                                      |                        |             |
| Program Interest (PI) Number(s):                                                                              | Ca                       | se Tracking Number(s):               |                        |             |
| SECTION B. NJDEP CASE MANAGER  Do you have an assigned Case Manager?  If "Yes," please list the Case Manager: |                          |                                      | Yes                    | □No         |
| SECTION C. REMEDIAL PHASE  Immediate Environmental Concern  Site Investigation Report                         | ☐ Preliminary Assessme   | ent Report<br>n/Remedial Action Work | c Plan                 |             |
| SECTION D. Matrix Type/Analysis and N                                                                         | umber of Samples         |                                      |                        |             |
| ☐ Potable Well Water                                                                                          |                          | # of samples:                        | Sampling Date:         |             |
| Analytical Method(s)                                                                                          |                          |                                      |                        |             |
| ☐ Indoor Air<br>Analytical Method                                                                             |                          | •                                    | Sampling Date:         |             |
| Polychlorinated dibenzo-p-dioxins/polycl                                                                      | hlorinated dibenzofurans |                                      | Sampling Date:         |             |
| Hexavalent chromium soil sample                                                                               |                          | # of samples:                        | Sampling Date:         |             |
| Analytical Method                                                                                             |                          |                                      |                        |             |
| Other                                                                                                         |                          | # of samples:                        | Sampling Date:         |             |
| Analytical Method                                                                                             |                          |                                      |                        |             |
| Other                                                                                                         |                          |                                      | Sampling Date:         |             |
| Analytical Method                                                                                             |                          |                                      | Complian Date          |             |
| OtherAnalytical Method                                                                                        |                          |                                      | Sampling Date:         |             |
| SECTION E. GENERAL                                                                                            |                          | -                                    |                        |             |
| Was a full laboratory data deliverables p                                                                     | package provided?        |                                      | □Yes                   | □No         |
| Was a certified laboratory(s) used for the                                                                    | • .                      |                                      |                        | □No         |
| Provide name of laboratory(s):                                                                                | -                        |                                      |                        |             |
| Were data summaries provided for all sa                                                                       |                          |                                      |                        | □No         |
| 4. Were electronic deliverables submitted?                                                                    | ·                        |                                      | <u> </u>               | □No         |
| 5. For air sample data, were the TO-15 Co                                                                     |                          |                                      |                        | <del></del> |
| appropriate Excel format pursuant to the                                                                      |                          |                                      | 🗌 Yes                  | ☐ No        |

|    | ection F. Data Quality Assurance/Quality Control  Were the appropriate sample preservation requirements met?                                                 | □No  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 2. | Were appropriate sample holding times (for both extraction/sample preparation and analysis) met?  \Box Yes If "No," provide a brief explanation.             | □No  |
| 3. | Were the samples diluted?                                                                                                                                    | □No  |
| 4. | If applicable, did sample dilutions result in elevated reporting limits that exceed applicable standards? $\square$ Yes If "Yes," list the affected samples. | □No  |
| 5. | Were any applicable standards exceeded for any samples?                                                                                                      | □No  |
| 6. | Were the laboratory reporting limits below the applicable remediation standards/criteria required for the site?                                              | □No  |
| 7. | Were qualifications noted in the non-conformance summary?                                                                                                    | □No  |
|    | Were qualified data used?                                                                                                                                    | □ No |

| 10.Were rejected data used?                                                                                   |                   | Yes                                                          | □No      |
|---------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------|----------|
| If "Yes," please indicate reasons rejected data we                                                            | ere used:         |                                                              |          |
| For Hex Chrome, data were rejected because                                                                    |                   | / was less than 50%.                                         |          |
| ☐ Data were rejected due to missing deliverable                                                               |                   |                                                              |          |
| ☐ Data were rejected but an applicable standard                                                               |                   | exists.<br>ver, additional sampling and analysis are schedul | ed to    |
| be performed.                                                                                                 | ediation, nowe    | ver, additional sampling and analysis are schedul            | eu io    |
| ☐ Other reasons not noted directly above. Expla                                                               | in:               |                                                              |          |
|                                                                                                               |                   |                                                              |          |
|                                                                                                               |                   |                                                              |          |
|                                                                                                               |                   |                                                              |          |
|                                                                                                               |                   |                                                              |          |
| 11.Were the quality control criteria associated with the                                                      | •                 |                                                              | □No      |
| 12.Were the QC Summary Forms reviewed?                                                                        |                   |                                                              | □ No     |
| 13. Surrogate recoveries acceptable                                                                           |                   |                                                              | ☐ No     |
| 14.Internal Standards acceptable                                                                              |                   |                                                              | ☐ No     |
| 15.MS/MSDs acceptable                                                                                         |                   |                                                              | ☐ No     |
| 16.Tune summaries acceptable                                                                                  | •••••             |                                                              | ☐ No     |
| 17.Calibration summaries acceptable                                                                           |                   | 🗌 Yes                                                        | ☐ No     |
| 18.Serial dilutions acceptable                                                                                |                   |                                                              | ☐ No     |
| 19.Inorganic duplicates acceptable                                                                            |                   | 🗌 Yes                                                        | ☐ No     |
| 20.LCS recovery acceptable                                                                                    |                   | 🗌 Yes                                                        | ☐ No     |
| 21.Other QC acceptable?                                                                                       |                   | 🗌 Yes                                                        | ☐ No     |
| Provide a brief explanation if applicable:                                                                    |                   |                                                              |          |
|                                                                                                               |                   |                                                              |          |
|                                                                                                               |                   |                                                              |          |
|                                                                                                               |                   |                                                              |          |
|                                                                                                               |                   |                                                              |          |
| SECTION G. PERSON RESPONSIBLE FOR CONI                                                                        | DUCTING THE       | REMEDIATION INFORMATION AND CERTIFIC                         | ATION    |
| Full Legal Name of the Person Responsible for Cond                                                            | ducting the Rer   | nediation:                                                   |          |
| Representative First Name:                                                                                    | Repre             | esentative Last Name:                                        |          |
| Title:                                                                                                        |                   |                                                              |          |
|                                                                                                               |                   | Fax:                                                         |          |
| Mailing Address:                                                                                              |                   |                                                              |          |
|                                                                                                               |                   | Zip Code:                                                    |          |
| Email Address:                                                                                                |                   |                                                              |          |
| This certification shall be signed by the person response                                                     |                   |                                                              | fication |
| in accordance with Administrative Requirements for                                                            |                   |                                                              |          |
| I certify under penalty of law that I have personally e                                                       |                   |                                                              |          |
| including all attached documents, and that based on<br>the information, to the best of my knowledge, I believ |                   |                                                              |          |
| aware that there are significant civil penalties for knowledge.                                               |                   |                                                              |          |
| am committing a crime of the fourth degree if I make                                                          | e a written false | statement which I do not believe to be true. I am            |          |
| aware that if I knowingly direct or authorize the violat                                                      | -                 |                                                              |          |
| Signature:                                                                                                    |                   | Date:                                                        |          |
| Name/Title:                                                                                                   |                   | No Changes Since Last Submittal                              |          |

| SECTION H. NON-LSRP SITE REMEDIATION PROFESS                  | IONAL STATEMENT         |                                    |  |  |  |  |  |  |  |
|---------------------------------------------------------------|-------------------------|------------------------------------|--|--|--|--|--|--|--|
| First Name:                                                   | Last Name:              |                                    |  |  |  |  |  |  |  |
| Phone Number: Ex                                              | t:                      | Fax:                               |  |  |  |  |  |  |  |
| Mailing Address:                                              |                         |                                    |  |  |  |  |  |  |  |
| City/Town: St                                                 | ate:                    | Zip Code:                          |  |  |  |  |  |  |  |
| Email Address:                                                |                         |                                    |  |  |  |  |  |  |  |
| I believe that the information contained herein, and includin | g all attached document | s, is true, accurate and complete. |  |  |  |  |  |  |  |
| Signature:                                                    | Da                      | ite:                               |  |  |  |  |  |  |  |
| Name/Title:                                                   | No.                     | Changes Since Last Submittal 🗌     |  |  |  |  |  |  |  |
| Company Name:                                                 |                         |                                    |  |  |  |  |  |  |  |

Submit this form to the assigned case manager. If there is no assigned case manager, submit this form to:

Bureau of Case Assignment & Initial Notice Site Remediation Program NJ Department of Environmental Protection 401-05H PO Box 420 Trenton, NJ 08625-0420

|                  | Sample    | Sample |          |           |             |        |           | percent  |                         |        | Detect | DV    | Lab  |        |       |       | reason |
|------------------|-----------|--------|----------|-----------|-------------|--------|-----------|----------|-------------------------|--------|--------|-------|------|--------|-------|-------|--------|
| Field ID         |           | Туре   | Matrix   | SDG       | Lab ID      | Method | Lab SDG   | moisture | DF chemical name        | Result | Flag   | Qual  | Qual | MDL    | RL    | Units | code   |
| NTB-C2-12.0      | 9/28/2011 |        | SO       |           | 460-31791-1 | SW7196 | 460317911 | 35.9     | 1 CHROMIUM (HEXAVALENT) | 3.2    |        | U     | U    | 0.8    | 3.2   | mg/kg |        |
| NTB-C1-11.0      | 9/28/2011 | N      | SO       | 460317911 | 460-31791-2 | SW7196 | 460317911 | 18.6     | 1 CHROMIUM (HEXAVALENT) | 2.5    | N      | U     | U    | 0.61   | 2.5   | mg/kg |        |
| NTB-B2-2.0       | 9/28/2011 | N      | SO       | 460317911 | 460-31791-3 | SW7196 | 460317911 | 13.1     | 1 CHROMIUM (HEXAVALENT) | 2.2    | Υ      | U     | U    | 0.56   | 2.2   | mg/kg |        |
| NSB-EB20120820   | 8/20/2012 | EB     | WQ       | JB14201   | JB14201-13  | SW7196 | JB14201   |          | 1 CHROMIUM (HEXAVALENT) | 0.01   | N      | U     | U    | 0.0014 | 0.010 | mg/l  |        |
| NSB-D5-3.0-3.5X  | 8/20/2012 |        | SO       | JB14201   | JB14201-10  | SW7196 | JB14201   | 14.8     | 1 CHROMIUM (HEXAVALENT) | 0.27   | Υ      | J     | В    | 0.14   | 0.47  | mg/kg | m      |
| NSB-D5-18.0-18.5 | 8/20/2012 | N      | SO       | JB14201   | JB14201-6   | SW7196 | JB14201   | 11.9     | 1 CHROMIUM (HEXAVALENT) | 0.17   | Υ      | J     | В    | 0.13   | 0.45  | mg/kg | m      |
| NSB-D5-15.0-15.5 | 8/20/2012 | N      | SO       | JB14201   | JB14201-7   | SW7196 | JB14201   | 12.0     | 1 CHROMIUM (HEXAVALENT) | 0.22   | Υ      | J     | В    | 0.13   | 0.45  |       | m      |
| NSB-E5-3.0-3.5   | 8/20/2012 | N      | SO       | JB14201   | JB14201-12  | SW7196 | JB14201   | 17.1     | 1 CHROMIUM (HEXAVALENT) | 0.82   | Υ      | J     |      | 0.14   | 0.48  | mg/kg | m      |
| NSB-D5-20.0-20.5 | 8/20/2012 | N      | SO       | JB14201   | JB14201-5   | SW7196 | JB14201   | 11.7     | 1 CHROMIUM (HEXAVALENT) | 0.71   | Υ      | J     |      | 0.13   | 0.45  | mg/kg | m      |
| NSB-D5-6.4-6.9   | 8/20/2012 | N      | SO       | JB14201   | JB14201-9R  | SW7196 | JB14201R  | 21.6     | 1 CHROMIUM (HEXAVALENT) | 0.28   | Υ      | J     | В    | 0.15   | 0.51  | mg/kg | m      |
| NSB-F5-8.0-8.5   | 8/20/2012 | N      | SO       | JB14201   | JB14201-2R  | SW7196 | JB14201R  | 16.0     | 1 CHROMIUM (HEXAVALENT) | 0.48   | N      | UJ    | U    | 0.14   | 0.48  | mg/kg | m      |
| NSB-D5-3.0-3.5   | 8/20/2012 | N      | SO       | JB14201   | JB14201-11R | SW7196 | JB14201R  | 16.9     | 1 CHROMIUM (HEXAVALENT) | 0.57   | Υ      | J     |      | 0.14   | 0.48  | mg/kg | m      |
| NSB-F5-12.0-12.5 | 8/20/2012 | N      | SO       | JB14201   | JB14201-1R  | SW7196 | JB14201R  | 32.2     | 1 CHROMIUM (HEXAVALENT) | 2.5    | Υ      | J     |      | 0.17   | 0.59  | mg/kg | m      |
| NSB-F5-4.0-4.5   | 8/20/2012 | N      | SO       | JB14201   | JB14201-3R  | SW7196 | JB14201R  | 16.3     | 1 CHROMIUM (HEXAVALENT) | 0.86   | Υ      | J     |      | 0.14   | 0.48  | mg/kg | m      |
| NSB-F5-0.0-0.5   | 8/20/2012 | N      | SO       | JB14201   | JB14201-4R  | SW7196 | JB14201R  | 9.6      | 1 CHROMIUM (HEXAVALENT) | 0.67   | Υ      | J     |      | 0.13   | 0.44  | mg/kg | m      |
| NSB-D5-12.0-12.5 | 8/20/2012 | N      | SO       | JB14201   | JB14201-8R  | SW7196 | JB14201R  | 21.3     | 1 CHROMIUM (HEXAVALENT) | 0.71   | Υ      | J     |      | 0.15   | 0.51  | mg/kg | m      |
| NSB-EB20120821   | 8/21/2012 | EB     | WQ       | JB14312   | JB14312-14  | SW7196 | JB14312   |          | 1 CHROMIUM (HEXAVALENT) | 0.01   | N      | U     | U    | 0.0014 | 0.010 | mg/l  |        |
| NSB-D1-12.0-12.5 | 8/21/2012 | N      | SO       | JB14312   | JB14312-2   | SW7196 | JB14312   | 17.3     | 1 CHROMIUM (HEXAVALENT) | 0.42   | Υ      | J     | В    | 0.14   | 0.48  | mg/kg | m.fd   |
| NSB-D2-11.3-11.8 | 8/21/2012 | N      | SO       | JB14312   | JB14312-7   | SW7196 | JB14312   | 17.3     | 1 CHROMIUM (HEXAVALENT) | 0.41   | Υ      | J     | В    | 0.14   | 0.48  | mg/kg | m.fd   |
| NSB-D3-3.0-3.5   | 8/21/2012 | N      | SO       | JB14312   | JB14312-11  | SW7196 | JB14312   | 15.7     | 1 CHROMIUM (HEXAVALENT) | 12.9   | Υ      | J     |      | 0.14   | 0.47  | mg/kg | m.fd   |
| NSB-F5-16.0-16.5 | 8/21/2012 | N      | SO       | JB14312   | JB14312-15R | SW7196 | JB14312R  | 16.9     | 1 CHROMIUM (HEXAVALENT) | 0.4    | Υ      | J     | В    | 0.14   | 0.48  | mg/kg | m.fd   |
| NSB-D1-20.0-20.5 | 8/21/2012 | N      | SO       | JB14312   | JB14312-4R  | SW7196 | JB14312R  | 16.1     | 1 CHROMIUM (HEXAVALENT) | 0.46   | Υ      | J     | В    | 0.14   | 0.48  | mg/kg | m.fd   |
| NSB-D1-7.7-8.2   | 8/21/2012 | N      | SO       | JB14312   | JB14312-6R  | SW7196 | JB14312R  | 16.6     | 1 CHROMIUM (HEXAVALENT) | 0.35   | Υ      | J     | В    | 0.14   | 0.48  | mg/kg | m.fd   |
| NSB-D2-6.0-6.5   | 8/21/2012 | N      | SO       | JB14312   | JB14312-10R | SW7196 | JB14312R  | 39.5     | 1 CHROMIUM (HEXAVALENT) | 0.66   | N      | UJ    | U    | 0.19   | 0.66  | mg/kg | m.fd   |
| NSB-D2-3.0-3.5X  | 8/21/2012 | FD     | SO       | JB14312   | JB14312-9R  | SW7196 | JB14312R  | 12.4     | 1 CHROMIUM (HEXAVALENT) | 2.1    | Υ      | J     |      | 0.13   | 0.46  | mg/kg | m.fd   |
| NSB-D4-1.0-1.5   | 8/21/2012 | N      | SO       | JB14312   | JB14312-12R | SW7196 | JB14312R  | 9.9      | 1 CHROMIUM (HEXAVALENT) | 2.3    | Υ      | J     |      | 0.13   | 0.44  | mg/kg | m.fd   |
| NSB-F5-20.0-20.5 | 8/21/2012 | N      | SO       | JB14312   | JB14312-13R | SW7196 | JB14312R  | 16.2     | 1 CHROMIUM (HEXAVALENT) | 0.49   | Υ      | J     |      | 0.14   | 0.48  | mg/kg | m.fd   |
| NSB-D1-1.0-1.5   | 8/21/2012 | N      | SO       | JB14312   | JB14312-1R  | SW7196 | JB14312R  | 10.0     | 1 CHROMIUM (HEXAVALENT) | 1.8    | Υ      | J     |      | 0.13   | 0.44  | mg/kg | m.fd   |
| NSB-D1-16.0-16.5 | 8/21/2012 | N      | SO       | JB14312   | JB14312-3R  | SW7196 | JB14312R  | 17.8     | 1 CHROMIUM (HEXAVALENT) | 1.6    | Υ      | J     |      | 0.14   | 0.49  | mg/kg | m.fd   |
| NSB-D1-4.0-4.5   | 8/21/2012 | N      | SO       | JB14312   | JB14312-5R  | SW7196 | JB14312R  | 16.9     | 1 CHROMIUM (HEXAVALENT) | 4.3    | Υ      | J     |      | 0.14   | 0.48  | mg/kg | m.fd   |
| NSB-D2-3.0-3.5   | 8/21/2012 | N      | SO       | JB14312   | JB14312-8R  | SW7196 | JB14312R  | 10.9     | 1 CHROMIUM (HEXAVALENT) | 3      | Υ      | J     |      | 0.13   | 0.45  | mg/kg | m.fd   |
| NSB-EB20120822   | 8/22/2012 | EB     | WQ       | JB14404   | JB14404-2   | SW7196 | JB14404   |          | 1 CHROMIUM (HEXAVALENT) | 0.01   | N      | U     | U    | 0.0014 | 0.010 | mg/l  |        |
| NSB-D3-6.5-7.0   | 8/22/2012 |        | SO       | JB14404   | JB14404-12  | SW7196 | JB14404   | 35.0     | 1 CHROMIUM (HEXAVALENT) | 0.43   |        | J     | В    | 0.18   | 0.62  | mg/kg |        |
| NSB-D2-16.6-17.1 | 8/22/2012 |        | SO       | JB14404   | JB14404-13  | SW7196 | JB14404   | 28.5     | 1 CHROMIUM (HEXAVALENT) | 0.27   |        | J     | В    | 0.16   | 0.56  | mg/kg |        |
| NSB-D3-15.0-15.5 | 8/22/2012 |        | SO       | JB14404   | JB14404-10  | SW7196 | JB14404   | 46.8     | 1 CHROMIUM (HEXAVALENT) | 0.75   |        | U     | U    | 0.22   | 0.75  | mg/kg |        |
| NSB-D2-15.0-15.5 | 8/22/2012 |        | SO       | JB14404   | JB14404-14  | SW7196 | JB14404   | 40.4     | 1 CHROMIUM (HEXAVALENT) | 0.67   |        | U     | U    | 0.20   | 0.67  | mg/kg |        |
| NSB-D2-20.0-20.5 | 8/22/2012 |        | SO       | JB14404   | JB14404-15  | SW7196 | JB14404   | 19.8     | 1 CHROMIUM (HEXAVALENT) | 1.2    |        |       |      | 0.15   | 0.50  | mg/kg |        |
| NSB-D4-20.0-20.5 | 8/22/2012 |        | SO       | JB14404   | JB14404-3   | SW7196 | JB14404   | 11.2     | 1 CHROMIUM (HEXAVALENT) | 1.1    |        |       |      | 0.13   | 0.45  | mg/kg |        |
| NSB-D4-16.5-17.0 | 8/22/2012 |        | SO       | JB14404   | JB14404-4   | SW7196 | JB14404   | 13.0     | 1 CHROMIUM (HEXAVALENT) | 0.64   |        |       |      | 0.13   | 0.46  | mg/kg |        |
| NSB-D4-12.0-12.5 | 8/22/2012 |        | SO       | JB14404   | JB14404-5   | SW7196 | JB14404   | 21.0     | 1 CHROMIUM (HEXAVALENT) | 1.1    |        |       |      | 0.15   | 0.51  | mg/kg |        |
| NSB-D4-10.5-11.0 | 8/22/2012 |        | SO       | JB14404   | JB14404-6   | SW7196 | JB14404   | 28.4     | 1 CHROMIUM (HEXAVALENT) | 0.57   |        |       |      | 0.16   | 0.56  | mg/kg |        |
| NSB-D4-6.0-6.5   | 8/22/2012 |        | SO       | JB14404   | JB14404-7   | SW7196 | JB14404   | 32.1     | 1 CHROMIUM (HEXAVALENT) | 0.59   |        | U     | U    | 0.17   | 0.59  | mg/kg |        |
| NSB-D3-21.0-21.5 | 8/22/2012 |        | SO       | JB14404   | JB14404-9   | SW7196 | JB14404   | 13.9     | 1 CHROMIUM (HEXAVALENT) | 0.47   |        |       |      | 0.14   | 0.46  | mg/kg |        |
| NSB-D3-10.8-11.3 | 8/22/2012 |        | SO       | JB14404   | JB14404-11  | SW7196 | JB14404   | 57.4     | 1 CHROMIUM (HEXAVALENT) | 1.3    |        | J<br> |      | 0.27   | 0.94  | mg/kg | X      |
| NSB-EB20120824   | 8/24/2012 |        | WQ       | JB14656   | JB14656-20  | SW7196 | JB14656   | 45.0     | 1 CHROMIUM (HEXAVALENT) | 0.01   |        | U     | U    |        | 0.010 | mg/l  | 6.1    |
| NSB-E1-12.5-13.0 | 8/24/2012 |        | SO<br>SO | JB14656   | JB14656-14  | SW7196 | JB14656   | 15.3     | 1 CHROMIUM (HEXAVALENT) | 0.17   |        | J     | В    | 0.14   | 0.47  | mg/kg |        |
| NSB-E2-12.5-13.0 | 8/24/2012 |        | SO       | JB14656   | JB14656-9   | SW7196 | JB14656   | 31.0     | 1 CHROMIUM (HEXAVALENT) | 0.46   |        | J     | В    | 0.17   | 0.58  | mg/kg |        |
| NSB-E1-20.0-20.5 | 8/24/2012 |        | SO<br>SO | JB14656   | JB14656-12  | SW7196 | JB14656   | 12.6     | 1 CHROMIUM (HEXAVALENT) | 0.46   |        | UJ    | U    | 0.13   | 0.46  | 0 0   | fd     |
| NSB-E1-16.0-16.5 | 8/24/2012 |        | SO<br>SO | JB14656   | JB14656-13  | SW7196 | JB14656   | 12.7     | 1 CHROMIUM (HEXAVALENT) | 0.46   |        | UJ    | U    | 0.13   | 0.46  | 5 5   | fd     |
| NSB-E1-10.0-10.5 | 8/24/2012 | IN     | SO       | JB14656   | JB14656-15  | SW7196 | JB14656   | 9.6      | 1 CHROMIUM (HEXAVALENT) | 0.44   | IN     | UJ    | U    | 0.13   | 0.44  | mg/kg | 10     |

|                   | Sample Sar   | nple     |         |             |        |          | percent  |   |                         | Detect      | DV   | Lab  |        |       |       | reason  |
|-------------------|--------------|----------|---------|-------------|--------|----------|----------|---|-------------------------|-------------|------|------|--------|-------|-------|---------|
| Field ID          | Date Typ     | e Matrix | < SDG   | Lab ID      | Method | Lab SDG  | moisture | D | chemical name           | Result Flag | Qual | Qual | MDL    | RL    | Units | code    |
| NSB-E2-1.0-1.5    | 8/24/2012 N  | SO       | JB14656 | JB14656-18  | SW7196 | JB14656  | 15.6     |   | 1 CHROMIUM (HEXAVALENT) | 0.47 N      | UJ   | U    | 0.14   | 0.47  | mg/kg | fd      |
| NSB-E3-16.0-16.5  | 8/24/2012 N  | SO       | JB14656 | JB14656-4   | SW7196 | JB14656  | 14.1     |   | 1 CHROMIUM (HEXAVALENT) | 0.47 N      | UJ   | U    | 0.14   | 0.47  | mg/kg | fd      |
| NSB-E3-10.0-10.5  | 8/24/2012 N  | SO       | JB14656 | JB14656-5   | SW7196 | JB14656  | 39.5     |   | 1 CHROMIUM (HEXAVALENT) | 0.66 N      | UJ   | U    | 0.19   | 0.66  | mg/kg | fd      |
| NSB-E3-5.5-6.0    | 8/24/2012 N  | SO       | JB14656 | JB14656-6   | SW7196 | JB14656  | 33.0     |   | 1 CHROMIUM (HEXAVALENT) | 0.6 N       | UJ   | U    | 0.17   | 0.60  | mg/kg | fd      |
| NSB-E2-21.0-21.5  | 8/24/2012 N  | SO       | JB14656 | JB14656-7   | SW7196 | JB14656  | 11.9     |   | 1 CHROMIUM (HEXAVALENT) | 0.45 N      | UJ   | U    | 0.13   | 0.45  | mg/kg | fd      |
| NSB-E2-16.0-16.5  | 8/24/2012 N  | SO       | JB14656 | JB14656-8   | SW7196 | JB14656  | 11.5     |   | 1 CHROMIUM (HEXAVALENT) | 0.45 N      | UJ   | U    | 0.13   | 0.45  | mg/kg |         |
| NSB-E2-1.0-1.5X   | 8/24/2012 FD | SO       | JB14656 | JB14656-17  | SW7196 | JB14656  | 14.9     |   | 1 CHROMIUM (HEXAVALENT) | 4.6 Y       | J    |      | 0.14   | 0.47  |       | fd      |
| NSB-E4-4.0-4.5    | 8/24/2012 N  | SO       | JB14656 | JB14656-1   | SW7196 | JB14656  | 8.3      |   | 1 CHROMIUM (HEXAVALENT) | 1.1 Y       | J    |      | 0.13   | 0.44  | mg/kg | fd      |
| NSB-E3-4.0-4.5    | 8/24/2012 N  | SO       | JB14656 | JB14656-10  | SW7196 | JB14656  | 12.5     |   | 1 CHROMIUM (HEXAVALENT) | 0.92 Y      | J    |      | 0.13   | 0.46  | mg/kg | fd      |
| NSB-E3-0.5-1.0    | 8/24/2012 N  | SO       | JB14656 | JB14656-11  | SW7196 | JB14656  | 13.5     |   | 1 CHROMIUM (HEXAVALENT) | 1.2 Y       | J    |      | 0.14   | 0.46  | mg/kg | fd      |
| NSB-E2-4.0-4.5    | 8/24/2012 N  | SO       | JB14656 | JB14656-16  | SW7196 | JB14656  | 34.3     |   | 1 CHROMIUM (HEXAVALENT) | 4.8 Y       | J    |      | 0.18   | 0.61  |       | fd      |
| NSB-E1-4.0-4.5    | 8/24/2012 N  | SO       | JB14656 | JB14656-19  | SW7196 | JB14656  | 18.9     |   | 1 CHROMIUM (HEXAVALENT) | 9.2 Y       | J    |      | 0.14   | 0.49  | mg/kg |         |
| NSB-E4-1.0-1.5    | 8/24/2012 N  | SO       | JB14656 | JB14656-2   | SW7196 | JB14656  | 10.5     |   | 1 CHROMIUM (HEXAVALENT) | 1.3 Y       | J    |      | 0.13   | 0.45  | mg/kg | fd      |
| NSB-E1-2.0-2.5    | 8/24/2012 N  | SO       | JB14656 | JB14656-21  | SW7196 | JB14656  | 14.1     |   | 1 CHROMIUM (HEXAVALENT) | 1.3 Y       | J    |      | 0.14   | 0.47  |       | fd      |
| NSB-E3-20.0-20.5  | 8/24/2012 N  | SO       | JB14656 | JB14656-3   | SW7196 | JB14656  | 10.3     |   | 1 CHROMIUM (HEXAVALENT) | 2.6 Y       | J    |      | 0.13   | 0.45  | mg/kg | fd      |
| NSB-EB20120827    | 8/27/2012 EB | WQ       | JB14769 | JB14769-10  | SW7196 | JB14769  |          |   | 1 CHROMIUM (HEXAVALENT) | 0.01 N      | U    | U    | 0.0014 |       | mg/l  |         |
| NSB-E4-16.0-16.5) | 8/27/2012 FD | SO       | JB14769 | JB14769-7   | SW7196 | JB14769  | 20.4     |   | 1 CHROMIUM (HEXAVALENT) | 0.39 Y      | J    | В    | 0.15   | 0.50  | mg/kg |         |
| NSB-F1-16.0-16.5  | 8/27/2012 N  | SO       | JB14769 | JB14769-2   | SW7196 | JB14769  | 18.4     |   | 1 CHROMIUM (HEXAVALENT) | 0.16 Y      | J    | В    | 0.14   | 0.49  | mg/kg |         |
| NSB-E4-16.0-16.5  | 8/27/2012 N  | SO       | JB14769 | JB14769-8   | SW7196 | JB14769  | 17.1     |   | 1 CHROMIUM (HEXAVALENT) | 0.21 Y      | J    | В    | 0.14   | 0.48  | mg/kg |         |
| NSB-E4-12.0-12.5  | 8/27/2012 N  | SO       | JB14769 | JB14769-9   | SW7196 | JB14769  | 23.1     |   | 1 CHROMIUM (HEXAVALENT) | 0.34 Y      | J    | В    | 0.15   | 0.52  | mg/kg |         |
| NSB-F1-20.0-20.5  | 8/27/2012 N  | SO       | JB14769 | JB14769-1   | SW7196 | JB14769  | 15.9     |   | 1 CHROMIUM (HEXAVALENT) | 0.48 N      | U    | U    | 0.14   | 0.48  | mg/kg |         |
| NSB-E4-6.5-7.0    | 8/27/2012 N  | SO       | JB14769 | JB14769-11  | SW7196 | JB14769  | 36.6     |   | 1 CHROMIUM (HEXAVALENT) | 0.63 N      | U    | U    | 0.18   | 0.63  | mg/kg |         |
| NSB-F1-10.0-10.5  | 8/27/2012 N  | SO       | JB14769 | JB14769-3   | SW7196 | JB14769  | 27.3     |   | 1 CHROMIUM (HEXAVALENT) | 1.2 Y       |      |      | 0.16   | 0.55  | mg/kg |         |
| NSB-F1-4.0-4.5    | 8/27/2012 N  | SO       | JB14769 | JB14769-4   | SW7196 | JB14769  | 26.9     |   | 1 CHROMIUM (HEXAVALENT) | 3.4 Y       |      |      | 0.16   | 0.55  | mg/kg |         |
| NSB-F1-1.0-1.5    | 8/27/2012 N  | SO       | JB14769 | JB14769-5   | SW7196 | JB14769  | 9.7      |   | 1 CHROMIUM (HEXAVALENT) | 1.6 Y       |      |      | 0.13   | 0.44  | mg/kg |         |
| NSB-E4-21.0-21.5  | 8/27/2012 N  | SO       | JB14769 | JB14769-6   | SW7196 | JB14769  | 12.3     |   | 1 CHROMIUM (HEXAVALENT) | 0.46 N      | U    | U    | 0.13   | 0.46  | mg/kg |         |
| NSB-EB20120828    | 8/28/2012 EB | WQ       | JB14858 | JB14858-17  | SW7196 | JB14858  |          |   | 1 CHROMIUM (HEXAVALENT) | 0.01 N      | U    | U    | 0.0014 | 0.010 | mg/l  |         |
| NSB-F4-6.0-6.5    | 8/28/2012 N  | SO       | JB14858 | JB14858-16  | SW7196 | JB14858  | 37.8     |   | 1 CHROMIUM (HEXAVALENT) | 0.53 Y      | J    | В    | 0.19   | 0.63  | mg/kg | m,fd,ld |
| NSB-F2-21.5-22.0  | 8/28/2012 N  | SO       | JB14858 | JB14858-1   | SW7196 | JB14858  | 14.9     |   | 1 CHROMIUM (HEXAVALENT) | 0.74 Y      | J    |      | 0.14   | 0.47  | mg/kg | m,fd,ld |
| NSB-F4-20.0-20.5  | 8/28/2012 N  | SO       | JB14858 | JB14858-11  | SW7196 | JB14858  | 14.4     |   | 1 CHROMIUM (HEXAVALENT) | 0.6 Y       | J    |      | 0.14   | 0.47  | mg/kg | m,fd,ld |
| NSB-F2-15.0-15.5  | 8/28/2012 N  | SO       | JB14858 | JB14858-3   | SW7196 | JB14858  | 23.4     |   | 1 CHROMIUM (HEXAVALENT) | 1.8 Y       | J    |      | 0.15   | 0.52  | mg/kg | m,fd,ld |
| NSB-F2-10.5-11.0  | 8/28/2012 N  | SO       | JB14858 | JB14858-5   | SW7196 | JB14858  | 22.4     |   | 1 CHROMIUM (HEXAVALENT) | 0.6 Y       | J    |      | 0.15   | 0.52  | mg/kg | m,fd,ld |
| NSB-F2-4.0-4.5    | 8/28/2012 N  | SO       | JB14858 | JB14858-6   | SW7196 | JB14858  | 12.4     |   | 1 CHROMIUM (HEXAVALENT) | 2.6 Y       | J    |      | 0.13   | 0.46  | mg/kg | m,fd,ld |
| NSB-F2-1.0-1.5    | 8/28/2012 N  | SO       | JB14858 | JB14858-7   | SW7196 | JB14858  | 16.9     |   | 1 CHROMIUM (HEXAVALENT) | 2.8 Y       | J    |      | 0.14   | 0.48  | mg/kg | m,fd,ld |
| NSB-F2-17.8-18.3  | 8/28/2012 N  | SO       | JB14858 | JB14858-2R  | SW7196 | JB14858R | 11.6     |   | 1 CHROMIUM (HEXAVALENT) | 0.45 N      | UJ   | U    | 0.13   | 0.45  | mg/kg | m,fd,ld |
| NSB-F3-10.0-10.5  | 8/28/2012 N  | SO       | JB14858 | JB14858-10R | SW7196 | JB14858R | 41.7     |   | 1 CHROMIUM (HEXAVALENT) | 1.3 Y       | J    |      | 0.20   | 0.69  | mg/kg | m,fd,ld |
| NSB-F4-16.0-16.5  | 8/28/2012 N  | SO       | JB14858 | JB14858-12R | SW7196 | JB14858R | 23.6     |   | 1 CHROMIUM (HEXAVALENT) | 0.72 Y      | J    |      | 0.15   | 0.52  | mg/kg | m,fd,ld |
| NSB-F3-4.0-4.5    | 8/28/2012 N  | SO       | JB14858 | JB14858-13R | SW7196 | JB14858R | 18.2     |   | 1 CHROMIUM (HEXAVALENT) | 7.7 Y       | J    |      | 0.14   | 0.49  | mg/kg | m,fd,ld |
| NSB-F3-1.0-1.5    | 8/28/2012 N  | SO       | JB14858 | JB14858-14R | SW7196 | JB14858R | 13.1     |   | 1 CHROMIUM (HEXAVALENT) | 1.3 Y       | J    |      | 0.13   | 0.46  | mg/kg | m,fd,ld |
| NSB-F4-10.0-10.5  | 8/28/2012 N  | SO       | JB14858 | JB14858-15R | SW7196 | JB14858R | 38.7     |   | 1 CHROMIUM (HEXAVALENT) | 2 Y         | J    |      | 0.19   | 0.65  | mg/kg | m,fd,ld |
| NSB-F4-0.0-0.5    | 8/28/2012 N  | SO       | JB14858 | JB14858-18R | SW7196 | JB14858R | 18.3     |   | 1 CHROMIUM (HEXAVALENT) | 3.1 Y       | J    |      | 0.14   | 0.49  | mg/kg | m,fd,ld |
| NSB-F2-10.5-11.0  | 8/28/2012 N  | SO       | JB14858 | JB14858-4R  | SW7196 | JB14858R | 24.7     |   | 1 CHROMIUM (HEXAVALENT) | 3.3 Y       | J    |      | 0.16   | 0.53  | mg/kg | m,fd,ld |
| NSB-F3-20.0-20.5  | 8/28/2012 N  | SO       | JB14858 | JB14858-8R  | SW7196 | JB14858R | 13.5     |   | 1 CHROMIUM (HEXAVALENT) | 3.8 Y       | J    |      | 0.14   | 0.46  | mg/kg | m,fd,ld |
| NSB-F3-15.0-15.5  | 8/28/2012 N  | SO       | JB14858 | JB14858-9R  | SW7196 | JB14858R | 13.3     |   | 1 CHROMIUM (HEXAVALENT) | 1.8 Y       | J    |      | 0.13   | 0.46  | mg/kg | m,fd,ld |
|                   |              |          |         |             |        |          |          |   |                         |             |      |      |        |       |       |         |

## **Data Validation Report**

| Project:                   | PPG – Garfield Avenue Supplemental Remedial Investigation (GARIS) Northern Canal Borings |  |  |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Laboratory:                | Accutest, Dayton, NJ                                                                     |  |  |  |  |  |  |
| Laboratory Job No.:        | JB14201 and JB14201R                                                                     |  |  |  |  |  |  |
| Analysis/Method:           | Hexavalent Chromium SW846 3060A/7196A                                                    |  |  |  |  |  |  |
| Validation Level:          | Full (Hexavalent Chromium)                                                               |  |  |  |  |  |  |
| Site Location/Address:     | PPG Site 114 – Garfield Avenue, Jersey City, NJ                                          |  |  |  |  |  |  |
| AECOM Project Number:      | 60213772.5.A                                                                             |  |  |  |  |  |  |
| Prepared by: Kristin Ruthe | ford/AECOM Completed on: September 12, 2012                                              |  |  |  |  |  |  |
| Reviewed by: Lisa Krowitz/ | AECOM File Name: 2012-09-12 DV Report JB14201-F.docx                                     |  |  |  |  |  |  |

### Introduction

The data were reviewed in accordance with the FSP-QAPP and the following NJDEP and/or Region 2 validation Standard Operating Procedure (SOP):

 NJDEP Office of Data Quality SOP 5.A.10, Rev 3 (September 2009), SOP for Analytical Data Validation of Hexavalent Chromium – for USEPA SW-846 Method 3060A, USEPA SW-846 Method 7196A and USEPA SW-846 Method 7199.

The results of quality control data analyzed with site samples were used to assess the overall reliability of the data. The following qualifiers were used to identify data quality issues:

- U: Indicates the analyte was not detected in the sample above the sample reporting limit.
- J: Indicates the result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.
- UJ: Indicates the analyte was not detected above the reporting limit and the reporting limit was approximate.
- R: The sample result was rejected due to serious deficiencies; the presence or absence of the analyte could not be confirmed.

AECOM 2

### **Sample Information**

The sample listed below was collected by AECOM on August 20, 2012 as part of the Garfield Avenue Supplemental Remedial Investigation (GARIS) Northern Canal Boring Sampling at the PPG Site - 114 Jersey City, New Jersey.

| Field ID                                               | Laboratory ID    | Matrix  | Fraction            |
|--------------------------------------------------------|------------------|---------|---------------------|
| NSB-F5-12.0-12.5                                       | JB14201-1, -1R   | Soil    | Hexavalent Chromium |
| NSB-F5-8.0-8.5                                         | JB14201-2, -2R   | Soil    | Hexavalent Chromium |
| NSB-F5-4.0-4.5                                         | JB14201-3, -3R   | Soil    | Hexavalent Chromium |
| NSB-F5-0.0-0.5                                         | JB14201-4, -4R   | Soil    | Hexavalent Chromium |
| NSB-D5-20.0-20.5                                       | JB14201-5, -5R   | Soil    | Hexavalent Chromium |
| NSB-D5-18.0-18.5                                       | JB14201-6, -6R   | Soil    | Hexavalent Chromium |
| NSB-D5-15.0-15.5                                       | JB14201-7, -7R   | Soil    | Hexavalent Chromium |
| NSB-D5-12.0-12.5                                       | JB14201-8, -8R   | Soil    | Hexavalent Chromium |
| NSB-D5-6.4-6.9                                         | JB14201-9, -9R   | Soil    | Hexavalent Chromium |
| NSB-D5-3.0-3.5X<br>(field duplicate of NSB-D5-3.0-3.5) | JB14201-10, -10R | Soil    | Hexavalent Chromium |
| NSB-D5-3.0-3.5                                         | JB14201-11, -11R | Soil    | Hexavalent Chromium |
| NSB-E5-3.0-3.5                                         | JB14201-12, -12R | Soil    | Hexavalent Chromium |
| NSB-EB20120820 (equipment blank)                       | JB14201-13       | Aqueous | Hexavalent Chromium |

The samples were collected following the procedures detailed in the Remedial Investigation Work Plan – Soil for Non-Residential Chromate Chemical Production Waste Sites 114, 132, 133, 135, 137, 143, and 186, Jersey City, New Jersey and the Field Sampling Plan/Quality Assurance Project Plan for Non-Residential and Residential Chromium Sites Hudson County, New Jersey (December 2011).

### **General Comments**

The data package was complete. Quality control (QC) issues identified during validation are discussed below. Refer to the Soil Target Analyte Summary Hit List for a listing of all detected results, qualified results, and associated qualifications, where applicable.

### **Hexavalent Chromium**

### Matrix Spike Results

Sample NSB-E5-3.0-3.5 (JB14201-12) was selected for the soil matrix spike analysis and used for supporting data quality recommendations. The soluble and insoluble matrix spike (MS) recoveries from the initial batch (GN71458) were 47.3% and 108.7%, respectively; the soluble MS recovery did not meet quality control criteria of 75-125%R, and was <50%R. The post digestion spike (PDS) recovery was 92.9%, which met the PDS criteria of 85-115%.

The soluble and insoluble matrix spike recoveries from the re-analysis (batch GN71549) were 66.5% and 94.2%, respectively; again the soluble MS recovery did not meet the quality control criteria of 75-125%R. The post spike result for the re-analysis batch was recovered at 94%, which met the PDS criteria of 85-115%.

Due to low MS recoveries, additional parameters were analyzed to determine if possible matrix interferences could be the cause for the poor matrix spike recoveries. The sample was tested for pH and oxidation reduction potential (ORP) and plotted on an Eh/pH phase diagram chart. From this chart, the source sample for the matrix spike analysis was plotted below the phase change line, indicating reducing potential within the sample matrix, incapable of supporting hexavalent chromium. Analyses for ferrous iron, sulfide screen, and total organic carbon (TOC) were performed on the MS source sample

AECOM 3

to confirm the reducing potential within the sample matrix. The sulfide screen was reported as nondetect, indicating no reducing agents within the sample matrix; however, the ferrous iron result was (1.4%) and the TOC (293,000 mg/Kg) were positive, indicating potential reducing agents within the sample matrix.

The soil hexavalent chromium results were reported from the re-analysis since the soluble MS recovery showed improvement from the initial analysis. However, the highest result for hexavalent chromium was reported for each sample so some results were reported from the initial analysis. Since the soluble MS recoveries in the initial and reanalysis were below 75%R, the reported positive and nondetect hexavalent chromium results for all soil samples in this SDG were qualified as estimated (J and UJ, respectively).

### Sample Results

Reported results (flagged B by the laboratory) that were less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL) are approximate values and have been qualified as estimated (J).

### **Data Quality and Usability**

In general, these data appear to be valid and may be used for decision-making purposes. No data were rejected. Qualified results, if applicable, are discussed in attachments A and B below.

The reported hexavalent chromium results in all soil samples are usable as estimated values with the potential for bias low due to poor MS recoveries.

Some sample results are usable as estimated values since they were detected between the RL and MDL.

### **Attachments**

Attachment A Target Analyte Summary Hitlist(s)

Attachment B Data Validation Report Form

Attachment A

Target Analyte Summary Hitlist(s)

AECOM Page 1 of 4

### **Soil Target Analyte Summary Hit List (Hexavalent Chromium)**

Site Name PPG –GARIS Northern Canal Borings at PPG Site 114, Jersey City, NJ

Sampling Date August 20, 2012

Lab Name/ID Accutest Laboratories, Dayton, NJ

SDG No JB14201 and JB14201R

Sample Matrix Soil
Trip Blank ID NA

Field Blank ID NSB-EB20120820

| Field Sample ID  | Lab Sample ID | Analyte               | Method<br>Blank<br>(mg/kg) | Laboratory<br>Sample<br>Result<br>(mg/kg) | Validation<br>Sample<br>Result<br>(mg/kg) | RL (mg/kg) | Quality<br>Assurance<br>Decision | NJDEP<br>Validation<br>Footnote |
|------------------|---------------|-----------------------|----------------------------|-------------------------------------------|-------------------------------------------|------------|----------------------------------|---------------------------------|
| NSB-F5-12.0-12.5 | JB14201-1R    | CHROMIUM (HEXAVALENT) | U                          | 2.5                                       | 2.5                                       | 0.59       | Qualify                          | 18                              |
| NSB-F5-8.0-8.5   | JB14201-2R    | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.48       | Qualify                          | 18                              |
| NSB-F5-4.0-4.5   | JB14201-3R    | CHROMIUM (HEXAVALENT) | U                          | 0.86                                      | 0.86                                      | 0.48       | Qualify                          | 18                              |
| NSB-F5-0.0-0.5   | JB14201-4R    | CHROMIUM (HEXAVALENT) | U                          | 0.67                                      | 0.67                                      | 0.44       | Qualify                          | 18                              |
| NSB-D5-20.0-20.5 | JB14201-5     | CHROMIUM (HEXAVALENT) | U                          | 0.71                                      | 0.71                                      | 0.45       | Qualify                          | 18                              |
| NSB-D5-18.0-18.5 | JB14201-6     | CHROMIUM (HEXAVALENT) | U                          | 0.17                                      | 0.17                                      | 0.45       | Qualify                          | 18,31                           |
| NSB-D5-15.0-15.5 | JB14201-7     | CHROMIUM (HEXAVALENT) | U                          | 0.22                                      | 0.22                                      | 0.45       | Qualify                          | 18,31                           |
| NSB-D5-12.0-12.5 | JB14201-8R    | CHROMIUM (HEXAVALENT) | U                          | 0.71                                      | 0.71                                      | 0.51       | Qualify                          | 18                              |
| NSB-D5-6.4-6.9   | JB14201-9R    | CHROMIUM (HEXAVALENT) | U                          | 0.28                                      | 0.28                                      | 0.51       | Qualify                          | 18,31                           |
| NSB-D5-3.0-3.5X  | JB14201-10    | CHROMIUM (HEXAVALENT) | U                          | 0.27                                      | 0.27                                      | 0.47       | Qualify                          | 18,31                           |
| NSB-D5-3.0-3.5   | JB14201-11R   | CHROMIUM (HEXAVALENT) | U                          | 0.57                                      | 0.57                                      | 0.48       | Qualify                          | 18                              |
| NSB-E5-3.0-3.5   | JB14201-12    | CHROMIUM (HEXAVALENT) | U                          | 0.82                                      | 0.82                                      | 0.48       | Qualify                          | 18                              |

Note: A "U" under Method Blank column indicates a nondetect result.

A "U" under the Laboratory Sample Result and Validation Sample Result columns indicates a nondetect result at the RL.

### NJDEP Laboratory Footnote

- 1. The value reported is less than or equal to 3x the value in the preparation/reagent blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.
- 2. The value reported is greater than three (3) times but less than ten (10) times the value in the preparation/reagent blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to the preparation/reagent blank contamination. The "B" qualifier alerts the end-user to the presence of this analyte in the preparation/reagent blank.

AECOM Page 2 of 4

3. The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the policy of NJDEP-DPFSR to negate the reported value as due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.

- 4. The value reported is greater than three (3) times but less than ten (10) times the value in the trip/field blanks and is considered "real". However, the reported value must be quantitatively qualified "J" due to trip/field blank contamination.
- 5. The concentration reported by the laboratory is incorrectly calculated.
- 6. The laboratory failed to report the presence of the analyte in the sample.
- 7. The reported Hexavalent Chromium value was qualified because the Calibration Check Standard was not within the recovery range (90-110 percent).
- 8. In the Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of <u>+</u> 20 percent for sample results > 4xRL or <u>+</u> RL for sample results < 4xRL. Therefore, the result was qualified.
- 9. This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.
- 10. The reported value was qualified because the PVS recovery was greater than 115 percent.
- 11. The reported value was qualified because the PVS recovery was less than 85 percent.
- 12. The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.
- 13. The reported analyte was qualified because the associated Calibration Blank result was greater than the MDL.
- 14. The laboratory made a transcription error. No hits were found in the raw data.
- 15. This analyte is rejected because the laboratory exceeded the holding time for digestion and analysis.
- 16. The laboratory subtracted the preparation/reagent blank from the sample result. The Reviewer's calculation puts the preparation/reagent blank back into the result.
- 17. The photocopy is unreadable. Therefore, the QA reviewer cannot read the laboratory's reported concentration result.
- 18. The reported value was qualified because the predigestion spike recovery was less than 75 %, but greater than 50%.
- 19. The reported value was qualified because the predigestion spike recovery was greater than 125 percent.

AECOM Page 3 of 4

20. The non-detected value was qualified (UJ) because the redigestion spike recovery was less than 75 percent. The possibility of a false negative exists.

- 21. The reported result was qualified or rejected because the laboratory did not record the pH value(s) of the sample in a laboratory notebook.
- 22. The reported value was qualified (J/UJ) because the sample moisture content exceeded 50 percent.
- 23. The sample result was rejected because the soluble and insoluble matrix spike recoveries were less than 50%.
- 24. The detected sample result was qualified (J) because the incorrect spike concentration was used.
- 25. The reported sample results were rejected because the predigestion spike recovery was greater than 150 percent.
- 26. The reported sample results were rejected because the redigestion spike recovery was greater than 150 percent.
- 27. The reported value was qualified (J) because the redigestion spike recovery was less than 75 percent.
- 28. The reported value was qualified (J/UJ) because the sample digestion temperature was less than 90°C.
- 29. In the Field Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of ≤ 20% for sample results > 4xRL or + RL for sample results < 4xRL. Therefore, the result was qualified.
- 30. The reported value was qualified as estimated (J/UJ) but the bias is uncertain due to both high and low MS recoveries.
- 31. The reported result was greater than the MDL but less than the RL and qualified (J) as estimated by the laboratory.
- 32. The reported value was qualified because the sample replicate precision criterion of ≤ 20% for method 7199 was exceeded.
- 33. The reported value was qualified (J/UJ) because the laboratory control sample (LCS) recovery was less than 80%.
- 34. The reported value was qualified (J) because the laboratory control sample (LCS) recovery was greater than 120%.
- 35. The reported result was qualified because the matrix spike analysis was not performed at the proper frequency.
- 36. The reported result was qualified because the laboratory duplicate analysis was not performed at the proper frequency.
- 37. The result was qualified because the cooler temperature upon sample receipt exceeded 6°C.

AECOM Page 4 of 4

- 38. The reported value was qualified because the redigestion spike recovery was greater than 125 percent.
- 39. The reported result was rejected because the laboratory failed to perform the reanalysis due to insufficient sample volume.
- 40. The reported results was qualified because the laboratory failed to analyze an ending CCB.

**Attachment B** 

**Data Validation Report Form** 

### AECOM DATA VALIDATION REPORT FORM – HEXAVALENT CHROMIUM ANALYSIS (7196) Page 1 of 8

| Client Name: PPG Industries                      | Project Number: 60213772.5.A            |
|--------------------------------------------------|-----------------------------------------|
| Site Location: PPG- GARIS Northern Canal Borings | Project Manager: Robert Cataldo         |
| Laboratory: Accutest, Dayton, New Jersey         | Limited or Full Validation (circle one) |
| Laboratory Job No: JB14201 and JB14201R          | Date Checked: 09/12/2012                |
| Validator: Kristin Rutherford                    | Peer: Lisa Krowitz                      |

| ITEM                                                                                                                                  | YES | NO | N/A | COMMENTS                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|------------------------------------------------------------------------------------------------------|
| Sample results included?                                                                                                              | х   |    |     | 12 soils and 1 EB                                                                                    |
| Reporting Limits met project requirements?                                                                                            | х   |    |     |                                                                                                      |
| Field I.D. included?                                                                                                                  | х   |    |     |                                                                                                      |
| Laboratory I.D. included?                                                                                                             | х   |    |     |                                                                                                      |
| Sample matrix included?                                                                                                               | х   |    |     |                                                                                                      |
| Sample receipt temperature 2-6°C?                                                                                                     | х   |    |     | 5.0°C                                                                                                |
| Signed COCs included?                                                                                                                 | х   |    |     |                                                                                                      |
| Date of sample collection included?                                                                                                   | х   |    |     | 08/20/2012                                                                                           |
| Date of sample digestion included?                                                                                                    | х   |    |     | Soil: JB14201 HxCr prepped on 09/01/2012 Soil: JB14201R HxCr prepped on 09/04/2012                   |
| Holding time to digestion met criteria? Soils -30 days from collection to digestion.                                                  | х   |    |     | Yes                                                                                                  |
| Date of analysis included?                                                                                                            | x   |    |     | Soil: JB14201: HxCr analyzed on 09/01/2012. Soil: JB14201R: HxCr analyzed on 09/05/2012. AQ: 8/20/12 |
| Holding time to analysis met criteria?  Soils -168 hours from digestion to analysis.  Aqueous – 24 hours from collection to analysis. | x   |    |     | Yes                                                                                                  |
| Method reference included?                                                                                                            | х   |    |     | 3060A/7196A                                                                                          |
| Laboratory Case Narrative included?                                                                                                   | х   |    |     |                                                                                                      |

Definitions: MDL – Method Detection Limit; %R – Percent Recovery; RL – Reporting Limit; RPD – Relative Percent Difference; RSD – Relative Standard Deviation: Corr – Correlation Coefficient.

### **Comments**

Field Duplicates: NSB-D5-3.0-3.5 and NSB-D5-3.0-3.5X. RPD criteria met for results in JB14201 and JB14201R (difference ±20% for results ≤4X RL). No qualifications required.

Sample Dilutions: None for this SDG.

| ITEM                                                                                                                                                                                                                                                                                                | YES         | NO     | N/A | COMMENTS                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----|---------------------------------------------------------------------------------------------------------------------------------|
| Initial Calibration Documentation Included in Lab Package?                                                                                                                                                                                                                                          | х           |        |     | Cal source (soil – Absolute lot # 041212); AQ Absolute Lot #011212                                                              |
| <ol> <li>Blank plus 4 standards (7196A) or blank plus 3 standards (7199),</li> <li>Correlation coefficient of ≥0.995 (7196A) or ≥0.999 (7199).</li> <li>Calibrate daily or each time instrument is set up.</li> </ol>                                                                               | x<br>x<br>x |        |     | Each analysis 1 blank and 7 cal STDs     All analyses meet CC     Yes                                                           |
| Calibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 Included in Lab Package?                                                                                                                                                                                       | х           |        |     | Check source (soil and AQ – Ultra lot # L00439)                                                                                 |
| %R criteria met? (90 - 110%).     Correct frequency of once every 10 samples     CCS and QCS from independent source and at mid level of calibration curve.                                                                                                                                         | x<br>x<br>x |        |     | All met %R     Analyzed every 10 samples     Yes                                                                                |
| Calibration Blanks                                                                                                                                                                                                                                                                                  | х           |        |     |                                                                                                                                 |
| Analyzed prior to initial calibration standards and after each CCS/QCS?     Absolute value should not exceed MDL.                                                                                                                                                                                   | x<br>x      |        |     | 1. Yes<br>2. Yes                                                                                                                |
| Method Blank and Field Blanks Included in Lab Package?                                                                                                                                                                                                                                              | х           |        |     | Equipment Blank NSB-EB20120820                                                                                                  |
| Method blank analyzed with each preparation batch?     Absolute value should not exceed MDL.                                                                                                                                                                                                        | x<br>x      |        |     | Yes, Soil – JB14201 GP66938-MB1, JB14201R     GP66961-MB1, AQ GN70764     Yes, all method and field blanks were less than MDL.  |
| Eh and pH data.                                                                                                                                                                                                                                                                                     | х           |        |     |                                                                                                                                 |
| Eh and pH data was included and plotted for all samples?                                                                                                                                                                                                                                            | х           |        |     |                                                                                                                                 |
| Soluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                                                                                                  | Х           |        |     | JB14201-12 [NSB-E5-3.0-3.5]; JB14201-12R [NSB-E5-3.0-3.5]                                                                       |
| 1. %R criteria met? (75-125%R).                                                                                                                                                                                                                                                                     |             | x<br>x |     | <ol> <li>a. JB14201 – No (47.3 %); qualify results (J/UJ)</li> <li>b. JB14201R – No (66.5 %); qualify results (J/UJ)</li> </ol> |
| 2. Was the spike concentration 40 mg/Kg or twice the sample concentration, whichever is greater?                                                                                                                                                                                                    | x<br>x      |        |     | 2. a. JB14201 Yes, 48.6 mg/kg<br>b. JB14201R Yes, 47.1 mg/kg                                                                    |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                                                   | х           |        |     | Yes for all batches.                                                                                                            |
| Insoluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                                                                                                | х           |        |     | JB14201-12 [NSB-E5-3.0-3.5]; JB14201-12R [NSB-E5-3.0-3.5]                                                                       |
| 1. %R criteria met? (75-125%R).                                                                                                                                                                                                                                                                     | x<br>x      |        |     | 1. a. JB14201: Yes (108.7%)<br>b. JB14201R: Yes (94.2 %)                                                                        |
| 2. Was the spike concentration around 400 to 800 mg/Kg?                                                                                                                                                                                                                                             |             | x<br>x |     | <ol> <li>a. JB14201 No (974 mg/kg). No impact to data.</li> <li>b. JB14201R No (1020 mg/kg). No impact to data.</li> </ol>      |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                                                   | х           |        |     | Yes for all batches.                                                                                                            |
| Post Digestion Spike                                                                                                                                                                                                                                                                                | х           |        |     | JB14201-12 [NSB-E5-3.0-3.5]; JB14201-12R [NSB-E5-3.0-3.5]                                                                       |
| 1. %R criteria met? (85-115%R).                                                                                                                                                                                                                                                                     | x<br>x      |        |     | 1. a. JB14201 Yes (92.9%)<br>b. JB14201R Yes (94.0%)                                                                            |
| 2. Was the spike concentration 40 mg/Kg or twice the sample concentration?                                                                                                                                                                                                                          | x<br>x      |        |     | 2. a. JB14201 Yes, 41.55 mg/kg<br>b. JB14201R Yes, 41.51 mg/kg                                                                  |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                                                   | х           |        |     | Yes for all batches.                                                                                                            |
| Sample Duplicate Data Included in Lab Package?                                                                                                                                                                                                                                                      | х           |        |     | JB14201-12 [NSB-E5-3.0-3.5]; JB14201-12R [NSB-E5-3.0-3.5]                                                                       |
| <ol> <li>RPD criteria met? (RPD &lt; 20%) of both results are ≥4x RL or<br/>control limit of ±RL if both results are &lt;4x RL.</li> </ol>                                                                                                                                                          | x<br>x      |        |     | 1. a. JB14201 - Yes, RPD 17.8%<br>b. JB14201R – Yes, RPD 13.2%                                                                  |
| 2. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                                                   | х           |        |     | 2. Yes                                                                                                                          |
| Was a Laboratory Control Sample (LCS) Included in Lab Package?                                                                                                                                                                                                                                      | х           |        |     |                                                                                                                                 |
| %R criteria met? (80-120%R).     Was an LCS analyzed at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                     | x<br>x      |        |     | Yes, all LCS recoveries were within quality control criteria.     Yes                                                           |
| Miscellaneous Items.                                                                                                                                                                                                                                                                                |             |        |     |                                                                                                                                 |
| <ol> <li>For soils by 3060A, was the initial pH within a range of 7.0-8.0?</li> <li>For soils by 7199, was the pH within a range of 9.0-9.5?</li> <li>For aqueous by 7196A, was the pH with a range of 1.5-2,5?</li> <li>For soils (3060A), was the digestion temperature 90-95°C for at</li> </ol> | x<br>x<br>x |        | х   | 1. Yes<br>2. NA<br>3. Yes<br>4. Yes                                                                                             |
| least 60 minutes? 5. For 7199, was each sample injected twice and was the RPD ≤20?                                                                                                                                                                                                                  |             |        | х   | 5. NA                                                                                                                           |

AECOM Page 3 of 8

**Holding Time** 

| Sample ID         | Method | Days from<br>Sampling to Prep | Days from Prep to<br>Analysis | Days from<br>Sampling to<br>Analysis | Sample to Prep<br>Status | Prep to Analysis<br>Status | Sample to<br>Analysis Status |
|-------------------|--------|-------------------------------|-------------------------------|--------------------------------------|--------------------------|----------------------------|------------------------------|
| NSB-EB20120820    | SW7196 |                               |                               | 0                                    |                          |                            | OK @1 days                   |
| NSB-D5-12.0-12.5  | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-12.0-12.5R | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-15.0-15.5  | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-15.0-15.5R | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-18.0-18.5  | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-18.0-18.5R | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-20.0-20.5  | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-20.0-20.5R | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-3.0-3.5    | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-3.0-3.5R   | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-3.0-3.5X   | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-3.0-3.5XR  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-6.4-6.9    | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D5-6.4-6.9R   | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-E5-3.0-3.5    | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-E5-3.0-3.5R   | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-0.0-0.5    | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-0.0-0.5R   | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-12.0-12.5  | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-12.0-12.5R | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-4.0-4.5    | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-4.0-4.5R   | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-8.0-8.5    | SW7196 | 12                            | 0                             | 12                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-8.0-8.5R   | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |

Matrix Spike

| Sample ID       | Compound              | Soluble MS %<br>Recovery | Insoluble MS %<br>Recovery | Lower<br>Limit | Upper<br>Limit | PDS %<br>Recovery | PDS<br>Lower<br>Limit | PDS<br>Upper<br>Limit |
|-----------------|-----------------------|--------------------------|----------------------------|----------------|----------------|-------------------|-----------------------|-----------------------|
| NSB-E5-3.0-3.5  | CHROMIUM (HEXAVALENT) | 47.3                     | 108.7                      | 75             | 125            | 92.9              | 85                    | 115                   |
| NSB-E5-3.0-3.5R | CHROMIUM (HEXAVALENT) | 66.5                     | 94.2                       | 75             | 125            | 94.0              | 85                    | 115                   |

AECOM Page 4 of 8

### **Percent Solids**

| Sample ID        | Percent Solids (%) | Status  |
|------------------|--------------------|---------|
| NSB-D5-12.0-12.5 | 78.7               | ok @50% |
| NSB-D5-15.0-15.5 | 88.0               | ok @50% |
| NSB-D5-18.0-18.5 | 88.1               | ok @50% |
| NSB-D5-20.0-20.5 | 88.3               | ok @50% |
| NSB-D5-3.0-3.5   | 83.1               | ok @50% |
| NSB-D5-3.0-3.5X  | 85.2               | ok @50% |
| NSB-D5-6.4-6.9   | 78.4               | ok @50% |
| NSB-E5-3.0-3.5   | 82.9               | ok @50% |
| NSB-F5-0.0-0.5   | 90.4               | ok @50% |
| NSB-F5-12.0-12.5 | 67.8               | ok @50% |
| NSB-F5-4.0-4.5   | 83.7               | ok @50% |
| NSB-F5-8.0-8.5   | 84.0               | ok @50% |

### Field Duplicate

| Sample ID       | Duplicate ID     | Compound              | Sample Result | Duplicate Result | QL   | Units | RPD  |
|-----------------|------------------|-----------------------|---------------|------------------|------|-------|------|
| NSB-D5-3.0-3.5  | NSB-D5-3.0-3.5X  | CHROMIUM (HEXAVALENT) | 0.53          | 0.27             | 0.48 | mg/kg | 65.0 |
| NSB-D5-3.0-3.5R | NSB-D5-3.0-3.5XR | CHROMIUM (HEXAVALENT) | 0.57          | 0.20             | 0.48 | mg/kg | 96.1 |

AECOM Page 5 of 8

| PPG GARIS Soils by Method 7196                                                                                                                                                                          | x - concentration                                                                                    | y - response                 | ]                       |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|---------------------|
| SDG#: JB14201                                                                                                                                                                                           |                                                                                                      |                              |                         |                     |
| Batch: GN71458                                                                                                                                                                                          | 0                                                                                                    | 0                            |                         |                     |
| Cr+6 ICAL 09/01/12                                                                                                                                                                                      | 0.01                                                                                                 | 0.01                         |                         |                     |
| (p. 61 of data pkg)                                                                                                                                                                                     | 0.05                                                                                                 | 0.046                        |                         |                     |
|                                                                                                                                                                                                         | 0.1                                                                                                  | 0.092                        |                         |                     |
|                                                                                                                                                                                                         | 0.3                                                                                                  | 0.278                        |                         |                     |
|                                                                                                                                                                                                         | 0.5                                                                                                  | 0.461                        |                         |                     |
|                                                                                                                                                                                                         | 0.8                                                                                                  | 0.744                        |                         |                     |
|                                                                                                                                                                                                         | 1                                                                                                    | 0.917                        | _                       | (p. 61 of data pkg) |
| AECOM Calculated Intercept                                                                                                                                                                              | 0.0006                                                                                               | OK                           | Reported intercept      | 0.0006              |
| AECOM Slope                                                                                                                                                                                             | 0.9214                                                                                               | OK                           | Reported Slope          | 0.9214              |
| AECOM Calculated r                                                                                                                                                                                      | 0.99996                                                                                              | OK                           | Reported r              | 0.99996             |
| 7.22 0 111 0 111 111 111 111 111 111 111 1                                                                                                                                                              |                                                                                                      |                              |                         |                     |
| LCS calculation                                                                                                                                                                                         | GP66938-B1 pg.                                                                                       | 61, 40                       |                         |                     |
| Background Absorbance                                                                                                                                                                                   | 0                                                                                                    |                              |                         |                     |
| Total absorbance                                                                                                                                                                                        | 0.822                                                                                                |                              |                         |                     |
| Total absorbance - background                                                                                                                                                                           | 0.822                                                                                                |                              |                         |                     |
| Instrument Concentration (mg/L)                                                                                                                                                                         | 0.8914                                                                                               |                              |                         |                     |
| Sample weight (Kg)                                                                                                                                                                                      | 0.0025                                                                                               |                              |                         |                     |
| Final Volume (L)                                                                                                                                                                                        | 0.1                                                                                                  |                              |                         |                     |
| Dilution Factor                                                                                                                                                                                         | 1                                                                                                    |                              |                         |                     |
| AECOM Calculated LCS Result (mg/Kg)                                                                                                                                                                     | 35.7                                                                                                 | OK                           | Reported Result (mg/Kg) | 35.7                |
|                                                                                                                                                                                                         |                                                                                                      |                              |                         |                     |
| %R = Found/True*100                                                                                                                                                                                     | pg. 40                                                                                               |                              |                         |                     |
| True Value (mg/Kg)                                                                                                                                                                                      | 40                                                                                                   | 01/                          |                         |                     |
| AECOM Calculated %R                                                                                                                                                                                     | 89.1                                                                                                 | OK rounding                  | Reported %R             | 89.3                |
| MS calculation                                                                                                                                                                                          | GP66938-S2 NSI                                                                                       | 3-E5-3.0-3.5 (JB14           | 4201-12) pgs. 61        |                     |
| Background absorbance reading                                                                                                                                                                           | 0.001                                                                                                | •                            | 710                     |                     |
| Total absorbance                                                                                                                                                                                        | 0.404                                                                                                |                              |                         |                     |
| Total absorbance - background                                                                                                                                                                           | 0.403                                                                                                |                              |                         |                     |
| Instrument Concentration (mg/L)                                                                                                                                                                         | 0.4367                                                                                               |                              |                         |                     |
| Sample weight (Kg)                                                                                                                                                                                      |                                                                                                      |                              |                         |                     |
|                                                                                                                                                                                                         | 0.00249                                                                                              |                              |                         |                     |
|                                                                                                                                                                                                         |                                                                                                      |                              |                         |                     |
| Final Volume (L)                                                                                                                                                                                        | 0.1                                                                                                  |                              |                         |                     |
| Final Volume (L) Percent solids                                                                                                                                                                         | 0.1<br>0.829                                                                                         |                              |                         |                     |
| Final Volume (L)                                                                                                                                                                                        | 0.1                                                                                                  | OK rounding                  | Reported Result (mg/Kg) | 1060                |
| Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)                                                                                                                      | 0.1<br>0.829<br>50<br>1058                                                                           |                              | 3/ 3/ 3/                | 1060                |
| Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100                                                                                                 | 0.1<br>0.829<br>50<br>1058<br>NSB-E5-3.0-3.5 (                                                       |                              | 3/ 3/ 3/                | 1060                |
| Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg)                                                                              | 0.1<br>0.829<br>50<br>1058<br>NSB-E5-3.0-3.5 (.<br>974                                               |                              | 3/ 3/ 3/                | 1060                |
| Final Volume (L) Percent solids Dilution Factor  AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100  True Value (mg/Kg) Native concentration (mg/Kg)                                               | 0.1<br>0.829<br>50<br>1058<br>NSB-E5-3.0-3.5 (A<br>974<br>0.82                                       | JB14201-12) pgs.             | 61                      |                     |
| Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg)                                                                              | 0.1<br>0.829<br>50<br>1058<br>NSB-E5-3.0-3.5 (.<br>974                                               |                              | 3/ 3/ 3/                | 1060                |
| Final Volume (L) Percent solids Dilution Factor  AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100  True Value (mg/Kg) Native concentration (mg/Kg)                                               | 0.1<br>0.829<br>50<br>1058<br>NSB-E5-3.0-3.5 (.<br>974<br>0.82<br>108.5                              | JB14201-12) pgs. OK rounding | Reported %R             |                     |
| Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg) AECOM%R  Percent Solids                         | 0.1<br>0.829<br>50<br>1058<br>NSB-E5-3.0-3.5 (A<br>974<br>0.82                                       | JB14201-12) pgs. OK rounding | Reported %R             |                     |
| Final Volume (L) Percent solids Dilution Factor  AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg)  AECOM%R  Percent Solids Empty dish weight (g) | 0.1<br>0.829<br>50<br>1058<br>NSB-E5-3.0-3.5 (.<br>974<br>0.82<br>108.5<br>NSB-E5-3.0-3.5 (.<br>21.6 | JB14201-12) pgs. OK rounding | Reported %R             |                     |
| Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg) AECOM%R  Percent Solids                         | 0.1<br>0.829<br>50<br>1058<br>NSB-E5-3.0-3.5 (.<br>974<br>0.82<br>108.5                              | JB14201-12) pgs. OK rounding | Reported %R             |                     |

AECOM Page 6 of 8

| Reporting Limit         | NSB-E5-3.0-3.5 ( | JB14201-12) pgs | s. 61                |      |
|-------------------------|------------------|-----------------|----------------------|------|
| Low Standard (mg/L)     | 0.01             |                 |                      |      |
| Initial weight (Kg)     | 0.00246          |                 |                      |      |
| Final volume (L)        | 0.1              |                 |                      |      |
| Percent solids          | 0.829            |                 |                      |      |
| Dilution Factor         | 1                |                 |                      |      |
| Reporting Limit (mg/Kg) | 0.49             | OK rounding     | Reported RL (mg/Kg)= | 0.48 |

### **Sample Calculations**

|                                 | NSB-E5-3.0-3.5 ( | JB14201-12) | pgs. 61                 |      |
|---------------------------------|------------------|-------------|-------------------------|------|
| Background absorbance reading   | 0.012            |             |                         |      |
| Total absorbance                | 0.028            |             |                         |      |
| Total absorbance - background   | 0.016            |             |                         |      |
| Instrument Response (mg/L)      | 0.017            |             |                         |      |
| Sample weight (Kg)              | 0.00246          |             |                         |      |
| Final Volume (L)                | 0.1              |             |                         |      |
| Percent solids                  | 0.829            |             |                         |      |
| Dilution Factor                 | 1                |             |                         |      |
| AECOM Calculated Result (mg/Kg) | 0.82             | OK          | Reported Result (mg/Kg) | 0.82 |

AECOM Page 7 of 8

| PPG GARIS Soils by Method 7196                                                                                                                                                                                                                                                                                                        | x - concentration                                                                                                     | y - response                           |                                                              |                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------|---------------------|
| SDG#: JB14201R                                                                                                                                                                                                                                                                                                                        | _                                                                                                                     | _                                      |                                                              |                     |
| Batch: GN71549                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                     | 0                                      |                                                              |                     |
| Cr+6 ICAL 09/05/12                                                                                                                                                                                                                                                                                                                    | 0.01                                                                                                                  | 0.008                                  |                                                              |                     |
| (p. 120 of data pkg)                                                                                                                                                                                                                                                                                                                  | 0.05                                                                                                                  | 0.043                                  |                                                              |                     |
|                                                                                                                                                                                                                                                                                                                                       | 0.1                                                                                                                   | 0.089                                  |                                                              |                     |
|                                                                                                                                                                                                                                                                                                                                       | 0.3                                                                                                                   | 0.267                                  |                                                              |                     |
|                                                                                                                                                                                                                                                                                                                                       | 0.5                                                                                                                   | 0.455                                  |                                                              |                     |
|                                                                                                                                                                                                                                                                                                                                       | 0.8                                                                                                                   | 0.71                                   |                                                              |                     |
|                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                     | 0.891                                  |                                                              | (p. 120 of data pkg |
| AECOM Calculated Intercept                                                                                                                                                                                                                                                                                                            | 0.0001                                                                                                                | OK                                     | Reported intercept                                           | 0.0001              |
| AECOM Slope                                                                                                                                                                                                                                                                                                                           | 0.8920                                                                                                                | OK                                     | Reported Slope                                               | 0.892               |
| AECOM Calculated r                                                                                                                                                                                                                                                                                                                    | 0.99994                                                                                                               | OK                                     | Reported r                                                   | 0.99994             |
| ALOOM Galculated I                                                                                                                                                                                                                                                                                                                    | 0.00004                                                                                                               | - OR                                   | Поропои г                                                    | 0.00004             |
| LCS calculation                                                                                                                                                                                                                                                                                                                       | GP66961-B1 pgs                                                                                                        | . 120, 37                              |                                                              |                     |
| Background Absorbance                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                     |                                        |                                                              |                     |
| Total absorbance                                                                                                                                                                                                                                                                                                                      | 0.848                                                                                                                 |                                        |                                                              |                     |
| Total absorbance - background                                                                                                                                                                                                                                                                                                         | 0.848                                                                                                                 |                                        |                                                              |                     |
| Instrument Concentration (mg/L)                                                                                                                                                                                                                                                                                                       | 0.9505                                                                                                                |                                        |                                                              |                     |
| Sample weight (Kg)                                                                                                                                                                                                                                                                                                                    | 0.0025                                                                                                                |                                        |                                                              |                     |
| Final Volume (L)                                                                                                                                                                                                                                                                                                                      | 0.1                                                                                                                   |                                        |                                                              |                     |
| Dilution Factor                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                     |                                        |                                                              |                     |
| AECOM Calculated LCS Result (mg/Kg)                                                                                                                                                                                                                                                                                                   | 38.0                                                                                                                  | OK rounding                            | Reported Result (mg/Kg)                                      | 37.9                |
|                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       | <u> </u>                               |                                                              |                     |
| %R = Found/True*100                                                                                                                                                                                                                                                                                                                   | pg. 37                                                                                                                |                                        |                                                              |                     |
| True Value (mg/Kg)                                                                                                                                                                                                                                                                                                                    | 40                                                                                                                    |                                        |                                                              |                     |
| AECOM Calculated %R                                                                                                                                                                                                                                                                                                                   | 95.1                                                                                                                  | OK rounding                            | Reported %R                                                  | 94.8                |
|                                                                                                                                                                                                                                                                                                                                       |                                                                                                                       |                                        |                                                              |                     |
| MS calculation                                                                                                                                                                                                                                                                                                                        | GP66961-S2 NS                                                                                                         | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120. 39                                       |                     |
| MS calculation  Background absorbance reading                                                                                                                                                                                                                                                                                         |                                                                                                                       | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120, 39                                       |                     |
| Background absorbance reading                                                                                                                                                                                                                                                                                                         | 0                                                                                                                     | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120, 39                                       |                     |
| Background absorbance reading<br>Total absorbance                                                                                                                                                                                                                                                                                     | 0<br>0.363                                                                                                            | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120, 39                                       |                     |
| Background absorbance reading Total absorbance Total absorbance - background                                                                                                                                                                                                                                                          | 0<br>0.363<br>0.363                                                                                                   | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120, 39                                       |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L)                                                                                                                                                                                                                          | 0<br>0.363<br>0.363<br>0.4068                                                                                         | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120, 39                                       |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg)                                                                                                                                                                                                       | 0<br>0.363<br>0.363<br>0.4068<br>0.00256                                                                              | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120, 39                                       |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L)                                                                                                                                                                                      | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1                                                                       | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120, 39                                       |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids                                                                                                                                                                       | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829                                                              | B-E5-3.0-3.5 (JB1                      | 4201-12R) pgs. 120, 39                                       |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L)                                                                                                                                                                                      | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1                                                                       | B-E5-3.0-3.5 (JB1                      |                                                              | 958                 |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor                                                                                                                                                       | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50                                                        |                                        | 4201-12R) pgs. 120, 39  Reported Result (mg/Kg)              | 958                 |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100                                                                                               | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50<br>958                                                 | OK                                     |                                                              | 958                 |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg)                                                                            | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50<br>958<br>GP66920-S2 NS                                | OK                                     | Reported Result (mg/Kg)                                      | 958                 |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg)                                               | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50<br>958<br><b>GP66920-S2 NS</b><br>1020<br>0.78         | OK                                     | Reported Result (mg/Kg)<br>4201-12R) pgs. 120, 39            |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg)                                                                            | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50<br>958<br>GP66920-S2 NS                                | OK                                     | Reported Result (mg/Kg)                                      | 958                 |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg) AECOM%R                                       | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50<br>958<br><b>GP66920-S2 NS</b><br>1020<br>0.78<br>93.9 | OK<br>B-E5-3.0-3.5 (JB1<br>OK rounding | Reported Result (mg/Kg)  4201-12R) pgs. 120, 39  Reported %R |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg) AECOM%R  Percent Solids                       | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50<br>958<br><b>GP66920-S2 NS</b><br>1020<br>0.78<br>93.9 | OK<br>B-E5-3.0-3.5 (JB1<br>OK rounding | Reported Result (mg/Kg)  4201-12R) pgs. 120, 39  Reported %R |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg) AECOM%R  Percent Solids Empty dish weight (g) | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50<br>958<br><b>GP66920-S2 NS</b><br>1020<br>0.78<br>93.9 | OK<br>B-E5-3.0-3.5 (JB1<br>OK rounding | Reported Result (mg/Kg)  4201-12R) pgs. 120, 39  Reported %R |                     |
| Background absorbance reading Total absorbance Total absorbance - background Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg) AECOM%R  Percent Solids                       | 0<br>0.363<br>0.363<br>0.4068<br>0.00256<br>0.1<br>0.829<br>50<br>958<br><b>GP66920-S2 NS</b><br>1020<br>0.78<br>93.9 | OK<br>B-E5-3.0-3.5 (JB1<br>OK rounding | Reported Result (mg/Kg)  4201-12R) pgs. 120, 39  Reported %R |                     |

AECOM Page 8 of 8

| Reporting Limit         | NSB-E5-3.0-3.5 (JB14201-12R) pgs. 120 |             |                      |      |  |  |  |
|-------------------------|---------------------------------------|-------------|----------------------|------|--|--|--|
| Low Standard (mg/L)     | 0.01                                  |             |                      |      |  |  |  |
| Initial weight (Kg)     | 0.00257                               |             |                      |      |  |  |  |
| Final volume (L)        | 0.1                                   |             |                      |      |  |  |  |
| Percent solids          | 0.829                                 |             |                      |      |  |  |  |
| Dilution Factor         | 1                                     |             |                      |      |  |  |  |
| Reporting Limit (mg/Kg) | 0.47                                  | OK rounding | Reported RL (mg/Kg)= | 0.48 |  |  |  |

### **Sample Calculations**

|                                 | (.      |    | , pgcc, _c              |      |
|---------------------------------|---------|----|-------------------------|------|
| Background absorbance reading   | 0.007   |    |                         |      |
| Total absorbance                | 0.022   |    |                         |      |
| Total absorbance - background   | 0.015   |    |                         |      |
| Instrument Response (mg/L)      | 0.017   |    |                         |      |
| Sample weight (Kg)              | 0.00257 |    |                         |      |
| Final Volume (L)                | 0.1     |    |                         |      |
| Percent solids                  | 0.829   |    |                         |      |
| Dilution Factor                 | 1       |    |                         |      |
| AECOM Calculated Result (mg/Kg) | 0.78    | OK | Reported Result (mg/Kg) | 0.78 |
| ·                               |         |    |                         |      |



09/05/12



# **Technical Report for**

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14201

**Sampling Date: 08/20/12** 

### Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin.Webster@aecom.com

**ATTN: Lisa Krowitz** 

Total number of pages in report: 71



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



### **Sections:**

# **Table of Contents**

-1-

| Section 1: Sample Summary                        | 3  |
|--------------------------------------------------|----|
| Section 2: Case Narrative/Conformance Summary    | 5  |
| Section 3: Summary of Hits                       | 7  |
| Section 4: Sample Results                        | 9  |
| <b>4.1:</b> JB14201-1: NSB-F5-12.0-12.5          | 10 |
| <b>4.2:</b> JB14201-2: NSB-F5-8.0-8.5            | 11 |
| <b>4.3:</b> JB14201-3: NSB-F5-4.0-4.5            | 12 |
| <b>4.4:</b> JB14201-4: NSB-F5-0.0-0.5            | 13 |
| <b>4.5:</b> JB14201-5: NSB-D5-20.0-20.5          | 14 |
| <b>4.6:</b> JB14201-6: NSB-D5-18.0-18.5          | 15 |
| <b>4.7:</b> JB14201-7: NSB-D5-15.0-15.5          | 16 |
| <b>4.8:</b> JB14201-8: NSB-D5-12.0-12.5          | 17 |
| <b>4.9:</b> JB14201-9: NSB-D5-6.4-6.9            | 18 |
| <b>4.10:</b> JB14201-10: NSB-D5-3.0-3.5X         | 19 |
| <b>4.11:</b> JB14201-11: NSB-D5-3.0-3.5          | 20 |
| <b>4.12:</b> JB14201-12: NSB-E5-3.0-3.5          | 21 |
| <b>4.13:</b> JB14201-13: NSB-EB20120820          | 22 |
| Section 5: Misc. Forms                           | 23 |
| 5.1: Chain of Custody                            | 24 |
| 5.2: Sample Tracking Chronicle                   | 31 |
| 5.3: Internal Chain of Custody                   | 34 |
| Section 6: General Chemistry - QC Data Summaries | 39 |
| 6.1: Method Blank and Spike Results Summary      | 40 |
| 6.2: Duplicate Results Summary                   | 41 |
| 6.3: Matrix Spike Results Summary                | 42 |
| 6.4: Percent Solids Raw Data Summary             |    |
| Section 7: General Chemistry - Raw Data          | 45 |
| 7.1: Raw Data GN70764: Chromium, Hexavalent      | 46 |
| 7.2: Raw Data GN71296: Redox Potential Vs H2     | 54 |
| <b>7.3:</b> Raw Data GN71303: pH                 | 56 |
| 7.4: Raw Data GN71304: Redox Potential Vs H2     | 59 |
| 7.5: Raw Data GN71458: Chromium, Hexavalent      | 61 |
| 7.6: Eh pH Phase Diagram                         | 69 |





# **Sample Summary**

Job No:

JB14201

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code |              | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|--------------|---------------------|
| JB14201-1        | 08/20/12          | 14:30 CM | 08/20/12 | SO            | Soil         | NSB-F5-12.0-12.5    |
| JB14201-2        | 08/20/12          | 14:15 CM | 08/20/12 | SO            | Soil         | NSB-F5-8.0-8.5      |
| JB14201-3        | 08/20/12          | 13:45 CM | 08/20/12 | SO            | Soil         | NSB-F5-4.0-4.5      |
| JB14201-4        | 08/20/12          | 12:30 CM | 08/20/12 | SO            | Soil         | NSB-F5-0.0-0.5      |
| JB14201-5        | 08/20/12          | 12:45 CM | 08/20/12 | SO            | Soil         | NSB-D5-20.0-20.5    |
| JB14201-6        | 08/20/12          | 12:20 CM | 08/20/12 | SO            | Soil         | NSB-D5-18.0-18.5    |
| JB14201-7        | 08/20/12          | 12:10 CM | 08/20/12 | SO            | Soil         | NSB-D5-15.0-15.5    |
| JB14201-8        | 08/20/12          | 11:35 CM | 08/20/12 | SO            | Soil         | NSB-D5-12.0-12.5    |
| JB14201-9        | 08/20/12          | 10:45 CM | 08/20/12 | SO            | Soil         | NSB-D5-6.4-6.9      |
| JB14201-10       | 08/20/12          | 09:35 CM | 08/20/12 | SO            | Soil         | NSB-D5-3.0-3.5X     |
| JB14201-11       | 08/20/12          | 09:30 CM | 08/20/12 | SO            | Soil         | NSB-D5-3.0-3.5      |
| JB14201-12       | 08/20/12          | 10:50 CM | 08/20/12 | SO            | Soil         | NSB-E5-3.0-3.5      |
| JB14201-12D      | 08/20/12          | 10:50 CM | 08/20/12 | SO            | Soil Dup/MSD | NSB-E5-3.0-3.5      |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





# Sample Summary (continued)

AECOM, INC.

Job No: JB14201

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample Collected |          |          | Matr     | ix   | Client            |                |  |
|------------------|----------|----------|----------|------|-------------------|----------------|--|
| Number           | Date     | Time By  | Received | Code | Type              | Sample ID      |  |
| JB14201-12S      | 08/20/12 | 10:50 CM | 08/20/12 | SO   | Soil Matrix Spike | NSB-E5-3.0-3.5 |  |
| JB14201-13       | 08/20/12 | 15:15 CM | 08/20/12 | AQ   | Equipment Blank   | NSB-EB20120820 |  |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14201

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 9/4/2012 10:54:02 AM

On 08/20/2012, 12 Sample(s), 0 Trip Blank(s) and 1 Equipment Blank(s) were received at Accutest Laboratories at a temperature of 5 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14201 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Wet Chemistry By Method ASTM D1498-76

Matrix: AQ Batch ID: GN71296

Sample(s) JB14201-13DUP were used as the QC samples for Redox Potential Vs H2.

#### Wet Chemistry By Method ASTM D1498-76M

Matrix: SO Batch ID: GN71304

Sample(s) JB14201-12DUP were used as the QC samples for Redox Potential Vs H2.

#### Wet Chemistry By Method SM18 2540G

Matrix: SO Batch ID: GN70853

#### Wet Chemistry By Method SM20 4500H B

Matrix: AQ Batch ID: R115321

- The data for SM20 4500H B meets quality control requirements.
- JB14201-13 for pH: Sample received out of holding time for pH analysis.

#### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP66938

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14201-12DUP, JB14201-12MS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (92.9%) on this sample.
- GP66938-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.

The data for SM18 2540G meets quality control requirements.

#### Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN70764

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14205-5DUP, JB14205-5MS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Low recovery on XCR matrix spike. Low recovery (54%) on the pH-adjusted post-spike.

#### Wet Chemistry By Method SW846 9045C,D

Matrix: SO Batch ID: GN71303

Sample(s) JB14201-12DUP were used as the QC samples for pH.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Summary of Hits
Job Number: JB14201
Account: AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Collected: 08/20/12

| Lab Sample ID<br>Analyte                  | Client Sample ID | Result/<br>Qual       | RL   | MDL  | Units             | Method                                               |
|-------------------------------------------|------------------|-----------------------|------|------|-------------------|------------------------------------------------------|
| JB14201-1                                 | NSB-F5-12.0-12.5 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.34 B<br>322<br>7.07 | 0.59 | 0.17 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14201-2                                 | NSB-F5-8.0-8.5   |                       |      |      |                   |                                                      |
| Redox Potential v                         | Vs H2            | 195<br>7.44           |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14201-3                                 | NSB-F5-4.0-4.5   |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.34 B<br>395<br>6.99 | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14201-4                                 | NSB-F5-0.0-0.5   |                       |      |      |                   |                                                      |
| Redox Potential v                         | Vs H2            | 364<br>7.96           |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14201-5                                 | NSB-D5-20.0-20.5 | i                     |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.71<br>336<br>8.67   | 0.45 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14201-6                                 | NSB-D5-18.0-18.5 | ;                     |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.17 B<br>341<br>8.16 | 0.45 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14201-7                                 | NSB-D5-15.0-15.5 | i                     |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.22 B<br>246<br>8.52 | 0.45 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14201-8                                 | NSB-D5-12.0-12.5 | i                     |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.30 B<br>164<br>7.92 | 0.51 | 0.15 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |



# **Summary of Hits Job Number:** JB14201

Account: AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/20/12

| Lab Sample ID<br>Analyte                  | Client Sample ID | Result/<br>Qual       | RL   | MDL  | Units             | Method                                               |
|-------------------------------------------|------------------|-----------------------|------|------|-------------------|------------------------------------------------------|
| JB14201-9                                 | NSB-D5-6.4-6.9   |                       |      |      |                   |                                                      |
| Redox Potential 'pH                       | Vs H2            | 188<br>7.63           |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14201-10                                | NSB-D5-3.0-3.5X  |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential Y<br>pH |                  | 0.27 B<br>395<br>7.47 | 0.47 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14201-11                                | NSB-D5-3.0-3.5   |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.53<br>384<br>7.70   | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14201-12                                | NSB-E5-3.0-3.5   |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.82<br>378<br>7.39   | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14201-13                                | NSB-EB20120820   |                       |      |      |                   |                                                      |
| Redox Potential 'pH a                     | Vs H2            | 327<br>6.45           |      |      | mv<br>su          | ASTM D1498-76<br>SM20 4500H B                        |

<sup>(</sup>a) Sample received out of holding time for pH analysis.





| Sample Results     |  |  |
|--------------------|--|--|
| Report of Analysis |  |  |



# 4

# **Report of Analysis**

Client Sample ID: NSB-F5-12.0-12.5

 Lab Sample ID:
 JB14201-1
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 67.8

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.34 B | 0.59 | 0.17 | mg/kg | 1  | 09/01/12 16:17 AD SW846 3060A/7196A |
| Redox Potential Vs H2 | 322    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 67.8   |      |      | %     | 1  | 08/22/12 13:05 KP SM18 2540G        |
| pН                    | 7.07   |      |      | su    | 1  | 08/30/12 11:27 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F5-8.0-8.5 Lab Sample ID: JB14201-2

SO - Soil

**Date Sampled:** 08/20/12 **Date Received:** 08/20/12 **Percent Solids:** 84.0

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

Matrix:

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method            |         |
|-----------------------|--------|------|------|-------|----|-------------------------------|---------|
| Chromium, Hexavalent  | 0.14 U | 0.48 | 0.14 | mg/kg | 1  | 09/01/12 16:17 AD SW846 3060. | A/7196A |
| Redox Potential Vs H2 | 195    |      |      | mv    | 1  | 08/30/12 SA ASTM D149         | 8-76M   |
| Solids, Percent       | 84     |      |      | %     | 1  | 08/22/12 13:05 KP SM18 2540G  | ļ       |
| pН                    | 7.44   |      |      | su    | 1  | 08/30/12 11:27 SA SW846 90450 | C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## 4

# **Report of Analysis**

Client Sample ID: NSB-F5-4.0-4.5 Lab Sample ID: JB14201-3

Matrix: SO - Soil

**Date Sampled:** 08/20/12 **Date Received:** 08/20/12 **Percent Solids:** 83.7

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed      | By   | Method            |
|-----------------------|--------|------|------|-------|----|---------------|------|-------------------|
| Chromium, Hexavalent  | 0.34 B | 0.48 | 0.14 | mg/kg | 1  | 09/01/12 16:1 | 7 AD | SW846 3060A/7196A |
| Redox Potential Vs H2 | 395    |      |      | mv    | 1  | 08/30/12      | SA   | ASTM D1498-76M    |
| Solids, Percent       | 83.7   |      |      | %     | 1  | 08/22/12 13:0 | 5 KP | SM18 2540G        |
| рH                    | 6.99   |      |      | su    | 1  | 08/30/12 11:2 | 7 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F5-0.0-0.5 Lab Sample ID: JB14201-4 Matrix: SO - Soil

**Date Sampled:** 08/20/12 **Date Received:** 08/20/12 **Percent Solids:** 90.4

Project: PPG Northern Canal Borings, Jersey City, NJ

# General Chemistry

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method              |      |
|-----------------------|--------|------|------|-------|----|---------------------------------|------|
| Chromium, Hexavalent  | 0.13 U | 0.44 | 0.13 | mg/kg | 1  | 09/01/12 16:17 AD SW846 3060A/7 | 196A |
| Redox Potential Vs H2 | 364    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76       | 6M   |
| Solids, Percent       | 90.4   |      |      | %     | 1  | 08/22/12 13:05 KP SM18 2540G    |      |
| pН                    | 7.96   |      |      | su    | 1  | 08/30/12 11:27 SA SW846 9045C,D | )    |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



JB14201

# **Report of Analysis**

Client Sample ID: NSB-D5-20.0-20.5

 Lab Sample ID:
 JB14201-5
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 88.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.71   | 0.45 | 0.13 | mg/kg | 1  | 09/01/12 16:17 AD SW846 3060A/7196A |
| Redox Potential Vs H2 | 336    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 88.3   |      |      | %     | 1  | 08/22/12 13:05 KP SM18 2540G        |
| pН                    | 8.67   |      |      | su    | 1  | 08/30/12 11:27 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## 1

# **Report of Analysis**

Client Sample ID: NSB-D5-18.0-18.5

 Lab Sample ID:
 JB14201-6
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 88.1

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Met        | hod            |
|-----------------------|--------|------|------|-------|----|------------------------|----------------|
| Chromium, Hexavalent  | 0.17 B | 0.45 | 0.13 | mg/kg | 1  | 09/01/12 16:17 AD SW84 | 16 3060A/7196A |
| Redox Potential Vs H2 | 341    |      |      | mv    | 1  | 08/30/12 SA ASTN       | M D1498-76M    |
| Solids, Percent       | 88.1   |      |      | %     | 1  | 08/22/12 13:05 KP SM18 | 3 2540G        |
| pН                    | 8.16   |      |      | su    | 1  | 08/30/12 11:27 SA SW84 | 16 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-15.0-15.5

 Lab Sample ID:
 JB14201-7
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 88.0

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.22 B | 0.45 | 0.13 | mg/kg | 1  | 09/01/12 16:17 AD SW846 3060A/7196A |
| Redox Potential Vs H2 | 246    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 88     |      |      | %     | 1  | 08/22/12 13:05 KP SM18 2540G        |
| рH                    | 8.52   |      |      | su    | 1  | 08/30/12 11:27 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-12.0-12.5

 Lab Sample ID:
 JB14201-8
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 78.7

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                                       | Result        | RL   | MDL  | Units   | DF | Analyzed By Method                                                |
|-----------------------------------------------|---------------|------|------|---------|----|-------------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 0.30 B<br>164 | 0.51 | 0.15 | mg/kg   | 1  | 09/01/12 16:17 AD SW846 3060A/7196A<br>08/30/12 SA ASTM D1498-76M |
| Solids, Percent                               | 78.7          |      |      | mv<br>% | 1  | 08/22/12 13:05 KP SM18 2540G                                      |
| pН                                            | 7.92          |      |      | su      | 1  | 08/30/12 11:27 SA SW846 9045C,D                                   |

RL = Reporting Limit U = Indicates a result < MDL



## 4

# **Report of Analysis**

Client Sample ID: NSB-D5-6.4-6.9
Lab Sample ID: JB14201-9
Matrix: SO - Soil

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.15 U | 0.51 | 0.15 | mg/kg | 1  | 09/01/12 16:17 AD SW846 3060A/7196A |
| Redox Potential Vs H2 | 188    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 78.4   |      |      | %     | 1  | 08/22/12 13:05 KP SM18 2540G        |
| pН                    | 7.63   |      |      | su    | 1  | 08/30/12 11:27 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-3.0-3.5X

Lab Sample ID: JB14201-10 **Date Sampled:** 08/20/12 Matrix: SO - Soil **Date Received:** 08/20/12 **Percent Solids:** 85.2

PPG Northern Canal Borings, Jersey City, NJ **Project:** 

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.27 B | 0.47 | 0.14 | mg/kg | 1  | 09/01/12 16:17 AD SW846 3060A/7196A |
| Redox Potential Vs H2 | 395    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 85.2   |      |      | %     | 1  | 08/22/12 13:05 KP SM18 2540G        |
| pН                    | 7.47   |      |      | su    | 1  | 08/30/12 11:27 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-3.0-3.5 Lab Sample ID: JB14201-11 **Date Sampled:** 08/20/12 Matrix: SO - Soil **Date Received:** 08/20/12 Percent Solids: 83.1

PPG Northern Canal Borings, Jersey City, NJ Project:

#### **General Chemistry**

| Analyte                                       | Result       | RL   | MDL  | Units       | DF     | Analyzed By                            | Method                              |
|-----------------------------------------------|--------------|------|------|-------------|--------|----------------------------------------|-------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 0.53<br>384  | 0.48 | 0.14 | mg/kg<br>mv | 1<br>1 |                                        | SW846 3060A/7196A<br>ASTM D1498-76M |
| Solids, Percent<br>pH                         | 83.1<br>7.70 |      |      | %<br>su     | 1<br>1 | 08/22/12 13:05 KP<br>08/30/12 11:27 SA |                                     |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



JB14201

Page 1 of 1

# **Report of Analysis**

Client Sample ID: NSB-E5-3.0-3.5 Lab Sample ID: JB14201-12 Matrix: SO - Soil

Date Sampled: 08/20/12Date Received: 08/20/12Percent Solids: 82.9

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.82   | 0.48 | 0.14 | mg/kg | 1  | 09/01/12 15:25 AD SW846 3060A/7196A |
| Redox Potential Vs H2 | 378    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 82.9   |      |      | %     | 1  | 08/22/12 13:05 KP SM18 2540G        |
| pН                    | 7.39   |      |      | su    | 1  | 08/30/12 11:27 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-EB20120820

Lab Sample ID:JB14201-13Date Sampled:08/20/12Matrix:AQ - Equipment BlankDate Received:08/20/12Percent Solids:n/a

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                                       | Result          | RL    | MDL    | Units      | DF     | Analyzed By Method                                         |
|-----------------------------------------------|-----------------|-------|--------|------------|--------|------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 0.0014 U<br>327 | 0.010 | 0.0014 | mg/l<br>mv | 1<br>1 | 08/20/12 20:55 MM SW846 7196A<br>08/30/12 SA ASTM D1498-76 |
| pH <sup>a</sup>                               | 6.45            |       |        | su         | 1      | 08/20/12 18:52 TH SM20 4500H B                             |

(a) Sample received out of holding time for pH analysis.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



|                                        |                                        |                    |                                         | The Chain-of | Custody is a  | LEGAL DOCUMENT. | All relevant fields mus | it be completed an          | d accurate.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ta       | sk:           |                        | - Norther    | n Canal       | Borings                 |                         |                   |
|----------------------------------------|----------------------------------------|--------------------|-----------------------------------------|--------------|---------------|-----------------|-------------------------|-----------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------|------------------------|--------------|---------------|-------------------------|-------------------------|-------------------|
| ab Infor                               |                                        | Project Info       |                                         |              |               | Other Infor     | mation:                 |                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | l otal i      | of Sam                 | ples: 13     |               |                         | JB14                    | 1201              |
|                                        | ACCUTEST<br>2235 Route 130 , Dayton NJ | Site ID #:         | PPG Garfield Ave                        |              |               |                 | e to: Lisa K            |                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | TAT           |                        | Spec. Instru |               | Rush                    | T                       |                   |
| aress:                                 | 2235 Roule 130 , Daylon NJ<br>08810    | Project #:<br>Site | 60213772.5.A<br>70 Carteret Avenu       |              |               |                 | 250 Apollo D            |                             |                                                     | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |               | F= Field               | Filtered , F | l= Hold       |                         |                         |                   |
| -                                      |                                        | Address:           | 70 Carteret Avenu                       | ь            |               | City/State.     | Chelmsford              | , IVIA 0182                 | Phone #:                                            | 978-905-2278                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Notes    |               |                        |              |               |                         |                         |                   |
|                                        | Matt Cordova                           | City Jersey        | City State, Zip                         | NJ           | 07304         | PO #:           | 40256ACM                |                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - j      |               |                        |              |               |                         |                         |                   |
| one/Fax                                | C 732-329-0200/                        |                    | Chris Martell                           |              |               | Send EDD t      | O: NULABO               | DATA@aecon                  | .com                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ervative |               | T                      | T            | T             |                         |                         | T-                |
| 1 email:                               |                                        | Phone/Fax:         | 732-564-3633<br>Christopher.Mart        |              |               | 1               |                         |                             | BOATA@aecom.com<br>  Farrell, AECOM, Piscataway, NJ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |               |                        |              |               |                         |                         |                   |
| _                                      |                                        | FIVI EIIIAII.      | Christopher.wan                         | T            |               | ļ               |                         |                             | т                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pres     |               | -                      | -            | $\rightarrow$ |                         |                         | -                 |
| ## ## ## ## ## ## ## ## ## ## ## ## ## | Field Sample I                         | No. /Identifica    | tion                                    | MATRIX CODE  | G=GRAB C=COMP |                 | SAMPLE DATE             | #OF CONTAINERS              |                                                     | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Analysis | GARA-HexChrom | GARA-pH-ORP            |              |               |                         |                         |                   |
| 1 NS                                   | 6B-F5-12-12.5                          | -1                 |                                         | so           | G             | 08/20           | /2012 14:30             | 1                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1             | ×                      |              |               |                         |                         |                   |
| 2 NS                                   | 6B-F5-8-8.5                            | ~ 2                |                                         | so           | G             | 08/20           | /2012 14:15             | 1                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1             | x                      |              |               |                         |                         |                   |
| 3 NS                                   | 6B-F5-4-4.5                            | - 3                |                                         | so           | G             | 08/20           | /2012 13:45             | 1                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1             | х                      |              |               |                         |                         |                   |
| 4 NS                                   | SB-F5-0-0.5                            | - 4                |                                         | so           | G             | 08/20           | /2012 12:30             | 1                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1             | ×                      |              |               |                         |                         |                   |
| 5 NS                                   | 6B-D5-20-20,5                          | -5                 | *************************************** | so           | G             | 08/20           | /2012 12:45             | 1                           |                                                     | HC29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | 1             | x                      |              |               |                         |                         |                   |
| 5 NS                                   | GB-D5-18-18.5                          | - 6                | *************************************** | so           | G             | 08/20           | /2012 12:20             | 1                           |                                                     | WCY7<br>MEYO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1             | x                      |              |               |                         |                         |                   |
| 7 NS                                   | 6B-D5-15-15.5                          | - 7                |                                         | so           | G             | 08/20           | /2012 12:10             | 1                           |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1             | x                      |              |               |                         |                         |                   |
| 8 NS                                   | SB-D5-12-12.5                          | _ 8                | **************************************  | so           | G             | 08/20           | /2012 11:35             | 1                           |                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 1             | ×                      |              |               |                         |                         |                   |
| 9 NS                                   | SB-D5-6.4-6.9                          | - 9                |                                         | so           | G             | 08/20           | /2012 10:45             | 1                           | ļ                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1             | X                      |              |               |                         |                         | _                 |
| 0 NS                                   | SB-D5-3.0-3.5X                         | - 10               |                                         | so           | G             | 08/20           | /2012 09:35             | 1                           | ļ                                                   | William Control of the Control of th |          | 1             | X                      |              |               |                         |                         |                   |
|                                        | B-D5-3.0-3.5                           | - ((               |                                         | so           | G             |                 | /2012 09:30             | 1                           | and agreed to                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 1             | x                      |              |               |                         |                         |                   |
| ditiona                                | l Comments/Special Instru              | ctions:            |                                         | 13           | CID           | en B            | 9/7                     | 7E TIM<br>0/12 155<br>12 18 | CXIL                                                | O BY / AFFILIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | apple J. | 2 8           | DATE<br>1551<br>Izoliz |              | Samp          | Y/N  W/N  Y/N  Y/N  Y/N | Y/N  Y/N  Y/N  Y/N  Y/N | Y/1<br>Y/1<br>Y/1 |
|                                        |                                        |                    |                                         |              | Shippe        | er:             |                         |                             |                                                     | DATE/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IME:     |               |                        |              | Temp in OC    | on Ice?                 | intact?                 | Blank?            |
|                                        |                                        |                    |                                         |              | Tracking      |                 |                         |                             |                                                     | Custody Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |               |                        |              | 1 6           | Samples                 | Sample                  | Tip B             |

JB14201: Chain of Custody Page 1 of 7



L9ib: ACCUTEST
Address: 2235 Route 130 , Dayton NJ 08810

Lab Information:

Lab PM: Matt Cordova Phone/Fax: 732-329-0200/ PM email:

NSB-E5-3-3.5

EB082012

12

Site ID #: PPG Garfield Ave Project #: 60213772.5.A

City Jersey City State, Zip NJ PM Name: Chris Martell Phone/Fax: 1732-564-3633

d = 6.45

Xz.A

Christopher.Martell@aecom.com

Project Information:

Site Address:

Field Sample No. /Identification

- 12

-13

#### CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-20\_ACCUTEST\_COC\_RI

Other Information:

PO #:

G=GRAB C=COMP

G

MATRIX CODE

so G

WQ

Send Invoice to: Lisa Krowitz Address: 250 Apollo Drive

SAMPLE DATE

08/20/2012 10:50

08/20/2012 15:15

40256ACM

City/State. Chelmsford, MA 01824 | Phone #: | 978-905-2278

CONTAINERS

å

Comment

Preserved: None

 PO #:
 40256ACM

 Send EDD to:
 NJLABDATA@aecom.com

 CC Hardcopy to
 Erin Farrell, AECOM, Piscataway, NJ

Page:

Task: GARIS- Northern Canal Borings
Total # of Samples: 13

| a                      | sk:           | GARIS-      | Norther     | n Canal | Borings | 3 |      |     | ĺ |
|------------------------|---------------|-------------|-------------|---------|---------|---|------|-----|---|
|                        | Total #       | of Samp     |             |         |         | J | B142 | 201 |   |
| _                      | TAT           |             | Spec. Instr |         | Rust    | 1 |      |     |   |
|                        | Notes:        | F≃ Fleid F  | iltered , I | H= Hold |         |   |      |     |   |
| Lab Notes              |               |             |             |         |         |   |      |     |   |
| Preservative Lab Notes |               |             |             |         |         |   |      |     |   |
| Analysis               | GARA-HexChrom | GARA-pH-ORP |             |         |         |   |      |     |   |
|                        | 3             | х           |             |         |         |   |      |     |   |
|                        | 2             | х           |             |         |         |   |      |     |   |
|                        |               |             |             |         |         |   |      |     |   |
|                        |               |             |             |         |         |   |      |     |   |
|                        |               |             |             |         |         |   |      |     |   |
|                        |               |             |             |         |         |   |      |     |   |
|                        |               |             |             |         |         |   |      |     |   |
|                        |               |             |             |         |         |   |      |     |   |
|                        |               |             |             |         |         |   |      |     |   |

JB14201: Chain of Custody Page 2 of 7





# **Accutest Laboratories Sample Receipt Summary**

ACCUTEST LABORATORIES

| Accutest Job Number: J                                                                                                                                   | B14201                     |             | Client:      |            |      | Project:                                                                                                                                                                                                                |               |                      |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------|--------------|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------|----------------------------------------|
| Date / Time Received: 8/                                                                                                                                 | /20/2012                   |             | Deliv        | ery Method | d:   | Airbill #'s:                                                                                                                                                                                                            |               |                      |                                        |
| Cooler Temps (Initial/Adju                                                                                                                               | sted): #                   | 1: (5/5); ( | <u>)</u>     |            |      |                                                                                                                                                                                                                         |               |                      |                                        |
|                                                                                                                                                          |                            |             |              |            |      |                                                                                                                                                                                                                         |               |                      |                                        |
| Custody Seals Present:                                                                                                                                   | Y or N  ✓ □  ✓ □  ✓ □  ✓ □ | 3.          | COC Present: | <b>✓</b>   | or N | Sample Integrity - Documentation  1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:  Sample Integrity - Condition                                             | Y  ✓  ✓  ✓  ✓ | or N  □ □ □ □ □ or N |                                        |
| <ol> <li>Cooler temp verification:</li> <li>Cooler media:</li> <li>No. Coolers:</li> </ol>                                                               | lo                         | ce (Bag)    |              |            |      | Sample recvd within HT:     All containers accounted for:     Condition of sample:                                                                                                                                      | <b>&gt;</b>   | □<br>□<br>Intact     |                                        |
| Quality Control _Preservati  1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properi 4. VOCs headspace free:  Comments |                            | or N        | N/A  V  V    |            |      | Sample Integrity - Instructions  1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear: | <u>Y</u>      | or N                 | N/A  V                                 |
| Accutest Laboratories<br>V:732.329.0200                                                                                                                  |                            |             |              |            |      | 3 Highway 130<br>12.329.3499                                                                                                                                                                                            |               |                      | Dayton, New Jersey<br>www/accutest.com |

JB14201: Chain of Custody

Page 3 of 7



JB14201\_8/23/2012

8/20/2012 9/3/2012 FULT1 4 Received Date: Deliverable: Due Date: PPG Northern Canal Borings 70 Caven Point AECOM, INC. 8/23/2012 Š Requested Date: Account Name: Project

TAT (Days):

Revise ID to NSB-F5-12.0-12.5

Change:

Sample #: JB14201-1

CSR:

Revise ID to NSB-F5-8.0-8.5

NSB-F5-12-12.5

Sample #: JB14201-2

Change:

NSB-F5-8-8.5

Sample #: JB14201-3

Revise ID to NSB-F5-4.0-4.5

Change:

Revise ID to NSB-F5-0.0-0.5

Change:

Sample #: JB14201-4

NSB-F5-4-4.5

NSB-F5-0-0.5

Above Changes Per:

Lisa Krowitz

**Date:** 8/23/2012

Page 1 of 3

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

JB14201: Chain of Custody

Page 4 of 7

| Ë   |
|-----|
| ğ   |
| 0   |
| nge |
| an  |
| င်  |
| ٥   |
| ್   |
|     |
|     |

| Requested Date:        | 8/23/2012                                 | Received Date:                | 8/20/2012 |
|------------------------|-------------------------------------------|-------------------------------|-----------|
| Account Name:          | AECOM, INC.                               | Due Date:                     | 9/3/2012  |
| Project                | PPG Northern Canal Borings 70 Caven Point | Deliverable:                  | FULT1     |
| CSR:                   | MJ                                        | TAT (Days):                   | 4         |
| Sample #:<br>JB14201-5 | Change: Rewise ID to N                    | Revise ID to NSB-D5-20.0-20.5 |           |

NSB-D5-20-20.5

**Sample #:** JB14201-6

Revise ID to NSB-D5-18.0-18.5

Change:

NSB-D5-18-18.5

Sample #: JB14201-7

Revise ID to NSB-D5-15.0-15.5

Change:

NSB-D5-15-15.5

Sample #: JB14201-8

Revise ID to NSB-D5-12.0-12.5

Change:

NSB-D5-12-12.5

Above Changes Per:

Lisa Krowitz

**Date:** 8/23/2012

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

JB14201: Chain of Custody Page 5 of 7



| 1          |  |  |
|------------|--|--|
| 1010-01-00 |  |  |
| 1          |  |  |
| Ď,         |  |  |
| ١.         |  |  |
| )          |  |  |
| 1          |  |  |
| -          |  |  |
| `          |  |  |
| ,          |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
| ;          |  |  |
| Š          |  |  |
|            |  |  |
| ,          |  |  |
|            |  |  |
| 9          |  |  |
| :          |  |  |
| •          |  |  |
| )          |  |  |
| ,          |  |  |
| ;          |  |  |
| ,          |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |
|            |  |  |

| Requested Date: | 8/23/2012                                 | Received Date: | 8/20/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/3/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | MJ                                        | TAT (Days):    | 14        |
| Sample #:       | Change: Revise ID to NSB-E5-3.0-3.5       | NSB-E5-3.0-3.5 |           |

Sample #: Chang JB14201-12, -12D, -12S

Sample #: JB14201-13

Change: Revise ID to NSB-EB20120820

EB082012

JB14201: Chain of Custody
Page 6 of 7

**Date:** 8/23/2012

Page 3 of 3

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Lisa Krowitz

Above Changes Per:

**Date:** 9/4/2012

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Above Changes Per:

| Ľ           |
|-------------|
| ō           |
| 5           |
| ō           |
| Φ           |
| Ö           |
| $\subseteq$ |
| Ø           |
| تے          |
| ပ           |
| Ω           |
| 0           |
| 7           |
|             |

JB14201\_9/4/2012

| Requested Date: | 9/4/2012                                    | Received Date: | 8/20/2012 |
|-----------------|---------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                                 | Due Date:      | 9/4/2012  |
| Project         | PPG Northern Canal Borings, Jersey City, NJ | Deliverable:   | FULT1     |
| CSR:            | MC                                          | TAT (Days):    | 2         |

Change:

**Sample #:** JB14201-12

Due to XCR spike recovery log in FE2/7,SULFS,TOCLK

Sample #: JB14201-1 thru 12 NSB-E5-3.0-3.5

Change: due to XCR spike recovery log in XXCRAR

JB14201: Chain of Custody

Page 7 of 7

# **Internal Sample Tracking Chronicle**

AECOM, INC.

JB14201 Job No:

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number        | Method                                                             | Analyzed                                                           | Ву       | Prepped     | Ву     | Test Codes                 |
|-------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------|-------------|--------|----------------------------|
| JB14201-1<br>NSB-F5-12  | Collected: 20-AUG-12<br>.0-12.5                                    | 14:30 By: CM                                                       | Receiv   | ved: 20-AUG | -12 By | 7: MPC                     |
| JB14201-1<br>JB14201-1  | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA<br>SA | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-2<br>NSB-F5-8.0 | Collected: 20-AUG-12<br>0-8.5                                      | 14:15 By: CM                                                       | Receiv   | ved: 20-AUG | -12 By | r: MPC                     |
| JB14201-2<br>JB14201-2  | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA       | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-3<br>NSB-F5-4.0 | Collected: 20-AUG-12<br>)-4.5                                      | 13:45 By: CM                                                       | Receiv   | ved: 20-AUG | -12 By | r: MPC                     |
| JB14201-3<br>JB14201-3  | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA       | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-4<br>NSB-F5-0.0 | Collected: 20-AUG-12                                               | 12:30 By: CM                                                       | Receiv   | ved: 20-AUG | -12 By | r: MPC                     |
| JB14201-4<br>JB14201-4  | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA       | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-5<br>NSB-D5-20  | Collected: 20-AUG-12                                               | 12:45 By: CM                                                       | Receiv   | ved: 20-AUG | -12 By | r: MPC                     |
| JB14201-5<br>JB14201-5  | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA       | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |

# **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14201

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву     | Prepped     | Ву     | Test Codes                 |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|--------|-------------|--------|----------------------------|
| JB14201-6<br>NSB-D5-18   | Collected: 20-AUG-12<br>.0-18.5                                    | 12:20 By: CM                                                       | Receiv | ved: 20-AUG | -12 By | : MPC                      |
| JB14201-6<br>JB14201-6   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA     | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-7<br>NSB-D5-15   | Collected: 20-AUG-12<br>.0-15.5                                    | 12:10 By: CM                                                       | Receiv | ved: 20-AUG | -12 By | : MPC                      |
| JB14201-7<br>JB14201-7   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA     | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-8<br>NSB-D5-12   | Collected: 20-AUG-12<br>.0-12.5                                    | 11:35 By: CM                                                       | Receiv | ved: 20-AUG | -12 By | : MPC                      |
| JB14201-8<br>JB14201-8   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA     | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-9<br>NSB-D5-6.4  | Collected: 20-AUG-12<br>4-6.9                                      | 10:45 By: CM                                                       | Receiv | ved: 20-AUG | -12 By | : MPC                      |
| JB14201-9<br>JB14201-9   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA     | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-10<br>NSB-D5-3.0 | Collected: 20-AUG-12<br>0-3.5X                                     | 09:35 By: CM                                                       | Receiv | ved: 20-AUG | -12 By | : MPC                      |
| JB14201-10<br>JB14201-10 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:17 | SA     | 01-SEP-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |

JB14201

# **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No:

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву    | Prepped     | Ву      | Test Codes                 |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-------|-------------|---------|----------------------------|
|                          |                                                                    |                                                                    |       |             |         |                            |
| JB14201-11<br>NSB-D5-3.  | Collected: 20-AUG-12<br>0-3.5                                      | 09:30 By: CM                                                       | Recei | ved: 20-AUG | -12 By  | y: MPC                     |
| JB14201-11<br>JB14201-11 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 16:19 |       | 01-SEP-12   | MP      | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-12<br>NSB-E5-3.0 | Collected: 20-AUG-12<br>0-3.5                                      | 10:50 By: CM                                                       | Recei | ved: 20-AUG | -12 By  | 7: MPC                     |
| JB14201-12<br>JB14201-12 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 22-AUG-12 13:05<br>30-AUG-12<br>30-AUG-12 11:27<br>01-SEP-12 15:25 |       | 01-SEP-12   | MP      | SOL104<br>EH<br>PH<br>XCRA |
| JB14201-13<br>NSB-EB201  | Collected: 20-AUG-12<br>120820                                     | 15:15 By: CM                                                       | Recei | ved: 20-AUG | 3-12 By | y: MPC                     |
| JB14201-13               | SM20 4500H B<br>SW846 7196A<br>ASTM D1498-76                       | 20-AUG-12 18:52<br>20-AUG-12 20:55<br>30-AUG-12                    |       |             |         | PH<br>XCR<br>EH            |

# **Accutest Internal Chain of Custody Job Number:** JB14201

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Received: 08/20/12

| Sample. Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|--------------------------|----------------------|----------------------|----------------|-----------------------|
|                          |                      |                      |                |                       |
| JB14201-1.1              | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14201-1.1              | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-1.1              | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14201-1.1              | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14201-1.1              | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-1.1              | Sanjay Advani        | Matt Del Ciello      |                | Custody Transfer      |
| JB14201-1.1              | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-1.1              | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-1.1              | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-1.1              | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-1.1              | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-1.1              | Secured Storage      | Ching Wong           |                | Retrieve from Storage |
| JB14201-1.1              | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-2.1              | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14201-2.1              | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-2.1              | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-2.1              | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-2.1              | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-2.1              | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-2.1              | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-2.1              | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-2.1              | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-2.1              | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-2.1              | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-2.1              | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-2.1              | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-3.1              | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-3.1              | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-3.1              | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14201-3.1              | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14201-3.1              | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-3.1              | Sanjay Advani        | Matt Del Ciello      |                | Custody Transfer      |
| JB14201-3.1              | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-3.1              | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-3.1              | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-3.1              | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-3.1              | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-3.1              | Secured Storage      | Ching Wong           |                | Retrieve from Storage |
| JB14201-3.1              | Ching Wong           | Secured Storage      |                | Return to Storage     |
| JB14201-4.1              | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-4.1              | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
|                          |                      |                      |                | <b>,</b>              |



# Accutest Internal Chain of Custody Job Number: JB14201

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Received: 08/20/12

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14201-4.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-4.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14201-4.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-4.1             | Sanjay Advani        | Matt Del Ciello      |                | Custody Transfer      |
| JB14201-4.1             | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-4.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-4.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-4.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-4.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-4.1             | Secured Storage      | Ching Wong           |                | Retrieve from Storage |
| JB14201-4.1             | Ching Wong           | Secured Storage      |                | Return to Storage     |
| JB14201-5.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-5.1             | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-5.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-5.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14201-5.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-5.1             | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-5.1             | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-5.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-5.1             | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-5.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-5.1             | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-5.1             | Secured Storage      | Ching Wong           |                | Retrieve from Storage |
| JB14201-5.1             | Ching Wong           | Secured Storage      |                | Return to Storage     |
| JB14201-6.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-6.1             | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-6.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-6.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-6.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-6.1             | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-6.1             | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-6.1             | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-6.1             | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-6.1             | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-6.1             | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-6.1             | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-6.1             | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-7.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-7.1             | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-7.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-7.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |



### Accutest Internal Chain of Custody Job Number: JB14201

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Received: 08/20/12

| JB14201-7.1 Mat JB14201-7.1 Sect JB14201-7.1 Sect JB14201-7.1 Sect JB14201-7.1 May JB14201-7.1 Sect JB14201-7.1 Chin  JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Mat JB14201-8.1 Mat JB14201-8.1 Sect JB14201-9.1 Sect JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - ·               |                      |                | Reason                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|----------------|------------------------------------|
| JB14201-7.1 Sanj<br>JB14201-7.1 Mat<br>JB14201-7.1 Secu<br>JB14201-7.1 Secu<br>JB14201-7.1 Secu<br>JB14201-7.1 Secu<br>JB14201-7.1 Secu<br>JB14201-7.1 Chin<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-9.1 Secu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | Sanjay Advani        | 08/20/12 12:22 | Custody Transfer                   |
| JB14201-7.1 Mat JB14201-7.1 Sect JB14201-7.1 Sect JB14201-7.1 May JB14201-7.1 May JB14201-7.1 Sect JB14201-7.1 Chin  JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Mat JB14201-8.1 Mat JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Mat JB14201-8.1 Sect JB14201-9.1 Sect JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | jay Advani        | Matt Del Ciello      |                | Custody Transfer  Custody Transfer |
| JB14201-7.1 Section JB14201-7.1 Section JB14201-7.1 Section JB14201-7.1 Section JB14201-7.1 Section JB14201-8.1 Section JB14201-9.1 Section JB1420 | t Del Ciello      | Secured Storage      |                | Return to Storage                  |
| JB14201-7.1 Ada JB14201-7.1 Sect JB14201-7.1 Sect JB14201-7.1 Sect JB14201-7.1 Chin  JB14201-8.1 Sect JB14201-8.1 Tod JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Sect JB14201-8.1 Mat JB14201-8.1 Sect JB14201-9.1 Sect JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ared Storage      | Adam Scott           |                | Retrieve from Storage              |
| JB14201-7.1 Section JB14201-7.1 Section JB14201-7.1 Section JB14201-8.1 Section JB14201-9.1 Section JB1420 | m Scott           | Secured Staging Area |                | Return to Storage                  |
| JB14201-7.1 May<br>JB14201-7.1 Secu<br>JB14201-8.1 Secu<br>JB14201-8.1 Tod<br>JB14201-8.1 Krir<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-8.1 Sanj<br>JB14201-8.1 Mat<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-8.1 May<br>JB14201-8.1 May<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-9.1 Secu<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ared Staging Area | Mayur Patel          |                | Retrieve from Storage              |
| JB14201-7.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Tod<br>JB14201-8.1 Krir<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Sanj<br>JB14201-8.1 Mat<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 May<br>JB14201-8.1 May<br>JB14201-8.1 May<br>JB14201-8.1 Sect<br>JB14201-8.1 Chir<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-9.1 Sect<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ur Patel          | Secured Storage      |                | Return to Storage                  |
| JB14201-8.1 Secu JB14201-8.1 Tod JB14201-8.1 Krir JB14201-8.1 Secu JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ared Storage      | Ching Wong           |                | Retrieve from Storage              |
| JB14201-8.1 Sect<br>JB14201-8.1 Tod<br>JB14201-8.1 Krir<br>JB14201-8.1 Sect<br>JB14201-8.1 Bria<br>JB14201-8.1 Sanj<br>JB14201-8.1 Mat<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 May<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Chir<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ng Wong           | Secured Storage      |                | Return to Storage                  |
| JB14201-8.1 Tod JB14201-8.1 Krir JB14201-8.1 Secu JB14201-8.1 Bria JB14201-8.1 Sanj JB14201-8.1 Mat JB14201-8.1 Secu JB14201-8.1 Secu JB14201-8.1 May JB14201-8.1 Secu JB14201-8.1 Secu JB14201-8.1 Chin JB14201-9.1 Secu JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng wong           | Secured Storage      | 09/04/12 23.29 | Return to Storage                  |
| JB14201-8.1 Krir<br>JB14201-8.1 Secu<br>JB14201-8.1 Bria<br>JB14201-8.1 Sanj<br>JB14201-8.1 Mat<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-8.1 May<br>JB14201-8.1 Secu<br>JB14201-8.1 Chir<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-8.1 Secu<br>JB14201-9.1 Secu<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage              |
| JB14201-8.1 Sect<br>JB14201-8.1 Bria<br>JB14201-8.1 Sanj<br>JB14201-8.1 Mat<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 May<br>JB14201-8.1 May<br>JB14201-8.1 Chin<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-8.1 Sect<br>JB14201-9.1 Sect<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer                   |
| JB14201-8.1 Bria<br>JB14201-8.1 Sanj<br>JB14201-8.1 Mat<br>JB14201-8.1 Secu<br>JB14201-8.1 Ada<br>JB14201-8.1 Secu<br>JB14201-8.1 May<br>JB14201-8.1 Secu<br>JB14201-8.1 Chin<br>JB14201-9.1 Secu<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage                  |
| JB14201-8.1 Sanj<br>JB14201-8.1 Mat<br>JB14201-8.1 Secu<br>JB14201-8.1 Ada<br>JB14201-8.1 Secu<br>JB14201-8.1 May<br>JB14201-8.1 Secu<br>JB14201-8.1 Chin<br>JB14201-9.1 Secu<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage              |
| JB14201-8.1 Mat<br>JB14201-8.1 Sect<br>JB14201-8.1 Ada<br>JB14201-8.1 Sect<br>JB14201-8.1 May<br>JB14201-8.1 Chin<br>JB14201-9.1 Sect<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Racin           | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer                   |
| JB14201-8.1 Sect<br>JB14201-8.1 Ada<br>JB14201-8.1 Sect<br>JB14201-8.1 May<br>JB14201-8.1 Sect<br>JB14201-8.1 Chin<br>JB14201-9.1 Sect<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | jay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer                   |
| JB14201-8.1 Ada<br>JB14201-8.1 Sect<br>JB14201-8.1 May<br>JB14201-8.1 Sect<br>JB14201-8.1 Chin<br>JB14201-9.1 Sect<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | t Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage                  |
| JB14201-8.1 Sect<br>JB14201-8.1 May<br>JB14201-8.1 Sect<br>JB14201-8.1 Chin<br>JB14201-9.1 Sect<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage              |
| JB14201-8.1 May<br>JB14201-8.1 Secu<br>JB14201-8.1 Chin<br>JB14201-9.1 Secu<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage                  |
| JB14201-8.1 Sect<br>JB14201-8.1 Chin<br>JB14201-9.1 Sect<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage              |
| JB14201-8.1 Chin<br>JB14201-9.1 Secu<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | yur Patel         | Secured Storage      | 09/01/12 11:26 | Return to Storage                  |
| JB14201-9.1 Secu<br>JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage              |
| JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage                  |
| JB14201-9.1 Tod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ared Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d Shoemaker       | Krimesh Patel        |                | Custody Transfer                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nesh Patel        | Secured Storage      |                | Return to Storage                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ared Storage      | Brian Racin          |                | Retrieve from Storage              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Racin           | Sanjay Advani        |                | Custody Transfer                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | jay Advani        | Matt Del Ciello      |                | Custody Transfer                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t Del Ciello      | Secured Storage      |                | Return to Storage                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ared Storage      | Adam Scott           |                | Retrieve from Storage              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m Scott           | Secured Staging Area |                | Return to Storage                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ared Staging Area | Mayur Patel          |                | Retrieve from Storage              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | yur Patel         | Secured Storage      |                | Return to Storage                  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ared Storage      | Ching Wong           |                | Retrieve from Storage              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng Wong           | Secured Storage      |                | Return to Storage                  |
| ID14201 10 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 C4              | T- 11 Cl1            | 09/22/12 09:52 | D. 4                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ured Storage      | Todd Shoemaker       |                | Retrieve from Storage              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d Shoemaker       | Krimesh Patel        |                | Custody Transfer                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nesh Patel        | Secured Storage      |                | Return to Storage                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ured Storage      | Brian Racin          |                | Retrieve from Storage              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in Racin          | Sanjay Advani        |                | Custody Transfer                   |
| JB14201-10.1 Sanj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | jay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer                   |



### Accutest Internal Chain of Custody Job Number: JB14201

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Received: 08/20/12

| Sample. Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|--------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14201-10.1             | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-10.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-10.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-10.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-10.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-10.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-10.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-11.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-11.1             | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-11.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-11.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-11.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-11.1             | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-11.1             | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-11.1             | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-11.1             | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-11.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-11.1             | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-11.1             | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-11.1             | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-12.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14201-12.1             | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-12.1             | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14201-12.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-12.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-12.1             | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-12.1             | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-12.1             | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-12.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-12.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-12.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-12.1             | Secured Storage      | Shirley Grzybowski   |                | Retrieve from Storage |
| JB14201-12.1             | Shirley Grzybowski   | Secured Storage      | 09/04/12 14:17 | Return to Storage     |
| JB14201-12.1             | Secured Storage      | Dave Hunkele         | 09/04/12 14:19 | Retrieve from Storage |
| JB14201-12.1             | Dave Hunkele         | Secured Staging Area | 09/04/12 14:20 | Return to Storage     |
| JB14201-12.1             | Secured Staging Area | Ching Wong           |                | Retrieve from Storage |
| JB14201-12.1             | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-12.2             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14201-12.2             | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-12.2             | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14201-12.2             | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |



### Accutest Internal Chain of Custody Job Number: JB14201

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Received: 08/20/12

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14201-12.2            | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-12.2            | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-12.2            | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-12.2            | Secured Storage      | Ching Wong           |                | Retrieve from Storage |
| JB14201-12.2            | Ching Wong           | Secured Storage      |                | Return to Storage     |
| JB14201-12.2            | Secured Storage      | Dave Hunkele         | 09/05/12 10:31 | Retrieve from Storage |
| JB14201-12.2            | Dave Hunkele         | Jayshree Amin        | 09/05/12 10:32 | Custody Transfer      |
| JB14201-12.3            | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-12.3            | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-12.3            | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-12.3            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-12.3            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-12.3            | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-12.3            | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-12.3            | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-12.3            | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-12.3            | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-12.3            | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-12.3            | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-12.3            | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-13.2            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-13.2            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-13.2            | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14201-13.2            | Secured Storage      | Dave Hunkele         | 08/30/12 08:39 | Retrieve from Storage |
| JB14201-13.2            | Dave Hunkele         | Secured Staging Area | 08/30/12 08:41 | Return to Storage     |
| JB14201-13.2            | Secured Staging Area | Sanjay Advani        | 08/30/12 08:53 | Retrieve from Storage |
| JB14201-13.2            | Sanjay Advani        | Secured Storage      | 08/30/12 15:58 | Return to Storage     |





### General Chemistry

QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary



### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14201 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                              | Batch ID                                      | RL    | MB<br>Result | Units                  | Spike<br>Amount   | BSP<br>Result       | BSP<br>%Recov         | QC<br>Limits                  |
|----------------------------------------------------------------------|-----------------------------------------------|-------|--------------|------------------------|-------------------|---------------------|-----------------------|-------------------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent<br>Chromium, Hexavalent | GN70764<br>GP66938/GN71458<br>GP66938/GN71458 | 0.010 | 0.0          | mg/l<br>mg/kg<br>mg/kg | 0.15<br>40<br>740 | 0.15<br>35.7<br>706 | 100.0<br>89.3<br>95.4 | 90-110%<br>80-120%<br>80-120% |

Associated Samples:

Batch GN70764: JB14201-13

Batch GP66938: JB14201-1, JB14201-2, JB14201-3, JB14201-4, JB14201-5, JB14201-6, JB14201-7, JB14201-8, JB14201-9, JB14201-9

10, JB14201-11, JB14201-12 (\*) Outside of QC limits



### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

### Login Number: JB14201 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte               | Batch ID        | QC<br>Sample | Units | Original<br>Result | DUP<br>Result | RPD  | QC<br>Limits |
|-----------------------|-----------------|--------------|-------|--------------------|---------------|------|--------------|
| Chromium, Hexavalent  | GN70764         | JB14205-5    | mg/l  | 0.0                | 0.0           | 0.0  | 0-20%        |
| Chromium, Hexavalent  | GP66938/GN71458 | JB14201-12   | mg/kg | 0.82               | 0.98          | 17.8 | 0-20%        |
| Redox Potential Vs H2 | GN71296         | JB14201-13   | mv    | 327                | 310           | 5.3  | 0-10%        |
| Redox Potential Vs H2 | GN71304         | JB14201-12   | mv    | 378                | 347           | 8.6  | 0-13%        |
| рН                    | GN71303         | JB14201-12   | su    | 7.39               | 7.37          | 0.3  | 0-5%         |

Associated Samples:

Batch GN70764: JB14201-13 Batch GN71296: JB14201-13

Batch GN71303: JB14201-1, JB14201-2, JB14201-3, JB14201-4, JB14201-5, JB14201-6, JB14201-7, JB14201-8, JB14201-9, JB14201-9

10, JB14201-11, JB14201-12

Batch GN71304: JB14201-1, JB14201-2, JB14201-3, JB14201-4, JB14201-5, JB14201-6, JB14201-7, JB14201-8, JB14201-9, JB14201-9

10, JB14201-11, JB14201-12

Batch GP66938: JB14201-1, JB14201-2, JB14201-3, JB14201-4, JB14201-5, JB14201-6, JB14201-7, JB14201-8, JB14201-9, JB14201-10, JB14201-11, JB14201-12

(\*) Outside of QC limits



### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14201 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec     | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|----------|--------------|
| Chromium, Hexavalent | GN70764         | JB14205-5    | mg/l  | 0.0                | 0.15            | 0.072        | 48.0N(a) | 85-115%      |
| Chromium, Hexavalent | GP66938/GN71458 | JB14201-12   | mg/kg | 0.82               | 974             | 1060         | 108.7(b) | 75-125%      |
| Chromium, Hexavalent | GP66938/GN71458 | JB14201-12   | mg/kg | 0.82               | 48.6            | 23.8         | 47.3N(c) | 75-125%      |

### Associated Samples:

Batch GN70764: JB14201-13

Batch GP66938: JB14201-1, JB14201-2, JB14201-3, JB14201-4, JB14201-5, JB14201-6, JB14201-7, JB14201-8, JB14201-9, JB14201-9

- 10, JB14201-11, JB14201-12
- (\*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Low recovery on XCR matrix spike. Low recovery (54%) on the pH-adjusted post-spike.
- (b) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.
- (c) Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (92.9%) on this sample.



### Percent Solids Raw Data Summary Job Number: JB14201

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

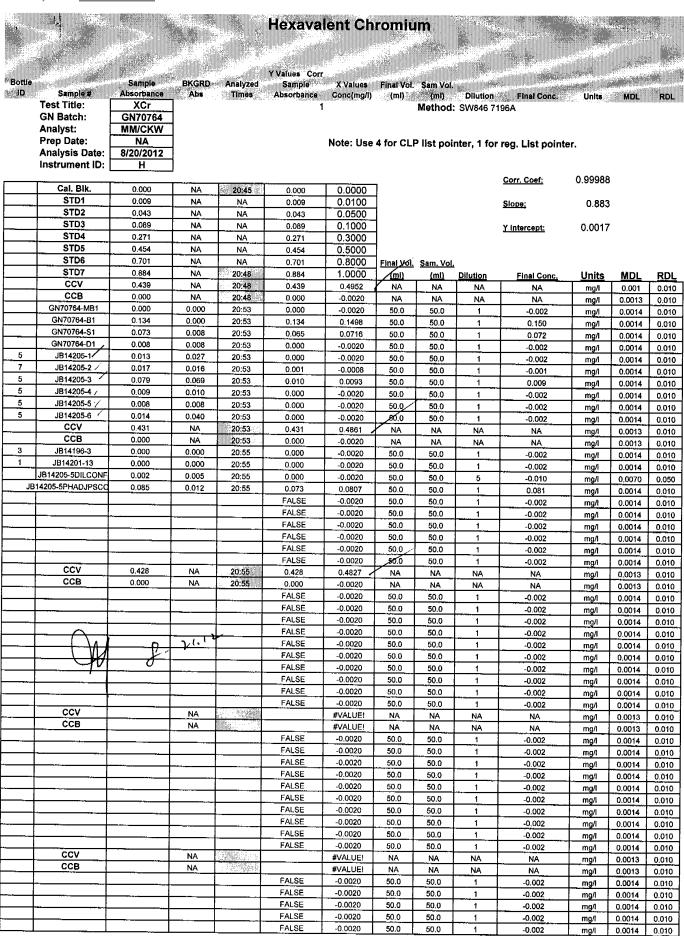
| <b>Sample:</b> JB14201-1 <b>ClientID:</b> NSB-F5-12.0-12.5 | Analyzed: | 22-AUG-12 by KP | Method | : SM18 2540G |
|------------------------------------------------------------|-----------|-----------------|--------|--------------|
| Wet Weight (Total)                                         | 33.16     | σ               |        |              |
| Tare Weight                                                | 27.51     | g<br>g          |        |              |
| Dry Weight (Total)                                         | 31.34     | g               |        |              |
| Solids, Percent                                            | 67.8      | %               |        |              |
| Sample: JB14201-2<br>ClientID: NSB-F5-8.0-8.5              | Analyzed: | 22-AUG-12 by KP | Method | : SM18 2540G |
| Wet Weight (Total)                                         | 34.25     | g               |        |              |
| Tare Weight                                                | 25.94     | g               |        |              |
| Dry Weight (Total)                                         | 32.92     | g               |        |              |
| Solids, Percent                                            | 84        | %               |        |              |
| <b>Sample:</b> JB14201-3 <b>ClientID:</b> NSB-F5-4.0-4.5   | Analyzed: | 22-AUG-12 by KP | Method | : SM18 2540G |
| Wet Weight (Total)                                         | 31.99     | g               |        |              |
| Tare Weight                                                | 26.17     | g               |        |              |
| Dry Weight (Total)                                         | 31.04     | g               |        |              |
| Solids, Percent                                            | 83.7      | %               |        |              |
| <b>Sample:</b> JB14201-4 <b>ClientID:</b> NSB-F5-0.0-0.5   | Analyzed: | 22-AUG-12 by KP | Method | : SM18 2540G |
| Wet Weight (Total)                                         | 31.39     | g               |        |              |
| Tare Weight                                                | 25.14     | g               |        |              |
| Dry Weight (Total)                                         | 30.79     | g               |        |              |
| Solids, Percent                                            | 90.4      | %               |        |              |
| Sample: JB14201-5<br>ClientID: NSB-D5-20.0-20.5            | Analyzed: | 22-AUG-12 by KP | Method | : SM18 2540G |
| Wet Weight (Total)                                         | 30.34     | g               |        |              |
| Tare Weight                                                | 23.07     | g               |        |              |
| Dry Weight (Total)                                         | 29.49     | g               |        |              |
| Solids, Percent                                            | 88.3      | %               |        |              |
| Sample: JB14201-6<br>ClientID: NSB-D5-18.0-18.5            | Analyzed: | 22-AUG-12 by KP | Method | : SM18 2540G |
| Wet Weight (Total)                                         | 26.46     | g               |        |              |
| Tare Weight                                                | 19.3      | g               |        |              |
| Dry Weight (Total)                                         | 25.61     | g               |        |              |
| Solids, Percent                                            | 88.1      | %               |        |              |
|                                                            |           |                 |        |              |



### Percent Solids Raw Data Summary Job Number: JB14201

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ


| <b>Sample:</b> JB14201-7                                   | Analyzed      | 22-AUG-12 by KI          | P Methods | SM18 2540G           |
|------------------------------------------------------------|---------------|--------------------------|-----------|----------------------|
| <b>ClientID:</b> NSB-D5-15.0-15.5                          | 1111111, 2011 | <b>22</b> 110 0 12 0y 12 |           | 5.110 <b>2</b> 0 100 |
| Wet Weight (Total)                                         | 29.93         | g                        |           |                      |
| Tare Weight                                                | 22.34         | g                        |           |                      |
| Dry Weight (Total)<br>Solids, Percent                      | 29.02<br>88   | g<br>%                   |           |                      |
| Solids, Tercent                                            | 00            | 70                       |           |                      |
| <b>Sample:</b> JB14201-8 <b>ClientID:</b> NSB-D5-12.0-12.5 | Analyzed:     | 22-AUG-12 by KI          | P Method: | SM18 2540G           |
| Wet Weight (Total)                                         | 30.58         | g                        |           |                      |
| Tare Weight                                                | 20.88         | g                        |           |                      |
| Dry Weight (Total)                                         | 28.51         | g                        |           |                      |
| Solids, Percent                                            | 78.7          | %                        |           |                      |
| <b>Sample:</b> JB14201-9 <b>ClientID:</b> NSB-D5-6.4-6.9   | Analyzed:     | 22-AUG-12 by KI          | P Method: | SM18 2540G           |
| Wet Weight (Total)                                         | 30.55         | g                        |           |                      |
| Tare Weight                                                | 22.02         | g                        |           |                      |
| Dry Weight (Total)                                         | 28.71         | g                        |           |                      |
| Solids, Percent                                            | 78.4          | %                        |           |                      |
| <b>Sample:</b> JB14201-10 <b>ClientID:</b> NSB-D5-3.0-3.5X | Analyzed:     | 22-AUG-12 by KI          | Method:   | SM18 2540G           |
| Wet Weight (Total)                                         | 29.07         | g                        |           |                      |
| Tare Weight                                                | 22.66         | g                        |           |                      |
| Dry Weight (Total)                                         | 28.12         | g                        |           |                      |
| Solids, Percent                                            | 85.2          | %                        |           |                      |
| Sample: JB14201-11<br>ClientID: NSB-D5-3.0-3.5             | Analyzed:     | 22-AUG-12 by KI          | P Method: | SM18 2540G           |
| Wet Weight (Total)                                         | 32.76         | g                        |           |                      |
| Tare Weight                                                | 26.71         | g                        |           |                      |
| Dry Weight (Total)                                         | 31.74         | g                        |           |                      |
| Solids, Percent                                            | 83.1          | %                        |           |                      |
| Sample: JB14201-12<br>ClientID: NSB-E5-3.0-3.5             | Analyzed:     | 22-AUG-12 by KI          | P Method: | SM18 2540G           |
| Wet Weight (Total)                                         | 27.9          | g                        |           |                      |
| Tare Weight                                                | 21.6          | g                        |           |                      |
| Dry Weight (Total)                                         | 26.82         | g                        |           |                      |
| Solids, Percent                                            | 82.9          | %                        |           |                      |





| General Chemistry |  |
|-------------------|--|
| Raw Data          |  |







| Product: XCr                                                                                                                                            |                                                                                         |                                                  | = 0.0013 mg/l<br>= 0.010 mg/l                                                                           | GNBatch ID: 6 N 10 164  Date: 60000 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------|
| Method: SW846 7190 Digestion Batch QC                                                                                                                   |                                                                                         | / Units                                          | = ma/l                                                                                                  |                                     |
| Method Blank ID: MB<br>Spike Blank ID: Bl<br>Duplicate ID: D<br>MS ID: Sl<br>Diluted Sample ID: JB                                                      | Samp.                                                                                   | Date: R Date: R Samp. Result: MS I Samp. Result: | Result: <u>LMDL</u> F Result: <u>.15</u> Dup. Result: _ Result: .002 S                                  | RDL:010 <rdl:< th=""></rdl:<>       |
| Analysis Batch QC Sun                                                                                                                                   |                                                                                         | Units = mg/l                                     |                                                                                                         |                                     |
| CCV: 870702<br>CCV: +<br>CCV: -<br>CCV: -<br>CCV: -<br>CCB: - | Result: | RDL:RDL:                                         | %Rec.: 91.29 %Rec.: 91.09 %Rec.: %Rec.: %Rec.: *RDL: <rdl: <rdl:="" <rdl:<="" td=""><td>. /</td></rdl:> | . /                                 |
| Reagent Reference N                                                                                                                                     | ımhere                                                                                  |                                                  |                                                                                                         |                                     |
| - vongent traterence M                                                                                                                                  | ampers;                                                                                 | Nel allach                                       | od                                                                                                      |                                     |
| nitial Calibration Sou                                                                                                                                  | rce:                                                                                    |                                                  |                                                                                                         |                                     |
| Continuing Calibration                                                                                                                                  | Source:                                                                                 |                                                  |                                                                                                         |                                     |
| Analyst: NUM (CC                                                                                                                                        | ∭ Date:                                                                                 | apopo                                            |                                                                                                         |                                     |

F m: GN076-01 **R**.w. Date: 1/10/11





### Hexavalent Chromium pH Adjustment Log Method: SW846 7196A

| modiod. Offi        | 70 / 100M      | • •                            |   |
|---------------------|----------------|--------------------------------|---|
| oH adj. start time: | <u> 20:30 </u> | <br>pH Adjust. Date: 8/20/2012 |   |
| oH adj. end time:   | 2030           | GN Batch ID: 61 10104          | _ |

| Sample ID       | Initial<br>Sample<br>Volume<br>(ml)              | Final<br>Volume<br>(ml) | pH after<br>H2SO4 | bkg pH<br>after<br>H2SO4 | Spike Info | Comments           |
|-----------------|--------------------------------------------------|-------------------------|-------------------|--------------------------|------------|--------------------|
| ccv             | 45                                               | 3                       | 192               |                          | 19ML       | Spomultra          |
| ccv             | <u> </u>                                         |                         | 1.14-             |                          | -311/0_    | SABIACINETIA       |
| ccv             |                                                  |                         |                   |                          |            |                    |
| ccv             |                                                  | ·                       |                   |                          |            |                    |
| ССВ             | 45                                               | B                       | 1.03              |                          |            |                    |
| ССВ             |                                                  |                         | 1:127             |                          |            |                    |
| ССВ             |                                                  |                         |                   |                          |            |                    |
| ССВ             |                                                  |                         |                   |                          |            |                    |
| MSJBADG5        | 45                                               | 40                      | 1.93              | 1.86                     | 11001      | 75 000 100011111   |
| DUP +           | 1 7                                              |                         | 100               | 1.82                     | IML        | 75 ppn Maxhub      |
| SBXQ)           | 1 1                                              |                         | 18                | 173                      | 1 and      | 75 DOM MORLEUS     |
| PBMBI           |                                                  |                         | 185               | 1.74                     | lmL_       | 12 phillipped      |
| 1.1814205-1     | 1                                                |                         | 1.23              | 1.79                     | _          |                    |
| 2.              |                                                  |                         | 194               | 1.25                     |            |                    |
| 33              |                                                  |                         | 198               | 183                      |            |                    |
| 44              | †                                                |                         | 197               | 181                      |            |                    |
| 5.              | <del>                                     </del> |                         | 1.24              | 178                      |            |                    |
| 6. 1 -10        |                                                  |                         | 195               | 1.87                     |            |                    |
| 7. JB14910-3    | 1 1                                              |                         | 198               |                          |            |                    |
| 8. JB 1420) -13 | 14                                               |                         | 1.81              | 125                      |            |                    |
| 9.              | <b>\</b>                                         | -                       | 1-81              | 1710                     |            |                    |
| 10.             |                                                  |                         |                   |                          | <u> </u>   |                    |
| 11.             | 1                                                |                         |                   |                          |            |                    |
| 12.             |                                                  |                         | -/1               |                          |            |                    |
| 13.             |                                                  |                         | <del>-/-</del> -  |                          |            |                    |
| 14.             |                                                  |                         |                   |                          |            |                    |
| 15.             |                                                  |                         |                   |                          |            |                    |
| 16.             | <del>  </del>                                    |                         |                   |                          |            |                    |
| 17.             |                                                  |                         | _                 |                          |            | <u> </u>           |
| 18.             | <del>                                     </del> |                         |                   |                          |            |                    |
| 19.             | † · <del> </del>                                 |                         |                   |                          |            |                    |
| 20.             |                                                  |                         |                   |                          |            |                    |
| PSJB14205-5     | 45                                               | 50                      | 1.93              | 1:72                     | 0H-98 14   | IN INT THE MA      |
| DIL +           | 1                                                | 1                       | 1910              | 10)                      | h11 18-11  | IN IML 75 ppm 1/25 |
| DIL             | <del>  '</del>                                   |                         | <u> </u>          | (70)                     |            | 1 2 MILLAND        |
|                 |                                                  |                         |                   |                          |            |                    |

| Reagent Informa | tion:    |                 |              |       |
|-----------------|----------|-----------------|--------------|-------|
|                 | - 1 - 10 |                 |              |       |
| Analyst \\      | CKUN     | Date: 20 20 202 | QC Reviewer: | Date: |

Form: GN077-01 Rev. Date: 1/10/11



### Hexavalent Chromium pH Adjustment Log

| Method: SV           | V846 719                    | 6A              | -        |                         |                               |
|----------------------|-----------------------------|-----------------|----------|-------------------------|-------------------------------|
| pH adj. start time:  |                             | 20:30           | _        | pH Adjust, Date: 800    | 00.                           |
| pH adj. end time:    |                             | 20:38           | _        | pH Adjust. Date: 8/20/2 | ON 70764                      |
|                      | Initial<br>Sample<br>Volume | Final<br>Volume | pH after |                         |                               |
| Sample ID            | (ml)                        | (ml)            | H2SO4    | Comments                | Spike Info.                   |
| Calibration Blank    | 45                          | <b>SD</b>       | 20       |                         |                               |
| 0.010 mg/l standard  |                             |                 | 198      | 5 ppm 170solutle.       | 0.10 ml of 5 mg/l to 50 ml FV |
| 0.050 mg/l standard  |                             |                 | 1.76     |                         | 0.50 ml of 5 mg/l to 50 mL FV |
| 0.100 mg/l standard  |                             |                 | 1.82     |                         | 1.00 ml of 5 mg/l to 50 mL FV |
| 0.300 mg/l standard  |                             |                 | 1.99     |                         | 3.00 ml of 5 mg/l to 50 mL FV |
| 0.500 mg/l standard  |                             |                 | 1.93     |                         | 5.00 ml of 5 mg/l to 50 mL FV |
| 0.800 mg/l standard  |                             |                 | 190      |                         | 8.00 ml of 5 mg/l to 50 mL FV |
| 1.00 mg/l standard   | 4                           | 4               | 1-84     |                         | 10.0 ml of 5 mg/l to 50 mL FV |
| 2.00 mg/l standard   |                             |                 |          |                         | 20.0 ml of 5 mg/l to 50 mL FV |
|                      |                             |                 |          |                         |                               |
|                      |                             |                 |          |                         |                               |
|                      |                             |                 |          |                         |                               |
|                      |                             |                 |          |                         |                               |
|                      |                             |                 |          |                         |                               |
|                      |                             |                 |          |                         |                               |
|                      |                             |                 | -4       |                         |                               |
|                      |                             |                 |          |                         |                               |
|                      |                             | <del></del>     | / -      |                         |                               |
|                      |                             |                 |          |                         |                               |
|                      |                             | -/-             |          |                         |                               |
|                      |                             | $\overline{}$   |          |                         |                               |
|                      | <del></del>                 |                 |          |                         |                               |
|                      | <del>- 1</del>              |                 |          |                         |                               |
|                      |                             |                 |          |                         |                               |
|                      |                             |                 |          |                         | -                             |
| leagent Information: |                             |                 |          | so alleuled             |                               |

Analyst: NUM CON Date: 8 popoe

Form: GN078-01 Rev. Date: 1/10/11





Tracking #: \_\_\_\_\_JB14196

### **Immediate Analysis Record**

| Date Generated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l: 8/20/2012                | Sampling Date/Time: | 8/20/1      | 2 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rcv'd in HT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | YES                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Client Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AECOM                       |                     | # of Sample | es:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | # of Bottles:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                            |
| Locations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ME 40,                      |                     |             | Delv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                              |
| Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                     |             | and the second s | a suppossibility of the suppose of t | <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |
| Sample info relic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | quished from sample mai     | nagement by: MA     | TTCA        | Date / Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8/20/2012 7:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12:36 PM                                     |
| Sample i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nfo received in general c   | hemistry by:        |             | Date / Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| ample Number \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Magal                       |                     | Analysis    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | /latrix                                      |
| THE PARTY OF THE P | 1 W L C/CMV                 |                     | XCR7196     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FB                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| equested by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             | Date/               | īme:        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| e following sample:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s have been depleted / brol | ken:                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| elinquished by (Sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ple Mgt):                   | Rcv'd by (Lab       | ):          | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |

Relinquished by (Lab): Rcv'd by (Sample Mgt): Date/Time:





Tracking #: JB14201

### **Immediate Analysis Record**

| Date Generated    | : 8/20/2012            | Sampling Date                                                          | e/Time: | 8/20/12    | 1515      | R     | cv'd in HT:   | YES     |
|-------------------|------------------------|------------------------------------------------------------------------|---------|------------|-----------|-------|---------------|---------|
| Client Name:      | AECOM                  |                                                                        | #       | of Samples | : 1       | #     | of Bottles:   | 1       |
| Locations:        | 145 46                 |                                                                        |         |            |           | Delv: |               |         |
| Comments:         |                        | e Add de tremanistad de Base e e un democratica anno millione anno men |         |            |           |       |               |         |
| Sample info reliq | juished from sample n  | nanagement by:                                                         | MATTCA  |            | Date / Ti | me:   | 8/20/2012 8:0 | 0:03 PM |
| Sample in         | nfo received in genera | chemistry by:                                                          |         |            | Date / Ti | me:   |               |         |
| Sample Number     |                        |                                                                        |         | Analysis   |           |       | N             | latrix  |
| 13                |                        |                                                                        |         | XCR7196    |           |       |               | FB      |
|                   |                        |                                                                        |         |            |           |       |               |         |
|                   |                        |                                                                        |         |            |           |       |               |         |
| Requested by:     |                        |                                                                        |         |            |           |       |               |         |

Relinquished by (Sample Mgt): Rcv'd by (Lab): Date/Time: Relinquished by (Lab): \_\_\_\_\_ Rcv'd by (Sample Mgt): \_\_\_\_\_ Date/Time:





Tracking #: JB14205

### **Immediate Analysis Record**

| Date Generate | ed: 8/20/2012                                    | Sampling Date/T                         | ime:     | 8/20/12 103 | 0                      | Rcv'd in HT:  | YES        |
|---------------|--------------------------------------------------|-----------------------------------------|----------|-------------|------------------------|---------------|------------|
| Client Name:  | LANGAN                                           |                                         | # of \$  | Samples:    | 6                      | # of Bottles: | 16         |
| Locations:    | WC 33, WC 22, ME 4                               | 0,                                      |          |             | Delv                   |               |            |
| Comments:     | LAB FILTER                                       |                                         |          |             |                        | *             |            |
|               | liquished from sample mainfo received in general | *************************************** | ***      | ·····       | e / Time:<br>e / Time: | 8/20/2012 8   | 27.001 [0] |
| Sample Number |                                                  |                                         | An       | nalysis     |                        |               | Matrix     |
| 1-6           |                                                  |                                         |          | R7196       |                        |               | AQ         |
| 1-6           |                                                  |                                         | NO2      | ! (Nitrite) |                        |               | AQ         |
| 1F,2F,3F,6F   |                                                  |                                         | OPO4 (Or | thophospha  | te)                    |               | 40         |

| Requested by:  The following samples have been depleted / broken: | Date/Time:          |            |  |
|-------------------------------------------------------------------|---------------------|------------|--|
| Relinquished by (Sample Mgt):                                     | Rcv'd by (Lab):     | Date/Time: |  |
| Relinquished by (Lab): Rcv                                        | 'd by (Sample Mgt): | Date/Time: |  |





CW 20764

### Reagent Information Log - XCR - water - 7196A

| Reagent                                                  | Exp. Date | Reagent # or Manufacturer/Lot |
|----------------------------------------------------------|-----------|-------------------------------|
| Calibration Source: Hexavalent Chromium, 1000 mg/L Stock | 1/12/2015 | Absolute Grade Lot# 011212    |
| Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock | 5/31/2017 | Ultra Scientific Lot# L00439  |
| External Check                                           | NA        | NA                            |
| Spiking Solution Source                                  | 1/12/2015 | Absolute Grade Lot# 011212    |
| Diphenyl carbazide Solution                              | 9/17/22   | <u>en to 334 xxx</u>          |
| Sulfuric Acid, 10%                                       | 2/hbas    | 4NED-32748-XX                 |
|                                                          |           |                               |
|                                                          | •         |                               |
|                                                          |           |                               |
|                                                          |           |                               |

Form: GN087A-23 Rev. Date: 10/3/05





Test: Redox Potential
Matrix: Aqueous ○
Matrix: Solid ●

Test Code: REDOX Method: ASTM D1498-76 Method: ASTM D1498-76 Mod. 
 Analyst:
 SANJAYA

 Date:
 08/30/12

 GN Batch ID:
 GN71296

 Temp (Deg C):
 25

| <b>Quality Cont</b> | rol Summary     |               |       |       |       |        |        | <u></u> |
|---------------------|-----------------|---------------|-------|-------|-------|--------|--------|---------|
| Sample ID:          | GN71296-D1      | -<br>Results: | 327.2 | Dup:  | 309.9 | % RPD: | 5.43%  |         |
| Ferrous-Ferr        | ric True: 675   | <del>-</del>  |       | Found | 648.3 | % Rec  | 96.04% |         |
| pH 4 Quinhy         | drone True: 462 |               |       | Found | 456.9 | % Rec  | 98.90% |         |
| pH 4 Quinhy         | drone True: 462 |               |       | Found | 443.7 | % Rec  | 96.04% |         |
| pH 4 Quinhy         | drone True: 462 |               |       | Found |       | % Rec  |        |         |
| pH 7 Quinhy         | drone True: 285 |               |       | Found | 271.2 | % Rec  | 95.16% |         |
|                     | drone True: 285 |               |       | Found | 262.4 | % Rec  | 92.07% |         |
| pH 7 Quinhy         | drone True: 285 |               |       | Found |       | % Rec  |        |         |

| Sample #:               | mv vs. Ag/AgCI<br>Electrode | Corrected results (mv<br>vs. Hydrogen electrode) |
|-------------------------|-----------------------------|--------------------------------------------------|
| Ferrous-Ferric Solution | 473                         | 648.3                                            |
| pH 4 Quinhydrone        | 281.5                       | 456.9                                            |
| pH 7 Quinhydrone        | 95.6                        | 271.2                                            |
| Dup GN71296-D1          | 134.6                       | 309.9                                            |
| 1. JB14201-13           | 151.9                       | 327.2                                            |
| 2. JB14312-14           | 178.7                       | 354.3                                            |
|                         | 170.7                       |                                                  |
| A                       |                             |                                                  |
| <u> </u>                |                             |                                                  |
| 5<br>6.                 | <del></del>                 |                                                  |
| 7                       |                             |                                                  |
| 8.                      |                             |                                                  |
| 9.                      |                             |                                                  |
| pH 4 Quinhydrone        | 268.3                       | 443.7                                            |
| pH 7 Quinhydrone        | 87                          | 262.4                                            |
|                         |                             | 202.4                                            |
| 10.                     |                             |                                                  |
| 11                      |                             |                                                  |
| 12.                     |                             |                                                  |
| 13                      |                             |                                                  |
| 14                      |                             |                                                  |
| 15.                     |                             |                                                  |
| 16.<br>17.              |                             |                                                  |
|                         |                             |                                                  |
| 18.<br>19.              |                             |                                                  |
| DH 4 Quinhydrone        |                             |                                                  |
|                         |                             |                                                  |
| pH 7 Quinhydrone        |                             |                                                  |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers:            | Redox Standard: GNE-31 | 456-ORP Exp:9/15/12 |     |       |
|-----------------------------|------------------------|---------------------|-----|-------|
| Comments:                   | -                      | A.                  |     |       |
| Analyst: S.A. F/N GN141.DOC | Date: <u>08/30/12</u>  | QC Reviewer:        | //) | Date: |

Rev. Date: 3/27/2007





|         |   | 38  |  |
|---------|---|-----|--|
| Balance | # | ~ v |  |

| Analyst S t A      |
|--------------------|
| Method E           |
| Prep Date \$130112 |
| GP# GN71296-EH     |

Sample Prep Log

| Sample ID             | Sample Size  | Final Volume |
|-----------------------|--------------|--------------|
| 30/4201-12            | GALL         |              |
| 36/4201-13<br>-13/10p | Capal        |              |
| 3/3/12-14             | GONL<br>GONL |              |
|                       |              |              |
|                       |              |              |
|                       | -            |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       | •            |              |
|                       |              |              |
|                       |              | -            |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |

| Form:  | GN1   | 66-02  |
|--------|-------|--------|
| Rev. D | Date: | 8/5/05 |

QC Review\_\_\_\_\_





Test pH, Corrosivity Method: SW846 9040B or SW846 9045C Product: PH, CORR
Analyst: SANJAYA
GN Batch ID: GN71303

Thermometer ID: 6539
Correction Factor: 0

Analysis Date: 8/30/2012 pH Meter ID: 50

QC Summary

Duplicate ID: GN71303-D1
Dup Result: 7.37

Sample ID: JB14201-12

% RPD: 0.27

|                                       | Wt./Vol. used | Uncorrected/<br>Corrected Temp in |        |             |           |
|---------------------------------------|---------------|-----------------------------------|--------|-------------|-----------|
| Sample ID                             | for soilds    | Deg C.                            | Result | Corrosivity | Read time |
| Buffer Check: 4                       |               | 25                                | 4.01   |             | 10:00     |
| Buffer Check: 7                       |               | 25                                | 6.97   |             |           |
| Buffer Check: 10                      |               | 25                                | 10     |             |           |
| 3N71303-D1                            |               | 25                                | 7.37   |             | -         |
| JB14201-1                             |               | 25                                | 7.07   |             |           |
| JB14201-10                            |               | 25                                | 7.47   |             |           |
| JB14201-11                            | ···-          | 25                                | 7.70   |             |           |
| JB14201-12                            |               | 25                                | 7.39   |             |           |
| JB14201-2                             | ***           | 25                                | 7.44   |             |           |
| IB14201-3                             |               | 25                                | 6.99   |             |           |
| JB14201-4                             |               | 25                                | 7.96   |             |           |
| JB14201-5                             |               | 25                                | 8.67   |             |           |
| JB14201-6                             |               | 25                                | 8.16   |             |           |
| Buffer Check: 4                       |               | 25                                | 4.05   |             |           |
| Buffer Check: 10                      |               | 25                                | 10.05  |             |           |
| JB14201-7                             |               | 25                                | 8.52   |             |           |
| JB14201-8                             |               | 25                                | 7.92   |             |           |
| JB14201-9                             |               | 25                                | 7.63   |             |           |
| JB14270-11                            |               | 25                                | 8.10   |             |           |
| JB14270-5                             |               | 25                                | 8.83   |             |           |
| JB14271-12                            |               | 25                                | 7.69   |             | ]         |
| JB14271-6                             |               | 25                                | 8.80   |             |           |
| JB14874-1                             |               | 25                                | 9.38   |             |           |
| JB14874-2                             |               | 25                                | 7.68   |             |           |
| JB14874-5                             |               | 25                                | 8.07   |             |           |
| Buffer Check: 7                       |               | 25                                | 7.03   |             |           |
| Buffer Check:10                       |               | 25                                | 10.03  |             | 11:27     |
|                                       |               |                                   |        |             |           |
|                                       |               |                                   |        |             |           |
|                                       |               |                                   |        |             |           |
|                                       |               |                                   |        |             |           |
|                                       |               |                                   |        |             |           |
|                                       |               |                                   |        |             |           |
|                                       |               |                                   |        |             |           |
|                                       |               |                                   |        |             |           |
|                                       |               |                                   |        |             |           |
| · · · · · · · · · · · · · · · · · · · |               |                                   |        |             |           |
| Buffer Check:                         |               |                                   |        |             |           |
| Buffer Check:                         |               |                                   |        |             |           |

Comments:

Validated By: Nancy Cole

Document Control #: AGN-PH CORR-AQ-01

56 of 71
ACCUTEST

JB14201

LABORATORIES

Validated Date:

8/7/2012



|           | 38 |
|-----------|----|
| Balance # |    |

|   | $\leq V$           |
|---|--------------------|
|   | Analyst ) /        |
|   | Method EH/PI+      |
| , | Prep Date \$/29//2 |
|   | GP# GN71363-OH     |
|   | GN713031-2H        |

Sample Prep Log

| Sample ID  | Sample Size | Final Volume   |
|------------|-------------|----------------|
| 3B14874-1  | S0 5.       | added SCNLPTHO |
| -2         | 50.88       |                |
| -5         | 50.5%       |                |
| JB14201-1  | 50.14       |                |
| -2         | 50.62       |                |
| -3         | 50.15       |                |
| -4         | 5055        |                |
|            | 506         |                |
| - 6        | 50.6x       |                |
| -7         | 50.02       |                |
| -8         | 5048        |                |
| -9         | 50.3        |                |
| -10        | Susy        |                |
| -11        | 50.35       |                |
| -12        | 50.6g       |                |
| -12/20     | 50.95       |                |
| 3/14270-5  | SOL         |                |
| -11        | Soza        |                |
| 3/5/427/-6 | 50.4        |                |
| -12        | <u> </u>    | V              |
|            |             |                |
|            |             |                |

| Form:  | GN1   | 66-02  |
|--------|-------|--------|
| Rev. D | Date: | 8/5/05 |

QC Review\_\_\_\_\_



| Reagent    | Information Log |
|------------|-----------------|
| Test Name: | pH              |
|            | (TN71203        |

| Reagent               |                                 |
|-----------------------|---------------------------------|
| pH 2 Buffer Solution  | FICHER LOT#115910 EXP 11/30/13  |
| pH 4 Buffer Solution  | BDH LOT#2110255 EXP 9/30/13     |
| pH 7 Buffer Solution  | RICCA LOT#2111388 EXP 10/30/13  |
| pH 10 Buffer Solution | FISCHER LOT#105427 EXP 09/30/12 |
| pH 13 Buffer Solution | AQUA SOL. LOT#1080516 EXP 08/30 |
|                       |                                 |

Form: GN087-01 Rev. Date:8/30/2012





**Test: Redox Potential** Matrix: Aqueous 0 Matrix: Solid

**Test Code: REDOX** Method: ASTM D1498-76 Method: ASTM D1498-76 Mod.

SANJAYA Analyst: 08/30/12 Date: GN71304 GN Batch ID: 25 Temp (Deg C):

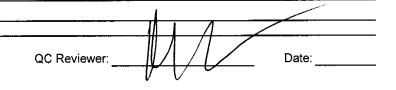
| Quality Control Summary    |                |                    |                     |
|----------------------------|----------------|--------------------|---------------------|
| Sample ID: GN71304-D1      | Results: 378.3 | Dup: <b>346.8</b>  | % RPD: 8.69%        |
| Ferrous-Ferric True: 675   |                | Found <b>638.8</b> | % Rec 94.64%        |
| pH 4 Quinhydrone True: 462 |                | Found 482.6        | % Rec 104.46%       |
| pH 4 Quinhydrone True: 462 |                | Found 447.3        | % Rec <b>96.82%</b> |
| pH 4 Quinhydrone True: 462 |                | Found 447.9        | % Rec <b>96.95%</b> |
| pH 7 Quinhydrone True: 285 |                | Found <b>290.1</b> | % Rec 101.79%       |
| pH 7 Quinhydrone True: 285 |                | Found <b>266.7</b> | % Rec 93.58%        |
| pH 7 Quinhydrone True: 285 |                | Found <b>263.1</b> | % Rec 92.32%        |

| Sample #:             |            | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv<br>vs. Hydrogen electrode) *** |
|-----------------------|------------|-----------------------------|------------------------------------------------------|
| Ferrous-Ferrio        | Solution   | 463.4                       | 638.8                                                |
| pH 4 Quinhydi         | rone       | 307.1                       | 482.6                                                |
| pH 7 Quinh <u>ydı</u> |            | 114.6                       | 290.1                                                |
| Dup                   | GN71304-D1 | 171.6                       | 346.8                                                |
| i. —                  | JB14201-1  | 146.4                       | 321.8                                                |
| 2.                    | JB14201-10 | 219                         | 394.6                                                |
| 3.                    | JB14201-11 | 208.4                       | 383.9                                                |
| 4.                    | JB14201-12 | 203                         | 378.3                                                |
| 5.                    | JB14201-2  | 19.5                        | 195                                                  |
| 6.                    | JB14201-3  | 219.2                       | 394.6                                                |
| 7.                    | JB14201-4  | 188.1                       | 363.5                                                |
| 8.                    | JB14201-5  | 160.8                       | 336.3                                                |
| 9.                    | JB14201-6  | 165.5                       | 340.8                                                |
| pH 4 Quinhydi         | rone       | 272                         | 447.3                                                |
| pH 7 Quinhydi         | rone       | 91.3                        | 266.7                                                |
| 10.                   | JB14201-7  | 70.3                        | 245.9                                                |
| 11.                   | JB14201-8  | -11.2                       | 164.2                                                |
| 12.                   | JB14201-9  | 12.6                        | 187.8                                                |
| 13.                   | JB14270-11 | 78                          | 253.4                                                |
| 14.                   | JB14270-5  | 56.3                        | 231.7                                                |
| 15.                   | JB14271-12 | 130.9                       | 306.4                                                |
| 16. <u> </u>          | JB14271-6  | 120.2                       | 295.6                                                |
| 17                    | JB14874-1  | 72.7                        | 248.1                                                |
| 18.                   | JB14874-2  | -58                         | 117.4                                                |
| 19.                   | JB14874-5  | -62.3                       | 113.2                                                |
| pH 4 Quinhyd          | rone       | 272.6                       | 447.9                                                |
| pH 7 Quinhyd          | rone       | 87.7                        | 263.1                                                |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCI reading.

**Reagent Numbers:** 

Redox Standard: GNE-31456-ORP Exp:9/15/12


Date: 08/30/12

Comments:

Analyst: S.A.

F/N GN141.DOC

Rev. Date: 3/27/2007







Balance #\_\_\_\_

| $\leq 0$           |
|--------------------|
| Analyst            |
| Method EHIIH       |
| Prep Date \$/29//2 |
| GP#GN71363-OH      |
| CN71304-RH         |
|                    |

Sample Prep Log

|            | Sample Frep Log   | <u> </u>       |
|------------|-------------------|----------------|
| Sample ID  | Sample Size       | Final Volume   |
| 3B14874-1  | SO 5.             | added SONLPTHO |
| -2         | 50.8%             |                |
| -5         | 50.5%             |                |
| 3B14201-1  | 50.10             |                |
| -2:        | 50.8x =           |                |
| -3         | Sols              |                |
| -4         | 5055              |                |
| -5         | 506               |                |
|            | 50 6x             |                |
| -7         | So. oz            |                |
| -8         | 50 4 <sub>8</sub> |                |
| -9         | 50.3              |                |
| -10        | . Susy            |                |
| -11        | 5035              |                |
| -12        | 50.65             |                |
| -t-p.c     | 50%               |                |
| 3/14270-5  | Soly              |                |
|            | Solz              |                |
| 3/5/4271-6 | SO. 4x            |                |
| -12        | 50.85             | V              |
|            | V                 |                |
|            |                   |                |
|            |                   |                |

Form: GN166-02 Rev. Date: 8/5/05

QC Review



Analyst:

Prep Date:

Analysis Date:

Instrument ID:

ΑD

9/1/2012

9/1/2012

D

Y Values Corr Sample BKGRD X Values Final Vol. Sam Wt. Analysis Sample ! Sample # Absorbance Abs Times Conc(mg/l) (ml) (g) Dilution Final Conc. Absorbance

Test Title: XCRA Method: SW846 3060A, 7196A GN Batch: GN71458

Note: All results below shown on a wet weight basis.

Corr. Coef: 0.99996

Units

MDL

Cal. Blk. 0.0000 0.000 NΑ 8:23 0.000 0.9214 STD 1 0.010 0.0100

| Į | 3101             | 0.010 | NA.   | INA : | 0.010 | 0.0100    | J          |            |          | <u> 310pe:</u> | 0.5214       |       |
|---|------------------|-------|-------|-------|-------|-----------|------------|------------|----------|----------------|--------------|-------|
|   | STD 2            | 0.046 | NA    | NA    | 0.046 | 0.0500    |            |            |          |                |              |       |
|   | STD 3            | 0.092 | NA    | NA    | 0.092 | 0.1000    | ]          |            |          | Y intercept:   | 0.0006       |       |
|   | STD 4            | 0.278 | NA    | NA    | 0.278 | 0.3000    |            |            |          |                |              |       |
|   | STD 5            | 0.461 | NA    | NA    | 0.461 | 0.5000    | }          |            |          |                |              |       |
|   | STD 6            | 0.744 | NA    | ŅA    | 0.744 | 0.8000    | Final Vol. | Sam. Wt.   |          |                |              |       |
|   | STD 7            | 0.917 | NA    | 8:27  | 0.917 | 1.0000    | (ml)       | <u>(a)</u> | Dilution | Final Conc.    | <u>Units</u> | MDL   |
|   | CCV              | 0.432 | NA    | 15:16 | 0.432 | 0.4682    | NA         | NA         | NA       | NA             | mg/l         | 0,003 |
|   | CCB              | 0,000 | NA    | 15:16 | 0.000 | -0.0007 🖊 | NA         | NA         | NA       | NA             | mg/l         | 0.003 |
| ı | GP66938-MB1      | 0.000 | 0.000 | 15:25 | 0.000 | -0.0007   | 100.0      | 2.5000     | 1        | -0.027         | mg/kg        | 0.117 |
|   | GP66938-B1       | 0.822 | 0.000 | 15:25 | 0.822 | 0.8914    | 100.0      | 2.5000     | 1        | 35.658         | mg/kg        | 0.117 |
| l | GP66938-S1       | 0.464 | 0.013 | 15:25 | 0.451 | 0.4888    | 100.0      | 2.4800     | 1        | 19.710         | mg/kg        | 0.118 |
|   | GP66938-D1       | 0.033 | 0.014 | 15:25 | 0.019 | 0.0200    | 100.0      | 2.4500     | 1        | 0.815          | mg/kg        | 0.120 |
| 1 | JB14201-12       | 0.028 | 0.012 | 15:25 | 0.016 | 0.0167    | 100.0      | 2.4600     | 1        | 0.679          | mg/kġ        | 0.119 |
| ĺ | JB14201-12PSCONF | 0.453 | 0.007 | 15:25 | 0.446 | 0.4834    | 100.0      | 2.4600     | 2        | 39.299         | mg/kg        | 0.238 |
| ŀ | GP66938-B2       | >3    | OVR   |       | FALSE | -0.0007   | 100.0      | 2.5000     | 1        | -0.027         | ma/ka        | 0.117 |

| _ STD 6          | 0.744 | NA          | ŅA    | 0.744  | 0.8000    | Final Vol.  | Sam. Wt.     |          |             |       |         |         |
|------------------|-------|-------------|-------|--------|-----------|-------------|--------------|----------|-------------|-------|---------|---------|
| STD 7            | 0.917 | NA          | 8:27  | 0.917  | 1.0000    | <u>(ml)</u> | (a)          | Dilution | Final Conc. | Units | MDL     | RDL     |
| ccv              | 0.432 | NA          | 15:16 | 0.432  | 0.4682    | NA          | NA           | NA       | NA NA       | mg/l  | 0,003   | 0.010   |
| ССВ              | 0,000 | NA          | 15:16 | 0.000  | -0.0007   | NA          | NA           | NA       | NA NA       | mg/l  | 0.003   | 0.010   |
| GP66938-MB1      | 0.000 | 0.000       | 15:25 | 0.000  | -0.0007   | 100.0       | 2.5000       | 1        | -0.027      | mg/kg | 0.117   | 0.400   |
| GP66938-B1       | 0.822 | 0.000       | 15:25 | 0.822  | 0.8914    | 100.0       | 2.5000       | 1        | 35.658      | mg/kg | 0.117   | 0.400   |
| GP66938-\$1      | 0.464 | 0.013       | 15:25 | 0.451  | 0.4888    | 100.0       | 2.4800       | 1        | 19.710      | mg/kg | 0.118   | 0.403   |
| GP66938-D1       | 0.033 | 0.014       | 15:25 | 0.019  | 0.0200    | 100.0       | 2.4500       | 1        | 0.815       | mg/kg | 0.120   | 0.408   |
| JB14201-12       | 0.028 | 0.012       | 15:25 | 0.016  | 0.0167    | 100.0       | 2.4600       | 1        | 0.679       | mg/kg | 0.119   | 0.407   |
| JB14201-12PSCONF | 0.453 | 0.007       | 15:25 | 0.446  | 0.4834    | 100.0       | 2.4600       | 2        | 39.299      | mg/kg | 0.238   | 0.813   |
| GP66938-B2       | >3    | OVR         |       | FALSE  | -0.0007   | 100.0       | 2.5000       | 1        | -0.027      | mg/kg | 0.117   | 0.400   |
| GP66938-S2       | >3    | OVR         |       | FALSE  | -0.0007   | 100.0       | 2.4900       | 1        | -0.027      | mg/kg | 0.118   | 0.402   |
| GP66938-B2       | 0.326 | 0.000       | 15:25 | 0.326  | 0.3531    | 100.0       | 2.5000       | 50       | 706.279     | mg/kg | 5.860   | 20.000  |
| GP66938-S2       | 0.404 | 0.001       | 15:25 | 0.403  | 0.4367    | 100.0       | 2.4900       | 50       | 876.921     | mg/kg | 5.884   | 20.080  |
| CCV              | 0,433 | NA.         | 15:25 | 0.433  | 0.4693    | NA          | NA           | NA NA    | NA NA       | mg/l  | 0.003   | 0.010   |
| CCB              | 0.000 | NA NA       | 15:25 | 0.000  | -0.0007   | NA.         | NA.          | NA NA    | NA NA       | mg/l  | 0.003   | 0.010   |
|                  | 0,500 | 14/1        | 19.29 | FALSE  | -0.0007   | 100,0       | 2.4700       | 5        | -0.134      | mg/kg | 0.593   | 2.024   |
|                  |       |             |       | FALSE  | -0.0007   | 100,0       | 2.4700       | 2        | -0.054      | mg/kg | 0.237   | 0.810   |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       | 2.4100       | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | 1     | #DIV/0! | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       |        |           |             |              |          |             | mg/kg |         | #DIV/0! |
|                  | 1     |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | _       |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/01 | #DIV/01 |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  | 0.400 |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/01     | mg/kg | #DIV/0! | #DIV/0! |
| CCV              | 0.426 | NA NA       | 16:08 | 0.426  | 0.4617    | NA          | NA           | NA NA    | NA NA       | mg/l  | 0,003   | 0.010   |
|                  | 0.000 | NA<br>0.450 | 16:08 | 0.000  | -0.0007   | NA<br>100.0 | NA<br>0.5500 | NA .     | NA<br>n and | mg/l  | 0.003   | 0.010   |
| JB14201-1        | 0,165 | 0.159       | 16:17 | 0.006  | 0.0058    | 100.0       | 2.5500       | 1        | 0.229       | mg/kg | 0.115   | 0.392   |
| JB14201-2        | 0.003 | 0.002       | 16:17 | 0.001  | 0.0004    | 100.0       | 2.5600       | 11       | 0.016       | mg/kg | 0.114   | 0.391   |
| JB14201-3        | 0.017 | 0.010       | 16:17 | 0.007  | 0.0069    | 100.0       | 2.4500       | 1        | 0.283       | mg/kg | 0.120   | 0.408   |
| JB14201-4        | 0.020 | 0.019       | 16:17 | 0.001  | 0.0004    | 100.0       | 2.5600       | 1        | 0.016       | mg/kg | 0.114   | 0.391   |
| JB14201-5        | 0.015 | 0.000       | 16:17 | 0.015  | 0,0156    | 100.0       | 2.5000       | 1        | 0.625       | mg/kg | 0.117   | 0.400   |
| JB14201-6        | 0.008 | 0.004       | 16:17 | 0.004  | 0.0037    | 100.0       | 2.5100       | 1        | 0.146       | mg/kg | 0.117   | 0.398   |
| JB14201-7        | 0.007 | 0.002       | 16:17 | 0.005  | 0.0048    | 100.0       | 2.4900       | 1        | 0.191       | mg/kg | 0.118   | 0.402   |
| JB14201-8        | 0.008 | 0.002       | 16:17 | 0.006  | 0.0058    | 100.0       | 2.5000       | 1        | 0.234       | mg/kg | 0.117   | 0.400   |
| JB14201-9        | 0.028 | 0.027       | 16:17 | 0.001  | 0.0004    | 100.0       | 2.5200       | 1        | 0.017       | mg/kg | 0.116   | 0.397   |
| JB14201-10       | 0.015 | 0.009       | 16:17 | 0,006  | 0.0058    | 100.0       | 2.5400       | 1        | 0.230       | mg/kg | 0.115   | 0.394   |
| CCV              | 0.425 | NA          | 16:17 | 0.425  | 0.4606    | NA          | NA           | NA       | NA          | mg/l  | 0.003   | 0.010   |
| CCB              | 0.000 | NA NA       | 16 17 | 0.000  | -0.0007 🖊 | NA          | NA           | NA       | NA NA       | mg/i  | 0.003   | 0.010   |
| JB14201-11       | 0.022 | 0.011       | 16:19 | 0.011  | 0.0113    | 100.0       | 2.5500       | 1        | 0.442       | mg/kg | 0.115   | 0.392   |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 11       | #DIV/0!     | mg/kg | #DIV/0I | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/01     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       | FAL\$E | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
| _                |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       |              | 1        | #DIV/0!     | mg/kg | #DIV/0! | #DIV/0! |
| CCV              | 0.425 | NA          | 16:19 | 0.425  | 0.4606 /  | NA          | NA           | NA       | NA          | mg/l  | 0.003   | 0.010   |
| CCB              | 0.000 | NA NA       | 16:19 | 0.000  | -0.0007 🖊 | NA          | NA           | NA       | NA          | mg/l  | 0.003   | 0.010   |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       | 2.5000       | 1        | -0.027      | mg/kg | 0.117   | 0.400   |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       | 2.5000       | 1        | -0.027      | mg/kg | 0.117   | 0.400   |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       | 2.5000       | 1        | -0.027      | mg/kg | 0.117   | 0.400   |
|                  |       |             |       | FALSE  | -0.0007   | 100.0       | 2.5000       | 1        | -0.027      | mg/kg | 0.117   | 0.406   |
|                  |       |             |       |        |           |             |              |          |             |       |         |         |

-0.0007 100.0 2.5000

FALSE



mg/kg 0.117 0.400

-0.027

### ACCUTEST LABS DAYTON, NJ

# 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

|                                                                                                                    |                     |             |              |                                                               |                | <u>.</u> ₽              | e.                              | _                |                       |                     |                  |                  |                  |                  |                  | _                |
|--------------------------------------------------------------------------------------------------------------------|---------------------|-------------|--------------|---------------------------------------------------------------|----------------|-------------------------|---------------------------------|------------------|-----------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                                                                                    |                     |             |              | Use calculated or                                             | default spike? | Pfault (40 mg/kg) spike | #DIV/0! pfault (40 mg/kg) spike | calculated spike | calculated spike      | calculated spike    | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike |
|                                                                                                                    |                     | Calculated  | Spike        | Amount in                                                     | mg/kg          | 41.554                  | #DIV/0i                         | #VALUE!          | #VALUE!               | #VALUE!             | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          |
|                                                                                                                    |                     | Est. Read-  | back on      | curve in                                                      | l/gm           | 0.519                   | i0/AIG#                         | #VALUE!          | #VALUE!               | #VALUE!             | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          |
|                                                                                                                    | Actual mi<br>of 100 | ppm to      | spike on     | dilution of                                                   | sample.        | 0.23                    | 0.23                            |                  |                       |                     |                  |                  |                  |                  |                  |                  |
| oike amount.                                                                                                       | Suggested           | , ml of 100 | ppm to spike | Dilution to on dilution of dilution of                        | sample.        | 0.222                   | 0                               | #VALUE!          | #VALUE!               | #VALUE!             | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          |
| d add the s                                                                                                        |                     |             | Actual       | Dilution to                                                   | pe nsed        | 2                       | 2                               |                  |                       |                     |                  |                  |                  |                  |                  |                  |
| post-spike ar                                                                                                      |                     |             | Suggested    | Dilution to                                                   | use            | 1                       | 0                               | #VALUE!          | #VALUE!               | #VALUE!             | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          |
| the diluted                                                                                                        |                     |             |              | Dilution                                                      | needed         | yes                     | no                              | UE!  #VALUE!     | UE! #VALUE!   #VALUE! | UE! #VALUE! #VALUE! | UE!  #VALUE!     | UE! #VALUE!      | UE! #VALUE!      | UE! #VALUE!      | UE! #VALUE!      | UE! #VALUE!      |
| nl aliquot of                                                                                                      |                     | Amount in   | ml to add    | of 100 ppm                                                    | solution       | 0.443                   | 0.000                           | #VALUE!          | #VALUE!               | #VALUE!             | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          |
| n take a 45 i                                                                                                      |                     |             |              | Results in                                                    | mg/kg.         | 29'0                    |                                 |                  |                       |                     |                  |                  |                  |                  |                  |                  |
| NOTE: Always dilute post-spike first, then take a 45 ml aliquot of the diluted post-spike and add the spike amount |                     |             |              | Digested in   Weight in 45   Results in of 100 ppm   Dilution | m              | 1.107                   | 0                               | #VALUE!          | #VALUE!               | #VALUE!             | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          |
| ys dilute post                                                                                                     |                     | PS Aliquot  | Weight in g  | Digested in                                                   | 100 ml         | 2.46                    |                                 |                  |                       |                     |                  |                  |                  |                  |                  |                  |
| NOTE: Alwa                                                                                                         |                     |             |              |                                                               | Sample ID      | JB14201-12              |                                 |                  |                       |                     |                  |                  |                  |                  |                  |                  |

## 3060A/7196A INSOLUBLE SPIKE

|             |           |        |         |         |         |         | -       |         |         |         |         |
|-------------|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| N           | Amount    | Spiked | 740.099 | 807.686 | #VALUE! |
| CALCULATION | Weight of | Sample | 2.5     | 2.49    |         |         |         |         |         |         |         |
| O           | Weight of | PbCr04 | 0.0115  | 0.0125  |         |         |         |         |         |         |         |

### M ACCUTEST:

### Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

48 pH Meter ID: Digestion Date: 9/11/2 adj. start time: 16:30 1456 5:47 pH adj. Date: 9-1-12-14:42 adj. end time: 15:4 14:07 GN 71458 GN Batch ID: 14:51 66938 Final bkg pH Sample Spike Digestate pH after after Spike Weight in pH after Volume Description/Comments H2SO4 H2SO4 Amounts Solution HNO3 (ml) nple ID 5-om1 11/20 716 190 2.03 1.95 7.66 100 1.86 725 7.35 1.91 100 1.93 1.2001 719 203 301) TB14201-13/2.48 0.0125 2.49 1.87 724 1.91 — (ત્રે nsol.) 1.71 738 2.45 1.86 1.99 725 1.2M 2.50 1.92 (loc 7.12 OVR 0.0115 1.87 nsol) 7.58 2.06 ight Brown 1.98 7.26 14201-1d 2.46 2-11 1.77 Brown 2.55 1.92 751 1.92 lear 1-86 7-25 6 fest light yellow MS 2.45 7.10 179 1.91 738 2:01 1-93 Clear 721 2.50 1.85 1.88 ( Hew 1.97 2.51 7:55 1.90 ( rear 7.29 2.49 1.85 Clear 1:84 2.50 717 ign Brawn 726 2-01 1.70 .52 2-54 718 1.79 1.83 91 250 1.81 dilution 7-12 100 1.92 rsol) 192 dilution 724 2.03 249 nsol.) 0.23 ml of worpon Amolute is 1:2 Deliber 1.81 1-017 126 246 150ml 00 160. fjusted PS 714201-12 2.51 gent Reference Information - refer to attached reagent reference information page(s). 10000 ug/g x/nsoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4 Ana/st analyst ¢heck: Form: GN-067



| Test: Hexavalent Chror | mium |
|------------------------|------|
|------------------------|------|

Product: XCr

MDL = 0.117 mg/kgRDL = 0.40 mg/kg

GN 71458 GNBatch ID: Date:\_\_\_\_9-1-12

Method: SW846 3060A/7196A

| A/7196A              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |
|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| Summary              | Units =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = mg/kg                                                         |
| 3 <i>S-MB)</i> Date: | 9-172 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result: ZMOL RDL: 0'4 <rdl: 4t5<="" th=""></rdl:>               |
| -B) D                | ate:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result: 35 65 Spike: 40 %Rec.: 89'                              |
| B2                   | nte:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _ Result: <u>706·2_</u> Spike: <u>740</u> %Rec.:_ <u>_</u> 95·4 |
| <i>−DI</i> Samp.     | Result: 0 679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 Dup. Result: 0.815 %RPD: 18°2                                 |
| <i>∼S1</i> Samp. Re  | sult: 0.699 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MS Result: 19:31 Spike:40:3 %Rec: 47                            |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MS Result: 876.9 Spike: 807.6 %Rec: 108.4                       |
|                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PS Result: 39.29 Spike: 41.55 %Rec: 92.9                        |
| s                    | amp. Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dil. Result: %RPD:                                              |
| Samp.                | Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MS Result: Spike: %Rec:                                         |
| nmary                | Units = mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |
| Result: 15'46        | 7 TV: 0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %Rec.: 93 6                                                     |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |
| i                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                 |
| _ Result: 0.460      | _ TV: _0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ %Rec.: <i>Qν</i>                                              |
| _ Result:            | TV: _0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ %Rec.:                                                        |
| _ Result:            | TV: _0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ %Rec.:                                                        |
| _ Result:            | _ TV: _0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                 |
|                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | _ %Rec.:                                                        |
| _ Result:            | TV: _0.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ %Rec.:                                                        |
| Result: < MDL        | _ RDL:_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ <rdl:<i>UtS</rdl:<i>                                          |
| Result:              | _ RDL:_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ <rdl:< td=""></rdl:<>                                         |
| Result:              | RDL:_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ <rdl:< td=""></rdl:<>                                         |
| Result: 🛂            | RDL:_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ <rdl:< td=""></rdl:<>                                         |
| Result:              | _ RDL:_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ <rdl:< td=""></rdl:<>                                         |
| Result:              | _ RDL:_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ <rdl:< td=""></rdl:<>                                         |
| Result:              | _ RDL:_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ <rdl:< td=""></rdl:<>                                         |
| Result:              | _ RDL;_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ <rdl:< td=""></rdl:<>                                         |
| Result:              | _ RDL:_0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ <rdl:< td=""></rdl:<>                                         |
|                      | Summary   Samp   Date:     Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date:   Part   Date | Summary                                                         |

| Reagent Re   | ference Inform          | ation - refer to attached reagent reference information pag   | e(s). |
|--------------|-------------------------|---------------------------------------------------------------|-------|
| Insoluble sp | ke = PbCrO <sub>4</sub> | Molecular weight = 323.2 g/mol Cr = 52.0 g/mol                |       |
| {1000000 ug  | g x Insoluble sp        | nike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amou | nt    |

Comments:

Form: GN066-01



## MACCUTES!

# HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 381 1/3 451

Thermometer Correction factor: 2 /- X

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

|           |                    |                 | Temp. in deg. C<br>Hot Plate # 1 - | Temp. in deg. C<br>Hot Plate # 3 - | Temp. in deg. C<br>Hot Plate # β -                       | Temp. in deg. C<br>Hot Plate # |
|-----------|--------------------|-----------------|------------------------------------|------------------------------------|----------------------------------------------------------|--------------------------------|
| Digestion |                    |                 | Uncorrected/Correc                 | Uncorrected/Correc                 | Uncorrected/Correc Uncorrected/Correc Uncorrected/Correc | Uncorrected/Correc             |
| Batch ID  | Description        | Time            | ted                                | ted                                | ted                                                      | ted .                          |
|           | Starting Time 4.35 | 9.35            | 00/00                              | 92/90                              | 90/92                                                    |                                |
|           | Time 1             | 50501           | \$ 3/au                            | 92/40                              | 90/92                                                    |                                |
|           | Ending Time        | 10535           | 90/06                              | 94/40                              | 90/92                                                    | /                              |
|           |                    |                 | -                                  |                                    |                                                          |                                |
|           | Starting Time 0/46 | 10940           | 90146                              | 92/40                              | 90193                                                    | 40190                          |
|           | Time 1             | 11:76           | 90/96                              | 03/7b                              | 90/97                                                    | 90/00                          |
|           | Ending Time 1:40   | 05:11           | 05/06                              | 97/40                              | 90/q2                                                    | No (90                         |
|           | •                  |                 |                                    |                                    |                                                          |                                |
|           | Starting Time      | 11:50           | 92/40                              | 94/46                              |                                                          |                                |
|           | Time 1             | <br>    & : A O | 92/60                              | 94/40                              |                                                          |                                |
|           | اما                | 12:50           | 90/06                              | 99/90                              |                                                          |                                |
| Analyst   | AW                 |                 |                                    | Date                               | Date: 812 9/11/12                                        |                                |

Rev. Date: 8/08/12 Form: GN074-02

2nd Analyst Check:

65 of 71 JTEST₀ JB14201

### :5



GN/GP Batch ID:\_\_

4866938

### Reagent Information Log - XCRA (soil 3060A/7196)

|                                                        |           | a vii seinus-itungul ot                   |
|--------------------------------------------------------|-----------|-------------------------------------------|
| Reagent                                                | Exp. Date | Reagent # or Manufacturer/Lot             |
| Calibration Source: Hexavalent Chromium,               |           | Absolute Grade Lot # 041212               |
| 1000 mg/L Stock                                        | 4/12/2015 | Absolute Grade Lot # 04 12 12             |
| Calibration Checks: Hexavalent Chromium,               | 5/04/0047 | Ultra lot # L00439                        |
| 1000 mg/L Stock                                        | 5/31/2017 | Ollia lot # £00403                        |
| Spiking Solution Source                                | 4/12/2015 | Absolute Grade Lot # 041212               |
| Lead Chromate (Insoluble Hexavalent<br>Chromium Spike) | 7/26/2017 | Sigma Aldrich Lot # BCBG0578V             |
| Magnesium Chloride, Anhydrous                          | 7/11/2016 | Alfa Aesar Lot # B17X012                  |
| 1N NaOH                                                | M         |                                           |
| Digestion Solution                                     | 9/30/20/  |                                           |
| Phosphate Buffer Solution                              | 2/14/201  |                                           |
| 5.0 M Nitric Acid                                      | 3-3-13    | Cult 8 - 33425 XUV                        |
| Diphenylcarbazide Solution                             | 9-22-12   | Cult 8 - 353 49-ren<br>Cult 8 - 33334-ren |
| Sulfuric Acid, 10%                                     | 2-21-13   | Calif - 333 37 - Fek.                     |
| Filter                                                 | NA        | F2EA19811                                 |
| Teflon Chips                                           | NA        | 919120                                    |

Form: GN087A-21B Rev. Date: 2/18/10



### Hexavalent Chromium pH Adjustment Log Method: SW846 3060A/7196A

pH adj. start time: pH adj. end time:

| J- | 43 |
|----|----|
| F- | oη |

F= 13

pH adjustment Date:

9-1-2-012

GN Batch ID: GW1U5X

|                     | Sample    |              | Final             |          |                                        | ·                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|-----------|--------------|-------------------|----------|----------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | Weight in | pH after     | Volume            | pH after |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample ID           | g         | HNO3         | (ml)              | H2SO4    | Comments                               |                                       | Spike Info.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Calibration Blank   | NA        | 7.25         | 00                | 210      | 0                                      |                                       | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.010 mg/l standard | NA        | 751          |                   | 20-      | lopph                                  | Nhs=ht~                               | 0.10 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ).050 mg/l standard | NA        | 4.36         |                   | 204      | 114                                    | ,                                     | 0.50 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ).100 mg/l standard | NA        | 7.21         |                   | 2.03     |                                        |                                       | 1.00 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ).300 mg/l standard | NA        | 7.64         |                   | 1.95     |                                        |                                       | 3.00 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ).500 mg/l standard | NA NA     | 7.75         |                   | 1.99     |                                        |                                       | 5.00 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ).800 mg/l standard | NA        | 7.95         |                   | 192      |                                        |                                       | 8.00 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .00 mg/l standard   | NA        | 7.77         | 1                 | 20>1     |                                        |                                       | 10.0 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                     |           | , ,          |                   | -        | -                                      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.                  |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        | _                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          | ······································ |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   | . 1      |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   | *        |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              | <del>,,,,,,</del> |          | ************************************** |                                       | Service per a recommendation of the service per annual service per ann |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       | `                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              | •                 |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   | ·        |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              | - 1               |          | · ••••                                 |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ,                   |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              | •                 |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           |              |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |           | <del>-</del> |                   |          |                                        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

eagent Reference Information - refer to attached reagent reference information page(s).

000000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

Anayst: 72
Date: 9-1-22

Form: GN068-01 Rev. Date:5/22/06



## HEXAVALENT CHROMIUM STANDARD PREPARATION LOG Product: $\frac{X \cap R}{GN}$ and or GP Number: $\frac{GJ}{GJ}$ and $\frac{114g}{S}$

| _           |              |              | (E)                            | 0                           | _        |          |          |                  |              |              |                               |                  |              |           |           |           |           |           |          | _ |      |  |  |
|-------------|--------------|--------------|--------------------------------|-----------------------------|----------|----------|----------|------------------|--------------|--------------|-------------------------------|------------------|--------------|-----------|-----------|-----------|-----------|-----------|----------|---|------|--|--|
|             |              |              | Date                           | 1                           |          | -        |          | -                |              |              |                               | Dafe             | 1947-10      |           |           |           |           |           | -        | 2 |      |  |  |
|             |              |              | Analyst                        | 12                          |          |          |          |                  |              |              |                               | Analyst          | 24           | -         |           |           |           |           | -        | 2 |      |  |  |
|             | ,            | Expiration   | Date                           | 4/12/2015                   |          |          |          | 5/31/2017        |              |              | Expiration                    | Date             | 3)01-1-0     |           |           |           |           |           |          | , |      |  |  |
| Final Conc. | ŏ            | Intermediate | (mg/l)                         | 10 mg/l                     | 100 mg/l | 5 mg/l   | 7.5 mg/l | 10 mg/l          |              | Final Conc.  | Of Standard                   | (l/gm)           | 0.01 mg/l    | 0.05 mg/l | 0.10 mg/l | 0.30 mg/l | 0.50 mg/l | 0.80 mg/l | 1.0 mg/l | , |      |  |  |
|             |              | Final        | Volume                         | 100 mls                     | 100 mls  | 200 mg/l | 200 mg/l | 100 mg/l         |              |              | Final                         | Volume           | 100 mls      |           |           |           |           |           | ->       |   |      |  |  |
|             |              |              | Diluent                        | ā                           | ۵        | ۵        | ۵        | ā                |              |              |                               | Diluent          | Δ            | ī         | ñ         | ā         | П         | IO        | ۵        |   |      |  |  |
|             | Stock        | volume       | used in ml                     | 1.0 mi                      | 10 ml    | 1.0 ml   | 1.5 ml   | 1.0 ml           | Intermediate | or Stock     | volume                        | used in ml       | 0.1 ppm      | 0.5 ppm   | 1.0 ppm   | 3.0 ppm   | 5.0 ppm   | 8.0 ppm   | 10.0 ppm |   |      |  |  |
|             |              | Stock        | concentration                  | 1000 ppm                    | 1000 ppm | 1000 ppm | 1000 ppm | 1000 ppm         |              | Intermediate | or Stock                      | concentration    | 10.0 ppm     |           |           |           |           | •         | 1 ↑      |   | <br> |  |  |
| •           |              |              | Stock used to prepare standard | Absolute Grade Lot # 041215 |          |          | 7.00     | Ultra lot L00439 |              |              | Intermediate or Stock used to | prepare standard | 10.0 ppm abs |           |           |           |           |           | <b>\</b> |   |      |  |  |
|             | Intermediate | Standard     | Description                    | 10 ppm                      | 100 ppm  | 5 ppm    | 7.5 ppm  | 10 ppm           |              |              | Standard                      | Description      | .010 ppm     | .050 ppm  | .10 ppm   | .30 ppm   | .50 ppm   | .80 ppm   | 1.00 ppm |   |      |  |  |

Form: GN205-02 Rev. Date:10/16/09





| eH (MV) | 1027.7            | -105.6 | eH (mv)       | 322       | 195       | 395       | 364       | 336       | 341       | 246       |
|---------|-------------------|--------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Ha      | 0                 | 14     | Hd            | 7.07      | 7.44      | 6.99      | 7.96      | 8.67      | 8.16      | 8.52      |
|         | Phase Change Line |        | Sample Number | JB14201-1 | JB14201-2 | JB14201-3 | JB14201-4 | JB14201-5 | JB14201-6 | JB14201-7 |

| 650           | - 009     | 200       | 250       | 500       |           | 420       | 400       | )<br>)    | 350       | 300        | 250  | 200   | 150   | 100  |
|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------|-------|-------|------|
|               |           |           |           | əbı       | olta      | ΛĐ        | roq       |           |           |            | EP ( | 101 k | .ecte | corr |
| eH (mv)       | 322       | 195       | 395       | 364       | 336       | 341       | 246       | 164       | 188       | 395        |      |       |       |      |
| Ha            | 7.07      | 7.44      | 6.9       | 7.96      | 8.67      | 8.16      | 8.52      | 7.92      | 7.63      | 7.47       |      |       |       |      |
| Sample Number | JB14201-1 | JB14201-2 | JB14201-3 | JB14201-4 | JB14201-5 | JB14201-6 | JB14201-7 | JB14201-8 | JB14201-9 | JB14201-10 |      |       |       |      |

--- JB14201-5

-\*- JB14201-4

-+- JB14201-1

**Eh pH Phase Diagram**Phase Diagram based on the HCrO<sub>4</sub>·ICr(OH)<sub>3</sub> ratio
Below phase change line indicates reducing environment.
Above phase change line indicates oxidizing environment

→ JB14201-2

JB14201-3

→ JB14201-6

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

■Phase Change Line

4

13

12

7

9

0

ω

ဖ

2

4

20

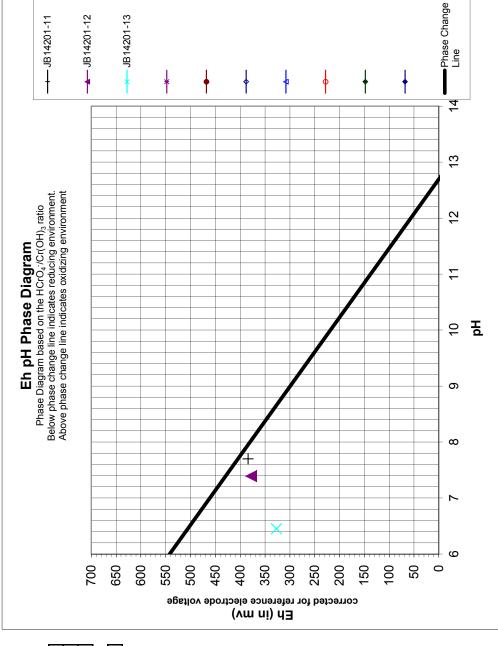
-50

-100

된

→ JB14201-10

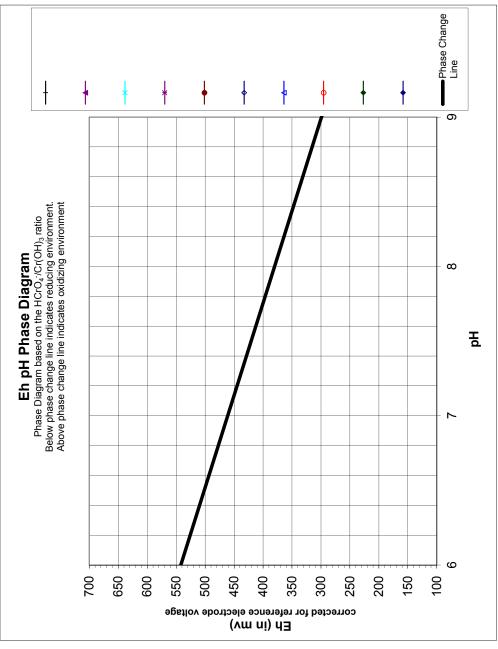
→ JB14201-9


--- JB14201-8

<del>---</del> JB14201-7

Reference for graph: SW846 method 3060A




|                   | Hd   | eH (MV) |
|-------------------|------|---------|
| Phase Change Line | 0    | 1027.7  |
|                   | 14   | -105.6  |
|                   |      |         |
| Sample Number     | Hd   | eH (mv) |
| JB14201-11        | 7.7  | 384     |
| JB14201-12        | 7.39 | 378     |
| JB14201-13        | 6.45 | 327     |



Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A






Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A



09/10/12



# Technical Report for

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14201R

Sampling Date: 08/20/12



AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 127



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



### **Sections:**

# **Table of Contents**

-1-

| Section 1: Sample Summary                        | 3         |
|--------------------------------------------------|-----------|
| Section 2: Case Narrative/Conformance Summary    | 4         |
| Section 3: Summary of Hits                       |           |
| Section 4: Sample Results                        | 8         |
| <b>4.1:</b> JB14201-1R: NSB-F5-12.0-12.5         | 9         |
| <b>4.2:</b> JB14201-2R: NSB-F5-8.0-8.5           | 10        |
| <b>4.3:</b> JB14201-3R: NSB-F5-4.0-4.5           | 11        |
| <b>4.4:</b> JB14201-4R: NSB-F5-0.0-0.5           | 12        |
| <b>4.5:</b> JB14201-5R: NSB-D5-20.0-20.5         | 13        |
| <b>4.6:</b> JB14201-6R: NSB-D5-18.0-18.5         | 14        |
| <b>4.7:</b> JB14201-7R: NSB-D5-15.0-15.5         | 15        |
| <b>4.8:</b> JB14201-8R: NSB-D5-12.0-12.5         | 16        |
| <b>4.9:</b> JB14201-9R: NSB-D5-6.4-6.9           | 17        |
| <b>4.10:</b> JB14201-10R: NSB-D5-3.0-3.5X        | 18        |
| <b>4.11:</b> JB14201-11R: NSB-D5-3.0-3.5         | 19        |
| <b>4.12:</b> JB14201-12R: NSB-E5-3.0-3.5         | 20        |
| Section 5: Misc. Forms                           | 21        |
| 5.1: Chain of Custody                            | 22        |
| 5.2: Sample Tracking Chronicle                   | 29        |
| 5.3: Internal Chain of Custody                   | 31        |
| Section 6: General Chemistry - QC Data Summaries | 36        |
| 6.1: Method Blank and Spike Results Summary      | 37        |
| 6.2: Duplicate Results Summary                   | 38        |
| 6.3: Matrix Spike Results Summary                | 39        |
| 6.4: Inst QC GN71159: Total Organic Carbon       | 40        |
| 6.5: Inst QC GN71475: Total Organic Carbon       |           |
| 6.6: XCR 3rd Tier Analyses                       | 44        |
| 6.7: Percent Solids Raw Data Summary             | 45        |
| Section 7: General Chemistry - Raw Data          | <b>47</b> |
| 7.1: Raw Data GN71159: Total Organic Carbon      | 48        |
| 7.2: Raw Data GN71475: Total Organic Carbon      | 88        |
| 7.3: Raw Data GN71534: Sulfide Screen            | 117       |
| 7.4: Raw Data GN71538: Iron, Ferrous             | 118       |
| 7.5: Raw Data GN71549: Chromium, Hexavalent      | 120       |



ယ

G





# **Sample Summary**

Job No:

JB14201R

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample      | Collected |          |          | Matr |      | Client           |
|-------------|-----------|----------|----------|------|------|------------------|
| Number      | Date      | Time By  | Received | Code | Type | Sample ID        |
| JB14201-1R  | 08/20/12  | 14:30 CM | 08/20/12 | SO   | Soil | NSB-F5-12.0-12.5 |
| JB14201-2R  | 08/20/12  | 14:15 CM | 08/20/12 | SO   | Soil | NSB-F5-8.0-8.5   |
| JB14201-3R  | 08/20/12  | 13:45 CM | 08/20/12 | SO   | Soil | NSB-F5-4.0-4.5   |
| JB14201-4R  | 08/20/12  | 12:30 CM | 08/20/12 | SO   | Soil | NSB-F5-0.0-0.5   |
| JB14201-5R  | 08/20/12  | 12:45 CM | 08/20/12 | SO   | Soil | NSB-D5-20.0-20.5 |
| JB14201-6R  | 08/20/12  | 12:20 CM | 08/20/12 | SO   | Soil | NSB-D5-18.0-18.5 |
| JB14201-7R  | 08/20/12  | 12:10 CM | 08/20/12 | SO   | Soil | NSB-D5-15.0-15.5 |
| JB14201-8R  | 08/20/12  | 11:35 CM | 08/20/12 | SO   | Soil | NSB-D5-12.0-12.5 |
| JB14201-9R  | 08/20/12  | 10:45 CM | 08/20/12 | SO   | Soil | NSB-D5-6.4-6.9   |
| JB14201-10R | 08/20/12  | 09:35 CM | 08/20/12 | SO   | Soil | NSB-D5-3.0-3.5X  |
| JB14201-11R | 08/20/12  | 09:30 CM | 08/20/12 | SO   | Soil | NSB-D5-3.0-3.5   |
| JB14201-12R | 08/20/12  | 10:50 CM | 08/20/12 | SO   | Soil | NSB-E5-3.0-3.5   |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14201R

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 9/10/2012 10:24:29 A

On 08/20/2012, 13 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 5 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14201R was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. 12 Samples were active for this report.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Wet Chemistry By Method ASTM D3872-86

Matrix: SO Batch ID: GN71538

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14312-15RDUP, JB14312-15RMS were used as the QC samples for Iron, Ferrous.
- The following samples were run outside of holding time for method ASTM D3872-86: JB14201-12R The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

#### Wet Chemistry By Method LLOYD KAHN 1988 MOD

Matrix: SO Batch ID: GP66744

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB13733-20DUP, JB13733-20MS were used as the QC samples for Total Organic Carbon.
- The following samples were prepared outside of holding time for method LLOYD KAHN 1988 MOD: JB14201-12R Multiple injections indicate possible sample non-homogeneity. This analysis done out of holding time to help evaluate the reducing nature of the sample for the hexavalent chromium analysis.

#### Wet Chemistry By Method SM18 4500S2-A

Matrix: SO Batch ID: GN71534

- The data for SM18 4500S2-A meets quality control requirements.
- The following samples were run outside of holding time for method SM18 4500S2-A: JB14201-12R The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

#### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP66961

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14201-12RDUP, JB14201-12RMS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (94\_%) on this sample.
- GP66961-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

**Summary of Hits Job Number:** JB14201R Account: AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Collected: 08/20/12

| Lab Sample ID<br>Analyte | Client Sample ID | Result/<br>Qual | RL   | MDL  | Units | Method            |
|--------------------------|------------------|-----------------|------|------|-------|-------------------|
| JB14201-1R               | NSB-F5-12.0-12.5 | į               |      |      |       |                   |
| Chromium, Hexa           | avalent          | 2.5             | 0.59 | 0.17 | mg/kg | SW846 3060A/7196A |
| JB14201-2R               | NSB-F5-8.0-8.5   |                 |      |      |       |                   |
| No hits reported         | in this sample.  |                 |      |      |       |                   |
| JB14201-3R               | NSB-F5-4.0-4.5   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.86            | 0.48 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14201-4R               | NSB-F5-0.0-0.5   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.67            | 0.44 | 0.13 | mg/kg | SW846 3060A/7196A |
| JB14201-5R               | NSB-D5-20.0-20.5 | 5               |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.40 B          | 0.45 | 0.13 | mg/kg | SW846 3060A/7196A |
| JB14201-6R               | NSB-D5-18.0-18.5 | 5               |      |      |       |                   |
| No hits reported         | in this sample.  |                 |      |      |       |                   |
| JB14201-7R               | NSB-D5-15.0-15.5 | 5               |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.20 B          | 0.45 | 0.13 | mg/kg | SW846 3060A/7196A |
| JB14201-8R               | NSB-D5-12.0-12.5 | 5               |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.71            | 0.51 | 0.15 | mg/kg | SW846 3060A/7196A |
| JB14201-9R               | NSB-D5-6.4-6.9   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.28 B          | 0.51 | 0.15 | mg/kg | SW846 3060A/7196A |
| JB14201-10R              | NSB-D5-3.0-3.5X  |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.20 B          | 0.47 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14201-11R              | NSB-D5-3.0-3.5   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.57            | 0.48 | 0.14 | mg/kg | SW846 3060A/7196A |
|                          |                  |                 |      |      |       |                   |



# **Summary of Hits**

Job Number: JB14201R Account: AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/20/12

| Lab Sample ID Client Sample<br>Analyte                       | e ID Result/<br>Qual | RL          | MDL  | Units      | Method                               |
|--------------------------------------------------------------|----------------------|-------------|------|------------|--------------------------------------|
| JB14201-12R NSB-E5-3.0-3                                     | 3.5                  |             |      |            |                                      |
| Chromium, Hexavalent                                         | 0.78                 | 0.48        | 0.14 | mg/kg      | SW846 3060A/7196A                    |
| Iron, Ferrous <sup>a</sup> Total Organic Carbon <sup>b</sup> | 1.4<br>293000        | 0.20<br>120 | 59   | %<br>mg/kg | ASTM D3872-86<br>LLOYD KAHN 1988 MOD |

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (b) Multiple injections indicate possible sample non-homogeneity. This analysis done out of holding time to help evaluate the reducing nature of the sample for the hexavalent chromium analysis.





| Sample Results     |  |
|--------------------|--|
| Report of Analysis |  |
|                    |  |



# **Report of Analysis**

Client Sample ID: NSB-F5-12.0-12.5

 Lab Sample ID:
 JB14201-1R
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 67.8

**Project:** PPG Northern Canal Borings, Jersey City, NJ

# General Chemistry

MDL = Method Detection Limit

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 2.5    | 0.59 | 0.17 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



4

# **Report of Analysis**

Client Sample ID: NSB-F5-8.0-8.5 Lab Sample ID: JB14201-2R Matrix: SO - Soil

**Date Sampled:** 08/20/12 **Date Received:** 08/20/12 **Percent Solids:** 84.0

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.14 U | 0.48 | 0.14 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F5-4.0-4.5 Lab Sample ID: JB14201-3R Matrix: SO - Soil

**Date Sampled:** 08/20/12 **Date Received:** 08/20/12 **Percent Solids:** 83.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.86   | 0.48 | 0.14 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F5-0.0-0.5 Lab Sample ID: JB14201-4R

Matrix: SO - Soil

**Date Sampled:** 08/20/12 **Date Received:** 08/20/12 **Percent Solids:** 90.4

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.67   | 0.44 | 0.13 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-20.0-20.5

 Lab Sample ID:
 JB14201-5R
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 88.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte             | Result | RL   | MDL  | Units | DF | Analyzed By Method                      |
|---------------------|--------|------|------|-------|----|-----------------------------------------|
| Chromium Hexavalent | 0.40 B | 0.45 | 0.13 | ma/ka | 1  | 09/05/12 16:35 MM SW8/16 3060 A /7196 A |

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



# **Report of Analysis**

Client Sample ID: NSB-D5-18.0-18.5

 Lab Sample ID:
 JB14201-6R
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 88.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.13 U | 0.45 | 0.13 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-15.0-15.5

 Lab Sample ID:
 JB14201-7R
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 88.0

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.20 B | 0.45 | 0.13 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-12.0-12.5

 Lab Sample ID:
 JB14201-8R
 Date Sampled:
 08/20/12

 Matrix:
 SO - Soil
 Date Received:
 08/20/12

 Percent Solids:
 78.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.71   | 0.51 | 0.15 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-6.4-6.9 Lab Sample ID: JB14201-9R Matrix: SO - Soil

**Date Sampled:** 08/20/12 **Date Received:** 08/20/12

**Project:** PPG Northern Canal Borings, Jersey City, NJ **Percent Solids:** 78.4

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.28 B | 0.51 | 0.15 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



Client Sample ID: NSB-D5-3.0-3.5X

Page 1 of 1

# **Report of Analysis**

**Date Sampled:** 08/20/12

**Date Received:** 08/20/12 **Percent Solids:** 85.2

**Project:** PPG Northern Canal Borings, Jersey City, NJ

JB14201-10R

SO - Soil

#### **General Chemistry**

Lab Sample ID:

Matrix:

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.20 B | 0.47 | 0.14 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D5-3.0-3.5 Lab Sample ID: JB14201-11R Matrix: SO - Soil

Date Sampled: 08/20/12Date Received: 08/20/12Percent Solids: 83.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.57   | 0.48 | 0.14 | mg/kg | 1  | 09/05/12 16:35 MM SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-E5-3.0-3.5 Lab Sample ID: JB14201-12R Matrix: SO - Soil

Date Sampled: 08/20/12 Date Received: 08/20/12 Percent Solids: 82.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                           | Result   | RL   | MDL  | Units | DF | Analyzed By Method                     |
|-----------------------------------|----------|------|------|-------|----|----------------------------------------|
| Chromium, Hexavalent              | 0.78     | 0.48 | 0.14 | mg/kg | 1  | 09/05/12 15:58 MM SW846 3060A/7196A    |
| Iron, Ferrous <sup>a</sup>        | 1.4      | 0.20 |      | %     | 1  | 09/05/12 JA ASTM D3872-86              |
| Sulfide Screen b                  | NEGATIVE |      |      |       | 1  | 09/05/12 JA SM18 4500S2-A              |
| Total Organic Carbon <sup>c</sup> | 293000   | 120  | 59   | mg/kg | 1  | 09/04/12 14:22 SJG LLOYD KAHN 1988 MOD |

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (b) The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (c) Multiple injections indicate possible sample non-homogeneity. This analysis done out of holding time to help evaluate the reducing nature of the sample for the hexavalent chromium analysis.

RL = Reporting Limit U = Indicates a result < MDL





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



|                                             |                        |                                         | The Chain-of | Custody is a  | LEGAL DOCUMENT. | . All relevant field                    | ds must be com | pleted and a   | ccurate.                     |              |       | Ta       | sk:                                      | GARIS                | - Norther    | n Canal | Borings                                         |     |                |             |
|---------------------------------------------|------------------------|-----------------------------------------|--------------|---------------|-----------------|-----------------------------------------|----------------|----------------|------------------------------|--------------|-------|----------|------------------------------------------|----------------------|--------------|---------|-------------------------------------------------|-----|----------------|-------------|
| ab Information:                             | Project Info           | ormation:                               |              |               | Other Infor     | mation:                                 |                |                |                              |              |       |          | Total #                                  | of Sam               | oles: 13     |         | -                                               | 7   | 19142          | 201         |
| ab: ACCUTEST                                | Site ID #:             | PPG Garfield Ave                        |              |               | Send Invoic     |                                         | sa Krowit      | z              |                              |              |       | +-       | TAT                                      | see                  | Spec. Instru | uctions | Rush                                            |     |                | -1          |
| ddress: 2235 Route 130 , Dayton NJ<br>08810 | Project #:             | 60213772.5.A                            |              |               |                 | 250 Apo                                 |                |                |                              |              |       | 100      |                                          | F= Field I           | Filtered , F | l= Hold |                                                 |     |                |             |
|                                             | Site<br>Address:       | 70 Carteret Avenu                       | ie           |               | City/State.     | Chelms                                  | ford, MA       | 01824          | Phone #:                     | 978-905-22   | 78    | Notes    |                                          |                      |              |         |                                                 |     |                |             |
| b PM: Matt Cordova                          | City Jersey            | City State, Zip                         | NJ           | 07304         | PO #:           | 40256A0                                 |                |                | L                            |              |       | 19       |                                          |                      |              |         |                                                 |     |                |             |
| one/Fax: 732-329-0200/<br>// email:         | PM Name:<br>Phone/Fax: | Chris Martell<br>732-564-3633           |              |               | Send EDD t      | to: NJ                                  | LABOATA@       | Daecom.c       | <sub>om</sub><br>OM, Piscata | nway N.I     |       | ervative |                                          |                      |              |         |                                                 |     |                |             |
|                                             | PM Email:              | Christopher.Mar                         | ell@aecc     | m.com         | OC HAIGOD       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | LIBIT GITC     | II, ALO        | JW, 1 ISOSIC                 | way, 143     |       | eserva   |                                          |                      |              |         |                                                 |     |                |             |
| Field Sample I                              | No. /Identifica        | ition                                   | MATRIX CODE  | G=GRAB C=COMP |                 | SAMPLE DATE                             |                | #OF CONTAINERS |                              | Comm         | nent  | Analysis | GARA-HexChrom                            | GARA-pH-ORP          |              |         |                                                 |     |                |             |
| 1 NSB-F5-12-12.5                            | - (                    |                                         | so           | G             | 08/20           | /2012 14:                               | :30            | 1              |                              |              |       |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| 2 NSB-F5-8-8.5                              | ~ 2                    |                                         | so           | G             | 08/20           | /2012 14:                               | :15            | 1              |                              |              |       |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| NSB-F5-4-4.5                                | · 3                    |                                         | so           | G             | 08/20           | /2012 13:                               | 45             | 1              |                              |              |       |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| 4 NSB-F5-0-0.5                              | - 4                    |                                         | so           | G             | 08/20           | /2012 12:                               | :30            | 1              |                              |              | - 1   |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| 5 NSB-D5-20-20,5                            | - 5                    |                                         | so           | G             | 08/20           | /2012 12:                               | 45             | 1              | 7                            | HC29         |       |          | 1                                        | ×                    |              |         |                                                 |     |                |             |
| 6 NSB-D5-18-18.5                            | - 6                    |                                         | so           | G             | 08/20           | /2012 12:                               | 20             | 1              | The same of                  | WCY          |       |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| 7 NSB-D5-15-15.5                            | - 7                    | *************************************** | so           | G             | 08/20           | /2012 12:                               | 10             | 1              |                              |              |       |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| 8 NSB-D5-12-12.5                            | _ 8                    |                                         | so           | G             | 08/20           | /2012 11:                               | 35             | 1              |                              | ·            |       |          | 1                                        | х                    |              |         |                                                 |     |                | -           |
| 9 NSB-D5-6.4-6.9                            | - 9                    |                                         | so           | G             | 08/20           | /2012 10:                               | 45             | 1              |                              |              |       |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| NSB-D5-3.0-3.5X                             | - 10                   |                                         | so           | G             | 08/20           | /2012 09:                               | 35             | 1              |                              |              |       |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| 11 NSB-D5-3.0-3.5                           | - ((                   |                                         | so           | G             | 08/20           | /2012 09:                               | 30             | 1              | and the second               |              |       |          | 1                                        | х                    |              |         |                                                 |     |                |             |
| Iditional Comments/Special Instru           | ctions:                |                                         | 13           | JA            | enp             |                                         |                | 1555           | Pith                         | SY I AFFILIA | 8/25/ | <u> </u> | 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ | DATE<br>551<br>Waliz |              | Sam     | Ple Receip  Y /  Ø/  Y /  Cash on loss seldings | N C | Sample intact? | Trip Blank? |

JB14201R: Chain of Custody Page 1 of 7



# CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-20\_ACCUTEST\_COC\_RI

| Page: | 2 | of |  |
|-------|---|----|--|
|       |   |    |  |

Task: GARIS- Northern Canal Borings
Total # of Samples: 13 JB14201 Other Information: Lab Information: Project Information: TAT see Spec. Instructions Rush

Notes: F= Field Filtered , H= Hold L9ib: ACCUTEST
Address: 2235 Route 130 , Dayton NJ 08810 Site ID #: PPG Garfield Ave Project #: 60213772.5.A Send Invoice to: Lisa Krowitz
Address: 250 Apollo Drive Site Address: City/State. Chelmsford, MA 01824 | Phone #: | 978-905-2278 Lab PM: Matt Cordova Phone/Fax: 732-329-0200/ PM email: City Jersey City State, Zip NJ PM Name: Chris Martell Phone/Fax: 1732-564-3633 07304 PO#: 40256ACM 
 PO #:
 40256ACM

 Send EDD to:
 NJLABDATA@aecom.com

 CC Hardcopy to
 Erin Farrell, AECOM, Piscataway, NJ
 Christopher.Martell@aecom.com G=GRAB C=COMP CONTAINERS MATRIX CODE SAMPLE DATE GARA-HexChrom GARA-pH-ORP Comment Field Sample No. /Identification å NSB-E5-3-3.5 - 12 so G 08/20/2012 10:50 3 Х EB082012 -13 d = 6.45 G 08/20/2012 15:15 Preserved: None 2 Χ WQ Xz.A

JB14201R: Chain of Custody

Page 2 of 7









### **Accutest Laboratories Sample Receipt Summary**

| Accutest Job Number: JB14               | 201           |             | Client:   |            |              |            | Project:                                 |          |              |                                        |
|-----------------------------------------|---------------|-------------|-----------|------------|--------------|------------|------------------------------------------|----------|--------------|----------------------------------------|
| Date / Time Received: 8/20/2            | 2012          |             |           | Delivery I | Method       | :          | Airbill #'s:                             |          |              |                                        |
| Cooler Temps (Initial/Adjusted          | i): <u>#1</u> | 1: (5/5); ( | <u>)</u>  |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
| Cooler Security Y                       | or N          | _           |           |            | Y o          | r <b>N</b> | Sample Integrity - Documentation         | <u>Y</u> | or N         |                                        |
| 1. Custody Seals Present:               |               |             | COC Pr    |            | $\checkmark$ |            | Sample labels present on bottles:        | <b>✓</b> |              |                                        |
| 2. Custody Seals Intact:                |               | ] 4. Sn     | npl Dates | s/Time OK  | ✓            |            | Container labeling complete:             | ✓        |              |                                        |
| Cooler Temperature                      | <u>Y</u>      | or N        |           |            |              |            | 3. Sample container label / COC agree:   | <b>✓</b> |              |                                        |
| 1. Temp criteria achieved:              | $\checkmark$  |             |           |            |              |            | Sample Integrity - Condition             | <u>Y</u> | or N         |                                        |
| Cooler temp verification:               |               |             |           |            |              |            | Sample recvd within HT:                  | ✓        |              |                                        |
| 3. Cooler media:                        | lc            | e (Bag)     |           |            |              |            | All containers accounted for:            | <b>✓</b> |              |                                        |
| 4. No. Coolers:                         |               | 1           |           |            |              |            | 3. Condition of sample:                  |          | Intact       |                                        |
| Quality Control Preservation            | Υ             | or N        | N/A       |            |              |            | Sample Integrity - Instructions          | <u>Y</u> | or N         | N/A                                    |
| 1. Trip Blank present / cooler:         |               |             | ✓         |            |              |            | 1. Analysis requested is clear:          | <b>V</b> |              |                                        |
| 2. Trip Blank listed on COC:            |               |             | ✓         |            |              |            | Bottles received for unspecified tests   |          | $\checkmark$ |                                        |
| 3. Samples preserved properly:          | $\checkmark$  |             |           |            |              |            | 3. Sufficient volume recvd for analysis: | <b>✓</b> |              |                                        |
| 4. VOCs headspace free:                 |               |             | <b>✓</b>  |            |              |            | 4. Compositing instructions clear:       |          |              | <b>✓</b>                               |
|                                         |               |             |           |            |              |            | 5. Filtering instructions clear:         |          |              | <b>✓</b>                               |
| Comments                                |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
|                                         |               |             |           |            |              |            |                                          |          |              |                                        |
| Accutest Laboratories<br>V:732.329.0200 |               |             |           |            |              |            | 6 Highway 130<br>2.329.3499              |          |              | Dayton, New Jersey<br>www/accutest.com |

JB14201R: Chain of Custody

Page 3 of 7



JB14201\_8/23/2012 Job Change Order:

8/20/2012 Received Date: 8/23/2012 Requested Date:

Due Date: PPG Northern Canal Borings 70 Caven Point AECOM, INC.

Account Name:

Project CSR:

9/3/2012

FULT1 4

Deliverable: TAT (Days):

Š

Sample #: JB14201-1

Revise ID to NSB-F5-12.0-12.5

Change:

NSB-F5-12-12.5

Sample #: JB14201-2

Revise ID to NSB-F5-8.0-8.5 Change:

NSB-F5-8-8.5

Sample #: JB14201-3

Revise ID to NSB-F5-4.0-4.5

Change:

NSB-F5-4-4.5

Sample #: JB14201-4

Revise ID to NSB-F5-0.0-0.5 Change:

NSB-F5-0-0.5

Above Changes Per:

Lisa Krowitz

**Date:** 8/23/2012

Page 1 of 3

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

JB14201R: Chain of Custody Page 4 of 7



| Requested Date:               | 8/23/2012                                 | Received Date:                | 8/20/2012 |
|-------------------------------|-------------------------------------------|-------------------------------|-----------|
| Account Name:                 | AECOM, INC.                               | Due Date:                     | 9/3/2012  |
| Project                       | PPG Northern Canal Borings 70 Caven Point | Deliverable:                  | FULT1     |
| CSR:                          | MJ                                        | TAT (Days):                   | 14        |
| <b>Sample #:</b><br>JB14201-5 | Change: Revise ID to N                    | Revise ID to NSB-D5-20.0-20.5 |           |

NSB-D5-20-20.5

Revise ID to NSB-D5-18.0-18.5 Change: **Sample #:** JB14201-6

NSB-D5-18-18.5

**Sample #:** JB14201-7

Revise ID to NSB-D5-15.0-15.5

Change:

NSB-D5-15-15.5

Sample #: JB14201-8

Revise ID to NSB-D5-12.0-12.5

Change:

NSB-D5-12-12.5

JB14201R: Chain of Custody

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Lisa Krowitz

Above Changes Per:

**Date:** 8/23/2012

Page 2 of 3

Page 5 of 7

26 of 127
ACCUTEST.
JB14201R

**Date:** 8/23/2012

Page 3 of 3

| Requested Date: | 8/23/2012                                 | Received Date: | 8/20/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/3/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | MJ                                        | TAT (Days):    | 14        |

Change: Sample #: JB14201-12, -12D, -12S

Revise ID to NSB-E5-3.0-3.5

Revise ID to NSB-EB20120820 Change: Sample #: JB14201-13

EB082012

JB14201R: Chain of Custody Page 6 of 7

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Lisa Krowitz

Above Changes Per:



**Date:** 9/4/2012

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Above Changes Per:

JB14201\_9/4/2012

8/20/2012 9/4/2012

FULT1

0

Received Date: Deliverable: TAT (Days): Due Date: PPG Northern Canal Borings, Jersey City, NJ AECOM, INC. 9/4/2012 MC Requested Date: Account Name:

Project

Sample #: JB14201-12 CSR:

Due to XCR spike recovery log in FE2/7, SULFS, TOCLK

Change:

Sample #: JB14201-1 thru 12 NSB-E5-3.0-3.5

due to XCR spike recovery log in XXCRAR Change:

JB14201R: Chain of Custody

Page 7 of 7



JB14201R

Job No:

# **Internal Sample Tracking Chronicle**

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                             | Analyzed        | Ву     | Prepped     | Ву      | Test Codes |
|--------------------------|------------------------------------|-----------------|--------|-------------|---------|------------|
| JB14201-1F<br>NSB-F5-12  | R Collected: 20-AUG-12<br>.0-12.5  | 14:30 By: CM    | Receiv | ved: 20-AUG | -12 By  | : MPC      |
| JB14201-1F               | R SW846 3060A/7196A                | 05-SEP-12 16:35 | MM     | 04-SEP-12   | CW      | XCRA       |
| JB14201-2F<br>NSB-F5-8.0 | R Collected: 20-AUG-12<br>0-8.5    | 14:15 By: CM    | Receiv | ved: 20-AUG | -12 By  | : MPC      |
| JB14201-2F               | R SW846 3060A/7196A                | 05-SEP-12 16:35 | MM     | 04-SEP-12   | CW      | XCRA       |
| JB14201-3F<br>NSB-F5-4.0 | R Collected: 20-AUG-12<br>0-4.5    | 13:45 By: CM    | Receiv | ved: 20-AUG | -12 By  | : MPC      |
| JB14201-3F               | R SW846 3060A/7196A                | 05-SEP-12 16:35 | MM     | 04-SEP-12   | CW      | XCRA       |
| JB14201-4F<br>NSB-F5-0.0 | R Collected: 20-AUG-12<br>0-0.5    | 12:30 By: CM    | Receiv | ved: 20-AUG | -12 By: | : MPC      |
| JB14201-4F               | R SW846 3060A/7196A                | 05-SEP-12 16:35 | MM     | 04-SEP-12   | CW      | XCRA       |
| JB14201-5F<br>NSB-D5-20  | R Collected: 20-AUG-12<br>0.0-20.5 | 12:45 By: CM    | Receiv | ved: 20-AUG | -12 By: | : MPC      |
| JB14201-5F               | R SW846 3060A/7196A                | 05-SEP-12 16:35 | MM     | 04-SEP-12   | CW      | XCRA       |
| JB14201-6F<br>NSB-D5-18  | R Collected: 20-AUG-12<br>3.0-18.5 | 12:20 By: CM    | Receiv | ved: 20-AUG | -12 By: | : MPC      |
| JB14201-6F               | R SW846 3060A/7196A                | 05-SEP-12 16:35 | MM     | 04-SEP-12   | CW      | XCRA       |
| JB14201-7F<br>NSB-D5-15  | R Collected: 20-AUG-12<br>.0-15.5  | 12:10 By: CM    | Receiv | ved: 20-AUG | -12 By: | : MPC      |
| JB14201-7F               | R SW846 3060A/7196A                | 05-SEP-12 16:35 | MM     | 04-SEP-12   | CW      | XCRA       |
| JB14201-8F<br>NSB-D5-12  | R Collected: 20-AUG-12<br>0-12.5   | 11:35 By: CM    | Receiv | ved: 20-AUG | -12 By: | : MPC      |
| JB14201-8F               | R SW846 3060A/7196A                | 05-SEP-12 16:35 | MM     | 04-SEP-12   | CW      | XCRA       |

# **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14201R

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                                                                         | Analyzed               | Ву                    | Prepped                | Ву      | Test Codes                      |
|--------------------------|--------------------------------------------------------------------------------|------------------------|-----------------------|------------------------|---------|---------------------------------|
| JB14201-9I<br>NSB-D5-6.  | R Collected: 20-AUG-12<br>4-6.9                                                | 10:45 By: CM           | Receiv                | ved: 20-AUG            | -12 By  | r: MPC                          |
| JB14201-9I               | R SW846 3060A/7196A                                                            | 05-SEP-12 16:35        | MM                    | 04-SEP-12              | CW      | XCRA                            |
| JB14201-10<br>NSB-D5-3.  | PCollected: 20-AUG-12<br>0-3.5X                                                | 09:35 By: CM           | Receiv                | ved: 20-AUG            | -12 By  | r: MPC                          |
| JB14201-10               | 0 <b>R</b> SW846 3060A/7196A                                                   | 05-SEP-12 16:35        | MM                    | 04-SEP-12              | CW      | XCRA                            |
| JB14201-11<br>NSB-D5-3.  | RCollected: 20-AUG-12<br>0-3.5                                                 | 09:30 By: CM           | Receiv                | ved: 20-AUG            | 1-12 By | r: MPC                          |
| JB14201-11               | <b>I</b> SW846 3060A/7196A                                                     | 05-SEP-12 16:35        | MM                    | 04-SEP-12              | CW      | XCRA                            |
| JB14201-12<br>NSB-E5-3.0 | PRCollected: 20-AUG-12<br>0-3.5                                                | 10:50 By: CM           | Receiv                | ved: 20-AUG            | -12 By  | r: MPC                          |
| JB14201-12<br>JB14201-12 | PRLLOYD KAHN 1988 I<br>PRASTM D3872-86<br>PRM18 4500S2-A<br>PRW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 | SJG<br>JA<br>JA<br>MM | 04-SEP-12<br>04-SEP-12 |         | TOCLK<br>FE2/7<br>SULFS<br>XCRA |

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| Number                  | FROM                 | 10                   | Date/Time      | Keasuii               |
| JB14201-1.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-1.1             | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-1.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-1.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-1.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-1.1             | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-1.1             | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-1.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-1.1             | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-1.1             | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-1.1             | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-1.1             | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-1.1             | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-2.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-2.1             | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-2.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-2.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-2.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-2.1             | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-2.1             | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-2.1             | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-2.1             | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-2.1             | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-2.1             | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-2.1             | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-2.1             | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-3.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-3.1             | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-3.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-3.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-3.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-3.1             | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-3.1             | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-3.1             | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-3.1             | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-3.1             | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-3.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-3.1             | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-3.1             | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-4.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-4.1             | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
|                         |                      |                      |                |                       |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14201-4.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-4.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14201-4.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-4.1             | Sanjay Advani        | Matt Del Ciello      |                | Custody Transfer      |
| JB14201-4.1             | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-4.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-4.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-4.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-4.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-4.1             | Secured Storage      | Ching Wong           |                | Retrieve from Storage |
| JB14201-4.1             | Ching Wong           | Secured Storage      |                | Return to Storage     |
| JB14201-5.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-5.1             | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-5.1             | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14201-5.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14201-5.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-5.1             | Sanjay Advani        | Matt Del Ciello      |                | Custody Transfer      |
| JB14201-5.1             | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-5.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-5.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-5.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-5.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-5.1             | Secured Storage      | Ching Wong           |                | Retrieve from Storage |
| JB14201-5.1             | Ching Wong           | Secured Storage      |                | Return to Storage     |
|                         |                      |                      | 00/22/12 00 22 |                       |
| JB14201-6.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14201-6.1             | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-6.1             | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14201-6.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14201-6.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-6.1             | Sanjay Advani        | Matt Del Ciello      |                | Custody Transfer      |
| JB14201-6.1             | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-6.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-6.1             | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-6.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-6.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-6.1             | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-6.1             | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-7.1             | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-7.1             | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-7.1             | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-7.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
|                         |                      |                      |                |                       |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample. Bottle | Transfer             | Transfer             |                |                       |
|----------------|----------------------|----------------------|----------------|-----------------------|
| Number         | FROM                 | TO                   | Date/Time      | Reason                |
| JB14201-7.1    | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-7.1    | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-7.1    | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-7.1    | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-7.1    | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-7.1    | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-7.1    | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-7.1    | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-7.1    | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-8.1    | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-8.1    | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-8.1    | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-8.1    | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-8.1    | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-8.1    | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-8.1    | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-8.1    | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-8.1    | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-8.1    | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-8.1    | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-8.1    | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-8.1    | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-9.1    | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14201-9.1    | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-9.1    | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-9.1    | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-9.1    | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-9.1    | Sanjay Advani        | Matt Del Ciello      |                | Custody Transfer      |
| JB14201-9.1    | Matt Del Ciello      | Secured Storage      |                | Return to Storage     |
| JB14201-9.1    | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14201-9.1    | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14201-9.1    | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14201-9.1    | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14201-9.1    | Secured Storage      | Ching Wong           |                | Retrieve from Storage |
| JB14201-9.1    | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-10.1   | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14201-10.1   | Todd Shoemaker       | Krimesh Patel        |                | Custody Transfer      |
| JB14201-10.1   | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14201-10.1   | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14201-10.1   | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14201-10.1   | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
|                |                      |                      |                |                       |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| JB14201-10.1   Matt Del Ciello   Secured Storage   Adam Scott   O9/01/12 08:50   Retrieve from Storage   JB14201-10.1   Adam Scott   Secured Staging Area   O9/01/12 08:50   Retrieve from Storage   JB14201-10.1   Secured Staging Area   Mayur Patel   O9/01/12 09:00   Retrieve from Storage   JB14201-10.1   Secured Storage   Adam Scott   O9/01/12 09:00   Retrieve from Storage   JB14201-10.1   Secured Storage   Adam Scott   O9/01/12 14:02   Retrieve from Storage   JB14201-10.1   Adam Scott   Secured Staging Area   O9/01/12 14:02   Retrieve from Storage   JB14201-10.1   Adam Scott   Secured Staging Area   O9/04/12 14:02   Retrieve from Storage   JB14201-11.1   Secured Storage   Todd Shoemaker   Krimesh Patel   O8/22/12 08:54   Custody Transfer   JB14201-11.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14201-11.1   Secured Storage   Brian Racin   O8/29/12 13:33   Retrieve from Storage   JB14201-11.1   Seanjay Advani   O8/29/12 13:33   Custody Transfer   JB14201-11.1   Seanjay Advani   O8/29/12 13:33   Custody Transfer   JB14201-11.1   Seanjay Advani   O8/29/12 13:33   Custody Transfer   JB14201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Retrieve from Storage   JB14201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Retrieve from Storage   JB14201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Retrieve from Storage   JB14201-11.1   Mayur Patel   O9/01/12 08:50   Retrieve from Storage   JB14201-11.1   Secured Storage   Ching Wong   O9/04/12 15:28   Retrieve from Storage   JB14201-11.1   Ching Wong   Secured Storage   O9/04/12 15:28   Retrieve from Storage   JB14201-12.1   Secured Storage   Todd Shoemaker   Krimesh Patel   O8/29/12 13:31   Retrieve from Storage   JB14201-12.1   Secured Storage   Secured Storage   O9/04/12 15:28   Retrieve from Storage   JB14201-12.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14201-12.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14201-12.1   Secured Storage   S   | Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|----------------|-----------------------|
| Bit   201-10.1   Adam Scott   Secured Staging Area   Mayur Patel   O9/01/12 08:51   Return to Storage   Bit   201-10.1   Mayur Patel   Secured Storage   O9/01/12 11:26   Return to Storage   Bit   201-10.1   Mayur Patel   Secured Storage   O9/01/12 11:26   Return to Storage   Bit   201-10.1   Adam Scott   Secured Storage   O9/01/12 11:20   Return to Storage   Bit   201-10.1   Adam Scott   Secured Staging Area   O9/04/12 14:02   Return to Storage   Bit   201-11.1   Todd Shoemaker   Krimesh Patel   O8/22/12 08:54   Custody Transfer   Bit   201-11.1   Secured Storage   Brian Racin   O8/22/12 08:54   Custody Transfer   Bit   201-11.1   Brian Racin   Sanjay Advani   O8/29/12 13:31   Return to Storage   Bit   201-11.1   Brian Racin   O8/29/12 13:32   Sustody Transfer   Bit   201-11.1   Secured Storage   Secured Storage   O8/29/12 16:37   Return to Storage   Bit   201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Return to Storage   Bit   201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Return to Storage   Bit   201-11.1   Secured Staging Area   O9/01/12 08:50   Return to Storage   Bit   201-11.1   Secured Staging Area   O9/01/12 08:50   Return to Storage   Bit   201-11.1   Secured Staging Area   O9/01/12 08:50   Return to Storage   Bit   201-11.1   Secured Staging Area   O9/01/12 09:50   Return to Storage   Bit   201-11.1   Secured Storage   Ching Wong   O9/04/12 19:52   Return to Storage   Bit   201-11.1   Ching Wong   O9/04/12 09:50   Return to Storage   Bit   201-12.1   Ching Wong   O9/04/12 09:50   Return to Storage   Bit   201-12.1   Ching Wong   O9/04/12 09:50   Return to Storage   Bit   201-12.1   Secured Storage   Todd Shoemaker   Krimesh Patel   O8/22/12 08:52   Retireve from Storage   Bit   201-12.1   Secured Storage   Brian Racin   O8/29/12 13:33   Return to Storage   Bit   201-12.1   Secured Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   Bit   201-12.1   Secured Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   Bit   201-12.1   Secured Storage   Brian Racin   O9/   | JB14201-10.1            | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| Bil   2201-10.1   Secured Staging Area   Mayur Patel   O9/01/12 09:00   Retrieve from Storage   Bil   2201-10.1   Secured Storage   Adam Scott   O9/04/12 14:02   Return to Storage   Bil   2201-10.1   Adam Scott   Secured Staging Area   O9/04/12 14:02   Return to Storage   Bil   2201-10.1   Adam Scott   Secured Staging Area   O9/04/12 14:02   Return to Storage   Bil   2201-11.1   Todd Shoemaker   Krimesh Patel   O8/22/12 08:54   Custody Transfer   Custody Transfer   Custody Transfer   O8/22/12 13:31   Return to Storage   Bil   2201-11.1   Secured Storage   Brian Racin   O8/29/12 13:33   Return to Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   Dil   2201-11.1   Sanjay Advani   O8/29/12 13:33   Custody Transfer   Dil   2201-11.1   Secured Storage   O8/29/12 16:30   Custody Transfer   Dil   2201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Retrieve from Storage   Dil   2201-11.1   Secured Staging Area   Mayur Patel   O9/01/12 08:50   Retrieve from Storage   Dil   2201-11.1   Secured Staging Area   Mayur Patel   O9/01/12 08:50   Retrieve from Storage   Dil   2201-11.1   Secured Storage   Ching Wong   O9/04/12 13:52   Return to Storage   Dil   2201-11.1   Secured Storage   Ching Wong   O9/04/12 13:52   Return to Storage   Dil   2201-11.1   Ching Wong   Secured Storage   O9/04/12 13:52   Return to Storage   Dil   2201-11.1   Ching Wong   Secured Storage   O9/04/12 13:53   Return to Storage   Dil   2201-11.1   Ching Wong   O9/04/12 13:53   Return to Storage   Dil   2201-11.1   Ching Wong   O9/04/12 13:53   Return to Storage   Dil   2201-12.1   Secured Storage   Dil   2201-22   Dil   220   | JB14201-10.1            | Secured Storage      |                      | 09/01/12 08:50 | Retrieve from Storage |
| Bit   201-10.1   Mayur Patel   Secured Storage   O9/01/12   11:26   Retrieve from Storage   Bit   201-10.1   Adam Scott   Secured Staging Area   O9/04/12   14:02   Retrieve from Storage   Bit   201-11.1   Todd Shoemaker   Krimesh Patel   O8/22/12 08:52   Retrieve from Storage   Bit   201-11.1   Todd Shoemaker   Krimesh Patel   O8/22/12 08:54   Custody Transfer   Bit   201-11.1   Secured Storage   Brian Racin   O8/22/12 08:54   Custody Transfer   Dit   201-11.1   Brian Racin   Sanjay Advani   O8/29/12 13:31   Retrieve from Storage   Bit   201-11.1   Brian Racin   Sanjay Advani   O8/29/12 13:33   Custody Transfer   Dit   201-11.1   Secured Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   Dit   201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Retrieve from Storage   Dit   201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Retrieve from Storage   Dit   201-11.1   Secured Storage   Adam Scott   O9/01/12 08:51   Return to Storage   Dit   201-11.1   Secured Storage   Adam Scott   O9/01/12 08:51   Return to Storage   Dit   201-11.1   Secured Storage   Adam Scott   O9/01/12 08:51   Return to Storage   Dit   201-11.1   Secured Storage   O9/01/12 08:51   Return to Storage   Dit   201-11.1   Secured Storage   O9/01/12 08:51   Return to Storage   Dit   201-11.1   Ching Wong   O9/04/12 15:28   Retrieve from Storage   Dit   201-11.1   Ching Wong   Secured Storage   O9/04/12 15:28   Retrieve from Storage   Dit   201-12.1   Secured Storage   Todd Shoemaker   O8/22/12 08:52   Retrieve from Storage   Dit   201-12.1   Secured Storage   Brian Racin   O8/29/12 13:31   Return to Storage   Dit   201-12.1   Secured Storage   Brian Racin   O8/29/12 13:33   Retrieve from Storage   Dit   201-12.1   Secured Storage   Brian Racin   O8/29/12 13:33   Retrieve from Storage   Dit   201-12.1   Secured Storage   | JB14201-10.1            | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| Bit   2201-10.1   Secured Storage   Adam Scott   Secured Staging Area   O9/04/12 14:02   Retrieve from Storage   Bit   2201-11.1   Secured Storage   Todd Shoemaker   O8/22/12 08:52   Retrieve from Storage   Bit   2201-11.1   Todd Shoemaker   Krimesh Patel   O8/22/12 08:54   Custody Transfer   Bit   2201-11.1   Krimesh Patel   Secured Storage   O8/22/12 13:31   Return to Storage   Bit   2201-11.1   Secured Storage   Brian Racin   O8/29/12 13:33   Return to Storage   Bit   2201-11.1   Sanjay Advani   Matt Del Ciello   O8/29/12 18:13   Custody Transfer   O8/29/12 13:33   Custody Transfer   O8/29/12 18:17   Custody Transfer   O8/29/12 18:17   Return to Storage   O9/01/12 08:51   Return to Storage   O9/01/12 09:00   Retrieve from Storage   O9/01/12 09:00   Retrieve from Storage   O9/01/12 11:10   Secured Storage   O9/01/12 09:00   Retrieve from Storage   O9/01/12 11:10   Secured Storage   O9/01/12 09:00   Retrieve from Storage   O9/01/12 11:10   Secured Storage   O9/01/12 09:00   Retrieve from Storage   O9/0   | JB14201-10.1            | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-11.1   Secured Storage   Todd Shoemaker   O8/22/12 08:52   Retrieve from Storage   JB14201-11.1   Todd Shoemaker   Krimesh Patel   O8/22/12 08:54   Custody Transfer   JB14201-11.1   Secured Storage   Brian Racin   O8/22/12 13:13   Return to Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   Custody Transfer   JB14201-11.1   Brian Racin   Sanjay Advani   O8/29/12 13:33   Custody Transfer   JB14201-11.1   Brian Racin   Sanjay Advani   O8/29/12 13:33   Custody Transfer   JB14201-11.1   Sanjay Advani   Matt Del Ciello   O8/29/12 16:07   Custody Transfer   JB14201-11.1   Matt Del Ciello   Secured Storage   O9/01/12 08:50   Retrieve from Storage   JB14201-11.1   Secured Storage   Adam Scott   O9/01/12 08:50   Retrieve from Storage   JB14201-11.1   Secured Staging Area   O9/01/12 08:51   Return to Storage   JB14201-11.1   Secured Storage   Ching Wong   O9/01/12 11:26   Return to Storage   JB14201-11.1   Ching Wong   Secured Storage   O9/04/12 23:29   Return to Storage   JB14201-12.1   Todd Shoemaker   Krimesh Patel   O8/22/12 08:52   Retrieve from Storage   JB14201-12.1   Krimesh Patel   Secured Storage   O8/22/12 08:52   Retrieve from Storage   JB14201-12.1   Secured Storage   Brian Racin   O8/29/12 13:31   Return to Storage   JB14201-12.1   Sanjay Advani   Matt Del Ciello   O8/29/12 13:31   Return to Storage   JB14201-12.1   Sanjay Advani   Matt Del Ciello   O8/29/12 13:31   Return to Storage   JB14201-12.1   Sanjay Advani   Matt Del Ciello   O8/29/12 13:31   Return to Storage   JB14201-12.1   Sanjay Advani   Matt Del Ciello   O8/29/12 13:31   Return to Storage   JB14201-12.1   Secured Storage   Adam Scott   O9/01/12 08:51   Return to Storage   JB14201-12.1   Secured Storage   Adam Scott   O9/01/12 08:51   Return to Storage   JB14201-12.1   Secured Storage   Adam Scott   O9/01/12 08:51   Return to Storage   JB14201-12.1   Secured Storage   Scured Storage   O9/01/12 08:51   Return to Storage   JB14201-12.1   Secured Storage   Dave Hunkle   O9/01/12 08:52   Return to Storage   JB14201-12.1   Secured   | JB14201-10.1            | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| Bit    | JB14201-10.1            | Secured Storage      | Adam Scott           | 09/04/12 14:02 | Retrieve from Storage |
| JB14201-11.1   Todd Shoemaker   Krimesh Patel   08/22/12 08:54   Custody Transfer   JB14201-11.1   Krimesh Patel   Secured Storage   08/22/12 13:13   Retrive from Storage   JB14201-11.1   Brian Racin   Sanjay Advani   08/29/12 13:33   Custody Transfer   JB14201-11.1   Sanjay Advani   Matt Del Ciello   08/29/12 16:07   Custody Transfer   JB14201-11.1   Sanjay Advani   Matt Del Ciello   08/29/12 18:17   Return to Storage   JB14201-11.1   Secured Storage   Adam Scott   09/01/12 08:50   Retrieve from Storage   JB14201-11.1   Secured Storage   Adam Scott   09/01/12 08:51   Return to Storage   JB14201-11.1   Secured Staging Area   Mayur Patel   09/01/12 09:00   Retrieve from Storage   JB14201-11.1   Secured Storage   Ching Wong   09/04/12 15:28   Retrieve from Storage   JB14201-11.1   Secured Storage   Ching Wong   09/04/12 15:28   Retrieve from Storage   JB14201-11.1   Ching Wong   Secured Storage   09/04/12 23:29   Return to Storage   JB14201-12.1   Todd Shoemaker   Krimesh Patel   08/22/12 08:54   Custody Transfer   JB14201-12.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14201-12.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14201-12.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14201-12.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14201-12.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14201-12.1   Secured Storage   Adam Scott   09/01/12 08:50   Retrieve from Storage   JB14201-12.1   Secured Storage   Adam Scott   09/01/12 08:51   Return to Storage   JB14201-12.1   Secured Storage   Adam Scott   09/01/12 08:51   Return to Storage   JB14201-12.1   Secured Storage   Shirley Grzybowski   Secured Storage   09/01/12 08:51   Return to Storage   JB14201-12.1   Secured Storage   Shirley Grzybowski   Secured Storage   09/04/12 13:01   Retrieve from Storage   JB14201-12.1   Secured Storage   Shirley Grzybowski   Secured Storage   09/04/12 14:19   Retrieve fr   | JB14201-10.1            | Adam Scott           | Secured Staging Area | 09/04/12 14:02 | Return to Storage     |
| JB14201-11.1 Krimesh Patel Secured Storage Brian Racin 08/29/12 13:31 Return to Storage JB14201-11.1 Brian Racin Sanjay Advani 08/29/12 13:31 Custody Transfer JB14201-11.1 Sanjay Advani Matt Del Ciello 08/29/12 16:07 Custody Transfer JB14201-11.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:50 Return to Storage JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-11.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 23:29 Return to Storage JB14201-11.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.1 Todd Shoemaker Krimesh Patel 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 08:54 Custody Transfer JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:31 Return to Storage JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello Secured Storage 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Mayur Patel 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:17 Return to Storage JB14201-12. | JB14201-11.1            | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-11.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14201-11.1 Brian Racin Sanjay Advani 08/29/12 16:07 Custody Transfer JB14201-11.1 Matt Del Ciello Secured Storage 08/29/12 16:07 Custody Transfer JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-11.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-11.1 Mayur Patel Secured Storage 09/01/12 09:00 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Secured Storage O9/04/12 23:29 Return to Storage JB14201-12.1 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:31 Retrieve from Storage JB14201-12.1 Krimesh Patel Secured Storage O8/22/12 13:33 Retrieve from Storage JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:31 Retrieve from Storage JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 13:31 Custody Transfer JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:00 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:19 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Return to Storage JB14201-12.1 Dave Hunkele Secured Storage 09/04/12 14:20 Return to Storage JB14201-12.1 Dave Hunkele Secured Storage 09/04/12 14:19 Return to Storage JB14201-12.1 Ching Wong 09/04/12 13:07 Retrieve from Storage JB1 | JB14201-11.1            | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-11.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-11.1 Sanjay Advani Matt Del Ciello 08/29/12 16:07 Custody Transfer JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-11.1 Adam Scott Secured Staging Area 09/01/12 08:51 Return to Storage JB14201-11.1 Secured Staging Area Mayur Patel 09/01/12 09:50 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/01/12 11:26 Return to Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.1 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Retrieve from Storage JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 13:33 Custody Transfer JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 16:07 Custody Transfer JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Mayur Patel 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Sceured Storage 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Sceured Storage 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:10 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.1 Ching Wong 09/04/12 3: | JB14201-11.1            | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-11.1 Sanjay Advani Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-11.1 Secured Staging Area 09/01/12 08:51 Return to Storage JB14201-11.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-11.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-11.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 23:29 Return to Storage JB14201-12.1 Secured Storage Todd Shoemaker Mrimesh Patel 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Secured Storage Secured Storage 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:33 Return to Storage JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 18:17 Return to Storage JB14201-12.1 Sanjay Advani 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Mayur Patel 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Return to Storage JB14201-12.2 Secu | JB14201-11.1            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-11.1 Matt Del Ciello Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-11.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-11.1 Secured Staging Area Mayur Patel 09/01/12 08:51 Return to Storage JB14201-11.1 Mayur Patel Secured Storage 09/01/12 09:00 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Return to Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 23:29 Return to Storage JB14201-12.1 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Secured Storage Brian Racin 08/22/12 08:54 Custody Transfer JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:13 Return to Storage JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Scured Staging Area 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Stora | JB14201-11.1            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-11.1 Secured Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JB14201-11.1            | Sanjay Advani        |                      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-11.1 Adam Scott Secured Staging Area Mayur Patel 09/01/12 08:51 Return to Storage JB14201-11.1 Secured Staging Area Ching Wong 09/01/12 11:26 Return to Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 23:29 Return to Storage JB14201-12.1 Secured Storage Todd Shoemaker Wirmesh Patel 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Krimesh Patel Secured Storage Brian Racin 08/22/12 08:54 Custody Transfer JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Retrieve from Storage JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Mayur Patel 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12. | JB14201-11.1            |                      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-11.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-11.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-11.1 Secured Storage Ching Wong 09/04/12 15:28 Retrieve from Storage JB14201-11.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.1 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 08:54 Custody Transfer JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14201-12.1 Serian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:10 Retrieve from Storage JB14201-12.1 Secured Storage One Secured Storage One One Secured From Storage JB14201-12.1 Secured Storage One One Secured Storage One One Secured From Storage JB14201-12.1 Secured Storage One One One Secured Storage One One One Secured Storage One One One One Secured Storage One One One One One One One One One On                                                                                                                      | JB14201-11.1            |                      |                      |                |                       |
| JB14201-12.1 Secured Storage Ching Wong O9/04/12 15:28 Retrieve from Storage JB14201-12.1 Secured Storage Todd Shoemaker O8/22/12 08:52 Retrieve from Storage JB14201-12.1 Todd Shoemaker Krimesh Patel O8/22/12 08:54 Custody Transfer JB14201-12.1 Krimesh Patel Secured Storage O8/22/12 13:13 Return to Storage JB14201-12.1 Secured Storage Brian Racin O8/29/12 13:31 Retrieve from Storage JB14201-12.1 Sanjay Advani O8/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani O8/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani O8/29/12 13:33 Custody Transfer JB14201-12.1 Secured Storage Brian Racin O8/29/12 13:33 Custody Transfer JB14201-12.1 Secured Storage O8/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott O9/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott O9/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Adam Scott O9/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Adam Scott O9/01/12 09:00 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski O9/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski O9/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski O9/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski O9/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele O9/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele O9/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele O9/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele O9/04/12 14:10 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele O9/04/12 14:10 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele O9/04/12 14:10 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele O9/04/12 15:07 Retrieve from Storage JB14201-12.2 Secured Storage Todd Shoemaker Krimesh Patel O8/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage O8/22/12 08:54 Custody Transfer JB1420 | JB14201-11.1            |                      |                      |                |                       |
| JB14201-12.1 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Secured Storage Trimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 16:07 Custody Transfer JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Secured Storage Scured Storage 09/01/12 1:26 Return to Storage JB14201-12.1 Secured Storage Mayur Patel 09/01/12 1:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 1:301 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 1:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Retrieve from Storage JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Secured Storage Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12. | JB14201-11.1            |                      |                      |                | _                     |
| JB14201-12.1 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:13 Retrieve from Storage JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 18:17 Return to Storage JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Storage Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 13:02 Retrieve from Storage JB14201-12.1 Secured Storage On/04/12 13:03 Retrieve from Storage JB14201-12.2 Secured Storage On/04/12 13:13 Retrieve from Storage JB14201-12.2 Secured Storage Todd Shoemaker Krimesh Patel On/04/12 13:13 Return to Storage JB14201-12.2 Krimesh Patel Secured Storage On/04/12 13:13 Return to Storage JB14201-12.2 Krimesh | JB14201-11.1            |                      |                      |                |                       |
| JB14201-12.1 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.1 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:33 Retrieve from Storage JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 16:07 Custody Transfer JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ohyong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Secured Storage Ohyong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.2 Secured Storage Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | JB14201-11.1            | <u> </u>             |                      |                |                       |
| JB14201-12.1 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.1 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage JB14201-12.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 16:07 Custody Transfer JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Adam Scott Secured Staging Area 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Secured Storage Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JB14201-11.1            | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-12.1 Krimesh Patel Secured Storage Brian Racin 08/22/12 13:13 Return to Storage  JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:31 Retrieve from Storage  JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer  JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 16:07 Custody Transfer  JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage  JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage  JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 08:51 Return to Storage  JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage  JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage  JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage  JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:17 Return to Storage  JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage  JB14201-12.1 Secured Staging Area Ohyd/12 15:07 Retrieve from Storage  JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage  JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage  JB14201-12.2 Secured Storage Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer  JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JB14201-12.1            |                      |                      |                |                       |
| JB14201-12.1Secured StorageBrian Racin08/29/12 13:31Retrieve from StorageJB14201-12.1Brian RacinSanjay Advani08/29/12 13:33Custody TransferJB14201-12.1Sanjay AdvaniMatt Del Ciello08/29/12 16:07Custody TransferJB14201-12.1Matt Del CielloSecured Storage08/29/12 18:17Return to StorageJB14201-12.1Secured StorageAdam Scott09/01/12 08:50Retrieve from StorageJB14201-12.1Adam ScottSecured Staging Area09/01/12 09:00Retrieve from StorageJB14201-12.1Secured Staging AreaMayur Patel09/01/12 09:00Retrieve from StorageJB14201-12.1Mayur PatelSecured Storage09/01/12 11:26Return to StorageJB14201-12.1Secured StorageShirley Grzybowski09/04/12 13:01Retrieve from StorageJB14201-12.1Secured StorageDave Hunkele09/04/12 14:17Return to StorageJB14201-12.1Dave HunkeleSecured Staging Area09/04/12 14:20Return to StorageJB14201-12.1Secured Staging AreaChing Wong09/04/12 15:07Retrieve from StorageJB14201-12.1Ching WongSecured Storage09/04/12 23:29Return to StorageJB14201-12.2Secured StorageTodd Shoemaker08/22/12 08:52Retrieve from StorageJB14201-12.2Todd ShoemakerKrimesh Patel08/22/12 08:54Custody TransferJB14201-12.2Krimesh PatelSecured Storage08/22/12 13:13Return to Storage </td <td>JB14201-12.1</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14201-12.1            |                      |                      |                |                       |
| JB14201-12.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 16:07 Custody Transfer JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Adam Scott Secured Staging Area 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area O9/04/12 15:07 Retrieve from Storage JB14201-12.1 Secured Storage Todd Shoemaker 09/04/12 23:29 Return to Storage JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Secured Storage Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JB14201-12.1            |                      |                      |                |                       |
| JB14201-12.1 Sanjay Advani Matt Del Ciello 08/29/12 16:07 Custody Transfer  JB14201-12.1 Matt Del Ciello Secured Storage 08/29/12 18:17 Return to Storage  JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage  JB14201-12.1 Adam Scott Secured Staging Area 09/01/12 08:51 Return to Storage  JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage  JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage  JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage  JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage  JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage  JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage  JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage  JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage  JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage  JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:54 Custody Transfer  JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JB14201-12.1            | <u> </u>             |                      |                | _                     |
| JB14201-12.1 Matt Del Ciello Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Secured Staging Area Scured Staging Area 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JB14201-12.1            | Brian Racin          |                      |                |                       |
| JB14201-12.1 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage JB14201-12.1 Adam Scott Secured Staging Area 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage  JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14201-12.1            |                      |                      |                |                       |
| JB14201-12.1 Adam Scott Secured Staging Area 09/01/12 08:51 Return to Storage JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JB14201-12.1            |                      |                      |                |                       |
| JB14201-12.1 Secured Staging Area Mayur Patel 09/01/12 09:00 Retrieve from Storage JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JB14201-12.1            | <u> </u>             |                      |                |                       |
| JB14201-12.1 Mayur Patel Secured Storage 09/01/12 11:26 Return to Storage JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                      |                      |                |                       |
| JB14201-12.1 Secured Storage Shirley Grzybowski 09/04/12 13:01 Retrieve from Storage JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage  JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |                      |                      |                |                       |
| JB14201-12.1 Shirley Grzybowski Secured Storage 09/04/12 14:17 Return to Storage JB14201-12.1 Secured Storage Dave Hunkele 09/04/12 14:19 Retrieve from Storage JB14201-12.1 Dave Hunkele Secured Staging Area 09/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong 09/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage 09/04/12 23:29 Return to Storage  JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                      |                      |                |                       |
| JB14201-12.1Secured StorageDave Hunkele09/04/12 14:19Retrieve from StorageJB14201-12.1Dave HunkeleSecured Staging Area09/04/12 14:20Return to StorageJB14201-12.1Secured Staging AreaChing Wong09/04/12 15:07Retrieve from StorageJB14201-12.1Ching WongSecured Storage09/04/12 23:29Return to StorageJB14201-12.2Secured StorageTodd Shoemaker08/22/12 08:52Retrieve from StorageJB14201-12.2Todd ShoemakerKrimesh Patel08/22/12 08:54Custody TransferJB14201-12.2Krimesh PatelSecured Storage08/22/12 13:13Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                      |                      |                |                       |
| JB14201-12.1 Dave Hunkele Secured Staging Area O9/04/12 14:20 Return to Storage JB14201-12.1 Secured Staging Area Ching Wong O9/04/12 15:07 Retrieve from Storage JB14201-12.1 Ching Wong Secured Storage O9/04/12 23:29 Return to Storage  JB14201-12.2 Secured Storage Todd Shoemaker O8/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel O8/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage O8/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |                      | _                    |                |                       |
| JB14201-12.1Secured Staging Area<br>Ching WongChing Wong<br>Secured Storage09/04/12 15:07<br>09/04/12 23:29Retrieve from Storage<br>Return to StorageJB14201-12.2Secured StorageTodd Shoemaker<br>Krimesh Patel08/22/12 08:52<br>08/22/12 08:54Retrieve from StorageJB14201-12.2Todd Shoemaker<br>JB14201-12.2Krimesh Patel08/22/12 08:54<br>08/22/12 13:13Custody TransferJB14201-12.2Krimesh PatelSecured Storage08/22/12 13:13Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         | <u> </u>             |                      |                | e                     |
| JB14201-12.1Ching WongSecured Storage09/04/12 23:29Return to StorageJB14201-12.2Secured StorageTodd Shoemaker08/22/12 08:52Retrieve from StorageJB14201-12.2Todd ShoemakerKrimesh Patel08/22/12 08:54Custody TransferJB14201-12.2Krimesh PatelSecured Storage08/22/12 13:13Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |                      |                      |                |                       |
| JB14201-12.2 Secured Storage Todd Shoemaker 08/22/12 08:52 Retrieve from Storage JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |                      |                      |                |                       |
| JB14201-12.2 Todd Shoemaker Krimesh Patel 08/22/12 08:54 Custody Transfer JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JB14201-12.1            | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-12.2 Krimesh Patel Secured Storage 08/22/12 13:13 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | <u> </u>             |                      |                |                       |
| E E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                      |                      |                |                       |
| JB14201-12.2 Secured Storage Adam Scott 09/01/12 08:50 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JB14201-12.2            |                      | Secured Storage      |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14201-12.2            | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| [F.                     |                      |                      |                |                       |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
| JB14201-12.2            | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-12.2            | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-12.2            | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-12.2            | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-12.2            | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
| JB14201-12.2            | Secured Storage      | Dave Hunkele         | 09/05/12 10:31 | Retrieve from Storage |
| JB14201-12.2            | Dave Hunkele         | Jayshree Amin        | 09/05/12 10:32 | Custody Transfer      |
| JB14201-12.2            | Jayshree Amin        | Secured Storage      | 09/05/12 16:58 | Return to Storage     |
|                         |                      |                      |                |                       |
| JB14201-12.3            | Secured Storage      | Todd Shoemaker       | 08/22/12 08:52 | Retrieve from Storage |
| JB14201-12.3            | Todd Shoemaker       | Krimesh Patel        | 08/22/12 08:54 | Custody Transfer      |
| JB14201-12.3            | Krimesh Patel        | Secured Storage      | 08/22/12 13:13 | Return to Storage     |
| JB14201-12.3            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14201-12.3            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14201-12.3            | Sanjay Advani        | Matt Del Ciello      | 08/29/12 16:07 | Custody Transfer      |
| JB14201-12.3            | Matt Del Ciello      | Secured Storage      | 08/29/12 18:17 | Return to Storage     |
| JB14201-12.3            | Secured Storage      | Adam Scott           | 09/01/12 08:50 | Retrieve from Storage |
| JB14201-12.3            | Adam Scott           | Secured Staging Area | 09/01/12 08:51 | Return to Storage     |
| JB14201-12.3            | Secured Staging Area | Mayur Patel          | 09/01/12 09:00 | Retrieve from Storage |
| JB14201-12.3            | Mayur Patel          | Secured Storage      | 09/01/12 11:26 | Return to Storage     |
| JB14201-12.3            | Secured Storage      | Ching Wong           | 09/04/12 15:28 | Retrieve from Storage |
| JB14201-12.3            | Ching Wong           | Secured Storage      | 09/04/12 23:29 | Return to Storage     |
|                         |                      |                      |                |                       |





# General Chemistry

QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary



#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14201R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                      | Batch ID                           | RL          | MB<br>Result | Units          | Spike<br>Amount | BSP<br>Result | BSP<br>%Recov | QC<br>Limits       |
|----------------------------------------------|------------------------------------|-------------|--------------|----------------|-----------------|---------------|---------------|--------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent | GP66961/GN71549<br>GP66961/GN71549 | 0.40        | 0.0          | mg/kg<br>mg/kg | 40.00<br>913.86 | 37.9<br>962   | 94.8<br>105.3 | 80-120%<br>80-120% |
| Iron, Ferrous<br>Total Organic Carbon        | GN71538<br>GP66744/GN71475         | 0.20<br>100 | <0.20<br>0.0 | %<br>mg/kg     | 2000            | 1920          | 96.0          | 80-120%            |

Associated Samples:

Batch GN71538: JB14201-12R

Batch GP66744: JB14201-12R
Batch GP66961: JB14201-1R, JB14201-2R, JB14201-3R, JB14201-4R, JB14201-5R, JB14201-6R, JB14201-7R, JB14201-8R, JB14201-9R,

 $\verb"JB14201-10R", \verb"JB14201-11R", \verb"JB14201-12R""$ 

(\*) Outside of QC limits



### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14201R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                                         | Batch ID                                                 | QC<br>Sample                                            | Units | Original<br>Result               | DUP<br>Result                    | RPD         | QC<br>Limits                   |
|---------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|-------|----------------------------------|----------------------------------|-------------|--------------------------------|
| Chromium, Hexavalent<br>Iron, Ferrous<br>Sulfide Screen<br>Total Organic Carbon | GP66961/GN71549<br>GN71538<br>GN71534<br>GP66744/GN71159 | JB14201-12R<br>JB14312-15R<br>JB14312-15R<br>JB13733-20 |       | 0.78<br>0.95<br>NEGATIVE<br>4440 | 0.89<br>0.95<br>NEGATIVE<br>3650 | 13.2<br>0.0 | 0-20%<br>0-26%<br>0-%<br>0-37% |

Associated Samples:

Batch GN71534: JB14201-12R Batch GN71538: JB14201-12R Batch GP66744: JB14201-12R

Batch GP66744: JB14201-12R Batch GP66961: JB14201-1R, JB14201-2R, JB14201-3R, JB14201-4R, JB14201-5R, JB14201-6R, JB14201-7R, JB14201-8R, JB14201-9R,

JB14201-10R, JB14201-11R, JB14201-12R

(\*) Outside of QC limits



### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14201R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                      | Batch ID                           | QC<br>Sample               | Units      | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec                | QC<br>Limits       |
|----------------------------------------------|------------------------------------|----------------------------|------------|--------------------|-----------------|--------------|---------------------|--------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent | GP66961/GN71549<br>GP66961/GN71549 | JB14201-12R<br>JB14201-12R | mg/kg      | 0.78               | 47.1<br>1020    | 32.1<br>958  | 66.5N(a)<br>94.2(b) | 75-125%<br>75-125% |
| Iron, Ferrous<br>Total Organic Carbon        | GN71538<br>GP66744/GN71159         | JB14312-15R<br>JB13733-20  | %<br>mg/kg | 0.95<br>4440       | 57.8<br>5330    | 56.6<br>8240 | 96.0<br>71.3        | 62-130%<br>46-113% |

Associated Samples:

Batch GN71538: JB14201-12R Batch GP66744: JB14201-12R

Batch GP66961: JB14201-1R, JB14201-2R, JB14201-3R, JB14201-4R, JB14201-5R, JB14201-6R, JB14201-7R, JB14201-8R, JB14201-9R, JB14201-1R, JB1

JB14201-10R, JB14201-11R, JB14201-12R

- (\*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Soluble  $\bar{\text{XCR}}$  matrix spike recovery indicates possible matrix interference. Good post spike recovery (94\_%) on this sample.
- (b) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



#### Accutest Laboratories Instrument Runlog Inorganics Analyses

### Login Number: JB14201R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20828S1.TXT Date Analyzed: 08/28/12 Methods: LLOYD KAHN 1988 MOD Run ID: GN71159

Analyst: SJG Parameters: Total Organic Carbon

| Time  |               | Dilution PS<br>Factor Recov | Comments                                              |
|-------|---------------|-----------------------------|-------------------------------------------------------|
| 10:55 | GN71159-STD1  | 1                           | STDA                                                  |
| 11:09 | GN71159-STD2  | 1                           | STDB                                                  |
| 11:59 | GN71159-STD3  | 1                           | STDC                                                  |
| 12:16 | GN71159-STD4  | 1                           | STDD                                                  |
| 12:49 | GN71159-STD5  | 1                           | STDE                                                  |
| 13:12 | GN71159-STD6  | 1                           | STDF                                                  |
| 13:27 | GN71159-STD7  | 1                           | STDG                                                  |
| 09:24 | GN71159-CRI1  | 1                           |                                                       |
| 09:39 | GN71159-HSTD1 | 1                           |                                                       |
| 09:51 | GN71159-ICV1  | 1                           |                                                       |
| 10:10 | GN71159-CCV1  | 1                           |                                                       |
| 10:28 | GP66744-MB1   | 1                           |                                                       |
| 10:41 | GP66744-B1    | 1                           |                                                       |
| 10:55 | JB13733-20    | 1                           | (sample used for QC only; not part of login JB14201R) |
| 11:05 | ZZZZZZ        | 1                           |                                                       |
| 11:17 | ZZZZZZ        | 1                           |                                                       |
| 11:44 | ZZZZZZ        | 1                           |                                                       |
| 11:57 | ZZZZZZ        | 1                           |                                                       |
| 12:10 | ZZZZZZ        | 1                           |                                                       |
| 12:26 | ZZZZZZ        | 1                           |                                                       |
| 13:00 | ZZZZZZ        | 1                           |                                                       |
| 13:18 | GN71159-CCV2  | 1                           |                                                       |
| 13:31 | ZZZZZZ        | 1                           |                                                       |
| 13:40 | ZZZZZZ        | 1                           |                                                       |
| 13:51 | ZZZZZZ        | 1                           |                                                       |
| 15:12 | GP66744-D1    | 1                           |                                                       |
| 15:27 | GP66744-S1    | 1                           |                                                       |
| 15:41 | ZZZZZZ        | 1                           |                                                       |
| 16:14 | ZZZZZZ        | 1                           |                                                       |
| 16:40 | GN71159-CCV3  | 1                           |                                                       |

Refer to raw data for calibration curve and standards.

40 of 127
ACCUTESTS
B14201R
LABORATORIES JB14201R

#### Instrument QC Summary Inorganics Analyses

# Login Number: JB14201R Account: ENSRNJ - AECOM, INC. Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20828S1.TXT

Run ID: GN71159

Date Analyzed: 08/28/12 Methods: LLOYD KAHN 1988 MOD

Units: mg/l

| Sample Number | Parameter            | Result | RL  | IDL/MDL | True<br>Value | % Recov. | QC<br>Limits |
|---------------|----------------------|--------|-----|---------|---------------|----------|--------------|
| GN71159-CRI1  | Total Organic Carbon | 89.3   | 100 | 49      | 100           | 89.3     | 70-130       |
| GN71159-HSTD1 | Total Organic Carbon | 4910   | 100 | 49      | 5000          | 98.2     | 90-110       |
| GN71159-ICV1  | Total Organic Carbon | 1830   | 100 | 49      | 2000          | 91.5     | 90-110       |
| GN71159-CCV1  | Total Organic Carbon | 2440   | 100 | 49      | 2500          | 97.6     | 90-110       |
| GN71159-CCV2  | Total Organic Carbon | 2470   | 100 | 49      | 2500          | 98.8     | 90-110       |
| GN71159-CCV3  | Total Organic Carbon | 2350   | 100 | 49      | 2500          | 94.0     | 90-110       |

(!) Outside of QC limits



### Accutest Laboratories Instrument Runlog Inorganics Analyses

#### Login Number: JB14201R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20904S1.TXT

Parameters: Total Organic Carbon

Analyst: SJG

Date Analyzed: 09/04/12 Methods: LLOYD KAHN 1988 MOD

Run ID: GN71475

| Time  | Sample<br>Description | Dilution PS<br>Factor Recov | Comments                 |
|-------|-----------------------|-----------------------------|--------------------------|
| 12:28 | GN71475-STD1          | 1                           | STDA                     |
| 12:53 | GN71475-STD2          | 1                           | STDB                     |
| 13:02 | GN71475-STD3          | 1                           | STDC                     |
| 13:22 | GN71475-STD4          | 1                           | STDD                     |
| 13:38 | GN71475-STD5          | 1                           | STDE                     |
| 13:51 | GN71475-STD6          | 1                           | STDF                     |
| 14:00 | GN71475-STD7          | 1                           | STDG                     |
| 09:38 | GN71475-CRI1          | 1                           |                          |
| 09:52 | GN71475-HSTD1         | 1                           |                          |
| 10:13 | GN71475-ICV1          | 1                           |                          |
| 10:31 | GN71475-CCV1          | 1                           |                          |
| 10:46 | GP66744-MB2           | 1                           |                          |
| 11:03 | GP66744-B2            | 1                           |                          |
| 11:13 | ZZZZZZ                | 1                           |                          |
| 11:23 | ZZZZZZ                | 1                           |                          |
| 12:44 | ZZZZZZ                | 1                           |                          |
| 13:01 | GN71475-CCV2          | 1                           |                          |
| 13:28 | JB14201-12R           | 1                           | Overrange rerun at 0.01g |
| 14:22 | JB14201-12R           | 1                           |                          |
| 14:50 | ZZZZZZ                | 1                           |                          |
| 15:07 | GN71475-CCV3          | 1                           |                          |

Refer to raw data for calibration curve and standards.

#### Instrument QC Summary Inorganics Analyses

# Login Number: JB14201R Account: ENSRNJ - AECOM, INC. Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20904S1.TXT

Run ID: GN71475

Date Analyzed: 09/04/12 Methods: LLOYD KAHN 1988 MOD

Units: mg/l

|               |                      |        |     |         | True  |          | OC     |
|---------------|----------------------|--------|-----|---------|-------|----------|--------|
| Sample Number | Parameter            | Result | RL  | IDL/MDL | Value | % Recov. | Limits |
| GN71475-CRI1  | Total Organic Carbon | 94.1   | 100 | 49      | 100   | 94.1     | 70-130 |
| GN71475-HSTD1 | Total Organic Carbon | 5060   | 100 | 49      | 5000  | 101.2    | 90-110 |
| GN71475-ICV1  | Total Organic Carbon | 1930   | 100 | 49      | 2000  | 96.5     | 90-110 |
| GN71475-CCV1  | Total Organic Carbon | 2690   | 100 | 49      | 2500  | 107.6    | 90-110 |
| GN71475-CCV2  | Total Organic Carbon | 2660   | 100 | 49      | 2500  | 106.4    | 90-110 |
| GN71475-CCV3  | Total Organic Carbon | 2660   | 100 | 49      | 2500  | 106.4    | 90-110 |

(!) Outside of QC limits

### **Report of Analysis**

Client Sample ID: NSB-E5-3.0-3.5 Lab Sample ID: JB14201-12R Matrix: SO - Soil

**Date Sampled:** 08/20/12 **Date Received:** 08/20/12 Percent Solids: 82.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                           | Result   | RL   | MDL  | Units | DF | Analyzed By Method                     |
|-----------------------------------|----------|------|------|-------|----|----------------------------------------|
| Chromium, Hexavalent              | 0.78     | 0.48 | 0.14 | mg/kg | 1  | 09/05/12 15:58 MM SW846 3060A/7196A    |
| Iron, Ferrous <sup>a</sup>        | 1.4      | 0.20 |      | %     | 1  | 09/05/12 JA ASTM D3872-86              |
| Sulfide Screen b                  | NEGATIVE |      |      |       | 1  | 09/05/12 JA SM18 4500S2-A              |
| Total Organic Carbon <sup>c</sup> | 293000   | 120  | 59   | mg/kg | 1  | 09/04/12 14:22 SJG LLOYD KAHN 1988 MOD |

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6
- (b) The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (c) Multiple injections indicate possible sample non-homogeneity. This analysis done out of holding time to help evaluate the reducing nature of the sample for the hexavalent chromium analysis.

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



Page 1 of 2

# Percent Solids Raw Data Summary Job Number: JB14201R

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14201-1<br>ClientID: NSB-F5-12.0-12.5                   | Analyzed:                       | 22-AUG-12 by KI  | Method: | SM18 2540G |
|-------------------------------------------------------------------|---------------------------------|------------------|---------|------------|
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 33.16<br>27.51<br>31.34<br>67.8 | g<br>g<br>g<br>% |         |            |
| Sample: JB14201-2<br>ClientID: NSB-F5-8.0-8.5                     | Analyzed:                       | 22-AUG-12 by KI  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 34.25<br>25.94<br>32.92<br>84   | g<br>g<br>g<br>% |         |            |
| Sample: JB14201-3<br>ClientID: NSB-F5-4.0-4.5                     | Analyzed:                       | 22-AUG-12 by KI  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 31.99<br>26.17<br>31.04<br>83.7 | g<br>g<br>g<br>% |         |            |
| Sample: JB14201-4<br>ClientID: NSB-F5-0.0-0.5                     | Analyzed:                       | 22-AUG-12 by KI  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 31.39<br>25.14<br>30.79<br>90.4 | g<br>g<br>g<br>% |         |            |
| Sample: JB14201-5<br>ClientID: NSB-D5-20.0-20.5                   | Analyzed:                       | 22-AUG-12 by KI  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 30.34<br>23.07<br>29.49<br>88.3 | g<br>g<br>g<br>% |         |            |
| Sample: JB14201-6<br>ClientID: NSB-D5-18.0-18.5                   | Analyzed:                       | 22-AUG-12 by KI  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 26.46<br>19.3<br>25.61<br>88.1  | g<br>g<br>g<br>% |         |            |



Page 2 of 2

# Percent Solids Raw Data Summary Job Number: JB14201R

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14201-7   ClientID: NSB-D5-15.0-15.5   Smyle: JB14201-7   ClientID: NSB-D5-12.0-15.5   Smyle: JB14201-10   ClientID: NSB-D5-3.0-3.5   Smyle: JB14201-10   ClientID: NSB-D5-3.0-3.5   Smyle: JB14201-10   ClientID: NSB-D5-3.0-3.5   ClientID: NSB-D5-3.0-3.5 |                    |           |                 |      |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|-----------------|------|-----------------|
| Tare Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | Analyzed: | 22-AUG-12 by KP | Metl | nod: SM18 2540G |
| Tare Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wet Weight (Total) | 29 93     | σ               |      |                 |
| Dry Weight (Total)   29.02   g   88   %   %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |           |                 |      |                 |
| Sample: JB14201-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |           |                 |      |                 |
| Wet Weight (Total)   30.58   g   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   20.88   | Solids, Percent    | 88        |                 |      |                 |
| Tare Weight (Total) 20.88 g Dry Weight (Total) 28.51 g Solids, Percent 78.7 %  Sample: JB14201-9 ClientID: NSB-D5-6.4-6.9  Wet Weight (Total) 30.55 g Tare Weight (Total) 22.02 g Dry Weight (Total) 28.71 g Solids, Percent 78.4 %  Sample: JB14201-10 ClientID: NSB-D5-3.0-3.5X  Wet Weight (Total) 29.07 g Tare Weight 22.66 g Dry Weight (Total) 28.12 g Solids, Percent 85.2 %  Sample: JB14201-11 ClientID: NSB-D5-3.0-3.5  Wet Weight (Total) 32.76 g Tare Weight (Total) 32.76 g Tare Weight (Total) 32.76 g Tare Weight (Total) 31.74 g Solids, Percent 83.1 %  Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5  Wet Weight (Total) 31.74 g Solids, Percent 83.1 %  Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5  Wet Weight (Total) 31.74 g Solids, Percent 83.1 %  Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5  Wet Weight (Total) 27.9 g Tare Weight (Total) 27.9 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | Analyzed: | 22-AUG-12 by KF | Metl | nod: SM18 2540G |
| Tare Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Wet Weight (Total) | 30.58     | g               |      |                 |
| Sample: JB14201-9   Analyzed: 22-AUG-12 by KP   Method: SM18 2540G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tare Weight        | 20.88     |                 |      |                 |
| Sample: JB14201-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |           |                 |      |                 |
| ClientID: NSB-D5-6.4-6.9         Wet Weight (Total)       30.55 g         Tare Weight       22.02 g         Dry Weight (Total)       28.71 g         Solids, Percent       78.4 %         Sample: JB14201-10       Analyzed: 22-AUG-12 by KP         ClientID: NSB-D5-3.0-3.5X       Method: SM18 2540G         Wet Weight (Total)       29.07 g         Tare Weight (Total)       28.12 g         Solids, Percent       85.2 %         Sample: JB14201-11 ClientID: NSB-D5-3.0-3.5       Analyzed: 22-AUG-12 by KP       Method: SM18 2540G         Wet Weight (Total)       32.76 g       Method: SM18 2540G         Tare Weight (Total)       31.74 g       Method: SM18 2540G         Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5       Analyzed: 22-AUG-12 by KP       Method: SM18 2540G         Wet Weight (Total)       27.9 g       Method: SM18 2540G         Wet Weight (Total)       27.9 g       Tare Weight (Total)         Tare Weight (Total)       21.6 g       Tare Weight (Total)         Tare Weight (Total)       26.82 g       26.82 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Solids, Percent    | 78.7      | %               |      |                 |
| Tare Weight (Total) 28.71 g Solids, Percent 78.4 %  Sample: JB14201-10 Analyzed: 22-AUG-12 by KP Method: SM18 2540G  Wet Weight (Total) 29.07 g Tare Weight (Total) 22.66 g Dry Weight (Total) 28.12 g Solids, Percent 85.2 %  Sample: JB14201-11 Analyzed: 22-AUG-12 by KP Method: SM18 2540G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | Analyzed: | 22-AUG-12 by KP | Metl | nod: SM18 2540G |
| Tare Weight (Total) 28.71 g Solids, Percent 78.4 %  Sample: JB14201-10 Analyzed: 22-AUG-12 by KP Method: SM18 2540G  Wet Weight (Total) 29.07 g Tare Weight (Total) 22.66 g Dry Weight (Total) 28.12 g Solids, Percent 85.2 %  Sample: JB14201-11 Analyzed: 22-AUG-12 by KP Method: SM18 2540G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wet Weight (Total) | 30.55     | g               |      |                 |
| Sample: JB14201-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tare Weight        | 22.02     |                 |      |                 |
| Sample:         JB14201-10         Analyzed:         22-AUG-12 by KP         Method:         SM18 2540G           ClientID:         NSB-D5-3.0-3.5X         29.07         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |           |                 |      |                 |
| ClientID: NSB-D5-3.0-3.5X         Wet Weight (Total)       29.07 g         Tare Weight       22.66 g         Dry Weight (Total)       28.12 g         Solids, Percent       85.2 %         Sample: JB14201-11 ClientID: NSB-D5-3.0-3.5       Analyzed: 22-AUG-12 by KP       Method: SM18 2540G         Wet Weight (Total)       32.76 g       g         Tare Weight       26.71 g       g         Dry Weight (Total)       31.74 g       g         Solids, Percent       83.1 %       %         Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5       Analyzed: 22-AUG-12 by KP       Method: SM18 2540G         Wet Weight (Total)       27.9 g       g         Tare Weight       21.6 g       g         Dry Weight (Total)       26.82 g       g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solids, Percent    | 78.4      | %               |      |                 |
| Tare Weight Dry Weight (Total)       22.66 g       g         Dry Weight (Total)       28.12 g       g         Solids, Percent       85.2 %       %         Sample: JB14201-11 ClientID: NSB-D5-3.0-3.5         Wet Weight (Total)       32.76 g       g         Tare Weight (Total)       31.74 g       g         Solids, Percent       83.1 %       %         Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5         Wet Weight (Total)       27.9 g       g         Tare Weight (Total)       27.9 g       g         Tare Weight (Total)       21.6 g       g         Dry Weight (Total)       26.82 g       g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Analyzed: | 22-AUG-12 by KP | Metl | nod: SM18 2540G |
| Tare Weight Dry Weight (Total)       22.66 g       g         Dry Weight (Total)       28.12 g       g         Solids, Percent       85.2 %       %         Sample: JB14201-11 ClientID: NSB-D5-3.0-3.5         Wet Weight (Total)       32.76 g       g         Tare Weight (Total)       31.74 g       g         Solids, Percent       83.1 %       %         Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5         Wet Weight (Total)       27.9 g       g         Tare Weight (Total)       27.9 g       g         Tare Weight (Total)       21.6 g       g         Dry Weight (Total)       26.82 g       g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wet Weight (Total) | 29.07     | g               |      |                 |
| Dry Weight (Total)   28.12   g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    | 22.66     |                 |      |                 |
| Sample:         JB14201-11         Analyzed:         22-AUG-12 by KP         Method:         SM18 2540G           Wet Weight (Total)         32.76         g           Tare Weight         26.71         g           Dry Weight (Total)         31.74         g           Solids, Percent         83.1         %           Sample:         JB14201-12         Analyzed:         22-AUG-12 by KP         Method:         SM18 2540G           ClientID:         NSB-E5-3.0-3.5         Method:         SM18 2540G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dry Weight (Total) | 28.12     |                 |      |                 |
| ClientID: NSB-D5-3.0-3.5         Wet Weight (Total)       32.76 g         Tare Weight       26.71 g         Dry Weight (Total)       31.74 g         Solids, Percent       83.1 %         Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5       Analyzed: 22-AUG-12 by KP         Wet Weight (Total)       27.9 g         Tare Weight       21.6 g         Dry Weight (Total)       26.82 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Solids, Percent    | 85.2      | %               |      |                 |
| Tare Weight Dry Weight (Total)       26.71 g 31.74 g 31.74 g 883.1 %         Solids, Percent       83.1 %         Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5       Analyzed: 22-AUG-12 by KP         Wet Weight (Total)       27.9 g 7.9 g 7.16 g 1.6 g 1.6 g 7.16 g 1.6                                                                                                                                                |                    | Analyzed: | 22-AUG-12 by KF | Metl | nod: SM18 2540G |
| Tare Weight Dry Weight (Total)       26.71 g (1.74 g)         Dry Weight (Total)       31.74 g (1.74 g)         Solids, Percent       83.1 %         Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5       Analyzed: 22-AUG-12 by KP         Method: SM18 2540G         Wet Weight (Total)       27.9 g (1.74 g)         Tare Weight (Total)       21.6 g (1.74 g)         Dry Weight (Total)       26.82 g (1.74 g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Wet Weight (Total) | 32.76     | g               |      |                 |
| Dry Weight (Total)       31.74 g         Solids, Percent       83.1 %         Sample: JB14201-12 ClientID: NSB-E5-3.0-3.5       Analyzed: 22-AUG-12 by KP         Method: SM18 2540G         Wet Weight (Total)       27.9 g         Tare Weight       21.6 g         Dry Weight (Total)       26.82 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    | 26.71     |                 |      |                 |
| Sample:         JB14201-12         Analyzed:         22-AUG-12 by KP         Method:         SM18 2540G           ClientID:         NSB-E5-3.0-3.5         9         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g         g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dry Weight (Total) |           | g               |      |                 |
| ClientID: NSB-E5-3.0-3.5         Wet Weight (Total)       27.9 g         Tare Weight       21.6 g         Dry Weight (Total)       26.82 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Solids, Percent    | 83.1      | %               |      |                 |
| Tare Weight 21.6 g Dry Weight (Total) 26.82 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Analyzed: | 22-AUG-12 by KF | Metl | nod: SM18 2540G |
| Tare Weight 21.6 g Dry Weight (Total) 26.82 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Wet Weight (Total) | 27.9      | g               |      |                 |
| Dry Weight (Total) 26.82 g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |           |                 |      |                 |
| Solids, Percent 82.9 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |           | g               |      |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Solids, Percent    | 82.9      | %               |      |                 |







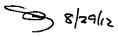
|               | Sample<br>Name           | Sample ID                                        | Method       | Туре        | Date / Time   | Conc.               | Mean Area | CV     |
|---------------|--------------------------|--------------------------------------------------|--------------|-------------|---------------|---------------------|-----------|--------|
| 1             | CRI                      |                                                  | tocsscal.met | Unknown     | 08/28/12 09:2 | 0.08928 %           | 462       | 4.04%  |
| 2             | CRI                      |                                                  | tocsscal.met | Unknown     | 08/28/12 09:2 | 0.08928 %           | 462       | 4.04%  |
| 3             | HSTD                     |                                                  | tocsscal.met | Unknown     | 08/28/12 09:3 | 4.908 %             | 19352     | 0.342% |
| 4             | HSTD                     |                                                  | tocsscal.met | Unknown     | 08/28/12 09:3 | 4.908 %             | 19352     | 0.342% |
| 5             | ICV                      |                                                  | tocsscal.met | Unknown     | 08/28/12 09:5 | 1.827 %             | 7273      | 6.68%  |
| 6             | ICV                      |                                                  | tocsscal.met | Unknown     | 08/28/12 09:5 | 1.827 %             | 7273      | 6.68%  |
| 7             | CCV                      |                                                  | tocsscal.met |             | 08/28/12 10:1 | 2.440 %             | 9679      | 0.820% |
| 8             | CCV                      |                                                  | tocsscal.met | Unknown     | 08/28/12 10:1 | 2.440 %             | 9679      | 0.820% |
| 9             | GP66744-MB               | TOCLK                                            | tocss.met    | Unknown     | 08/28/12 10:2 | -0.00286 %          | 0         | 0.0207 |
| 10            | GP66744-MB               | TOCLK                                            | tocss.met    | Unknown     | 08/28/12 10:2 | -0.00286 %          | - 0       | 0.00%  |
|               | GP66744-B1               |                                                  | tocss.met    | Unknown     | 08/28/12 10:4 | 0.1751 %            | 6976      | 2.73%  |
| 12            | GP66744-B1               |                                                  | tocss.met    | Unknown     | 08/28/12 10:4 | 0.1751 %            | 6976      |        |
| 13            | JB13733-20 (             | A)                                               | tocss.met    | Unknown     | 08/28/12 10:5 | 0.3223 %            | 12787     | 2.739  |
| 14            | JB13733-20               | 1                                                | tocss.met    | Unknown     | 08/28/12 10:5 | 0.3223 %            | 12787     | 13.9%  |
| 15            | JB13733-10               | <del>                                     </del> | tocss.met    | Unknown     | 08/28/12 11:0 | 1.639 %             | 6953      | 13.9%  |
|               | JB13733-10               | $oldsymbol{V}$                                   | tocss.met    | Unknown     | 08/28/12 11:0 |                     |           | 10.9%  |
|               | JB13733-11               | 2)                                               | tocss.met    | Unknown     | 08/28/12 11:1 | 1.639 %<br>0.9550 % | 6953      | 10.9%  |
|               | JB13733-11               | 2                                                | tocss.met    | Unknown     | 08/28/12 11:1 |                     | 2077      | 24.7%  |
|               |                          | (A)                                              | tocss.met    | Unknown     | 08/28/12 11:4 | 0.9550 %            | 2077      | 24.7%  |
|               | JB13733-12               | <del>Y</del>                                     | tocss.met    | Unknown     |               | 2.596 %             | 10731     | 20.6%  |
|               | JB13733-12               | -                                                | tocss.met    | Unknown     | 08/28/12 11:4 | 2.596 %             | 10731     | 20.6%  |
|               | JB13733-12               | _                                                | <u> </u>     |             | 08/28/12 11:4 | 2.596 %             | 10731     | 20.6%  |
|               | JB13733-12<br>JB13733-13 |                                                  | tocss.met    | Unknown     | 08/28/12 11:4 | 2.596 %             | 10731     | 20.6%  |
|               | JB13733-13               |                                                  | tocss.met    | Unknown     | 08/28/12 11:5 | 1.635 %             | 6742      | 3.41%  |
|               | JB13733-13<br>JB13733-14 |                                                  | tocss.met    | Unknown     | 08/28/12 11:5 | 1.635 %             | 6742      | 3.41%  |
|               | JB13733-14<br>JB13733-14 |                                                  | tocss.met    | Unknown     | 08/28/12 12:1 | 1.298 %             | 18489     | 0.998% |
|               |                          |                                                  | tocss.met    | Unknown     | 08/28/12 12:1 | 1.298 %             | 18489     | 0.998% |
|               | JB13733-16               | <u></u>                                          | tocss.met    | Unknown     | 08/28/12 12:2 | 1.159 %             | 16777     | 4.76%  |
|               | JB13733-16               | _                                                | tocss.met    | Unknown     | 08/28/12 12:2 | 1.159 %             | 16777     | 4.76%  |
|               | JB13733-18               |                                                  | tocss.met    | Unknown     | 08/28/12 13:0 | 0.4054 %            | 16064     | 20.5%  |
| -             | JB13733-18               |                                                  | tocss.met    | Unknown     | 08/28/12 13:0 | 0.4054 %            | 16064     | 20.5%  |
|               | JB13733-18               |                                                  | tocss.met    | Unknown     | 08/28/12 13:0 | 0.4054 %            | 16064     | 20.5%  |
|               |                          | <u> </u>                                         | tocss.met    | Unknown     | 08/28/12 13:0 | 0.4054 %            | 16064     | 20.5%  |
|               | CCV                      |                                                  | <del></del>  | Unknown     | 08/28/12 13:1 | 2.472 %             | 9802      | 2.52%  |
|               | CCV                      |                                                  | tocsscal.met | <b>—</b> ·· | 08/28/12 13:1 | 2.472 %             | 9802      | 2.52%  |
|               |                          | 77                                               | tocss.met    | Unknown     | 08/28/12 13:3 | 3.425 %             | 14054     | 1.17%  |
|               | JB13733-19               |                                                  | tocss.met    | Unknown     | 08/28/12 13:3 | 3.425 %             | 14054     | 1.17%  |
| $\rightarrow$ |                          | <b></b>                                          | tocss.met    | Unknown     | 08/28/12 13:4 | 0.08598 %           | 1860      | 14.5%  |
|               |                          |                                                  | tocss.met    | Unknown     | 08/28/12 13:4 | 0.08598 %           | 1860      | 14.5%  |
| -             |                          |                                                  |              | Unknown     | 08/28/12 13:5 | 0.2059 %            | 4347      | 11.5%  |
|               | JB13733-22               |                                                  |              | Unknown     | 08/28/12 13:5 | 0.2059 %            | 4347      | 11.5%  |
|               | GP66744-D1               |                                                  | tocss.met    | Unknown     | 08/28/12 15:1 | 0.2649 %            | 10553     | 27.8%  |
|               |                          |                                                  |              | Unknown     | 08/28/12 15:1 | 0.2649 %            | 10553     | 27.8%  |
|               | GP66744-D1               |                                                  |              | Unknown     | 08/28/12 15:1 | 0.2649 %            | 10553     | 27.8%  |
|               | GP66744-D1               |                                                  | tocss.met    | Unknown     | 08/28/12 15:1 | 0.2649 %            | 10553     | 27.8%  |
|               | GP66744-S1               |                                                  | tocss.met    | Unknown     | 08/28/12 15:2 | 0.5982 %            | 12227     | 2.30%  |
| _             | GP66744-S1 .             |                                                  | tocss.met    | Unknown     | 08/28/12 15:2 | 0.5982 %            | 12227     | 2.30%  |
|               | JB13733-11               | (A)                                              | tocss.met    | Unknown     | 08/28/12 15:4 | 1.678 %             | 16619     | 3.59%  |
| 48            | JB13733-11               |                                                  | tocss.met    | Unknown     | 08/28/12 15:4 | 1.678 %             | 16619     | 3.59%  |
| 49            | JB13733-21               | +                                                | locss.met    | Unknown     | 08/28/12 16:1 | 0.2585 %            | 10266     | 39.1%  |

weight toolow review 1.09

62082851.TOC

TOCK

GN 71159




|    | Sample<br>Name | Sample ID | Method       | Туре      | Date / Time   | Conc.    | Mean Area | CV    |
|----|----------------|-----------|--------------|-----------|---------------|----------|-----------|-------|
| 50 | JB13733-21     |           | tocss.met    | Unknown   | 08/28/12 16:1 | 0.2585 % | 10266     | 39.1% |
| 51 | JB13733-21     |           | tocss.met    | Unknown   | 08/28/12 16:1 | 0.2585 % |           | 39.1% |
| 52 | JB13733-21     |           | <del> </del> | Unknown   | 08/28/12 16:1 | 0.2585 % | 10266     |       |
| 53 | CCV            |           |              | Unknown   | 08/28/12 16:4 | 2.353 %  | 9338      | 39.1% |
| 54 | CCV            |           | <del> </del> | <u></u> . | 08/28/12 16:4 | 2.353 %  | 9338      | 3.08% |

b2082851.70C

TOCLK

GN 71159





TOCLK

62082851.70C

Test: Total Organic Carbon Product: TOC

Units = mg/kg

B-39 Balance ID:

Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID 71159 Date 8/28/12

Analyst

| Sample ID   | Sample Weight       | Bottle #                          | Sample Description & comments |
|-------------|---------------------|-----------------------------------|-------------------------------|
| CRI         |                     |                                   |                               |
| HSTO        |                     |                                   |                               |
| FCV (KHP)   |                     |                                   |                               |
| ccV         |                     |                                   |                               |
| GP66744-MB1 | /,o <del>∞</del> ∞0 |                                   | middle                        |
|             | (,000)              |                                   |                               |
| GP66744-BI  | (,0000              | uk i regunsu krinisirka (tri k 44 |                               |
|             | (,0000,)            |                                   |                               |
| JB13733-20  | 1.0033              | 4                                 |                               |
|             | 1.0028              |                                   |                               |
|             | 1.0022              |                                   |                               |
|             | 1.0008              |                                   |                               |
| JB13733-10  | 0.1076              | 3                                 |                               |
|             | 0.1051              |                                   |                               |
|             | 0.1067              |                                   |                               |
|             | 0.1031              |                                   | 4. 24. d 1                    |
| JB13733-11  | 0.0549              | 3                                 | weight too low rerum 0.25q    |
|             | 0.0508              |                                   | ,                             |
|             | 0.0541              |                                   |                               |
|             | 0.0526              |                                   |                               |
| JB13733-12  | 0.1092              | 3                                 |                               |
|             | 0.1025              | ,                                 |                               |
|             | 0.1013              |                                   |                               |
|             | 0.1065              |                                   |                               |

| Analyst: [] Manager Review: [] | Date: 8/28/12<br>Date: | QCReviewer:             | _ Date:                |          |
|--------------------------------|------------------------|-------------------------|------------------------|----------|
| Comments:                      |                        |                         |                        |          |
| ms/BS                          | - 100 ml of            | 20000 mg C/L -> 1.09 fe | lica Sand TV = 2000 ma | lla.     |
|                                | 7                      | alucesel                |                        | <u> </u> |
|                                | (                      | ٠, ١                    |                        |          |

Form: GN-058a Rev. Date: 11/11/08







Test: Total Organic Carbon

Units = mg/kg

Product: TOC

Balance ID: Method: Corp. Eng. 81 M/SW846 9060 M of EPA Region 2 Lloyd Kahn (circle one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID 71159 Date 8 | 28 | 12

Analyst

| Sample ID                             | Sample Weight | Bottle #        | Sample Description & comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JB13733-13                            | 0.1039        | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.1029        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.1009        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.1028        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB13733-14                            | 0.3630        | ч               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.3542        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.3596        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.3539        | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB13733-16                            | 0.3770        | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ·<br>·                                | 0.3561        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · · | 0.3628        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.3554        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB13733-18                            | 1.0032        | a               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 1.0000        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 1.0069        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4                                     | 1.0037        |                 | regular de la companya del companya de la companya della companya  |
| ccv                                   |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB13733-19                            | 0.1060        | 2               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.1016        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | 0.1062        | eri e entre e e | 8.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <i>3</i> '                            | 0.1064        | •               | The second secon |
| JB13733- ZI                           | 0.5195        | 2               | weight too low reruntion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | 0.5178        |                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       | 0.5359        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Analyst:<br>Manager Review. |          | QCReviewer: |   | Date: | <del></del> |      |
|-----------------------------|----------|-------------|---|-------|-------------|------|
| Comments:                   | <u> </u> |             | : |       |             | <br> |
|                             | ¥**      | 3 .         |   | 1397  |             |      |

Form: GN-058a Rev. Date: 11/11/08







Test: Total Organic Carbon

Units = mg/kg

GN Batch ID 71159 Date 8 28 12

Product: TOC

Balance ID: B-39 Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

Analyst\_

| Sample ID    | Sample Weight   | Bottle #           | Sample Description & comments |
|--------------|-----------------|--------------------|-------------------------------|
|              | 0.5065          |                    |                               |
| JB13733-22   | ტ. <u>5</u> 330 | 2-                 |                               |
|              | 0.5148          |                    |                               |
|              | 6.5377          |                    |                               |
|              | 0.5219          |                    |                               |
| GP66744-D1   | 1.0077          | 4                  | JB13733-20                    |
| •            | 1.0064          | a laterand file of |                               |
|              | 1.0039          |                    |                               |
|              | 1.0027          |                    |                               |
| GP66744-SI   | 0.5231          | 4                  |                               |
|              | 0.5163          |                    | TV= 3871                      |
|              | 6.5104          | ,                  | V/                            |
|              | 0.5126          |                    | . V                           |
| J 813733- 11 | 0.2548          | 3                  |                               |
|              | 0.2472          |                    |                               |
|              | 0.2545          |                    |                               |
|              | 0.2537          |                    |                               |
| JB13733-21   | 1.0054          | 2                  |                               |
|              | 1.00.11         |                    |                               |
|              | 1.0004          |                    |                               |
|              | 1.0020          |                    |                               |
| <u></u>      |                 |                    |                               |
|              |                 |                    |                               |
|              |                 |                    |                               |

| Analyst:<br>Manager Review: | Date: 8 28 12 | QCReviewer: | Date: |  |
|-----------------------------|---------------|-------------|-------|--|
| Comments:                   |               |             |       |  |
|                             |               |             |       |  |
|                             |               |             |       |  |

Form: GN-058a Rev. Date: 11/11/08



GENERAL CHEMISTRY STANDARD PREPARATION LOG Glass prpets Class A

Product: TOCLK GN or GP Number: GN 71159

|                      |                                    |               |                |          |          | Final Conc.                            |            |         |              |
|----------------------|------------------------------------|---------------|----------------|----------|----------|----------------------------------------|------------|---------|--------------|
|                      |                                    |               | Stock          |          |          | ,                                      |            |         |              |
| Intermediate         | Stock used to                      | Stocks        | position lov   |          | ,<br>G   | 10 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            |         |              |
| Standard Description |                                    | 1000          |                |          | <u> </u> | illeliheniare                          | Ĥ          |         |              |
| lolid loss a paracio | prepare standard                   | concentration | im ui          | Dirnent  | Volume   | (mg/l)                                 | Dale       | Analyst | Date         |
| GNE7-33059-TDC       | Fisher 110579                      | Sucrose       | 47.59          | VI #20   | 1000     | 200 000                                | 8 28 12    | đ       | 8/20/12      |
|                      |                                    |               | 7              |          | -        |                                        |            |         |              |
| GNE7-33060-TOC       | Fisher OB6673A                     | Glucosa       | 12.50          | b        | b        | 0000                                   |            | )       |              |
|                      |                                    |               | r              |          |          |                                        |            |         | V            |
|                      |                                    |               |                |          |          |                                        |            |         |              |
| !                    |                                    |               | Intermediate . |          |          |                                        |            |         |              |
|                      | Intermediate or Stock Intermediate | Intermediate  | or Stock       |          |          | Final Conc.                            |            |         |              |
|                      | used to prepare                    | or Stock      | volume used    | -        | Final    | of Standard                            | Expiration |         |              |
| Standard Description | standard                           | concentration | in mi          | Diluent  | Volume   | (ma/l)                                 | Date       | Analyst | Date.        |
| Sucrosa Stols        |                                    |               |                |          |          |                                        |            |         |              |
| GNE7-33061-70C       | GNE 7-33059-700                    | 200000        | 0.0            | DE 1420  | 100      | 000                                    | \$128/12   | 8       | 21862        |
| GNE1-33062-19C       |                                    | _             |                | -        | -        | Soop                                   |            |         | 1 2          |
| GNE 7- 33063-TOC     |                                    |               | 8.0            |          |          | 200                                    |            |         | <del> </del> |
| GNE7-33064-TC        |                                    |               | 12.5           |          |          | 25000                                  |            |         |              |
| GNE7-33065-70C       | ,                                  |               | 20.0           |          |          | 40000                                  |            |         |              |
| GNE1-33066-10C       | $\triangleright$                   | ò             | 25.0           | <b>}</b> | +        | Speed                                  | 3          | <br> -, |              |
|                      |                                    |               |                |          |          |                                        |            |         |              |
| Glucase Stds         |                                    |               |                |          |          |                                        |            |         |              |
| GNE7-33067-70C       | GNE7-33060-TOC                     | . 20005       | 40.0           | Dt H.O   | 100ml    | 20000                                  | 8/28/12    | (X      |              |
| GNE 7-33068-TOC      | 4                                  | 1             | s<br>B         | -6       | *        | 27000                                  | -          | 72      | d            |
|                      |                                    |               |                |          |          |                                        |            |         |              |
|                      |                                    |               |                |          |          | í                                      |            |         |              |
|                      |                                    |               |                |          |          | -                                      |            |         |              |

Rev. Date:2/26/03 Form: GN121

B-39 Blonce



# Reagent Information Log - TOC - Soil

| Keagent                             | Reagent # or Manufacturer/Lot |
|-------------------------------------|-------------------------------|
| Sucrose Stock Solution, 200000 mg/L | ENE7-33059-TOC 8/28/12        |
| Glucose Stock Solution, 50000 ug/L  | GNE7-33060-TOC 8/28/12        |
| Glucose Check Solution, 25000 ug/L  | GNE7-33068-TOC 8/28/12        |
| Nitric Acid, Reagent Grade          | K50030 Baker 2/7/17           |
| Glucose Stock Solution, 2000 ug/L   | GNE7-33067-TOC 8/28/12        |
| KHP 20000 ppm                       | GNSTK-863-TOC 11/14/12        |
|                                     |                               |
|                                     |                               |
|                                     |                               |
|                                     |                               |
|                                     |                               |

All standards and stocks were made as described in the SOP for this method (circle one): If no (N), see attached page for standards prep.

Form: GN-087 1-66 Rev. Date: 4/26/01



#### **General Information**

Organization:

**Accutest Laboratories** 

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20818\$2.TOC

Comment:

**Instrument Conditions** 

Instrument Attachments:

TOC-5000 + SSM 5000

Calibration Curves

Filename:

b20818s1.cal

Title:

b20818s1.cal

Calculation method:

Lin. regression without zero shift

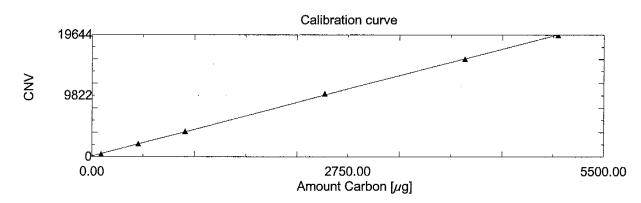
| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume | CNV   | lbs C [µg | SD  | CV     |
|-------------|-----------|--------|----------------|-----------|--------|-------|-----------|-----|--------|
| STDA        | 0.0       | 0.000  | 1              | 0         | 100.0  | 0     | 0.000     | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 1              | 427       | 100.0  | 427   | 100.0     | 7   | 1.66%  |
| STDC        | 0.5       | 0.5000 | 1              | 2087      | 100.0  | 2087  | 500.0     | 2   | 0.136% |
| STDD .      | 1.0       | 1.000  | 1              | 4137      | 100.0  | 4136  | 1000      | 60  | 1.45%  |
| STDE        | 2.5       | 2.500  | 1              | 10123     | 100.0  | 10123 | 2500      | 50  | 0.503% |
| STDF        | 4.0       | 4.000  | 1              | 15727     | 100.0  | 15726 | 4000      | 226 | 1.44%  |
| STDG        | 5.0       | 5.000  | 1              | 19644     | 100.0  | 19644 | 5000      | 205 | 1.04%  |

Slope:

3.9206

Intercept:


111.99

R^2:

0.999775

Accutest Laboratories,

08/18/2012 13:28:26



### Samples

Sample Name:

STDA

Sample ID:

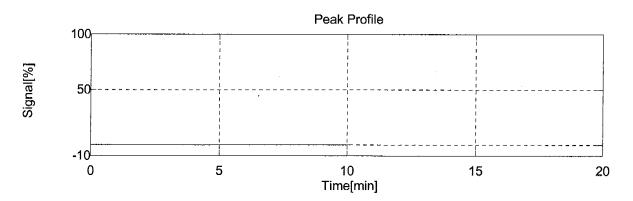
0.0

Remark:

Comment:

Cal Curve:

1: b20818s1.cal


| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 10:55:13 |

| Mean Area | Conc   | Result | SD    | CV    | CNV | Modified |
|-----------|--------|--------|-------|-------|-----|----------|
| 0         | 0.000% |        | 0.000 | 0.00% | 0   |          |

| No. | Range | Area | CNV | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|-----|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 0   | 0.0000 |       | ***** | 08/18/2012 10:48:13 | b20818s1.cal |
| 2   | 5     | . 0  | 0   | 0.0000 |       | ***** | 08/18/2012 10:55:13 | b20818s1.cal |

Accutest Laboratories,

08/18/2012 13:28:26



### Samples

Sample Name:

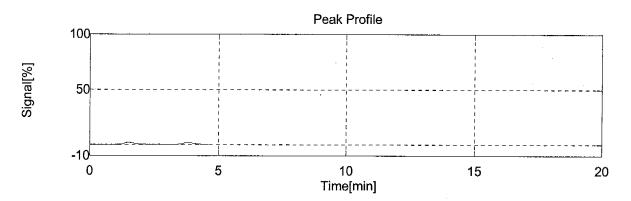
**STDB** 

Sample ID:

0.1

Remark:

Comment:


Cal Curve:

1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 11:09:44 |

| Mean Area | Conc    | Result | SD    | cv    | CNV | Modified |
|-----------|---------|--------|-------|-------|-----|----------|
| 427       | 0.1000% |        | 0.000 | 0.00% | 427 |          |

| No. | Range | Area | CNV | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|-----|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 422  | 422 | 0.10000 |       | ***** | 08/18/2012 11:01:52 | b20818s1.cal |
| 2   | 5     | 432  | 432 | 0.10000 |       | ***** | 08/18/2012 11:09:44 | b20818s1.cal |



### Samples

Sample Name:

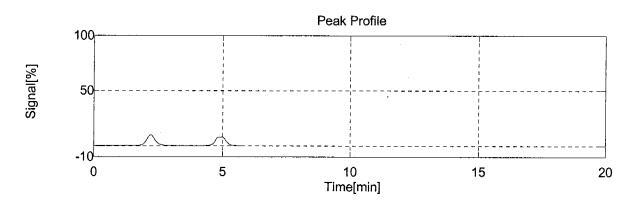
STDC

Sample ID:

0.5

Remark:

Comment:


Cal Curve:

1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time |
|----------|----------|----------|-----------|
| Standard | SSM-TC   | 1.000    |           |

| Mean Area | Conc    | Result  | SD    | CV    | CNV  | Modified |
|-----------|---------|---------|-------|-------|------|----------|
|           |         | 1100211 | 0.2   | ,     | 0.11 | Modified |
| 2087      | 0.5000% |         | 0.000 | 0.00% | 2087 | ,        |

| No. | Range | Area | CNV  | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 2085 | 2085 | 0.50000 |       | ***** | 08/18/2012 11:34:17 | b20818s1.cal |
| 2   | 5     | 2089 | 2089 | 0.50000 |       | ***** | 08/18/2012 11:59:35 | b20818s1.cal |



### <u>Samples</u>

Sample Name:

**STDD** 

Sample ID:

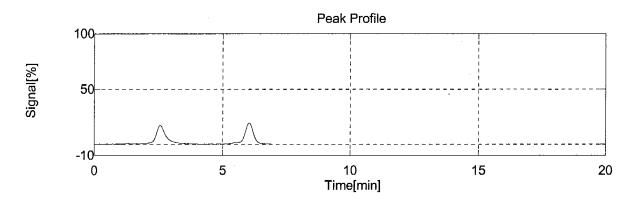
1.0

Remark:

Comment:

Cal Curve:

1: b20818s1.cal


| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 12:16:37 |

| Mean Area | Conc   | Result | SD    | cv    | CNV  | Modified |
|-----------|--------|--------|-------|-------|------|----------|
| 4136      | 1.000% |        | 0.000 | 0.00% | 4136 |          |

| No. | Range | Area | CNV  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 4179 | 4179 | 1.0000 |       | ***** | 08/18/2012 12:10:59 | b20818s1.cal |
| 2   | 5     | 4094 | 4094 | 1.0000 |       | ***** | 08/18/2012 12:16:37 | b20818s1.cal |

Accutest Laboratories,

08/18/2012 13:28:26



### <u>Samples</u>

Sample Name:

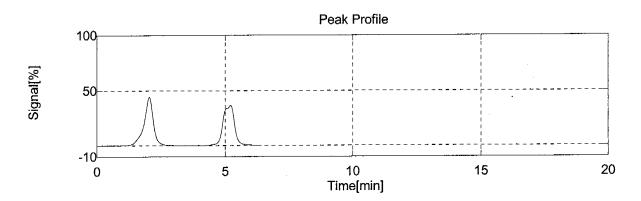
STDE

Sample ID:

2.5

Remark:

Comment:


Cal Curve:

1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 12:49:48 |

| Mean Area | Conc   | Result | SD    | cv    | CNV   | Modified |
|-----------|--------|--------|-------|-------|-------|----------|
| 10123     | 2.500% |        | 0.000 | 0.00% | 10123 |          |

| No. | Range | Area  | CNV   | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | - 5   | 10159 | 10159 | 2.5000 |       | ***** | 08/18/2012 12:21:40 | b20818s1.cal |
| 2   | 5     | 10087 | 10087 | 2.5000 |       | ***** | 08/18/2012 12:49:48 | b20818s1.cal |



### Samples

Sample Name:

STDF

Sample ID:

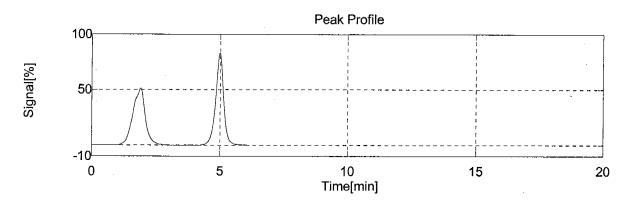
4.0

Remark:

Comment:

Cal Curve:

1: b20818s1.cal


| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1,000    | 08/18/2012 13:12:57 |

| Mean Area | Conc | Result | SD    | cv    | CNV   | Modified |
|-----------|------|--------|-------|-------|-------|----------|
| 15726     |      |        | 0.000 | 0.00% | 15726 |          |

| No. | Range | Area  | CNV   | Conc   | Excl. | Notes                      | Date/Time           | Cal Curve    |
|-----|-------|-------|-------|--------|-------|----------------------------|---------------------|--------------|
| 1   | 5     | 15566 | 15566 | 4.0000 |       | *****                      | 08/18/2012 12:59:09 | b20818s1.cal |
| 2   | 5     | 15887 | 15887 | 4.0000 |       | ****** 08/18/2012 13:12:57 |                     | b20818s1.cal |

Accutest Laboratories,

08/18/2012 13:28:26



### <u>Samples</u>

Sample Name:

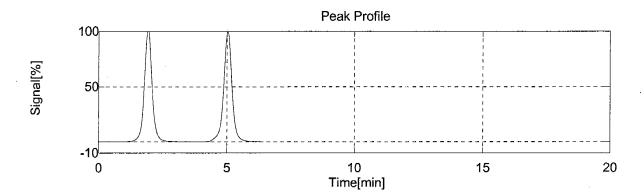
**STDG** 

Sample ID:

5.0

Remark:

Comment:


Cal Curve:

1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 13:27:43 |

| Mean Area | Conc   | Result | SD    | cv    | CNV   | Modified |
|-----------|--------|--------|-------|-------|-------|----------|
| 19644     | 5.000% |        | 0.000 | 0.00% | 19644 |          |

| No. | Range | Area  | CNV   | Conc   | Excl. | Notes  | Date/Time           | Cal Curve    |  |
|-----|-------|-------|-------|--------|-------|--------|---------------------|--------------|--|
| 1   | 5     | 19499 | 19499 | 5.0000 |       | **h*** | 08/18/2012 13:20:11 | b20818s1.cal |  |
| 2   | 5     | 19789 | 19789 |        |       | *****  | 08/18/2012 13:27:43 | b20818s1.cal |  |



Accutest Laboratories,

08/18/2012 13:28:26

### **General Information**

Organization:

Accutest Laboratories

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20828S1.TOC

Comment:

**Instrument Conditions** 

Instrument Attachments:

TOC-5000 + SSM 5000

**Calibration Curves** 

Filename:

b20818s1.cal

Title:

b20818s1.cal

Calculation method:

Lin. regression without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume   | CNV   | lbs C [μg | SD  | cv     |
|-------------|-----------|--------|----------------|-----------|----------|-------|-----------|-----|--------|
| STDA        | 0.0       | 0.000  | 2              | 0         | 0.00000  | 0     | 0.000     | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 2              | 427       | 0.000    | 427   | 100.0     | 7   | 1.66%  |
| STDC        | 0.5       | 0.5000 | 2              | 2087      | -0.00000 | 2087  | 500.0     | 2   | 0.136% |
| STDD        | 1.0       | 1.000  | 2              | 4137      | 0.00000  | 4136  | 1000      | 60  | 1.45%  |
| STDE        | 2.5       | 2.500  | 2              | 10123     | 0.00000  | 10123 | 2500      | 50  | 0.503% |
| STDF        | 4.0       | 4.000  | 2              | 15727     | 00000000 | 15726 | 4000      | 226 |        |
| STDG        | 5.0       | 5.000  | 2              | 19644     | 0.00000  | 19644 | 5000      | 205 |        |

Slope:

3.9206

Intercept:

111.99

R^2:

0.999775

Accutest Laboratories,

08/28/2012 17:01:22

JB14201R

#### **Samples**

Sample Name:

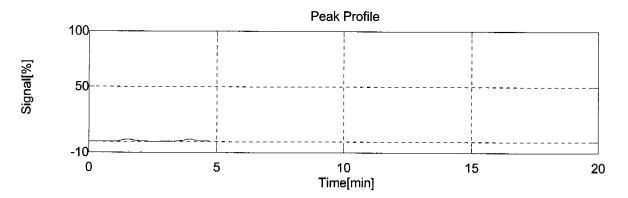
CRI

Sample ID:

Remark: Comment:

Method:

tocsscal.met


Cal Curve:

1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time |
|---------|----------|----------|-----------|
| Unknown | SSM-TC   | 1.000    |           |

| Conc | Resu     | ult SD  | cv    | Modified |
|------|----------|---------|-------|----------|
| 32   | 0.08928% | 0.00361 | 4.04% |          |

| No. | Range | Area | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 452  | 0.086725 |       | ****  | 08/28/2012 09:17:54 | b20818s1.cal |
| 2   | 5     | 472  | 0.091826 |       | ****  | 08/28/2012 09:24:15 | b20818s1.cal |



### Samples

Sample Name:

**HSTD** 

Sample ID: Remark:

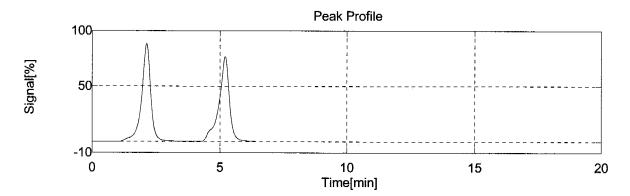
Comment:

Method:

tocsscal.met

Accutest Laboratories,




Cal Curve:

b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 09:39:00 |

| Mean Area | Conc   | Result | SD      | cv     | Modified |
|-----------|--------|--------|---------|--------|----------|
| 19352     | 4.908% |        | 0.01677 | 0.342% | ı        |

| No. | Range | Area  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 19399 | 4.9194 |       | ****  | 08/28/2012 09:33:44 | b20818s1.cal |
| 2   | 5     | 19306 | 4.8957 | ·     |       | 08/28/2012 09:39:00 | b20818s1.cal |



### <u>Samples</u>

Sample Name:

**ICV** 

Sample ID:

Remark: Comment:

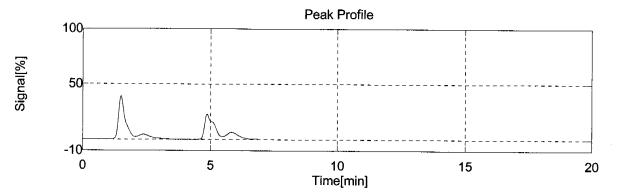
Method:

tocsscal.met

Cal Curve: 1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 09:51:15 |

Accutest Laboratories,


08/28/2012 17:01:22



Page 3 / 24

| Меап Агеа | Conc   | Result | SD     | cv    | Modified |
|-----------|--------|--------|--------|-------|----------|
| 7273      | 1.827% |        | 0.1221 | 6.68% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7612 | 1.9130 |       | ****  | 08/28/2012 09:46:03 | b20818s1.cal |
| 2   | 5     | 6935 | 1.7403 |       | ***** | 08/28/2012 09:51:15 | b20818s1.cal |



### <u>Samples</u>

Sample Name:

CCV

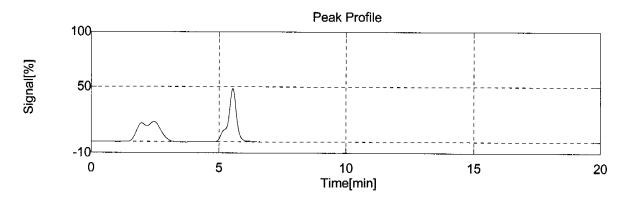
Sample ID:

Remark: Comment:

Method:

tocsscal.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 10:10:49 |

| Mean Area | Conc   | Result | SD      | CV     | Modified |
|-----------|--------|--------|---------|--------|----------|
| 9679      | 2.440% |        | 0.02002 | 0.820% |          |

Accutest Laboratories,

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9735 | 2.4545 |       | 安安安全会 | 08/28/2012 10:01:14 | b20818s1.cal |
| 2   | 5     | 9624 | 2.4262 |       | ***** | 08/28/2012 10:10:49 | b20818s1.cal |



### <u>Samples</u>

Sample Name:

GP66744-MB1

Sample ID:

TOCLK

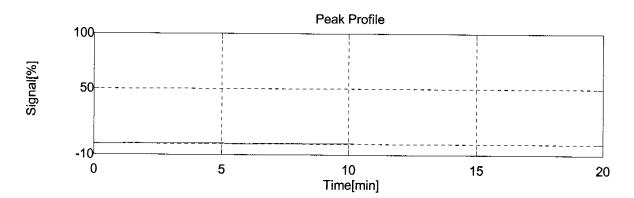
Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time |
|---------|----------|----------|-----------|
| Unknown | SSM-TC   | 1.000    |           |

| Mean Area | Conc      | Result | SD      | cv    | Weight | Modified |
|-----------|-----------|--------|---------|-------|--------|----------|
| (         | -0.00286% |        | 0.00000 | 0.00% | 1000   |          |

| No. | Range | Area | Weight | Conc      | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-----------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 1000   | -0.002856 |       | ****  | 08/28/2012 10:22:01 | b20818s1.cal |
| 2   | 5     | 0    | 1000   | -0.002856 |       | ***** | 08/28/2012 10:28:38 | b20818s1.cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

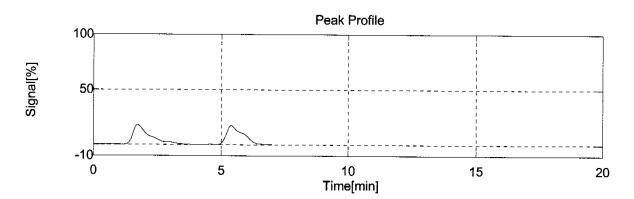
GP66744-B1

Sample ID:

Remark:

Comment: Method:

tocss.met


Cal Curve: 1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 10:41:28 |  |  |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 6976      | 0.1751% |        | 0.00478 | 2.73% | 1000   |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 7109 | 1000   | 0.17847 |       | ***** | 08/28/2012 10:36:58 | b20818s1.cal |
| 2   | 5     | 6844 | 1000   | 0.17171 |       | ***** | 08/28/2012 10:41:28 | b20818s1.cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

JB13733-20

Sample ID:

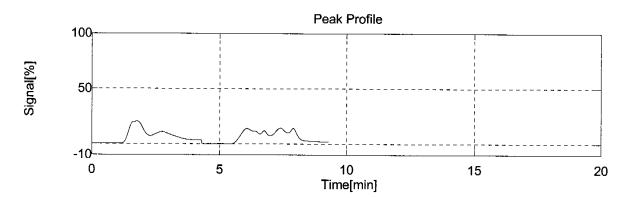
Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 10:55:32 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 12787     | 0.3223% |        | 0.04485 | 13.9% | 1003   | ·        |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 11543 | 1003   | 0.29060 |       | ***   | 08/28/2012 10:48:59 | b20818s1.cal |
| 2   | 5     | 14031 | 1003   | 0.35403 |       | ***** | 08/28/2012 10:55:32 | b20818s1.cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

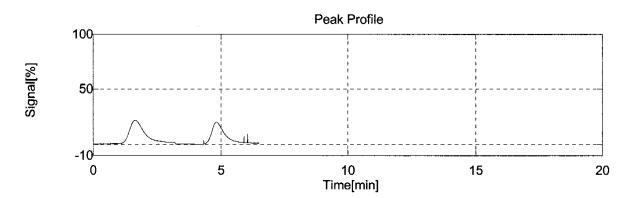
JB13733-10

Sample ID:

Remark: Comment:

Method:

tocss.met


1: b20818s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 11:05:11 |

| Mean Area | Conc   | Result | SD     | CV    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 6953      | 1.639% |        | 0.1785 | 10.9% | 106.4  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7560 | 107.6  | 1.7655 |       | ***** | 08/28/2012 11:00:36 | b20818s1.cal |
| 2   | 5     | 6347 | 105.1  | 1.5131 |       | ****  | 08/28/2012 11:05:11 | b20818s1.cal |

Accutest Laboratories,



### **Samples**

Sample Name:

JB13733-11

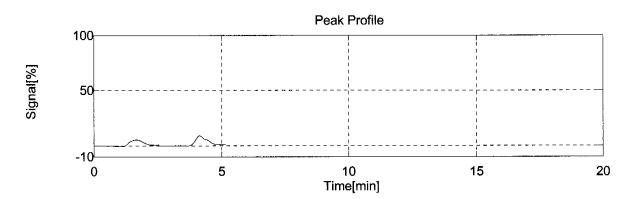
Sample ID: Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 11:17:12 |

| Mean Area | Conc    | Result | SD     | cv    | Weight | Modified |
|-----------|---------|--------|--------|-------|--------|----------|
| 2077      | 0.9550% |        | 0.2356 | 24.7% | 52.85  |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 1809 | 54.90  | 0.78842 |       | ***** | 08/28/2012 11:12:44 | b20818s1.cal |
| 2   | 5     | 2346 | 50.80  | 1.1217  |       | ***** | 08/28/2012 11:17:12 | b20818s1.cal |

Accutest Laboratories,



#### Samples

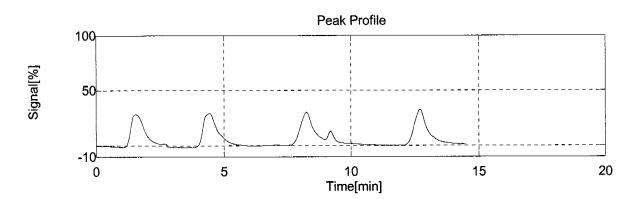
Sample Name:

JB13733-12

Sample ID: Remark:

Comment:

Method: Cal Curve: tocss.met


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 11:44:54 |

| Mean Area | Conc   | Result | SD     | cv    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 10731     | 2.596% |        | 0.5351 | 20.6% | 104.9  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes  | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|--------|---------------------|--------------|
| 1   | 5     | 8284  | 109.2  | 1.9088 |       | *****  | 08/28/2012 11:21:29 | b20818s1.cal |
| 2   | 5     | 11431 | 102.5  | 2.8166 |       | *****  | 08/28/2012 11:31:20 | b20818s1.cal |
| 3   | 5     | 12694 | 101.3  | 3.1680 |       | *****  | 08/28/2012 11:38:37 | b20818s1.cal |
| 4   | 5     | 10518 | 106.5  | 2.4922 |       | ****** | 08/28/2012 11:44:54 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

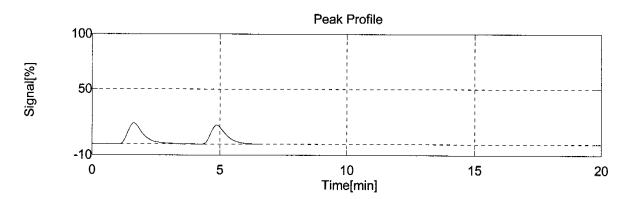
JB13733-13

Sample ID: Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 11:57:25 |

| Mean Area | Conc   | Result | SD      | cv    | Weight | Modified |
|-----------|--------|--------|---------|-------|--------|----------|
| 6742      | 1.635% |        | 0.05580 | 3.41% |        |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 6934 | 103.9  | 1.6747 |       | ***** | 08/28/2012 11:52:14 | b20818s1.cal |
| 2   | 5     | 6550 | 102.9  | 1.5958 |       | ***** | 08/28/2012 11:57:25 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB13733-14

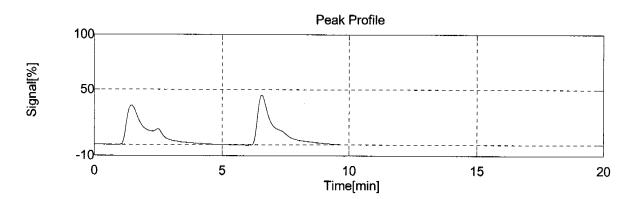
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time |
|---------|----------|----------|-----------|
| Unknown | SSM-TC   | 1.000    |           |

| Mean Area | Conc   | Result | SD      | cv     | Weight | Modified |
|-----------|--------|--------|---------|--------|--------|----------|
| 18489     | 1.298% |        | 0.01296 | 0.998% | 361.1  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 18456 | 363.0  | 1.2889 |       | ***** | 08/28/2012 12:04:36 | b20818s1.cal |
| 2   | 5     | 18522 | 359.2  | 1.3073 |       | ***** | 08/28/2012 12:10:54 | b20818s1.cal |

Accutest Laboratories,



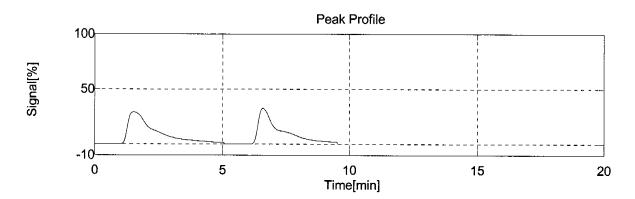
#### Samples

Sample Name:

Sample ID: Remark: Comment:

Method: tocss.met

1: b20818s1.cal Cal Curve:


JB13733-16

| Туре    | Analysis | Dilution | Date/Time |  |
|---------|----------|----------|-----------|--|
| Unknown | SSM-TC   | 1.000    |           |  |

| Mean Area | Conc   | Result | SD      | cv    | Weight | Modified |
|-----------|--------|--------|---------|-------|--------|----------|
| 16777     | 1.159% |        | 0.05517 | 4.76% | 366.5  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 17815 | 377.0  | 1.1977 |       | ***** | 08/28/2012 12:18:08 | b20818s1.cal |
| 2   | 5     | 15740 | 356.0  | 1.1197 |       | ***** | 08/28/2012 12:26:30 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB13733-18

Sample ID:

Remark:

Comment: Method:

tocss.met

1: b20818s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:00:48 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 16064     | 0.4054% |        | 0.08291 | 20.5% | 1003   |          |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 19295 | 1003   | 0.48772 |       | ***** | 08/28/2012 12:36:03 | b20818s1.cal |
| 2   | 5     | 14889 | 1000   | 0.37691 |       | ***** | 08/28/2012 12:46:51 | b20818s1.cal |
| 3   | 5     | 18060 | 1007   | 0.45465 |       | ***** | 08/28/2012 12:53:55 | b20818s1.cal |
| 4   | 5     | 12012 | 1004   | 0.30241 |       | ***** | 08/28/2012 13:00:48 | b20818s1.cai |

Accutest Laboratories,





#### Samples

Sample Name:

CCV

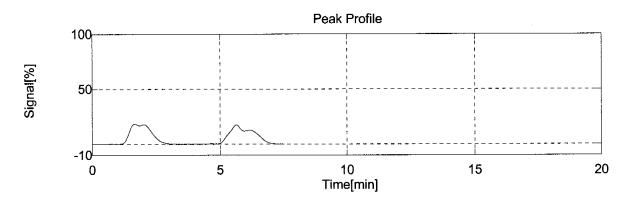
Sample ID:

Remark: Comment:

Method:

tocsscal.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:18:41 |

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 9802      | 2.472% |        | 0.06222 | 2.52% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9630 | 2.4277 |       | ****  | 08/28/2012 13:12:57 | b20818s1.cal |
| 2   | 5     | 9975 | 2.5157 | ·     | ****  |                     | b20818s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

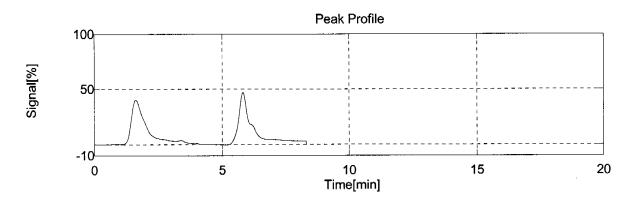
JB13733-19

Sample ID: Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:31:52 |

| Mean Area | Conc   | Result | SD      | cv    | Weight | Modified |
|-----------|--------|--------|---------|-------|--------|----------|
| 14054     | 3.425% |        | 0.03998 | 1.17% | 103.8  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 14465 | 106.0  | 3.4537 |       | ***** | 08/28/2012 13:24:43 | b20818s1.cal |
| 2   | 5     | 13644 | 101.6  | 3.3971 |       | ***** | 08/28/2012 13:31:52 | b20818s1.cal |

Accutest Laboratories,

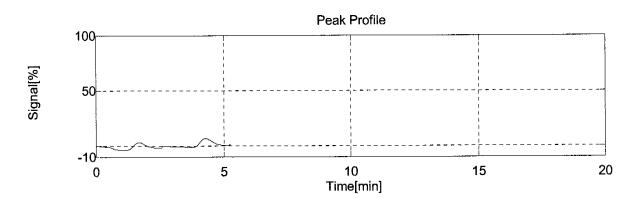


#### Samples

Sample Name: JB13733-21

Sample ID: Remark: Comment:

Method: tocss.met


1: b20818s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:40:26 |

| Mean Area | Conc     | Result | SD      | cv    | Weight | Modified |
|-----------|----------|--------|---------|-------|--------|----------|
| 1860      | 0.08598% |        | 0.01251 | 14.5% | 518.7  |          |

| No. | Range | Area | Weight | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 1683 | 519.5  | 0.077133 |       | ***** | 08/28/2012 13:36:07 | b20818s1.cai |
| 2   | 5     | 2037 | 517.8  | 0.094824 |       | ***** | 08/28/2012 13:40:26 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

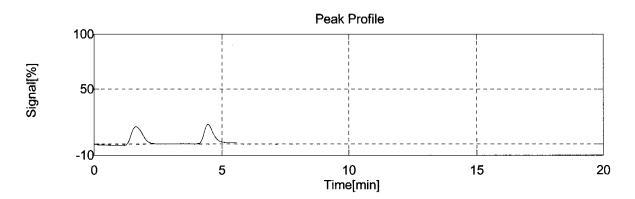
Sample Name:

JB13733-22

Sample ID: Remark:

Comment:

Method: Cal Curve: tocss.met


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:51:21 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 4347      | 0.2059% |        | 0.02365 | 11.5% | 523.9  |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 4764 | 533.0  | 0.22262 |       | ***** | 08/28/2012 13:47:04 | b20818s1.cal |
| 2   | 5     | 3930 | 514.8  | 0.18917 |       | ***** | 08/28/2012 13:51:21 | b20818s1.cal |

Accutest Laboratories,



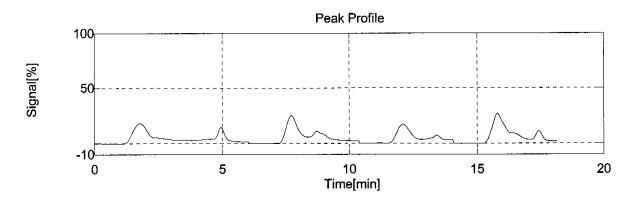
#### <u>Samples</u>

Sample Name: GP66744-D1 Sample ID: JB13733-20

Remark: Comment:

Method: tocss.met

1: b20818s1.cal Cal Curve:


| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 15:12:23 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 10553     | 0.2649% |        | 0.07364 | 27.8% | 1005   |          |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 12773 | 1008   | 0.32047 |       | ***** | 08/28/2012 14:01:00 | b20818s1.cal |
| 2   | 5     | 11084 | 1006   | 0.27807 |       | ***** | 08/28/2012 14:58:14 | b20818s1.cal |
| 3   | 5     | 6314  | 1004   | 0.15758 |       | ****  | 08/28/2012 15:04:46 | b20818s1.cal |
| 4   | 5     | 12043 | 1003   | 0.30350 |       | ***** | 08/28/2012 15:12:23 | b20818s1.cal |

Accutest Laboratories,





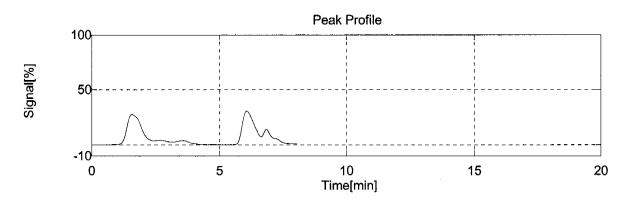
#### <u>Samples</u>

Sample Name: GP66744-S1 Sample ID: JB13733-20

Remark: Comment:

Method: tocss.met

1: b20818s1.cal Cal Curve:


| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 15:27:21 |  |  |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 12227     | 0.5982% |        | 0.01376 | 2.30% | 516.7  |          |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 12180 | 523.1  | 0.58843 |       | ***** | 08/28/2012 15:21:06 | b20818s1.cal |
| 2   | 5     | 12274 | 510.3  | 0.60789 | ·     | ****  | 08/28/2012 15:27:21 | b20818s1.cal |

Accutest Laboratories,





#### Samples

Sample Name:

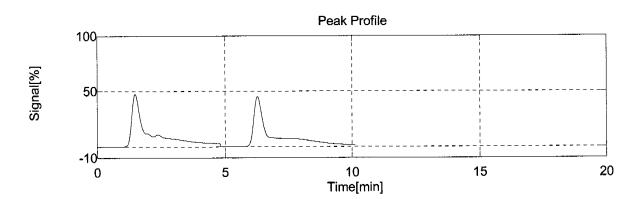
JB13733-11

Sample ID: Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 15:41:59 |

| Mean Area | Conc   | Result | SD      | cv | Weight | Modified |
|-----------|--------|--------|---------|----|--------|----------|
| 16619     | 1.678% |        | 0.06029 |    | 251.0  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 16450 | 254.8  | 1.6355 |       | ***** | 08/28/2012 15:34:43 | b20818s1.cal |
| 2   | 5     | 16789 | 247.2  | 1.7207 |       | ***** | 08/28/2012 15:41:59 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB13733-21

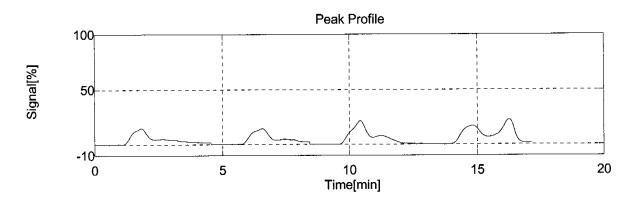
Sample ID: Remark: Comment:

Method:

tocss.met

Cal Curve:

1: b20818s1.cal


|   | Туре    | Analysis | Dilution | Date/Time           |
|---|---------|----------|----------|---------------------|
| Ī | Jnknown | SSM-TC   | 1.000    | 08/28/2012 16:14:43 |

| Mean Area | Conc    | Result | SD     | cv    | Weight | Modified |
|-----------|---------|--------|--------|-------|--------|----------|
| 10266     | 0.2585% |        | 0.1010 | 39.1% | 1002   | _        |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 7494  | 1005   | 0.18728 |       | ****  | 08/28/2012 15:51:15 | b20818s1.cal |
| 2   | 5     | 6876  | 1001   | 0.17233 |       | ***** | 08/28/2012 15:57:51 | b20818s1.cal |
| 3   | 5     | 11236 | 1000   | 0.28362 |       | ***** | 08/28/2012 16:06:38 | b20818s1.cal |
| 4   | 5     | 15458 | 1002   | 0.39064 |       | ***** | 08/28/2012 16:14:43 | b20818s1.cal |

Accutest Laboratories,





#### Samples

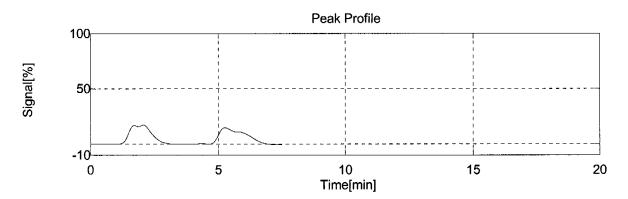
Sample Name:

CCV

Sample ID: Remark:

Comment:

Method: Cal Curve: tocsscal.met


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 16:40:27 |

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 9338      | 2.353% |        | 0.07250 | 3.08% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9137 | 2.3019 |       | ***** | 08/28/2012 16:33:00 | b20818s1.cal |
| 2   | 5     | 9539 | 2.4045 |       | ****  | 08/28/2012 16:40:27 | b20818s1.cal |

Accutest Laboratories,



#### Statistics / Summary

| Sample Name | Analysis | Conc.      | Abs C [μg] |
|-------------|----------|------------|------------|
| CRI         | SSM-TC   | 0.08928 %  | 89         |
| HSTD        | SSM-TC   | 4.908 %    | 4907       |
| ICV         | SSM-TC   | 1.827 %    | 1826       |
| ccv         | SSM-TC   | 2.422 %    | 2421       |
| GP66744-MB1 | SSM-TC   | -0.00286 % | -28        |
| GP66744-B1  | SSM-TC   | 0.1751 %   | 1750       |
| JB13733-20  | SSM-TC   | 0.3223 %   | 3232       |
| JB13733-10  | SSM-TC   | 1.639 %    | 1745       |
| JB13733-11  | SSM-TC   | 1.317 %    | 2355       |
| JB13733-12  | SSM-TC   | 2.596 %    | 2708       |
| JB13733-13  | SSM-TC   | 1.635 %    | 1691       |
| JB13733-14  | SSM-TC   | 1.298 %    | 4687       |
| JB13733-16  | SSM-TC   | 1.159 %    | 4250       |
| JB13733-18  | SSM-TC   | 0.4054 %   | 4068       |
| JB13733-19  | SSM-TC   | 3.425 %    | 3556       |
| JB13733-21  | SSM-TC   | 0.1722 %   | 1517       |
| JB13733-22  | SSM-TC   | 0.2059 %   | 1080       |
| GP66744-D1  | SSM-TC   | 0.2649 %   | 2663       |
| GP66744-S1  | SSM-TC   | 0.5982 %   | 3090       |

Accutest Laboratories,



CCV 32

33 CCV

|    |                |           | T                |              |               |           | GP        | 714    |
|----|----------------|-----------|------------------|--------------|---------------|-----------|-----------|--------|
|    | Sample<br>Name | Sample ID | Method           | Туре         | Date / Time   | Conc.     | Mean Area | CV     |
| 1  | CRI            |           | tocsscal.met     | Unknown      | 09/04/12 09:3 | 0.09412 % | 391       | 25.0%  |
| 2  | CRI            | ****      | tocsscal.met     | Unknown      | 09/04/12 09:3 | 0.09412 % | 391       | 25.0%  |
| 3  | HSTD           |           | tocsscal.met     | Unknown      | 09/04/12 09:5 | 5.057 %   | 19098     | 1.18%  |
| 4  | HSTD           | -         | tocsscal.met     | Unknown      | 09/04/12 09:5 | 5.057 %   | 19098     | 1.18%  |
| 5  | ICV            | KHP       | tocsscal.met     | Unknown      | 09/04/12 10:1 | 1.927 %   | 7157      | 1.66%  |
| 6  | ICV            | KHP       | tocsscal.met     | Unknown      | 09/04/12 10:1 | 1.927 %   | 7157      | 1.66%  |
| 7  | CCV            |           | tocsscal.met     | Unknown      | 09/04/12 10:3 | 2.689 %   | 9827      | 1.71%  |
| 8  | CCV            |           | tocsscal.met     | Unknown      | 09/04/12 10:3 | 2.689 %   | 9827      | 1.71%  |
| 9  | GP66744-MB     | TOCLK     | tocss.met        | Unknown      | 09/04/12 10:4 | 0.000 %   | 0         | 0.00%  |
| 10 | GP66744-MB     | TOCLK     | tocss.met        | Unknown      | 09/04/12 10:4 | 0.000 %   | 0         | 0.00%  |
| 11 | GP66744-B2     |           | tocss.met        | Unknown      | 09/04/12 11:0 | 0.1919 %  | 7129      | 1.02%  |
| 12 | GP66744-B2     |           | tocss.met        | Unknown      | 09/04/12 11:0 | 0.1919 %  | 7129      | 1.02%  |
| 13 | JB14312-15R    |           | tocss.met        | Unknown      | 09/04/12 11:1 | 0.07983 % | 2650      | 1.74%  |
| 14 | JB14312-15R    |           | tocss.met        | Unknown      | 09/04/12 11:1 | 0.07983 % | 2650      | 1.74%  |
| 15 | JB15015-1R     |           | tocss.met        | Unknown      | 09/04/12 11:2 | 0.08386 % | 357       | 103%   |
| 16 | JB15015-1R     |           | tocss.met        | Unknown      | 09/04/12 11:2 | 0.08386 % | 357       | 103%   |
| 17 | JB15015-1R     | ,         | tocss.met        | Unknown      | 09/04/12 12:4 | 0.06113 % | 2442      | 42.5%  |
| 18 | JB15015-1R     |           | tocss.met        | Unknown      | 09/04/12 12:4 | 0.06113 % | 2442      | 42.5%  |
| 19 | JB15015-1R     |           | tocss.met        | Unknown      | 09/04/12 12:4 | 0.06113 % | 2442      | 42.5%  |
| 20 | JB15015-1R     |           | tocss.met        | Unknown      | 09/04/12 12:4 | 0.06113 % | 2442      | 42.5%  |
| 21 | CCV            |           | tocsscal.met     | Unknown      | 09/04/12 13:0 | 2.655 %   | 9706      | 0.672% |
| 22 | ccv            |           | tocsscal.met     | Unknown      | 09/04/12 13:0 | 2.655 %   | 9706      | 0.672% |
| 23 | JB14201-12R    |           | tocss.met        | Unknown      | 09/04/12 13:2 | 25.64 %   | 112645    | 0.00%  |
| 24 | JB14201-12R    |           | tocss.met        | Unknown      | 09/04/12 14:2 | 24.33 %   | 7928      | 19.0%  |
| 25 | JB14201-12R    | ***       | tocss.met        | Unknown      | 09/04/12 14:2 | 24.33 %   | 7928      | 19.0%  |
| 26 | JB14201-12R    |           | tocss.met        | Unknown      | 09/04/12 14:2 | 24.33 %   | 7928      | 19.0%  |
| 27 | JB14201-12R    | 5,00      | tocss.met        | Unknown      | 09/04/12 14:2 | 24.33 %   | 7928      | 19.0%  |
| 28 | JB14519-15R    |           | tocss.met        | Ünknown      | 09/04/12 14:5 | 3.853 %   | 7318      | 17.9%  |
| 29 | JB14519-15R    |           | tocss.met        | Unknown      | 09/04/12 14:5 | 3.853 %   | 7318      | 17.9%  |
| 30 | JB14519-15R    |           | tocss.met        | Unknown      | 09/04/12 14:5 | 3.853 %   | 7318      | 17.9%  |
| 31 | JB14519-15R    |           | tocss.met        | Unknown      | 09/04/12 14:5 | 3.853 %   | 7318      | 17.9%  |
| ~~ | CCV            |           | to occording : 1 | Lialor accor | 00/04/10 15 0 | 0.000.04  |           |        |

09/04/12 15:0

09/04/12 15:0

9731

9731

0.647%

0.647%

2.662 %

2.662 %

tocsscal.met

tocsscal.met Unknown

Unknown



| (PURPLE STATE | • |        |
|---------------|---|--------|
|               | • |        |
|               |   | JTEST. |
|               |   |        |

TOCK

620904S1.TOC

Test: Total Organic Carbon

Product: TOC

Balance ID: 39

Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle-one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID 71475 Date 9|4|12

Analyst\_

| Sample ID    | Sample Weight | Bottle #     | Sample Description & comments |
|--------------|---------------|--------------|-------------------------------|
| CRI          |               |              |                               |
| 1+57D        |               |              |                               |
| ICV (KHP)    |               |              |                               |
| ccV          |               |              |                               |
| GP66744-MO2  | 1.0000        |              |                               |
|              | 1.0000        |              |                               |
| GP66744- BZ  | 1.0000        | 4 - 14 HV 77 |                               |
|              | 1,0000        |              | ·                             |
| JB 14312-15R | o.838S        | 2            |                               |
|              | 0.8328        |              |                               |
|              | o.8412        |              | <u> </u>                      |
|              | 0.8262        |              |                               |
| J815015-1R   | 0.1038        | 2_           |                               |
|              | 0.1019        |              |                               |
|              | 0.1009        |              |                               |
|              | o. 1034       |              |                               |
| JB15015 - 1R | 1-0066        | 2            | weight too low rerunting      |
|              | 1.0063        |              | 7                             |
|              | 1.0004        |              |                               |
|              | 1.0055        |              |                               |
| ŒV.          |               |              |                               |
| JB14201-12R  | 0.1028        | 1:           | overrange rerum 0.019         |
|              | 0.1008        |              | 0                             |
|              | 0.1046        |              |                               |

|                 |                     | CReviewer:      | Date:       |              |          |
|-----------------|---------------------|-----------------|-------------|--------------|----------|
| Manager Review: | Date:               | <u> </u>        |             |              |          |
| Comments:       |                     |                 |             |              |          |
|                 | BS - 100 pl of 2000 | 0 mack -> 1.0 g | Solica Sand | TV= 2000 mg/ | <u>k</u> |
|                 | g huc               | ا مدو           |             |              | <u> </u> |

Form: GN-058a Rev. Date: 11/11/08



Product: TOC





Test: Total Organic Carbon

Units = mg/kg

Balance ID:

B-39

GN Batch ID 71475
Date 914/12

RDL = 1000 mg/kg or 100 mg/kg (circle one)

Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

Analyst\_\_\_\_\_

| Sample ID     | Sample Weight                         | Bottle # | Sample Description & comments |
|---------------|---------------------------------------|----------|-------------------------------|
|               | 0.1010                                |          |                               |
| JB14201-12A   | 0.0091                                | [        |                               |
|               | 0.0080                                | -        |                               |
|               | 0.0089                                |          |                               |
|               | 0.0091                                |          |                               |
| ect           |                                       |          |                               |
| JB14519-15RT  | 0.0512                                | 1        |                               |
|               | 0.0502                                |          |                               |
|               | 0.0515                                |          |                               |
|               | 0,0520                                |          |                               |
| دد٧           |                                       |          | *.                            |
|               |                                       |          |                               |
|               |                                       |          | ·                             |
|               |                                       |          |                               |
|               |                                       |          |                               |
|               |                                       |          |                               |
|               |                                       |          |                               |
|               | · · · · · · · · · · · · · · · · · · · |          |                               |
|               |                                       |          |                               |
|               |                                       |          |                               |
|               |                                       |          |                               |
|               |                                       |          |                               |
|               |                                       |          |                               |
|               |                                       |          |                               |
|               | -1.1                                  |          |                               |
| lyst: Da      | ate: <u>9/4//2</u> QCReview<br>Date:  | /er:     | _ Date:                       |
| nager Review: | Date                                  |          |                               |

Form: GN-058a Rev. Date: 11/11/08





# GENERAL CHEMISTRY STANDARD PREPARATION LOG

Product: TECLK GN or GP Number: GN71475

|                               |                       |               | Stock                    |         |             | Final Conc.             |               |         |        |
|-------------------------------|-----------------------|---------------|--------------------------|---------|-------------|-------------------------|---------------|---------|--------|
| Intermediate                  | Stock used to         | Stock         | volume used              |         | Final       | Intermediate Expiration | Expiration    |         |        |
| Standard Description          | prepare standard      | concentration | Ë                        | Diluent | Volume      | (mg/l)                  | Date          | Analyst | Date   |
| UNEB-33597-DC                 | Emp 4000115           | Surrose       | 47.29                    | DIMO    | 10001       | 200 000                 | 9/25/12       | 0       | 9/4/12 |
| 100 000 CA TO                 |                       |               | >                        |         | -           |                         |               | 1       |        |
| LANTEB = 355 78 - 100   15031 | 120314                | 5 2000        | 12.59                    | 7       | ->          | 20.00                   | - <b>&gt;</b> | >       | ₽      |
|                               |                       |               |                          |         | -           |                         |               |         |        |
|                               | Intermediate or Stock | Intermediate  | Intermediate<br>or Stock |         |             | Final Conc.             |               |         |        |
|                               | used to prepare       | or Stock      | volume used              | ,       | Final       | of Standard             | Expiration    |         | 14     |
| Standard Description          | standard              | concentration | in mi                    | Diluent | Volume      | (l/gm)                  | Date          | Analyst | Date   |
| Sucrose SIDS                  |                       |               |                          |         |             |                         |               |         |        |
| GNEB -33399-70C               | 6NE8-33597-12C        | 200 000       | 0.5                      | DI MO   | 20000       | 1900                    | 9/25/112      | B       | 4/4/12 |
| 6NE9-33400-1De                |                       |               | 2.5                      | _       | _           | 0009                    |               | A       |        |
| 6NE8-33401-TDC                |                       |               | 6.0                      |         |             | 0000                    |               |         |        |
| JNEB - 33402-70C.             |                       |               | 12.5                     |         |             | 25000                   |               |         |        |
| SUEB - 33 405- TOC            |                       |               | 0.00                     |         |             | 70007                   |               |         | _      |
| 6NEB - 33 404- TOC            | <b>~</b>              | ->            | 0.57                     | 7       | <del></del> | 50000                   | 7             | ->      |        |
| 6/1/20 000                    |                       |               |                          |         |             |                         |               |         |        |
| 6NE8-33398-TDC 6NE8-33398-TDC | 6NE8-33398-TDC        | 50000         | 0.07                     | 97 k    | 100me       | 2000                    | 9/25/10       | 4       |        |
| 6NEB-33409-72C                | 7                     | ->            | -                        | -7      |             | 25000                   | J. (          | Ż       | 7      |
|                               |                       |               |                          |         |             |                         |               |         |        |
|                               | •                     |               |                          | -       |             |                         |               |         |        |
|                               |                       |               |                          |         |             |                         |               |         |        |

Form: GN121 . Rev. Date:2/26/03



3-39 Balance blass Piltets class A:



## TOCLK

GN 71475

# Reagent Information Log - TOC - Soil

| Reagent                             | Reagent # or Manufacturer/Lot |
|-------------------------------------|-------------------------------|
| Sucrose Stock Solution, 200000 mg/L | 6NE8-33397-70c 9/25/19        |
| Glucose Stock Solution, 50000 ug/L  | GNE8-33398-TOC 9/25/12        |
| Glucose Check Solution, 25000 ug/L  | GNE8- 33409- TOC 9/25/12      |
| Nitric Acid, Reagent Grade          | K50030 Baken 2/7/17           |
| Glucose Stock Solution, 2000 ug/L   | GNEE-42408-TOC 9/25/12        |
| KHP 20000ppm soluted                | 60 STK - 863 - TOC 11/14/12   |
|                                     |                               |
|                                     |                               |
|                                     |                               |
| •                                   |                               |
|                                     |                               |
|                                     |                               |

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN-087 1-66 Rev. Date: 4/26/01



#### **General Information**

Organization:

**Accutest Laboratories** 

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20829S1.TOC

Comment:

**Instrument Conditions** 

Instrument Attachments:

TOC-5000 + SSM 5000

**Calibration Curves** 

Filename:

b20828s1.cal

Title:

b20828s1.cal

Calculation method:

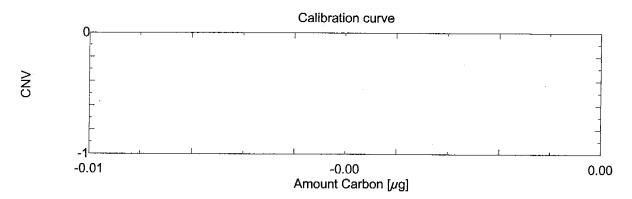
Lin. regression without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume | CNV | lbs C [μg | SD | CV    |
|-------------|-----------|--------|----------------|-----------|--------|-----|-----------|----|-------|
| STDA        | 0.0       | 0.000  | 1              | 0         | 0.000  | O   | 0.000     | 0  | 0.00% |
| STDB        | 0.1       | 0.1000 | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDC        | 0.5       | 0.5000 | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDD        | 1.0       | 1.000  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDE        | 2.5       | 2.500  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDF        | 4.0       | 4.000  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDG        | 5.0       | 5.000  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |

Slope:

0.0000


Intercept:

0.0000

R^2:

0.00000

Accutest Laboratories,



#### **Calibration Curves**

Filename:

b20829s1.cal

Title:

b20829s1.cal

Calculation method:

Point to point without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

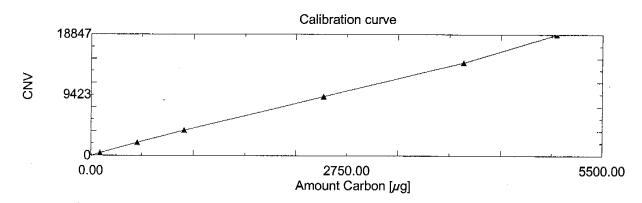
| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume    | CNV   | bs C [µg | SD  | cv     |
|-------------|-----------|--------|----------------|-----------|-----------|-------|----------|-----|--------|
| STDA        | 0.0       | 0.000  | 2              | 0         | 0.00000   | 0     | 0.000    | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 2              | 417       | 0.00000   | 417   | 100.0    | 73  | 17.6%  |
| STDC        | 0.5       | 0.5000 | 2              | 2013      | 0.00000   | 2012  | 500.0    | 111 | 5.52%  |
| STDD        | 1.0       | 1.000  | 2              | 3920      | 0.1833    | 3920  | 1000     | 202 | 5.16%  |
| STDE        | 2.5       | 2.500  | 2              | 9161      | 100.0     | 9160  | 2500     | 557 | 6.09%  |
| STDF        | 4.0       | 4.000  | 2              | 14454     | 0.00000   | 14454 | 4000     | 328 | 2.27%  |
| STDG .      | 5.0       | 5.000  | 2              | 18847     | i66639420 | 18846 | 5000     | 146 | 0.777% |

Slope:

4.1700

Intercept:

0.0000


R^2:

0.00000

Accutest Laboratories,

## 7.2

# **TOC-Control**



#### <u>Samples</u>

Sample Name:

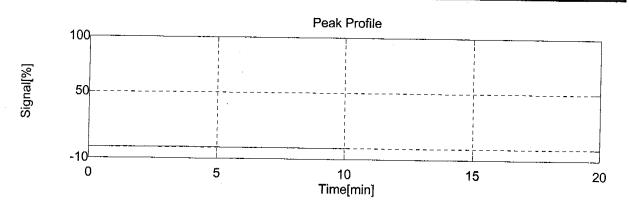
STDA

Sample ID:

0.0

Remark:

Comment:


Cal Curve:

1: b20829s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 12:28:19 |

| Mean Area | Conc   | Result | SD    | cv    | CNV | Modified |
|-----------|--------|--------|-------|-------|-----|----------|
| 0         | 0.000% |        | 0.000 | 0.00% | 0   |          |

| No. | Range | Area | CNV | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|-----|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 0   | 0.0000 |       | ***** | 08/29/2012 12:14:56 | b20829s1.cal |
| 2   | 5     | 0    | 0   | 0.0000 |       |       | 08/29/2012 12:28:19 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

STDB

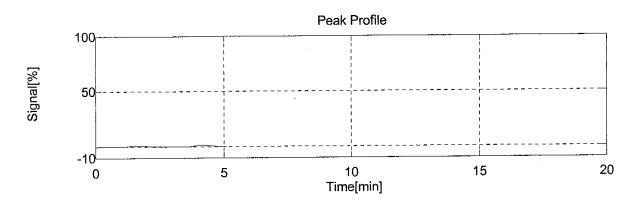
Sample ID:

0.1

Remark:

Comment:

Cal Curve:


1: b20829s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 12:53:01 |

| Mean Area | Conc    | Result | SD    | cv    | CNV | Modified |
|-----------|---------|--------|-------|-------|-----|----------|
| 417       | 0.1000% |        | 0.000 | 0.00% | 417 |          |

| No. | Range | Area | CNV | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|-----|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 365  | 365 | 0.10000 |       | ***** | 08/29/2012 12:43:49 | b20829s1.cal |
| 2   | 5     | 469  | 469 | 0.10000 |       | ***** | 08/29/2012 12:53:01 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

STDC

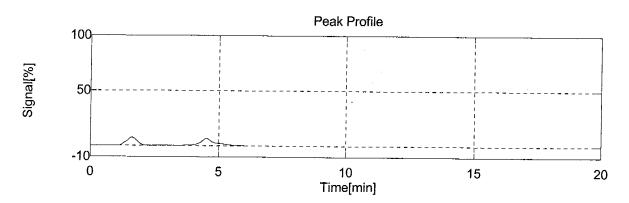
Sample ID:

0.5

Remark:

Comment:

Cal Curve:


1: b20829s1.cal

|       | Туре | Analysis | Dilution | Date/Time           |
|-------|------|----------|----------|---------------------|
| Stand | dard | SSM-TC   | 1,000    | 08/29/2012 13:02:52 |

| Mean Area | Conc    | Result | SD    | cv    | CNV  | Modified |
|-----------|---------|--------|-------|-------|------|----------|
| 2012      | 0.5000% |        | 0.000 | 0.00% | 2012 |          |

| No. | Range | Area | CNV  | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 1934 | 1934 | 0.50000 |       | ****  | 08/29/2012 12:56:52 | b20829s1.cal |
| 2   | 5     | 2091 | 2091 | 0.50000 |       | ***** | 08/29/2012 13:02:52 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

STDD

Sample ID:

1.0

Remark:

Comment:

Cal Curve:

1: b20829s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 13:22:58 |

| Mean Area | Conc+  | Result | SD    | cv    | CNV  | Modified |
|-----------|--------|--------|-------|-------|------|----------|
| 3920      | 1.000% |        | 0.000 | 0.00% | 3920 |          |

| No. | Range | Area | CNV  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 4063 | 4063 | 1.0000 |       | ***** | 08/29/2012 13:13:29 | b20829s1.cal |
| 2   | 5     | 3777 | 3777 | 1.0000 |       | ***** | 08/29/2012 13:22:58 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

STDE

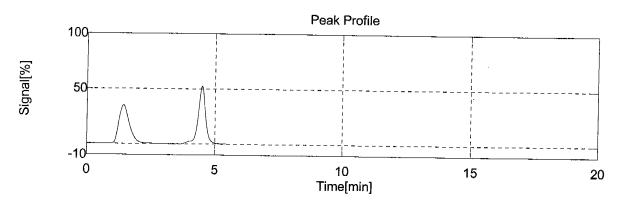
Sample ID:

2.5

Remark:

Comment:

Cal Curve:


1: b20829s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 13:38:27 |

| Mean Area | Conc   | Result | SD    | cv    | CNV  | Modified |
|-----------|--------|--------|-------|-------|------|----------|
| 9160      | 2.500% |        | 0.000 | 0.00% | 9160 |          |

| No. | Range | Area | CNV  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 8766 | 8766 | 2.5000 |       | ***** | 08/29/2012 13:30:59 | b20829s1.cal |
| 2   | . 5   | 9555 | 9555 | 2.5000 |       | ****  | 08/29/2012 13:38:27 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

STDF

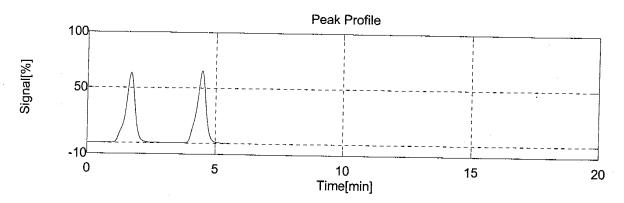
Sample ID:

4.0

Remark:

Comment:

Cal Curve:


1: b20829s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 13:51:07 |

| Mean Area | Conc   | Rešult | SD    | cv    | CNV   | Modified |
|-----------|--------|--------|-------|-------|-------|----------|
| 14454     | 4.000% |        | 0.000 | 0.00% | 14454 |          |

| No. | Range | Area           | CNV   | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|----------------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 14222          | 14222 | 4.0000 |       | ***** | 08/29/2012 13:47:02 | b20829s1.cal |
| 2   | • 5   | <b>,</b> 14686 | 14686 | 4.0000 |       | ***** | 08/29/2012 13:51:07 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

STDG

Sample ID:

5.0

Remark:

Comment:

Cal Curve:

1: b20829s1.cal

| Туре     | Analysis   | Dilution |                     |
|----------|------------|----------|---------------------|
|          | - Indigoro | Dilution | Date/Time           |
| Standard | SSM-TC     | 1.000    | 08/29/2012 14:00:05 |

| Mean Area | Conc   | Result | SD    | CV    | CNV   | Modified |
|-----------|--------|--------|-------|-------|-------|----------|
| 18846     | 5.000% |        | 0.000 | 0.00% | 18846 |          |

| No. | Range | Area           | CNV     | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|----------------|---------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 18950          | 18950   | 5.0000 |       | ***** | 08/29/2012 13:55:36 | b20829s1.cal |
| 2   | 5     | 18 <b>7</b> 43 | . 18743 | 5.0000 |       |       | 08/29/2012 14:00:05 | b20829s1.cal |

Accutest Laboratories,

## 7.2

# **TOC-Control**

#### **General Information**

Organization:

**Accutest Laboratories** 

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20904S1.TOC

Comment:

Instrument Conditions

Instrument Attachments:

TOC-5000 + SSM 5000

**Calibration Curves** 

Filename:

b20829s1.cal

Title:

b20829s1.cal

Calculation method:

Point to point without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume   | CNV   | lbs C [μg | SD  | CV     |
|-------------|-----------|--------|----------------|-----------|----------|-------|-----------|-----|--------|
| STDA        | 0.0       | 0.000  | 2              | 0         | 0.00000  | 0     | 0.000     | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 2              | 417       | 0.00000  | 417   | 100.0     | 73  | 17.6%  |
| STDC        | 0.5       | 0.5000 | 2              | 2013      | 0.00000  | 2012  | 500.0     | 111 | 5.52%  |
| STDD        | 1.0       | 1.000  | 2              | 3920      | 0.1833   | 3920  | 1000      | 202 | 5.16%  |
| STDE        | 2.5       | 2.500  | 2              | 9161      | 100.0    | 9160  | 2500      | 557 | 6.09%  |
| STDF        | 4.0       | 4.000  | 2              | 14454     | 0.00000  | 14454 | 4000      | 328 | 2.27%  |
| STDG        | 5.0       | 5.000  | 2              | 18847     | 66639420 | 18846 | 5000      | 146 | 0.777% |

 Slope:
 4.1700

 Intercept:
 0.0000

 R^2:
 0.00000

Accutest Laboratories,

### 7.2

# **TOC-Control**

#### Samples

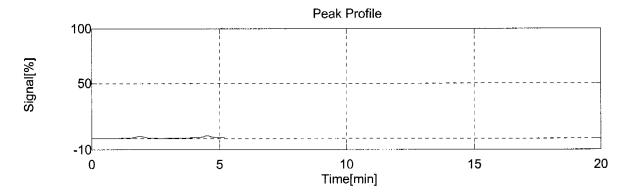
Sample Name:

CRI

Sample ID:

Remark: Comment:

tocsscal.met


Method: Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1,000    | 09/04/2012 09:38:38 |

| Mean Area | Conc     | Result | SD      | cv    | Modified |
|-----------|----------|--------|---------|-------|----------|
| 391       | 0.09412% |        | 0.02356 | 25.0% |          |

| No. | Range | Area | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 460  | 0.11078  |       | ****  | 09/04/2012 09:32:22 | b20829s1.cal |
| 2   | 5     | 323  | 0.077458 |       | ***** | 09/04/2012 09:38:38 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

HSTD

Sample ID: Remark:

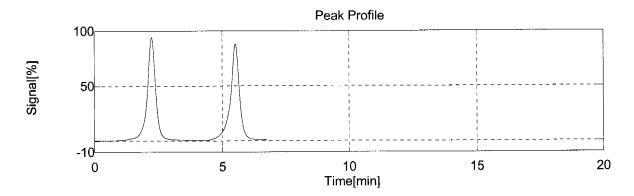
Comment:

Method:

tocsscal.met

Accutest Laboratories,




Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 09:52:44 |

| Mean Area | Conc   | Result | SD      | cv | Modified |
|-----------|--------|--------|---------|----|----------|
| 19098     | 5.057% |        | 0.05956 |    |          |

| No. | Range | Area  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 18913 | 5.0151 |       | ***** | 09/04/2012 09:47:08 | b20829s1.cal |
| 2   | 5     | 19283 | 5.0994 |       | ***   | 09/04/2012 09:52:44 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

ICV

Sample ID:

KHP

Remark:

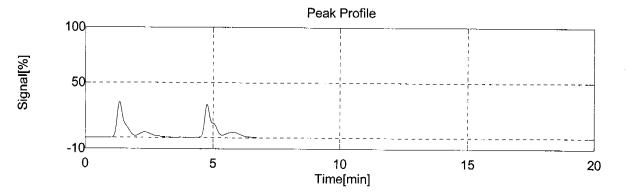
Comment:

Method:

tocsscal.met

4. 1

Cal Curve:


1: b20829s1.cal

|   | Туре    | Anatysis | Dilution | Date/Time |
|---|---------|----------|----------|-----------|
| ! | Unknown | SSM-TC   | 1.000    |           |

Accutest Laboratories,

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 7157      | 1.927% |        | 0.03198 | 1.66% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7236 | 1.9491 |       | ****  | 09/04/2012 10:06:30 | b20829s1.cal |
| 2   | 5     | 7078 | 1.9039 |       | ***** | 09/04/2012 10:13:08 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

CCV

Sample ID:

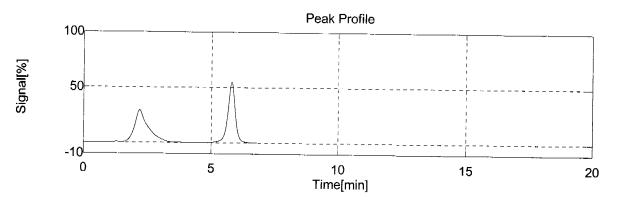
Remark:

Comment:

Method:

tocsscal.met

Cal Curve:


1: b20829s1.cal

|   | Туре   | Analysis | Dilution | Date/Time           |
|---|--------|----------|----------|---------------------|
| υ | nknown | SSM-TC   | 1.000    | 09/04/2012 10:31:34 |

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 9827      | 2.689% |        | 0.04588 | 1.71% |          |

Accutest Laboratories,

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9713 | 2.6566 |       | ***** | 09/04/2012 10:21:05 | b20829s1.cal |
| 2   | 5     | 9942 | 2.7215 |       | ***** | 09/04/2012 10:31:34 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

GP66744-MB2

Sample ID:

**TOCLK** 

Remark:

Comment:

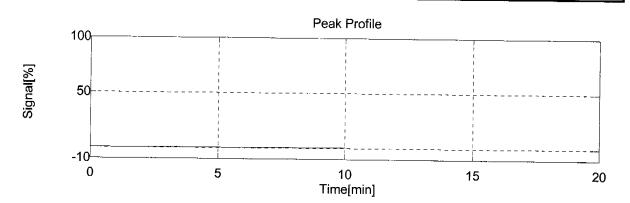
Method:

tocss.met

Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 10:46:01 |


| Mean Area | Conc   | Result | SD    | CV    | Weight | Modified |
|-----------|--------|--------|-------|-------|--------|----------|
| 0         | 0.000% |        | 0.000 | 0.00% | 1000   |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 1000   | 0.0000 |       | ***** | 09/04/2012 10:39:07 | b20829s1.cal |
| 2   | 5     | 0    | 1000   | 0.0000 |       | ***** | 09/04/2012 10:46:01 | b20829s1.cal |

Accutest Laboratories,

09/04/2012 15:07:49

JB14201R



#### <u>Samples</u>

Sample Name:

GP66744-B2

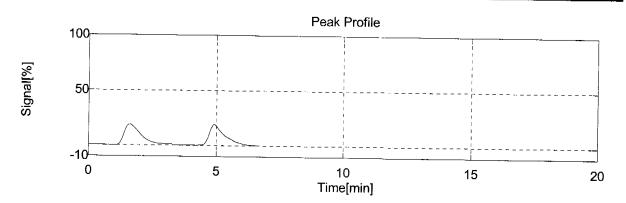
Sample ID:

Remark: Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 11:03:38 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 7129      | 0.1919% |        | 0.00196 | 1.02% | 1000   |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 7178 | 1000   | 0.19325 |       | ***** | 09/04/2012 10:56:08 | b20829s1.cal |
| 2   | 5     | 7081 | 1000   | 0.19048 |       | ***** | 09/04/2012 11:03:38 | b20829s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

JB14312-15R

Sample ID:

Remark:

Comment:

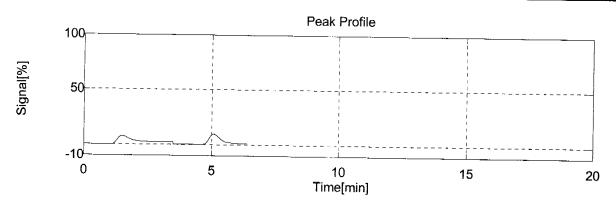
Method:

tocss.met

Cal Curve:

1: b20829s1.cal

| Туре    |   | Analysis | Dilution | Date/Time           |
|---------|---|----------|----------|---------------------|
| Unknown | s | SM-TC    | 1.000    | 09/04/2012 11:13:59 |


| Mean Area | Conc     | Result | SD      | CV    | Weight | Modified |
|-----------|----------|--------|---------|-------|--------|----------|
| 2650      | 0.07983% |        | 0.00139 | 1.74% | 835.7  |          |

| No. | Range | Area | Weight | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 2690 | 838.5  | 0.080810 |       | ****  | 09/04/2012 11:09:21 | b20829s1.cal |
| 2   | . 5   | 2610 | 832.8  | 0.078845 |       | ***** | 09/04/2012 11:13:59 | b20829s1.cal |

Accutest Laboratories,

## 7.2

## **TOC-Control**



## Samples

Sample Name:

JB15015-1R

Sample ID:

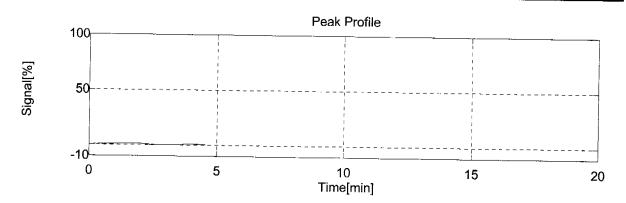
Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 11:23:40 |

| Mean Area | Conc     | Result | SD      | cv   | Weight | Modified |
|-----------|----------|--------|---------|------|--------|----------|
| 357       | 0.08386% |        | 0.08665 | 103% | 102.9  |          |

| No. | Range | Area | Weight | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 619  | 103.8  | 0.14513  |       | ****  | 09/04/2012 11:18:46 | b20829s1.cal |
| 2   | 5     | 96   | 101.9  | 0.022592 |       | ***** | 09/04/2012 11:23:40 | b20829s1.cal |

Accutest Laboratories,



## <u>Samples</u>

Sample Name:

JB15015-1R

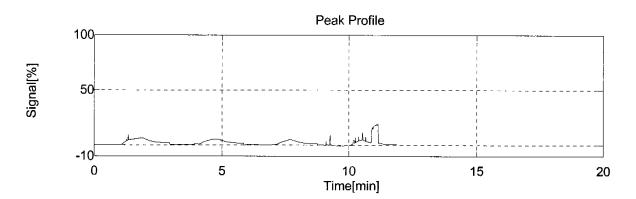
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 12:44:23 |

| Mean Area | Conc     | Result | SD      | cv    | Weight | Modified |
|-----------|----------|--------|---------|-------|--------|----------|
| 244       | 0.06113% |        | 0.02600 | 42.5% | 1005   |          |

| No. | Range | Area | Weight | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 2589 | 1007   | 0.064684 |       | ***** | 09/04/2012 12:18:49 | b20829s1.cal |
| 2   | 5     | 1843 | 1006   | 0.045464 | -     | ***** | 09/04/2012 12:24:15 | b20829s1.cal |
| 3   | 5     | 1537 | 1000   | 0.038064 |       | ***** | 09/04/2012 12:35:03 | b20829s1.cal |
| 4   | 5     | 3800 | 1006   | 0.096325 |       |       | 09/04/2012 12:44:23 | b20829s1.cal |

Accutest Laboratories,



## <u>Samples</u>

Sample Name:

CCV

Sample ID:

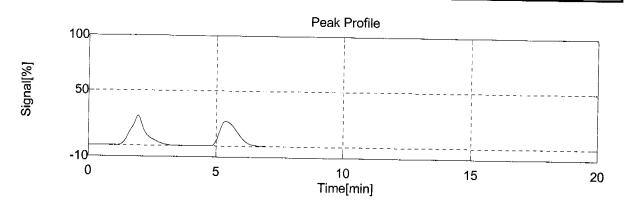
Remark:

Comment:

Method:

tocsscal.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 13:01:49 |

| Mean Area | Conc   | Result | SD      | CV     | Modified |
|-----------|--------|--------|---------|--------|----------|
| 9706      | 2.655% |        | 0.01783 | 0.672% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9751 | 2.6673 |       | ***** | 09/04/2012 12:51:39 | b20829s1.cal |
| 2   | 5     | 9662 | 2.6421 |       | ****  | 09/04/2012 13:01:49 | b20829s1.cal |

Accutest Laboratories,



## <u>Samples</u>

Sample Name:

JB14201-12R

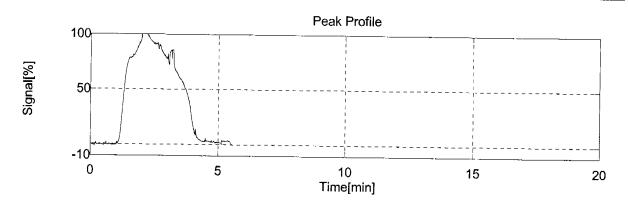
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 13:28:45 |

|   | Mean Area | Conc   | Result | SD    | cv    | Weight | Modified |
|---|-----------|--------|--------|-------|-------|--------|----------|
| L | 112645    | 25.64% |        | 0.000 | 0.00% | 102.8  |          |

| No. | Range | Area   | Weight | Conc   | Excl. | Notes  | Date/Time           | Cal Curve    |
|-----|-------|--------|--------|--------|-------|--------|---------------------|--------------|
| 1   | 5     | 112645 | 102.8  | 25.636 |       | **h*** | 09/04/2012 13:28:45 | b20829s1.cal |

Accutest Laboratories,



## <u>Samples</u>

Sample Name:

JB14201-12R

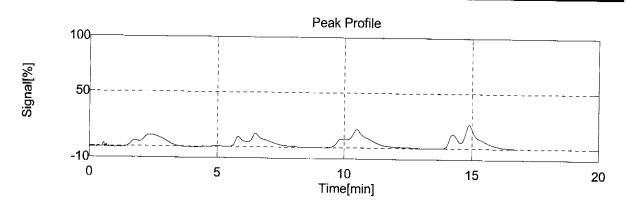
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 14:22:42 |

| Mean Area | Conc   | Result | SD    | cv    | Weight | Modified |
|-----------|--------|--------|-------|-------|--------|----------|
| 7928      | 24.33% |        | 4.631 | 19.0% | 8.775  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7199 | 9.100  | 21.303 |       | ***** | 09/04/2012 14:04:19 | b20829s1.cal |
| 2   | 5     | 5922 | 8.000  | 19.663 |       | ****  | 09/04/2012 14:10:22 | b20829s1.cal |
| 3   | 5     | 8765 | 8.900  | 26.818 |       | ***** | 09/04/2012 14:17:18 | b20829s1.cal |
| 4   | 5     | 9826 | 9.100  | 29.545 |       | ***** | 09/04/2012 14:22:42 | b20829s1.cal |

Accutest Laboratories,



## <u>Samples</u>

Sample Name:

JB14519-15RT

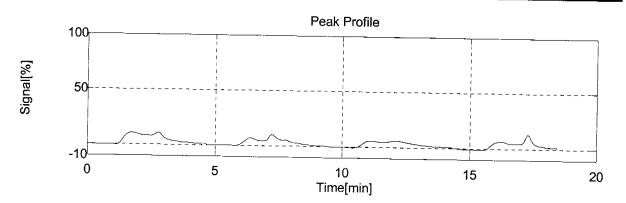
Sample ID:

Remark:

Comment:

tocss.met

Method: Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 14:50:54 |

| Mean Area | Conc   | Result | SD     | cv    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 7318      | 3.853% | **     | 0.6910 | 17.9% | 51.23  | -        |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9148 | 51.20  | 4.8758 |       | ***** | 09/04/2012 14:30:55 | b20829s1.cal |
| 2   | 5     | 6835 | 50.20  | 3.6541 |       | ***** | 09/04/2012 14:37:05 | b20829s1.ca/ |
| 3   | 5     | 6718 | 51.50  | 3.4969 |       | ***** | 09/04/2012 14:44:30 | b20829s1.cal |
| 4   | 5     | 6574 | 52.00  | 3.3840 |       | ****  | 09/04/2012 14:50:54 | b20829s1.cal |

Accutest Laboratories,



## <u>Samples</u>

Sample Name:

CCV

Sample ID:

Remark:

Comment:

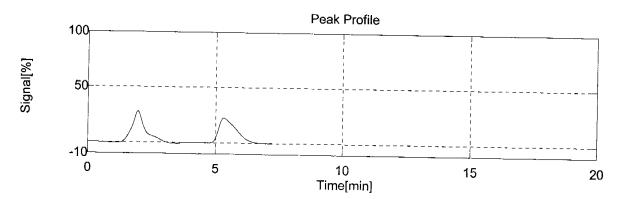
Method:

tocsscal.met

Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 15:07:35 |


|   | Mean Area | Conc   | Result | SD      | cv     | Modified |
|---|-----------|--------|--------|---------|--------|----------|
| Ĺ | 9731      | 2.662% |        | 0.01723 | 0.647% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9774 | 2.6738 |       | ****  | 09/04/2012 14:56:29 | b20829s1.cal |
| 2   | 5     | 9688 | 2.6495 |       | ***** | 09/04/2012 15:07:35 | b20829s1.cal |

Accutest Laboratories,

## 7

## **TOC-Control**



## Statistics / Summary

| Sample Name  | Analysis | Conc.     | Abs C [μg] |
|--------------|----------|-----------|------------|
| CRI          | SSM-TC   | 0.09412 % | 94         |
| HSTD         | SSM-TC   | 5.057 %   | 5057       |
| ICV          | SSM-TC   | 1.927 %   | 1926       |
| ccv          | SSM-TC   | 2.668 %   | 2668       |
| GP66744-MB2  | SSM-TC   | 0.000 %   | 2000       |
| GP66744-B2   | SSM-TC   | 0.1919 %  | 1918       |
| JB14312-15R  | SSM-TC   | 0.07983 % | 667        |
| JB15015-1R   | SSM-TC   | 0.07250 % | 350        |
| JB14201-12R  | SSM-TC   | 24.98 %   | 14250      |
| JB14519-15RT | SSM-TC   | 3.853 %   | 1972       |

Accutest Laboratories, 09/04/2012 15:07:49



Balance # B - 1 A

| Analyst   | JAA       |  |  |  |  |  |
|-----------|-----------|--|--|--|--|--|
| Method    | Suifs     |  |  |  |  |  |
| Prep Date | 9/5/12    |  |  |  |  |  |
| GP#       | 9n 71 534 |  |  |  |  |  |

Sample Prep Log

|                 | Sample Prep Log        |              |
|-----------------|------------------------|--------------|
| Sample ID       | Sample Size            | Final Volume |
| DUP JB14312-15R | + low DIH20            | negotive     |
| JB14312-1512    | 10.10 gms              |              |
| JB 15015 -1R    | 10.05 gms              |              |
| JB14201 -1212   | 10. 20                 |              |
| JB 14519-151RT  | 180.15                 |              |
| JB 14036-1RT    | 10.03                  |              |
| JB 14198-5RT    | 10.50                  |              |
| JB14367-3RT     | 10.33                  |              |
| JB14785-1RT     | 10.49 )                | V            |
| JB 14655 1R7    | 10.53 gms + 10 m1 DIHO | negative.    |
| AA (44)         |                        |              |
| 115             |                        |              |
|                 |                        |              |
|                 |                        |              |
|                 |                        |              |
|                 |                        |              |
|                 |                        |              |
|                 |                        |              |
|                 |                        |              |
|                 |                        |              |
|                 |                        |              |
|                 | \ <u>/\</u>            |              |
|                 |                        | <i>Ol</i>    |
|                 | () W                   | 4            |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_



ACCUTEST.

'EST: Ferrous Iron (FE2/7) AETHOD: ASTM D3872-86

**3DL: 0.20 %** 

F = Weight of Iron in a
Vol. Of Dichomate in mL

| ANALYST: | _ | AA |
|----------|---|----|
| DATE:    | 5 | 12 |

GN BATCH: See attached REAGENT ID's: See attached

F=, 0.0061 %Fe2/7 = ml Dichromate x F x 100 sample wt in g x (%sol/100)

| Double   D  |                      |                             |                                                  |                                                  |                                         |                  |                |               | ts?          |                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|------------------|----------------|---------------|--------------|--------------------------------------------------|
| Dright   D  | OC Summan/           |                             | ~ (                                              | u = -                                            | Sumlianto: O                            | .95 <sub>B</sub> | PD: 0. 0       | V             | (1)          |                                                  |
| MS Sample 10: 40 Ant. Spiked: Result: 40 2 Ant. Spiked: Result: Rec: Rec: Rec: Rec: Rec: Rec: Rec: Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dup. Sample ID:      |                             | M 945 ለጠነፍ                                       | niked:                                           | 7 1 8 / MS:                             | 56 to #          | EC: 96 1       | ·/_           |              |                                                  |
| Sel Dand prep date:   Known:   Result:   Reculting   Resulting    | MS Sample ID: 51     | Originai: 1<br>ति दि । 12-1 | Bosult: 20. 2                                    |                                                  | <u> ۲۰۰۰ - RDL: ۲۰</u>                  | <u> </u>         | HUL:L_         |               |              |                                                  |
| Spike prep: 0.25 9mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MB ID and prep date: | <u></u>                     | Amt. Spiked:                                     |                                                  |                                         |                  |                |               |              |                                                  |
| Spike prep:   0.25 gmg   Colse   0.52 gmg   Cample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SB ID and prep date  |                             |                                                  |                                                  | Result:                                 |                  | 120            |               |              |                                                  |
| Sample Doscription   Sample Watgrown   Start Innotend Times   Sample Doscription   Start Innotend Times   Mind    | 1                    |                             |                                                  |                                                  |                                         |                  |                |               |              |                                                  |
| Sample Doscription   Sample Watgrown   Start Innotend Times   Sample Doscription   Start Innotend Times   Mind    | Spike prep: 0,25     | gms                         | coire ->                                         | 0.52                                             | yme_                                    |                  | 16             | El-al De-will |              |                                                  |
| Sample Description ing Start Immelied Time in ing No. 1538 with 10:40 0.0 0.10 0.10 0.12 20.2 0.2 %   SAMPLE DESCRIPTION IN INC. 10:40 0.0 0.10 0.10 0.12 20.2 0.2 %   SAMPLE DESCRIPTION IN INC. 10:40 0.0 0.0 0.65 0.65 0.95 0.95 0.95   SAMPLE DESCRIPTION IN INC. 10:40 0.65 0.65 0.95 0.95 0.95 0.95   SAMPLE DESCRIPTION IN INC. 10:40 0.65 0.65 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                             |                                                  | Titrant Start in                                 | Titrant End in                          |                  | Result in mg/l | ,             | RDL          | Linite                                           |
| GN 7153 \( \) MB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sample Description   |                             | Start Time/End Time                              |                                                  | l — — — — — — — — — — — — — — — — — — — |                  | 0.12           | 20.2          |              | <del> </del>                                     |
| GN 71534 B1  1 TRI4312-15DV 0.5 D  1 O. O O. 65 C. 65 O. 45 O. 95 O. 95  1 TRI4312-15DV 0.5 D  1 O. O O. 65 C. 65 O. 45 O. 95 O. 95  2 O. O O. O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GN 71538 -MBL        |                             | 10:40                                            |                                                  |                                         | /                | For St         | andors        |              |                                                  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ON 71534 BI          | 1                           | <del>                                     </del> |                                                  |                                         |                  |                |               | 1            | F                                                |
| GN 71538 -D1 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 TRI4312-151        | VO.50                       |                                                  | <del>                                     </del> |                                         |                  |                |               |              | <del>                                     </del> |
| GN_TIS38_S  0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GN 71538 -D.L.       | 0.50                        |                                                  |                                                  |                                         |                  |                | 56.6          | 1            |                                                  |
| 12 TB 14312 - ISR — 83.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GN 71538 S           |                             |                                                  |                                                  |                                         |                  |                |               |              |                                                  |
| 3 TB 4201-12P 0.52 3 TB 4201-12P 0.52 4 TB 14519-15R V 0.50 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 JB15015-1R        | 10.52                       | <u> </u>                                         |                                                  |                                         |                  |                |               |              |                                                  |
| 34 JB 14 519-15R 10.50  5 JB 140 36-1RT 0 51  0.0 0.65 0.65 0.87 0.87  %  6 JB 14 198 - 5RT 10.49  0.0 0.35 0.35 0.49 0.49  %  7 JB 14 307-3RT 0.49 14.05 0.0 0.50 0.50 0.73 1.2  12 JB 143 12 - 15R - 83.1  13 JB 13 560-1RT  14 JB 14 301-12R - 82.9  15 JB 14 307-3RT - 86.5  16 JB 14 0 36 - 1RT - 89.7  17 JB 14 198 - 5 RT - 90.6  18 JB 14 307-3 RT - 93.0  18 JB 14 307-3 RT - 93.0  19 JB 14 785-1RT - 17.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 TO 14201-121      | Y 0・5 <del>上</del>          |                                                  |                                                  |                                         |                  |                |               |              | <del> </del>                                     |
| S T   14036 -   RT   0   S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 71, TO 14 519-151    | λ <b>/</b> Ο 20_            |                                                  |                                                  | / /                                     |                  |                | 08            | 7            | <del>                                     </del> |
| 17   18   14   14   15   17   18   14   18   18   18   14   18   18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11 0 14026-1R        | 10.01                       |                                                  |                                                  |                                         |                  |                |               | <del></del>  |                                                  |
| 7 7 78 14 307 - 3 RT V 0.47  2 8 7 8 1 4 7 8 5 - 1 RT V 0.49  3 9 7 8 1 4 5 5 - 1 RT V 0.49  14 : 0.5 0.0 0.50 0.50 0.73 0.73 V %  18 7 8 1 4 3 1 2 - 1 5 R - 83.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CET Q 14 198 - 5R    | 1/0-49                      |                                                  |                                                  |                                         |                  |                |               |              | <del></del>                                      |
| 2 8 TB14785-1RT 0.49 14.05 0.0 0.50 0.73 0.73 \\ 2 9 TB144655-1RT 0.49 14.05 0.0 0.50 0.50 0.73 \\ 3 12 TB13560-1RT \\ 12 TB14312-1SR \\ 13 T3[5015-1]R \\ 14 TB14301-12R \\ 15 TB14519-15RT \\ 82.9 \\ 15 TB14519-15RT \\ 86.5 \\ 16 TB14036-1RT \\ 87.7 \\ 88.7 \\ 18 TB14307-3RT \\ 98.0 \\ 19 TB14785-1RT \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 \\ 98.0 | 1 - TB 14307-3R      | T/0.47                      |                                                  | O.C                                              |                                         | 0.33             |                |               | <del></del>  | %                                                |
| 19 JB14 655-1RT   0.49   14.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.05   0.  | 2 0 TB 17705 - 18    | 7/0 49                      | 1 1                                              | 0.0                                              |                                         |                  | <u> </u>       |               | <del>,</del> | %                                                |
| 10 JB   3560 -   RT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 8 J D 14 18 3 1 1  | PF 0 49                     | 14.03                                            | 0.0                                              | 0.50                                    | 0.50             | 0.15           | 0.1           | 2            | %                                                |
| 12 JB 14312 + 15R — 83.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29 JBT- 033-1        | 107                         |                                                  |                                                  |                                         |                  |                |               | <del></del>  | %                                                |
| 12 JB 143 12 + 15R — 83.1<br>13 JB 150 15 - 11R — 96.1<br>14 JB 14 20 1 - 12R — 82.9<br>15 JB 14 5 19 - 15 RT — 86.5<br>16 JB 14 036 — 1RT — 89.7<br>17 JB 14 198 — 5 RT — 90.6<br>18 JB 14307 — 3 RT — 93.0<br>19 JB 14 795 — 1RT — 77.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |                             |                                                  |                                                  |                                         |                  |                | <u> </u>      | <del></del>  | %                                                |
| 13 5 1 5 0 1 5 - 1 R - 96. 1  14 J R 1 4 3 0 1 - 1 2 R - 82. 9  15 5 R 1 4 5 1 9 - 1 5 R T - 86. 5  16 J R 1 4 0 3 6 - 1 R T - 89. 7  17 J R 1 4 1 9 8 - 5 R T - 90. 6  18 J R 1 4 3 0 7 - 3 R T - 93. 0  19 J R 1 4 7 8 5 - 1 R T - 77. 8  %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 70 14313             | + 15 B                      | 83.                                              | 1                                                |                                         | MS:              | = <u>0,25</u>  |               |              | %                                                |
| 13 575 14701-12R — 82. 9  14JR 14301-12R — 82. 9  15 5R 14519-15RT — 86. 5  16 JR 14036 — 1RT — 89. 7  17 JR 14198 — 5 RT — 90. 6  18 JR 14307-3 RT — 93. 0  10 JR 14795 — 1RT — 77. 8  %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12 313 1-13 1-       | 110                         |                                                  |                                                  |                                         |                  |                |               | -831         | %                                                |
| 15 JB 14519-15RT - 86.7<br>16 JB 14036 - 1RT - 89.7<br>17 JB 14198 - 5 RT - 90.6<br>18 JB 14307 - 3 RT - 93.0<br>10 JB 14795 - 1RT - 77.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13 51313013          |                             |                                                  |                                                  |                                         |                  |                | <u>57.8</u>   |              | %                                                |
| 15 JB 14 036 - IRT - 89. 7<br>16 JB 14 198 - 5 RT - 90. 6<br>17 JB 14 198 - 5 RT - 93. 0<br>18 JB 14 795 - IRT - 77. 8<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14JB 14 301- 1-      | 1404                        | 86.5                                             |                                                  |                                         |                  |                |               |              | %                                                |
| 16 JR14030 173 190.6 %  17 JB 14 198 - 5 RT - 90.6 %  18 JB 14307 3 RT - 93.0 %  10 JB 14795   RT - 77.8 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15 SB 14 5 19-       | - 105 -                     | 89.7                                             | <u> </u>                                         |                                         |                  |                |               |              | %                                                |
| 17 JB 14116 JRT 93.0 %  18 JB 14307 3RT 93.0 %  10 JB 14795 IRT 77.8 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16 JB 14036          |                             |                                                  |                                                  |                                         |                  |                |               |              | %                                                |
| 18 JB 14307 3RT - 77.8 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17 JB 14 198         | - 2 KI                      |                                                  |                                                  |                                         |                  |                |               |              | %                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18 JB 1430           | 1-13 RT.                    |                                                  |                                                  |                                         |                  |                |               |              | t                                                |
| -13466 - 107 - 43.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                    |                             |                                                  |                                                  | _                                       |                  |                |               |              | %                                                |

eason codes for data corrections : 1 - reviewer error correction; 2 - transcription error; 3-computer error; 4- analyst error

| NALYST:  | JAA | DATE:_ | 9 5 1 | 2_QC RE      | EVIEW:_ |
|----------|-----|--------|-------|--------------|---------|
| OMMENTS: |     |        |       | <del>-</del> |         |

Form: GN-198



## 7.4



## Reagent Information Log Fe2/7

Work Group #\_\_\_\_\_

| Reagent                           |            | Reagent # or Manufacturer/Lot         |          |
|-----------------------------------|------------|---------------------------------------|----------|
| Iron Wire Std                     |            | Aldrich # MKBH 597                    | 81 NA    |
| HCL (1:1)                         |            | me4-31822- Fez/7                      | 11/12/12 |
| 60% Sulfuric Acid/Phosphoric Acid |            | me6-32705-Fez/7                       | 12/26/1  |
| Potassium Dichromate Solution     |            | Ine 6 - 32673 - Fez/7                 |          |
| Diphenyl Amino Indicator          |            | gne4-31960- Fez/7                     |          |
|                                   |            |                                       |          |
|                                   | - <u>-</u> | •                                     |          |
|                                   | <b>.</b> . | · · · · · · · · · · · · · · · · · · · |          |
|                                   | -          |                                       | •        |
|                                   |            | A)                                    |          |
|                                   | <u>-</u>   | · · · · · · · · · · · · · · · · · · · |          |

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN087-01



|                               | Sample         | BKGRD          | Analysis                                         | Y Values Corr<br>Sample | X Values           | Final Vol.        | Sam Wt.          |            |                                  |                |                  |                  |
|-------------------------------|----------------|----------------|--------------------------------------------------|-------------------------|--------------------|-------------------|------------------|------------|----------------------------------|----------------|------------------|------------------|
| Sample #                      | Absorbance     | Abs            | Times                                            | Absorbance              | Conc(mg/l)         | (ml)              |                  |            | Final Conc.                      | Units          | MDL              | RDL              |
| ∫est Title:<br>GN Batch: ——   | XCRAGN71541    | 60             | 21440                                            | <b>.</b>                |                    |                   | wethou:          | : 50V040 J | 060A, 7196A                      |                |                  |                  |
| Analyst:                      | MM             | 9.             | 71540                                            | Ī                       |                    |                   |                  |            |                                  |                |                  |                  |
| Prep Date:                    | 9/4/2012       |                | ay a                                             |                         | Note: All          | results b         | elow sho         | own on a   | wet weight basi                  | s.             |                  |                  |
| Analysis Date:                | 9/5/2012       |                | My 9                                             | 13.12                   |                    |                   |                  |            |                                  |                |                  |                  |
| Instrument ID: {              | G              | !              | ,                                                |                         |                    |                   |                  |            | Corr. Coef:                      | 0.99994        |                  |                  |
| Cal, Blk.                     | 0.000          | · NA           | 9:58                                             | 0.000                   | 0.0000             | 7                 |                  |            | <u>0011. 0041.</u>               | 0.0000         |                  |                  |
| STD 1                         | 0.008          | NA             | NA                                               | 0.008                   | 0.0100             |                   |                  |            | Slope:                           | 0.892          |                  |                  |
| STD 2                         | 0.043          | NA             | NA                                               | 0.043                   | 0.0500             | 4                 |                  |            |                                  | 0.0004         |                  |                  |
| STD 3                         | 0.089          | NA<br>NA       | NA<br>NA                                         | 0.089                   | 0.1000             | -                 |                  |            | Y intercept:                     | 0.0001         |                  |                  |
| STD 4<br>STD 5                | 0.267<br>0.455 | NA<br>NA       | NA<br>NA                                         | 0.267<br>0.455          | 0.5000             | 1                 |                  |            |                                  |                |                  |                  |
| STD 6                         | 0.710          | NA.            | NA                                               | 0.710                   | 0.8000             | <u>Final Vol.</u> | Sam. Wt.         |            |                                  |                |                  |                  |
| STD 7                         | 0.891          | NA             | 10:04                                            | 0.891                   | 1.0000             | (ml)              | (a)              | Dilution   | Final Conc.                      | Units          | MDL              | RDL              |
| CCV                           | 0.432          | NA             | 15:52                                            | 0,432                   | 0.4842             | NA<br>NA          | NA<br>NA         | NA NA      | NA NA                            | mg/I           | 0.003            | 0.010            |
| CCB<br>GP66961-MB1            | 0.000          | 0.000          | 15:52<br>15:58                                   | 0.000                   | -0.0002<br>-0.0002 | NA<br>100.0       | NA<br>2.5000     | NA<br>1    | -0,007                           | mg/l<br>mg/kg  | 0.003            | 0.010            |
| GP66961-B1                    | 0.846          | 0.000          | 15:58                                            | 0.846                   | 0.9483             | 100.0             | 2.5000           | 1          | 37.932                           | mg/kg          | 0.117            | 0,400            |
| GP66961-S1                    | 0.614          | 0.007          | 15:58                                            | 0.607                   | 0.6804             | 100,0             | 2.5600           | 1          | 26,576                           | mg/kg          | 0.114            | 0.391            |
| GP66961-D1                    | 0.026          | 0.009          | 15:58                                            | 0.017                   | 0.0189             | 100.0             | 2,5500           | 1          | 0.741                            | mg/kg          | 0.115            | 0.392            |
| JB14201-12R                   | 0.022          | 0.007          | 15:58                                            | 0.015                   | 0.0167             | 100.0             | 2.5700           | 1 2        | 0.648                            | mg/kg          | 0.114            | 0.389            |
| B14201-12RPSCON<br>GP66961-B2 | 0.458<br>>3    | 0.003<br>OVR   | 15:58                                            | 0.455<br>FALSE          | 0.5099             | 100.0             | 2.5700<br>2.5000 | 1          | 39.684<br>-0.007                 | mg/kg<br>mg/kg | 0.228            | 0,778            |
| GP66961-B2<br>GP66961-S2      | >3             | OVR            | <del>                                     </del> | FALSE                   | -0.0002            | 100.0             | 2.5600           | 1          | -0.007                           | mg/kg          | 0.114            | 0.391            |
| GP66961-B2                    | 0.429          | 0.000          | 15:58                                            | 0.429                   | 0.4808             | 100.0             | 2.5000           | 50         | 961.593                          | mg/kg          | 5.860            | 20.000           |
| GP66961-S2                    | 0.363          | 0.000          | 15:58                                            | 0.363                   | 0.4068             | 100.0             | 2.5600           | 50         | 794.535                          | mg/kg          | 5.723            | 19.531           |
| ccv                           | 0.419          | NA             | 15;58                                            | 0.419                   | 0.4696             | NA                | NA               | NA NA      | NA NA                            | mg/s           | 0.003            | 0.010            |
| ССВ                           | 0.000          | NA             | 15;58                                            | 0.000                   | -0.0002            | NA<br>100.0       | NA _             | NA<br>1    | NA<br>#DIV/0!                    | mg/l<br>mg/kg  | 0,003<br>#DIV/0! | 0,010<br>#DIV/0! |
|                               |                |                | <del>-</del>                                     | FALSE<br>FALSE          | -0.0002<br>-0.0002 | 100.0<br>100.0    | <u></u>          | 1          | #DIV/0!                          | mg/kg          | #DIV/0!          | #DIV/0!          |
| 1                             |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0!                          | mg/kg          | #DIV/0!          | #DIV/0!          |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0!                          | mg/kg          | #DIV/0!          | #DIV/0!          |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0I                          | mg/kg          | #DIV/0!          | #D!V/0I          |
|                               |                |                | <u> </u>                                         | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0!                          | mg/kg          | #DIV/0!          | #DIV/0!          |
|                               |                |                | ļ                                                | FALSE<br>FALSE          | -0.0002<br>-0.0002 | 100.0             |                  | 1          | #DIV/0!<br>#DIV/0!               | mg/kg<br>mg/kg | #DIV/0!          | #DIV/0!          |
|                               |                |                | <del>   </del>                                   | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0!                          | mg/kg          | #DIV/0!          | #DIV/0!          |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0I                          | mg/kg          | #DJV/0!          | #DÎV/0!          |
| CCV                           | 0.436          | NA             | 16:29                                            | 0.436                   | 0.4886             | NA                | NA               | NA         | NA NA                            | mg/l           | 0.003            | 0.010            |
| ССВ                           | 0.000          | NA -           | 16:29                                            | 0.000                   | -0.0002            | NA<br>Inn n       | NA<br>0.5500     | NA NA      | NA<br>1 700                      | mg/l           | 0.003            | 0.010            |
| JB14201-1R                    | 0.184          | 0.145          | 16:35                                            | 0.039                   | 0.0436<br>0.0010   | 100.0<br>100.0    | 2.5500<br>2.5300 | 1          | 1.708<br>0.038                   | mg/kg<br>mg/kg | 0.115<br>0.116   | 0.392            |
| JB14201-2R<br>JB14201-3R      | 0.002          | 0.001          | 16:35<br>16:35                                   | 0.001                   | 0.0010             | 100.0             | 2,4800           | 1          | 0.717                            | mg/kg          | 0.118            | 0.403            |
| JB14201-4R                    | 0.031          | 0.017          | 16:35                                            | 0,014                   | 0.0155             | 100.0             | 2.5500           | 1          | 0.609                            | mg/kg          | 0.115            | 0.392            |
| JB14201-5R                    | 0.008          | 0.000          | 16:35                                            | 0.008                   | 0.0088             | 100.0             | 2,5000           | 1          | 0.352                            | mg/kg          | 0.117            | 0.400            |
| JB14201-6R                    | 0.003          | 0.002          | 16:35                                            | 0.001                   | 0.0010             | 100.0             | 2.5300           | 1          | 0.038                            | mg/kg          | 0.116            | 0.395            |
| JB14201-7R                    | 0.006          | 0.002          | 16:35                                            | 0.004                   | 0.0043<br>0.0144   | 100.0<br>100.0    | 2.4900           | 1          | 0.173                            | mg/kg<br>mg/kg | 0.118<br>0.114   | 0.402            |
| JB14201-8R<br>JB14201-9R      | 0.014<br>0.016 | 0.001<br>0.011 | 16:35<br>16:35                                   | 0.013                   | 0.0144             | 100.0             | 2.5700           | 1          | 0.218                            | mg/kg          | 0.118            | 0.402            |
| JB14201-10R                   | 0.016          | 0.012          | 16:35                                            | 0.004                   | 0.0043             | 100.0             | 2.5400           | 1          | 0.170                            | mg/kg          | 0.115            | 0,394            |
| CCV                           | 0.431          | NA             | 16:35                                            | 0.431                   | 0.4830             | NA .              | NA               | NA         | NA                               | mg/l           | 0.003            | 0.010            |
| ССВ                           | 0.000          | NA             | 16:35                                            | 0.000                   | -0.0002            | NA .              | NA               | NA .       | NA<br>0.477                      | mg/l           | 0.003            | 0.010            |
| JB14201-11R                   | 0.029          | 0.018          | 16:35                                            | 0.011                   | 0.0122             | 100.0             | 2,5500           | 1 1        | 0.477<br>#DIV/0!                 | mg/kg<br>mg/kg | 0.115<br>#DIV/0! | 0.392<br>#DIV/0! |
|                               |                |                |                                                  | FALSE<br>FALSE          | -0.0002<br>-0.0002 | 100.0             |                  | 1          | #DIV/0!                          | mg/kg          | #DIV/0!          | #DIV/0!          |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0!                          | mg/kg          | #DIV/0!          | #DIV/0!          |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0I                          | mg/kg          | #DIV/0!          | #DIV/0!          |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0!                          | mg/kg          | #DIV/0!          | #DIV/0!          |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0!<br>#DIV/01               | mg/kg<br>mg/kg | #DIV/0!          | #DIV/0!          |
| -                             |                |                |                                                  | FALSE<br>FALSE          | -0,0002<br>-0.0002 | 100.0             |                  | 1          | #DIV/0!                          | mg/kg<br>mg/kg | #DIV/0!          | #DIV/0!          |
| ,                             |                |                |                                                  | FALSE                   | -0.0002            | 100.0             |                  | 1          | #DIV/0!                          | mg/kg          | #DfV/0!          | #DIV/0!          |
| ccv                           | 0.430          | NA             | 16:35                                            | 0.430                   | 0.4819             | NA                | NA               | NA         | NA                               | mg/l           | 0.003            | 0.010            |
| ССВ                           | 0.000          | NA             | 16:35                                            | 0,000                   | -0.0002            | NA                | NA               | NA         | NA NA                            | mg/l           | 0.003            | 0,010            |
|                               |                |                | ļ <u></u>                                        | FALSE                   | -0.0002            | 100.0             | 2.5000           | 1          | -0.007                           | mg/kg          | 0.117            | 0.400            |
|                               |                |                |                                                  | FALSE<br>FALSE          | -0,0002<br>-0.0002 | 100.0             | 2.5000<br>2.5000 | 1          | -0.00 <b>7</b><br>-0.00 <b>7</b> | mg/kg<br>mg/kg | 0.117            | 0.400            |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             | 2,5000           | 1          | -0,007                           | mg/kg          | 0.117            | 0.400            |
|                               |                |                |                                                  | FALSE                   | -0.0002            | 100.0             | 2.5000           | 1          | -0.007                           | mg/kg          | 0.117            | 0.400            |



Test: Hexavalent Chromium

Product: XCr

MDL = 0.117 mg/kgRDL = 0.40 mg/kg

GNBatch ID: GN71540 Date: 05000

| Method: SW846 3060         | )A/7196A           |                         |                                                                                          | ,, ,               | ·<br>·                   |               |
|----------------------------|--------------------|-------------------------|------------------------------------------------------------------------------------------|--------------------|--------------------------|---------------|
| Digestion Batch QC         | Summary            | Units                   | = mg/kg                                                                                  |                    |                          |               |
| Method Blank ID: APO       | 69161MBI Date      | e:95002                 | Result: <u>LMDL</u> RDL                                                                  | : 040              | <pre>RDL: WO-</pre>      |               |
| Sol. Spike Blank ID: 61    | 20109101-B1        | Date:                   | Result: <u>31.93</u>                                                                     | Spike: <u>40 (</u> | <u>∭</u> %Rec.: <u>₩</u> | 1.200         |
| Insol. Spike Blank ID: 🖒   | 12009101-182 E     | ∂ate:                   | Result: <u>@10 .59 </u>                                                                  | Spike/113-9        | 20%Rec.: 10              | <u>5.29</u> 0 |
| Duplicate ID: 6 P.0 100 le | 01-D1 Samp         | o. Result: <u>. VAC</u> | Dup. Result: . 7                                                                         | 41 %1              | RPD: <u>13.4</u> 9       | 0             |
| SOI. MS ID: GPOCOTO        | 1-SI_Samp. R       | Result:                 | MS Result: 26.59                                                                         | Spike: 20.0        | %Rec: <u>101</u> 0       | A90           |
| Insol. MS ID: EPULO        |                    |                         | MS Result: 104-5                                                                         | 1- Spike: 94       | L.\0%Rec: 0              | A.390         |
| Post Spike ID: US 420      |                    | 1_                      | PS Result: 29 . 102                                                                      |                    | 5] %Rec:0                |               |
| Diluted Sample ID:         |                    | Samp. Result:           | Dil. Result:_                                                                            |                    | _ %RPD:                  | <u> </u>      |
| pH adj. PS ID:             | Samp               | o. Result:              | MS Result:                                                                               | Spike:             | %Rec:                    | <del></del>   |
| Analysis Batch QC Sun      | nmary              | Units = mg/l            |                                                                                          |                    |                          | <u></u>       |
| ccv: alsbaz                | Result: 494        | TV: 0.500               | %Rec.: 910-096                                                                           |                    |                          |               |
| CCV:                       | Result: 470        | ) TV: _0.500            | %Rec.: 04-090                                                                            |                    |                          |               |
| ccv:                       | Result: 499        | 3                       | %Rec.: 07.898                                                                            |                    |                          |               |
| ccv:                       | Result: <u>497</u> | <u>ろ</u> _ TV: _0.500   | _ %Rec.: <u> 96.09</u> 0                                                                 |                    |                          |               |
| ccv: +                     | Result: AB         | 2_ TV:_0.500            | _ %Rec.: <u>910.4%</u>                                                                   |                    |                          |               |
| CCV:                       | Result:            | TV: _0.500              | _ %Rec.:                                                                                 |                    |                          |               |
| CCV:                       | Result:            | TV: _0.500              | _ %Rec.:                                                                                 |                    |                          |               |
| ccv :                      | Result:            | TV: _0.500              | _ %Rec.:                                                                                 |                    |                          |               |
| CCV:                       | Result:            | TV: _0.500              | _ %Rec.:                                                                                 |                    |                          |               |
| CCB: 9/5/2/2               | _ Result:∠MD1      | <u> </u>                | _ <rdl:<u>MD_</rdl:<u>                                                                   |                    |                          | ,             |
| ССВ:                       | _ Result:          | RDL:_0.010              | _ <rdl:_\(\begin{align*}\)< td=""><td></td><td></td><td></td></rdl:_\(\begin{align*}\)<> |                    |                          |               |
| CCB:                       | _ Result:          | RDL;_0.010              | <rdl:< td=""><td></td><td></td><td>•</td></rdl:<>                                        |                    |                          | •             |
| CCB:                       | Result:            | RDL:_0.010              | _ <rdl:< td=""><td></td><td></td><td></td></rdl:<>                                       |                    |                          |               |
| ссв:                       | Result: 🛨          | RDL:_0.010              | <rdl:< td=""><td></td><td></td><td></td></rdl:<>                                         |                    |                          |               |
| CCB:                       | Result:            | RDL:_0.010              | <rdl: *<="" td=""><td></td><td></td><td></td></rdl:>                                     |                    |                          |               |
| CCB:                       | _ Result:          | RDL:_0.010              | _ <rdl:< td=""><td></td><td></td><td></td></rdl:<>                                       |                    |                          |               |
| CCB:                       | Result:            | RDL:_0.010              | <rdl:< td=""><td></td><td></td><td></td></rdl:<>                                         |                    |                          |               |
| ССВ:                       | Result:            | RDL:_0.010              | <rdl:< td=""><td></td><td></td><td></td></rdl:<>                                         |                    |                          |               |
|                            |                    |                         |                                                                                          |                    |                          | * .           |

| Reagent Reference Information - refer to attached reagent reference information page(s).                              |  |
|-----------------------------------------------------------------------------------------------------------------------|--|
| Insoluble spike = PbCrO <sub>4</sub> Molecular weight = 323.2 g/mol Cr = 52.0 g/mol                                   |  |
| $\{1000000 \text{ ug/g x Insoluble spike wt(g) x } 52/323.2\}/\text{ms sample wt(g)} = \text{Insoluble spike amount}$ |  |

Analyst: WW

Date: 0

Comments:

Form: GN066-01 Rev. Date: 4/25/11



## M ACCUTEST

## Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                  | 1415110                 | a owo-r                                  |                                 | pH Meter ID:                           | 48                      |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------|-------------------------|------------------------------------------|---------------------------------|----------------------------------------|-------------------------|-----------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 15 20                            | u a Al                  | 15:20                                    | 1 YO                            | Digestion Date                         | e: 9/4/<br>al=50/       |                                         |
| adj. start time:<br>adj. end time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              | 15:28<br>15:34                   | TW:00                   | 15:39<br>15:44                           | - 16:13<br>- 16:16              | pH adj. Date:<br>GN Batch ID:          | GRIE                    | ÃÃ                                      |
| 1P6961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample<br>Weight in<br>g     | pH after<br>HNO3                 | Final<br>Volume<br>(ml) | pH after<br>H2SO4                        | bkg pH<br>after<br>H2SO4        | Spike<br>Amounts                       | Spike<br>Solution       | Digestate Description/Comments          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 74B<br>709                       | 100                     | 192                                      |                                 |                                        | PP                      | PAHA                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 1,01                             |                         | V-12                                     |                                 |                                        |                         | V                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 7910<br>7.980                    | 100                     | 190                                      |                                 |                                        |                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | 1.970                            | 4                       | 1.40                                     |                                 |                                        |                         |                                         |
| ol) JB14201-12<br>(sol.)<br>(sol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2-56<br>2-56<br>2-55<br>2-90 | 787<br>739<br>739<br>730<br>730  | 100                     | 7.01<br>1.025<br>1.001<br>1.910<br>1.011 | 191<br>012<br>183<br>174<br>012 | 1.0ml<br>0.0134g<br>1.0ml (<br>0.0142g | DODING<br>POCK<br>PRICY | bounde                                  |
| 1430 - 12<br>  -2 D<br>  -3 P<br>  -4 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.55<br>2.48<br>2.55<br>2.55 | 794<br>732<br>749<br>751         |                         | 199                                      | 1.89<br>1.86<br>1.91<br>1.73    |                                        |                         | Very from Sight gold gold Geor          |
| -50<br>-70<br>-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.50<br>2.53<br>2.49<br>2.57 | 796<br>782<br>770<br>770<br>7702 |                         | 195                                      | 176                             |                                        |                         | Clear<br>Clear<br>Sight gold<br>Sp H    |
| 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.57<br>2.57<br>2.57         | 716                              |                         | 180                                      | 175<br>100<br>101               |                                        |                         | Gold<br>Gold<br>Gold                    |
| attention and an artist at the second and a second at the |                              |                                  |                         |                                          | \$ 47                           |                                        |                         |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                  |                         | 4                                        |                                 |                                        | 34 B                    | *                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                                  |                         | 0 0                                      | , 2, 3                          |                                        |                         | dilution) E.N.                          |
| sol.) usted PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150<br>150<br>151            | 796<br>171<br>1.13               | †<br>100                | 1.91<br>1.920                            | 1.94                            | 24mL (0)                               |                         | dilution (SD)  dilution (SD)  H -8 (SD) |
| 176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.54                         | ro5                              | attankad                | oacast ra                                | farence i                       | nformation na                          | ne(s)                   |                                         |
| nt Reference In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ible spike w                 | - reter to                       | 323,2}/ms               | sample wt(                               | g) = Insolu                     | uple spike amo                         | unt of PbCrO            | 4                                       |
| analyst check:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | ام نی                            | <u> </u>                | Anayst:<br>Date:                         | 9500                            |                                        |                         |                                         |
| Form: GN-067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                              |                                  |                         |                                          | -11-14-                         |                                        | -                       |                                         |

## ACCUTEST LABS

# 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

|                                                                                                                    |                     |                       |              |                                        |                | <u>ج</u> د              | e,                              | _                |                  |                  | ,                | _                |                  | <b>-</b>         |                  |                  |
|--------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------|----------------------------------------|----------------|-------------------------|---------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                                                                                    |                     |                       |              | Use calculated or                      | default spike? | sfault (40 mg/kg) spike | #DIV/0! sfault (40 mg/kg) spike | calculated spike |
|                                                                                                                    |                     | Calculated            | Spike        | Amount in                              | mg/kg          | 41.505                  | #D!\/\0[                        | #VALUE!          |
|                                                                                                                    |                     | Est. Read- Calculated | back on      | curve in                               | l/gm           | 0.542                   | i0/AIG#                         | #VALUE!          |
|                                                                                                                    | Actual ml<br>of 100 | ppm to                | spike on     | dilution of                            | sample.        | 0.24                    |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| pike amount.                                                                                                       | Suggested           | ml of 100             | ppm to spike | Dilution to on dilution of dilution of | sample.        | 0.232                   | #DIV/0i                         | #VALUE!          |
| nd add the s                                                                                                       |                     |                       | Actual       | Dilution to                            | pe nsed        | 2                       |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| post-spike ar                                                                                                      |                     |                       | Suggested    | Dilution to                            | nse            | 1                       | 0                               | #VALUE!          |
| the diluted                                                                                                        |                     |                       |              | Dilution                               | needed         | yes                     | ou                              | #VALUE!          | #VALUE!          | E! #VALUE!       | E! #VALUE!       | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | E! #VALUE!       |
| mi aliquot of                                                                                                      |                     | Amount in             | mi to add    | Results in of 100 ppm                  | solution       | 0.463                   | 0.000                           | #VALUE!          |
| in take a 45                                                                                                       |                     |                       |              |                                        | mg/kg.         | 0.648                   |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| NOTE: Always dilute post-spike first, then take a 45 ml aliquot of the diluted post-spike and add the spike amount |                     |                       |              | Weight in 45                           | m              | 1.1565                  | 0                               | #VALUE!          |
| ys dilute post                                                                                                     |                     | PS Aliquot            | Weight in g  | Digested in                            | 100 ml         | 2.57                    |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| NOTE: Alwa                                                                                                         |                     |                       |              |                                        | Sample ID      | JB14201-12R             |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |

## 3060A/7196A INSOLUBLE SPIKE CALCULATION

| - | Amount    | Spiked | 913.861 | 842.164 | #VALUE! |
|---|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|   | Weight of | Sample | 2.5     | 2.56    |         |         |         |         |         |         |         |
| , | Weight of | PbCr04 | 0.0142  | 0.0134  |         |         |         |         |         |         |         |

## Hexavalent Chromium pH Adjustment Log

Method: SW846 3060A/7196A

|   |        |     |       | _ | <br>_ | <br> |  |
|---|--------|-----|-------|---|-------|------|--|
| а | dj. st | art | time: |   |       |      |  |

pH adjustment Date: GN Batch ID: H adj. end time:

|                   | 1 6                 | <del></del> |                 |              |                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|---------------------|-------------|-----------------|--------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Sample<br>Weight in | pH after    | Final<br>Volume | pH after     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ample ID          | g                   | HNO3        | (ml)            | 1 '          | Comments                              | Spike Info.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| alibration Blank  | NA NA               | 7.58        | 100             | 2.10         | Commente                              | opiko iiio.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 010 mg/l standard | NA                  | 7.32        | 1               | 2:45         | 10 ppm ABSdu                          | le 0.10 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                   | NA NA               | 7.18        |                 | 2-11         | 10 ppm ABSdu                          | 0.50 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 050 mg/l standard |                     | 7.91        |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 100 mg/l standard | NA<br>NA            | 7.24        |                 | 2.09         |                                       | 1.00 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 300 mg/l standard | NA<br>NA            | 766         |                 | 2.15         |                                       | 3.00 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 500 mg/l standard | NA<br>NA            |             |                 | 1.96<br>1.99 | - Samuel Co                           | 5.00 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 300 mg/l standard | NA NA               | 709         |                 |              |                                       | 8.00 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 00 mg/l standard  | NA                  | 7.15        |                 | 1.88         | V                                     | 10.0 ml of 10 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <u> </u>          |                     |             | ·               |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   | <u>``</u>           |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       | The first war and the second s |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              | ·                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     | <i>C</i> .  |                 |              | •                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N                 |                     |             |                 |              |                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 | ,            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             | ,               |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     | *           |                 |              | · •                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             | ·               |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · ·             |                     |             |                 |              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                   |                     |             |                 |              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

∼gent Reference Information - refer to attached reagent reference information page(s). \_0000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

Anayst:

Form: GN068-01 Rev. Date: 5/22/06





## HEXAVALENT CHROMIUM STANDARD PREPARATION LOG Product: XUVA GN or GP Number: CNT) SAO

|              |                                |               |              |         |          | Final Conc.  |            |         |        |
|--------------|--------------------------------|---------------|--------------|---------|----------|--------------|------------|---------|--------|
| Intermediate |                                |               | Stock        |         |          | 200          |            |         | ż      |
| Standard     | ,                              | Stock         | volume       |         | Final    | Intermediate | Expiration |         |        |
| Description  | Stock used to prepare standard | concentration | used in mt   | Diluent | Volume   | (mg/l)       | Date       | Apalyst | Date   |
| 10 ppm       | Absolute Grade Lot # 041215    | 1000 ppm      | 1.0 ml       | □       | 100 mls  | 10 mg/l      | 4/12/2015  | (1911)  | 4/6/11 |
| 100 ppm      |                                | 1000 ppm      | 10 ml        | ō       | 100 mls  | 100 mg/l     |            |         |        |
| g bbm        |                                | 1000 ppm      | 1.0 ml       | ō       | 200 mg/l | 5 mg/l       |            | -       |        |
| 7.5 ppm      |                                | 1000 ppm      | 1.5 ml       | ã       | 200 mg/l | 7.5 mg/l     |            |         |        |
| 10 ppm       | Ultra lot L00439               | 1000 ppm      | 1.0 ml       | ō       | 100 mg/l | 10 mg/l      | 5/31/2017  | -       | 1      |
|              |                                |               | Intermediate |         |          |              |            |         | -      |
|              |                                | Intermediate  | or Stock     |         |          | Final Conc.  | •          |         |        |
| Standard     | Intermediate or Stock used to  | or Stock      | volume       |         | Final    | Of Standard  | Expiration |         |        |
| Description  | prepare standard               | concentration | used in mî   | Diluent | Volume   | (l/bm)       | Date       | Analyst | Date C |
| .010 ppm     | 10.0 ppm abs                   | 10.0 ppm      | 0.1 ppm      | 占       | 100 mls  | 0.01 mg/l    | 9/6/11/    | 2       | 9/2/12 |
| .050 ppm     |                                |               | 0.5 ppm      |         | <u>-</u> | 0.05 mg/l    |            |         | 2000   |
| .10 ppm      |                                |               | 1.0 ppm      | 占       |          | 0.10 mg/l    |            |         |        |
| .30 ppm      |                                |               | 3.0 ppm      |         |          | 0.30 mg/l    |            | _       |        |
| .50 ppm      |                                |               | 5.0 ppm      | П       |          | 0.50 mg/l    |            | -       |        |
| .80 ppm      |                                |               | 8.0 ppm      | 百       |          | 0.80 mg/l    |            |         |        |
| 1.00 ppm     | 1                              |               | 10.0 ppm     | П       | d        | 1.0 mg/l     | 8          |         | <br>   |
|              |                                |               | -            |         |          |              |            |         |        |
|              |                                | -             |              |         |          |              |            |         |        |
|              |                                |               |              |         |          |              |            |         |        |
|              |                                |               |              |         |          |              |            |         |        |
|              |                                |               |              |         |          |              |            |         |        |
|              |                                |               |              |         |          |              |            |         |        |
|              |                                |               |              |         |          |              |            |         |        |

Form: GN205-02 Rev. Date:10/16/09



HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

397 Thermometer ID:

Thermometer Correction factor:

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |       | Dab il dmal        | amn in dea         | S now in dome   | J SOS CI GWG       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------|--------------------|--------------------|-----------------|--------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |       | Hot Plate #   -    | Hot Plate # 2      | Hot Plate # 7 - | Hot Plate # 4 -    |
| Digestion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                   |       | Uncorrected/Correc | Uncorrected/Correc | Sorrec          | Uncorrected/Correc |
| Batch ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Description                                       | Time  | ted,               | ted                | teď             | ted ,              |
| BORRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mathscr{G}\!\!\mathit{b}/\!\!\! $ Starting Time | 51:11 | 9/6/6/16           | 940/920            | 300/05          | 90°/90°            |
| GPLERIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | flottime 1                                        | 17:45 | 916/916            | 94%                | 90/930          | 06/06              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ending Time                                       | 18:15 | 9/0/9/16           | 946/930            | 910/930         | 909/900            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |       | -                  |                    |                 |                    |
| 101.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Starting Time                                     | 18:20 | 9/9/9/0            | 940/920            | 910/93          | 906/306            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time 1                                            | 0h:81 | ,£6/16             | e56/96             | oCb/606         | 900/900            |
| and the second s | Ending Time                                       | (2:6) | o john.            | 959/93°            | 006/06          | 06/00              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |       |                    |                    |                 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Starting Time                                     |       |                    |                    |                 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time 1                                            |       |                    |                    |                 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ending Time                                       |       |                    |                    |                 |                    |
| Analyst:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                   | CKN/  |                    | Date:              | 71/8/b          |                    |
| 2nd Analyst Chec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | /st Check:                                        |       |                    |                    |                 |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | 2     |                    |                    |                 |                    |

Rev. Date: 8/08/12 Form: GN074-02



GN/GP Batch ID: GP 6696 / GP 66962

## Reagent Information Log - XCRA (soil 3060A/7196)

|                                                        | Exp. Date  | Reagent # or Manufacturer/Lot |
|--------------------------------------------------------|------------|-------------------------------|
| Reagent                                                | LAP. Date  |                               |
| Calibration Source: Hexavalent Chromium,               | 4/12/2015  | Absolute Grade Lot # 041212   |
| 1000 mg/L Stock                                        | 4/ (2/2010 |                               |
| Calibration Checks: Hexavalent Chromium,               | 5/31/2017  | Ultra lot # L00439            |
| 1000 mg/L Stock                                        | 3/3/1/2011 |                               |
| Spiking Solution Source                                | 4/12/2015  | Absolute Grade Lot # 041212   |
|                                                        |            |                               |
| Lead Chromate (Insoluble Hexavalent<br>Chromium Spike) | 7/26/2017  | Sigma Aldrich Lot # BCBG0578V |
| Ciliotham Opikey                                       |            |                               |
| Magnesium Chloride, Anhydrous                          | 7/11/2016  | Alfa Aesar Lot # B17X012      |
| Wagnesian Chief                                        |            |                               |
| 1N NaOH                                                | ·          |                               |
| Mindell                                                | abola      | GNE8-33421-XCR                |
| - Digestion Solution                                   | 112017     | <u> </u>                      |
|                                                        | 2/14/12    | GNE-8-33273-XCLA              |
| Phosphate Buffer Solution                              |            | 911-0 33-13                   |
|                                                        | -1-1       | 0.150 m/05 x/00               |
| 5.0 M Nitric Acid                                      | 38pas_     | GNES -3245-XOVA               |
|                                                        | ومطاء أو   | 2 1-0 22/Merror               |
| Diphenylcarbazide Solution                             | 10APOV     | GNEU- 20140 XV                |
|                                                        | alachaa    | AUEQ m24-VOV                  |
| Sulfuric Acid, 10%                                     | 2014B      | ANCO SOOT AT                  |
|                                                        |            | X F2EH19811                   |
| Filter                                                 | ·          | -10/0/07                      |
|                                                        | NA         | D 1061103 919120              |
| Teflon Chips                                           |            |                               |

Form: GN087A-21B Rev. Date: 2/18/10



978-905-2100 tel 978-905-2101 fax

## **Data Validation Report**

| Project:                   | PPG – Garfield Avenue Supplemental Remedial Investigation (GARIS) Northern Canal Borings |  |  |  |
|----------------------------|------------------------------------------------------------------------------------------|--|--|--|
| Laboratory:                | Accutest, Dayton, NJ                                                                     |  |  |  |
| Laboratory Job No.:        | JB14312 and JB14312R                                                                     |  |  |  |
| Analysis/Method:           | Hexavalent Chromium SW846 3060A/7196A                                                    |  |  |  |
| Validation Level:          | Full (Hexavalent Chromium)                                                               |  |  |  |
| Site Location/Address:     | PPG Site 114 – Garfield Avenue, Jersey City, NJ                                          |  |  |  |
| AECOM Project Number:      | 60213772.5.A                                                                             |  |  |  |
| Prepared by: Kristin Ruthe | ford/AECOM Completed on: September 11, 2012                                              |  |  |  |
| Reviewed by: Lisa Krowitz/ | ECOM File Name: 2012-09-11 DV Report JB14312-F.docx                                      |  |  |  |

## Introduction

The data were reviewed in accordance with the FSP-QAPP and the following NJDEP and/or Region 2 validation Standard Operating Procedure (SOP):

 NJDEP Office of Data Quality SOP 5.A.10, Rev 3 (September 2009), SOP for Analytical Data Validation of Hexavalent Chromium – for USEPA SW-846 Method 3060A, USEPA SW-846 Method 7196A and USEPA SW-846 Method 7199.

The results of quality control data analyzed with site samples were used to assess the overall reliability of the data. The following qualifiers were used to identify data quality issues:

- U: Indicates the analyte was not detected in the sample above the sample reporting limit.
- J: Indicates the result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.
- UJ: Indicates the analyte was not detected above the reporting limit and the reporting limit was approximate.
- R: The sample result was rejected due to serious deficiencies; the presence or absence of the analyte could not be confirmed.

AECOM 2

## **Sample Information**

The sample listed below was collected by AECOM on August 21, 2012 as part of the Garfield Avenue Supplemental Remedial Investigation (GARIS) Northern Canal Boring Sampling at the PPG Site - 114 Jersey City, New Jersey.

| Field ID                            | Laboratory ID    | Matrix  | Fraction            |
|-------------------------------------|------------------|---------|---------------------|
| 114-A2A-8.3-8.8                     | JB14312-1, -1R   | Soil    | Hexavalent Chromium |
| NSB-D1-12.0-12.5                    | JB14312-2, -2R   | Soil    | Hexavalent Chromium |
| NSB-D1-16.0-16.5                    | JB14312-3, -3R   | Soil    | Hexavalent Chromium |
| NSB-D1-20.0-20.5                    | JB14312-4, -4R   | Soil    | Hexavalent Chromium |
| NSB-D1-4.0-4.5                      | JB14312-5, -5R   | Soil    | Hexavalent Chromium |
| NSB-D1-7.7-8.2                      | JB14312-6, -6R   | Soil    | Hexavalent Chromium |
| NSB-D2-11.3-11.8                    | JB14312-7, -7R   | Soil    | Hexavalent Chromium |
| NSB-D2-3.0-3.5                      | JB14312-8, -8R   | Soil    | Hexavalent Chromium |
| NSB-D2-3.0-3.5X                     | JB14312-9, -9R   | Soil    | Hexavalent Chromium |
| (field duplicate of NSB-D2-3.0-3.5) | JD14312-9, -910  | 3011    | Hexavalett Chromium |
| NSB-D2-6.0-6.5                      | JB14312-10, -10R | Soil    | Hexavalent Chromium |
| NSB-D3-3.0-3.5                      | JB14312-11, -11R | Soil    | Hexavalent Chromium |
| NSB-D4-1.0-1.5                      | JB14312-12, -12R | Soil    | Hexavalent Chromium |
| NSB-F5-20.0-20.5                    | JB14312-13, -13R | Soil    | Hexavalent Chromium |
| NSB-EB20120822 (equipment blank)    | JB14312-14       | Aqueous | Hexavalent Chromium |
| NSB-F5-16.0-16.5                    | JB14312-15, -15R | Soil    | Hexavalent Chromium |

The samples were collected following the procedures detailed in the Remedial Investigation Work Plan – Soil for Non-Residential Chromate Chemical Production Waste Sites 114, 132, 133, 135, 137, 143, and 186, Jersey City, New Jersey and the Field Sampling Plan/Quality Assurance Project Plan for Non-Residential and Residential Chromium Sites Hudson County, New Jersey (December 2011).

## **General Comments**

The data package was complete. Quality control (QC) issues identified during validation are discussed below. Refer to the Soil Target Analyte Summary Hit List for a listing of all detected results, qualified results, and associated qualifications, where applicable.

## **Hexavalent Chromium**

## Matrix Spike Results

Sample NSB-F5-16.0-16.5 (JB14312-15) was selected for the soil matrix spike analysis and used for supporting data quality recommendations. The soluble and insoluble matrix spike (MS) recoveries from the initial batch (GN71347) were 39.0% and 90.7%, respectively; the soluble MS recovery did not meet quality control criteria of 75-125%R, and was <50%R. The post digestion spike (PDS) recovery was 91.1%, which met the PDS criteria of 85-115%.

The soluble and insoluble matrix spike recoveries from the re-analysis (batch GN71477) were 54.0% and 89.9%, respectively; again the soluble MS recovery did not meet the quality control criteria of 75-125%R. The post spike result for the re-analysis batch was recovered at 85.1%, which met the PDS criteria of 85-115%.

Due to low MS recoveries, additional parameters were analyzed to determine if possible matrix interferences could be the cause for the poor matrix spike recoveries. The sample was tested for pH and oxidation reduction potential (ORP) and plotted on an Eh/pH phase diagram chart. From this chart, the source sample for the matrix spike analysis was plotted below the phase change line, indicating

AECOM 3

reducing potential within the sample matrix, incapable of supporting hexavalent chromium. Analyses for ferrous iron, sulfide screen, and total organic carbon (TOC) were performed on the MS source sample to confirm the reducing potential within the sample matrix. The sulfide screen was reported as nondetect, indicating no reducing agents within the sample matrix; however, the ferrous iron result was (0.95%) and the TOC (961 mg/Kg) were positive, indicating potential reducing agents within the sample matrix.

The soil hexavalent chromium results were reported from the re-analysis since the soluble MS recovery showed improvement from the initial analysis. However, the highest result for hexavalent chromium was reported for each sample so some results were reported from the initial analysis. Since the soluble MS recoveries from the initial and reanalysis were below 75%R, the reported positive and nondetect hexavalent chromium results for all soil samples in this SDG were qualified as estimated (J and UJ, respectively).

## Field Duplicate Precision

Samples NSB-D2-3.0-3.5 and NSB-D2-3.0-3.5X were collected as the field duplicate pair in this SDG. The relative percent difference (RPD) criteria were met for results in the initial analysis (JB14312), but the RPD was 35.3% in the re-analysis, which exceeded the RPD criteria of  $\leq$  20% for sample results greater than or equal to four times the reporting limit (RL). Since the results for hexavalent chromium were reported from the re-analysis based on matrix spike recoveries, the results for hexavalent chromium in all soil samples were qualified as estimated (J/UJ) with the potential for bias in an unknown direction.

## Sample Results

Reported results (flagged B by the laboratory) that were less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL) are approximate values and have been qualified as estimated (J).

## **Data Quality and Usability**

In general, these data appear to be valid and may be used for decision-making purposes. No data were rejected. Qualified results, if applicable, are discussed in attachments A and B below.

The reported hexavalent chromium results in all soil samples are usable as estimated values with the potential for bias low due to poor MS recoveries.

The results for hexavalent chromium in all soil samples are usable as estimated values, with unknown directional bias due to poor field duplicate precision.

Some sample results are usable as estimated values since they were detected between the RL and MDL.

## **Attachments**

Attachment A Target Analyte Summary Hitlist(s)

Attachment B Data Validation Report Form

Attachment A

Target Analyte Summary Hitlist(s)

AECOM Page 1 of 4

## **Soil Target Analyte Summary Hit List (Hexavalent Chromium)**

Site Name PPG –GARIS Northern Canal Borings at PPG Site 114, Jersey City, NJ

Sampling Date August 21, 2012

Lab Name/ID Accutest Laboratories, Dayton, NJ

**SDG No** JB14312 and JB14312R

Sample Matrix Soil
Trip Blank ID NA

Field Blank ID NSB-EB20120822

| Field Sample ID  | Lab Sample ID | Analyte               | Method<br>Blank<br>(mg/kg) | Laboratory<br>Sample<br>Result<br>(mg/kg) | Validation<br>Sample<br>Result<br>(mg/kg) | RL<br>(mg/kg) | Quality<br>Assurance<br>Decision | NJDEP<br>Validation<br>Footnote |
|------------------|---------------|-----------------------|----------------------------|-------------------------------------------|-------------------------------------------|---------------|----------------------------------|---------------------------------|
| NSB-D1-1.0-1.5   | JB14312-1R    | CHROMIUM (HEXAVALENT) | U                          | 1.8                                       | 1.8                                       | 0.44          | Qualify                          | 18,29                           |
| NSB-D1-12.0-12.5 | JB14312-2     | CHROMIUM (HEXAVALENT) | U                          | 0.42                                      | 0.42                                      | 0.48          | Qualify                          | 18,29,31                        |
| NSB-D1-16.0-16.5 | JB14312-3R    | CHROMIUM (HEXAVALENT) | U                          | 1.6                                       | 1.6                                       | 0.49          | Qualify                          | 18,29                           |
| NSB-D1-20.0-20.5 | JB14312-4R    | CHROMIUM (HEXAVALENT) | U                          | 0.46                                      | 0.46                                      | 0.48          | Qualify                          | 18,29,31                        |
| NSB-D1-4.0-4.5   | JB14312-5R    | CHROMIUM (HEXAVALENT) | U                          | 4.3                                       | 4.3                                       | 0.48          | Qualify                          | 18,29                           |
| NSB-D1-7.7-8.2   | JB14312-6R    | CHROMIUM (HEXAVALENT) | U                          | 0.35                                      | 0.35                                      | 0.48          | Qualify                          | 18,29,31                        |
| NSB-D2-11.3-11.8 | JB14312-7     | CHROMIUM (HEXAVALENT) | U                          | 0.41                                      | 0.41                                      | 0.48          | Qualify                          | 18,29,31                        |
| NSB-D2-3.0-3.5   | JB14312-8R    | CHROMIUM (HEXAVALENT) | U                          | 3.0                                       | 3.0                                       | 0.45          | Qualify                          | 18,29                           |
| NSB-D2-3.0-3.5X  | JB14312-9R    | CHROMIUM (HEXAVALENT) | U                          | 2.1                                       | 2.1                                       | 0.46          | Qualify                          | 18,29                           |
| NSB-D2-6.0-6.5   | JB14312-10R   | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.66          | Qualify                          | 18,29                           |
| NSB-D3-3.0-3.5   | JB14312-11    | CHROMIUM (HEXAVALENT) | U                          | 12.9                                      | 12.9                                      | 0.47          | Qualify                          | 18,29                           |
| NSB-D4-1.0-1.5   | JB14312-12R   | CHROMIUM (HEXAVALENT) | U                          | 2.3                                       | 2.3                                       | 0.44          | Qualify                          | 18,29                           |
| NSB-F5-20.0-20.5 | JB14312-13R   | CHROMIUM (HEXAVALENT) | U                          | 0.49                                      | 0.49                                      | 0.48          | Qualify                          | 18,29                           |
| NSB-F5-16.0-16.5 | JB14312-15R   | CHROMIUM (HEXAVALENT) | U                          | 0.40                                      | 0.40                                      | 0.48          | Qualify                          | 18,29,31                        |

Note: A "U" under Method Blank column indicates a nondetect result.

A "U" under the Laboratory Sample Result and Validation Sample Result columns indicates a nondetect result at the RL.

## NJDEP Laboratory Footnote

1. The value reported is less than or equal to 3x the value in the preparation/reagent blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.

AECOM Page 2 of 4

2. The value reported is greater than three (3) times but less than ten (10) times the value in the preparation/reagent blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to the preparation/reagent blank contamination. The "B" qualifier alerts the end-user to the presence of this analyte in the preparation/reagent blank.

- 3. The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the policy of NJDEP-DPFSR to negate the reported value as due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.
- 4. The value reported is greater than three (3) times but less than ten (10) times the value in the trip/field blanks and is considered "real". However, the reported value must be quantitatively qualified "J" due to trip/field blank contamination.
- 5. The concentration reported by the laboratory is incorrectly calculated.
- 6. The laboratory failed to report the presence of the analyte in the sample.
- 7. The reported Hexavalent Chromium value was qualified because the Calibration Check Standard was not within the recovery range (90-110 percent).
- 8. In the Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of ± 20 percent for sample results > 4xRL or ± RL for sample results < 4xRL. Therefore, the result was qualified.
- 9. This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.
- 10. The reported value was qualified because the PVS recovery was greater than 115 percent.
- 11. The reported value was qualified because the PVS recovery was less than 85 percent.
- 12. The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.
- 13. The reported analyte was qualified because the associated Calibration Blank result was greater than the MDL.
- 14. The laboratory made a transcription error. No hits were found in the raw data.
- 15. This analyte is rejected because the laboratory exceeded the holding time for digestion and analysis.
- 16. The laboratory subtracted the preparation/reagent blank from the sample result. The Reviewer's calculation puts the preparation/reagent blank back into the result.
- 17. The photocopy is unreadable. Therefore, the QA reviewer cannot read the laboratory's reported concentration result.

AECOM Page 3 of 4

- 18. The reported value was qualified because the predigestion spike recovery was less than 75 %, but greater than 50%.
- 19. The reported value was qualified because the predigestion spike recovery was greater than 125 percent.
- 20. The non-detected value was qualified (UJ) because the redigestion spike recovery was less than 75 percent. The possibility of a false negative exists.
- 21. The reported result was qualified or rejected because the laboratory did not record the pH value(s) of the sample in a laboratory notebook.
- 22. The reported value was qualified (J/UJ) because the sample moisture content exceeded 50 percent.
- 23. The sample result was rejected because the soluble and insoluble matrix spike recoveries were less than 50%.
- 24. The detected sample result was qualified (J) because the incorrect spike concentration was used.
- 25. The reported sample results were rejected because the predigestion spike recovery was greater than 150 percent.
- 26. The reported sample results were rejected because the redigestion spike recovery was greater than 150 percent.
- 27. The reported value was qualified (J) because the redigestion spike recovery was less than 75 percent.
- 28. The reported value was qualified (J/UJ) because the sample digestion temperature was less than 90°C.
- 29. In the Field Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of ≤ 20% for sample results > 4xRL or + RL for sample results < 4xRL. Therefore, the result was qualified.
- 30. The reported value was qualified as estimated (J/UJ) but the bias is uncertain due to both high and low MS recoveries.
- 31. The reported result was greater than the MDL but less than the RL and qualified (J) as estimated by the laboratory.
- 32. The reported value was qualified because the sample replicate precision criterion of ≤20% for method 7199 was exceeded.
- 33. The reported value was qualified (J/UJ) because the laboratory control sample (LCS) recovery was less than 80%.
- 34. The reported value was qualified (J) because the laboratory control sample (LCS) recovery was greater than 120%.
- 35. The reported result was qualified because the matrix spike analysis was not performed at the proper frequency.
- 36. The reported result was qualified because the laboratory duplicate analysis was not performed at the proper frequency.

AECOM Page 4 of 4

- 37. The result was qualified because the cooler temperature upon sample receipt exceeded 6°C.
- 38. The reported value was qualified because the redigestion spike recovery was greater than 125 percent.
- 39. The reported result was rejected because the laboratory failed to perform the reanalysis due to insufficient sample volume.
- 40. The reported results was qualified because the laboratory failed to analyze an ending CCB.

**Attachment B** 

**Data Validation Report Form** 

## AECOM DATA VALIDATION REPORT FORM – HEXAVALENT CHROMIUM ANALYSIS (7196) Page 1 of 8

| Client Name: PPG Industries                      | Project Number: 60213772.5.A            |
|--------------------------------------------------|-----------------------------------------|
| Site Location: PPG- GARIS Northern Canal Borings | Project Manager: Robert Cataldo         |
| Laboratory: Accutest, Dayton, New Jersey         | Limited or Full Validation (circle one) |
| Laboratory Job No: JB14312 and JB14312R          | <b>Date Checked:</b> 09/11/2012         |
| Validator: Kristin Rutherford                    | Peer: Lisa Krowitz                      |

| ITEM                                                                                                                                  | YES | NO | N/A | COMMENTS                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|------------------------------------------------------------------------------------------------------|
| Sample results included?                                                                                                              | х   |    |     | 14 soils and 1 EB                                                                                    |
| Reporting Limits met project requirements?                                                                                            | х   |    |     |                                                                                                      |
| Field I.D. included?                                                                                                                  | х   |    |     |                                                                                                      |
| Laboratory I.D. included?                                                                                                             | х   |    |     |                                                                                                      |
| Sample matrix included?                                                                                                               | х   |    |     |                                                                                                      |
| Sample receipt temperature 2-6°C?                                                                                                     | х   |    |     | 5.0°C                                                                                                |
| Signed COCs included?                                                                                                                 | х   |    |     |                                                                                                      |
| Date of sample collection included?                                                                                                   | х   |    |     | 08/21/2012                                                                                           |
| Date of sample digestion included?                                                                                                    | х   |    |     | Soil: JB14312 HxCr prepped on 08/30/2012 Soil: JB14312R HxCr prepped on 08/31/2012                   |
| Holding time to digestion met criteria? Soils -30 days from collection to digestion.                                                  | х   |    |     | Yes                                                                                                  |
| Date of analysis included?                                                                                                            | x   |    |     | Soil: JB14312: HxCr analyzed on 08/30/2012. Soil: JB14312R: HxCr analyzed on 09/04/2012. AQ: 8/21/12 |
| Holding time to analysis met criteria?  Soils -168 hours from digestion to analysis.  Aqueous – 24 hours from collection to analysis. | х   |    |     | Yes                                                                                                  |
| Method reference included?                                                                                                            | х   |    |     | 3060A/7196A                                                                                          |
| Laboratory Case Narrative included?                                                                                                   | х   |    |     |                                                                                                      |

Definitions: MDL – Method Detection Limit; %R – Percent Recovery; RL – Reporting Limit; RPD – Relative Percent Difference; RSD – Relative Standard Deviation: Corr – Correlation Coefficient.

## **Comments**

Field Duplicates: NSB-D2-3.0-3.5 and NSB-D2-3.0-3.5X. RPD criteria met for results in JB14312, but RPD >20% for results in JB14312R. Qualify results for all soil samples (J/UJ).

Sample Dilutions: None for this SDG.

| ITEM                                                                                                                                                                                                                                                             | YES         | NO     | N/A | COMMENTS                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----|----------------------------------------------------------------------------------------------------------------------------------------------|
| Initial Calibration Documentation Included in Lab Package?                                                                                                                                                                                                       | х           |        |     | Cal source (soil – Absolute lot # 041212); AQ Absolute Lot #011212                                                                           |
| <ol> <li>Blank plus 4 standards (7196A) or blank plus 3 standards (7199),</li> <li>Correlation coefficient of ≥0.995 (7196A) or ≥0.999 (7199).</li> <li>Calibrate daily or each time instrument is set up.</li> </ol>                                            | x<br>x<br>x |        |     | Each analysis 1 blank and 7 cal STDs     All analyses meet CC     Yes                                                                        |
| Calibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 Included in Lab Package?                                                                                                                                                    | х           |        |     | Check source (soil and AQ – Ultra lot # L00439)                                                                                              |
| %R criteria met? (90 - 110%).     Correct frequency of once every 10 samples     CCS and QCS from independent source and at mid level of calibration curve.                                                                                                      | x<br>x<br>x |        |     | All met %R     Analyzed every 10 samples     Yes                                                                                             |
| Calibration Blanks                                                                                                                                                                                                                                               | х           |        |     |                                                                                                                                              |
| Analyzed prior to initial calibration standards and after each CCS/QCS?     Absolute value should not exceed MDL.                                                                                                                                                | x<br>x      |        |     | 1. Yes<br>2. Yes                                                                                                                             |
| Method Blank and Field Blanks Included in Lab Package?                                                                                                                                                                                                           | х           |        |     | Equipment Blank NSB-EB20120822                                                                                                               |
| Method blank analyzed with each preparation batch?     Absolute value should not exceed MDL.                                                                                                                                                                     | x<br>x      |        |     | Yes, Soil – JB14312 GP66893-MB1, JB14312R     GP66920-MB1, AQ GN70834     Yes, all method and field blanks were less than MDL.               |
| Eh and pH data.                                                                                                                                                                                                                                                  | х           |        |     |                                                                                                                                              |
| Eh and pH data was included and plotted for all samples?                                                                                                                                                                                                         | х           |        |     |                                                                                                                                              |
| Soluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                                                               | Х           |        |     | JB14312-15 [NSB-F5-16.0-16.5]; JB14312-15R [NSB-F5-16.0-16.5]                                                                                |
| 1. %R criteria met? (75-125%R).                                                                                                                                                                                                                                  |             | x<br>x |     | <ol> <li>a. JB14312 – No (39.0 %); qualify results (J/UJ)</li> <li>b. JB14312R – No (54.0 %); qualify results (J/UJ)</li> </ol>              |
| 2. Was the spike concentration 40 mg/Kg or twice the sample concentration, whichever is greater?                                                                                                                                                                 | x<br>x      |        |     | 2. a. JB14312 Yes, 47.5 mg/kg<br>b. JB14312R Yes, 48.5 mg/kg                                                                                 |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                | х           |        |     | Yes for all batches.                                                                                                                         |
| Insoluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                                                             | х           |        |     | JB14312-15 [NSB-F5-16.0-16.5]; JB14312-15R [NSB-F5-16.0-16.5]                                                                                |
| 1. %R criteria met? (75-125%R).                                                                                                                                                                                                                                  | x<br>x      |        |     | 1. a. JB14312: Yes (90.7%)<br>b. JB14312R: Yes (89.9 %)                                                                                      |
| 2. Was the spike concentration around 400 to 800 mg/Kg?                                                                                                                                                                                                          |             | x<br>x |     | <ol> <li>a. JB14312 No (1100 mg/kg). No impact to data.</li> <li>b. JB14312R No (1190 mg/kg). No impact to data.</li> </ol>                  |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                | х           |        |     | Yes for all batches.                                                                                                                         |
| Post Digestion Spike                                                                                                                                                                                                                                             | х           |        |     | JB14312-15 [NSB-F5-16.0-16.5]; JB14312-15R [NSB-F5-16.0-16.5]                                                                                |
| 1. %R criteria met? (85-115%R).                                                                                                                                                                                                                                  | x<br>x      |        |     | 1. a. JB14312 Yes (91%)<br>b. JB14312R Yes (85.1%)                                                                                           |
| 2. Was the spike concentration 40 mg/Kg or twice the sample concentration?                                                                                                                                                                                       | x<br>x      |        |     | 2. a. JB14312 Yes, 40.4 mg/kg<br>b. JB14312R Yes, 40.4 mg/kg                                                                                 |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                | х           |        |     | Yes for all batches.                                                                                                                         |
| Sample Duplicate Data Included in Lab Package?                                                                                                                                                                                                                   | х           | İ      | İ   | JB14312-15 [NSB-F5-16.0-16.5]; JB14312-15R [NSB-F5-16.0-16.5]                                                                                |
| <ol> <li>RPD criteria met? (RPD &lt; 20%) of both results are ≥4x RL or<br/>control limit of ±RL if both results are &lt;4x RL.</li> </ol>                                                                                                                       | x<br>x      |        |     | a. JB14312 - Yes, results were <4XRL and difference was<br>±RL; therefore no qualifications were required.     b. JB14312R – Yes – RPD 11.8% |
| 2. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                | х           |        |     | 2. Yes                                                                                                                                       |
| Was a Laboratory Control Sample (LCS) Included in Lab Package?                                                                                                                                                                                                   | х           |        |     |                                                                                                                                              |
| %R criteria met? (80-120%R).     Was an LCS analyzed at the frequency of 1/batch or 20 samples?                                                                                                                                                                  | x<br>x      |        |     | Yes, all LCS recoveries were within quality control criteria.     Yes                                                                        |
| Miscellaneous Items.                                                                                                                                                                                                                                             |             |        |     |                                                                                                                                              |
| 1. For soils by 3060A, was the initial pH within a range of 7.0-8.0? 2. For soils by 7199, was the pH within a range of 9.0-9.5? 3. For aqueous by 7196A, was the pH with a range of 1.5-2,5? 4. For soils (3060A), was the digestion temperature 90-95°C for at | x<br>x<br>x |        | х   | 1. Yes<br>2. NA<br>3. Yes<br>4. Yes                                                                                                          |
| least 60 minutes? 5. For 7199, was each sample injected twice and was the RPD ≤20?                                                                                                                                                                               |             |        | х   | 5. NA                                                                                                                                        |

AECOM Page 3 of 8

**Holding Time** 

| Sample ID         | Method | Days from<br>Sampling to Prep | Days from Prep to<br>Analysis | Days from<br>Sampling to<br>Analysis | Sample to Prep<br>Status | Prep to Analysis<br>Status | Sample to<br>Analysis Status |
|-------------------|--------|-------------------------------|-------------------------------|--------------------------------------|--------------------------|----------------------------|------------------------------|
| NSB-EB20120821    | SW7196 |                               |                               | 0                                    |                          |                            | OK @1 days                   |
| NSB-D1-1.0-1.5    | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-1.0-1.5R   | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-12.0-12.5  | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-12.0-12.5R | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-16.0-16.5  | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-16.0-16.5R | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-20.0-20.5  | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-20.0-20.5R | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-4.0-4.5    | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-4.0-4.5R   | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-7.7-8.2    | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D1-7.7-8.2R   | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D2-11.3-11.8  | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D2-11.3-11.8R | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D2-3.0-3.5    | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D2-3.0-3.5R   | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D2-3.0-3.5X   | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D2-3.0-3.5XR  | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D2-6.0-6.5    | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D2-6.0-6.5R   | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D3-3.0-3.5    | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D3-3.0-3.5R   | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D4-1.0-1.5    | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-D4-1.0-1.5R   | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-16.0-16.5  | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-16.0-16.5R | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-20.0-20.5  | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F5-20.0-20.5R | SW7196 | 10                            | 4                             | 14                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |

**Matrix Spike** 

|   | Sample ID         | Compound              | Soluble MS %<br>Recovery | Insoluble MS %<br>Recovery | Lower<br>Limit | Upper<br>Limit | PDS %<br>Recovery | PDS<br>Lower<br>Limit | PDS<br>Upper<br>Limit |
|---|-------------------|-----------------------|--------------------------|----------------------------|----------------|----------------|-------------------|-----------------------|-----------------------|
|   | NSB-F5-16.0-16.5  | CHROMIUM (HEXAVALENT) | 39.0                     | 90.7                       | 75             | 125            | 91.0              | 85                    | 115                   |
| Ī | NSB-F5-16.0-16.5R | CHROMIUM (HEXAVALENT) | 54.0                     | 89.9                       | 75             | 125            | 85.1              | 85                    | 115                   |

AECOM Page 4 of 8

## **Percent Solids**

| Sample ID        | Percent Solids (%) | Status  |
|------------------|--------------------|---------|
| NSB-D1-1.0-1.5   | 90.0               | ok @50% |
| NSB-D1-12.0-12.5 | 82.7               | ok @50% |
| NSB-D1-16.0-16.5 | 82.2               | ok @50% |
| NSB-D1-20.0-20.5 | 83.9               | ok @50% |
| NSB-D1-4.0-4.5   | 83.1               | ok @50% |
| NSB-D1-7.7-8.2   | 83.4               | ok @50% |
| NSB-D2-11.3-11.8 | 82.7               | ok @50% |
| NSB-D2-3.0-3.5   | 89.1               | ok @50% |
| NSB-D2-3.0-3.5X  | 87.6               | ok @50% |
| NSB-D2-6.0-6.5   | 60.5               | ok @50% |
| NSB-D3-3.0-3.5   | 84.3               | ok @50% |
| NSB-D4-1.0-1.5   | 90.1               | ok @50% |
| NSB-F5-16.0-16.5 | 83.1               | ok @50% |
| NSB-F5-20.0-20.5 | 83.8               | ok @50% |

**Field Duplicate** 

| Sample ID      | Duplicate ID    | Compound              | Sample Result | Duplicate Result | QL   | Units | RPD  |
|----------------|-----------------|-----------------------|---------------|------------------|------|-------|------|
| NSB-D2-3.0-3.5 | NSB-D2-3.0-3.5X | CHROMIUM (HEXAVALENT) | 0.61          | 0.62             | 0.45 | mg/kg | 1.6  |
| NSB-D2-3.0-3.5 | NSB-D2-3.0-3.5X | CHROMIUM (HEXAVALENT) | 3.0           | 2.1              | 0.45 | mg/kg | 35.3 |

AECOM Page 5 of 8

| PPG GARIS Soils by Method 7196                                                                                                                                                                                                                             | x - concentration                                                                                   | y - response                     |                                          |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------|-------------------------------|
| SDG#: JB14312                                                                                                                                                                                                                                              |                                                                                                     |                                  |                                          |                               |
| Batch: GN71347                                                                                                                                                                                                                                             | 0                                                                                                   | 0                                |                                          |                               |
| Cr+6 ICAL 08/30/12                                                                                                                                                                                                                                         | 0.01                                                                                                | 0.01                             |                                          |                               |
| (p. 65 of data pkg)                                                                                                                                                                                                                                        | 0.05                                                                                                | 0.047                            |                                          |                               |
|                                                                                                                                                                                                                                                            | 0.1                                                                                                 | 0.094                            |                                          |                               |
|                                                                                                                                                                                                                                                            | 0.3                                                                                                 | 0.278                            |                                          |                               |
|                                                                                                                                                                                                                                                            | 0.5                                                                                                 | 0.46                             |                                          |                               |
|                                                                                                                                                                                                                                                            | 0.8                                                                                                 | 0.739                            |                                          |                               |
|                                                                                                                                                                                                                                                            | 1                                                                                                   | 0.906                            |                                          | (= 05 - ( d-1 d-1)            |
| AECOM Calculated Intercept                                                                                                                                                                                                                                 | 0.0023                                                                                              | OK                               | Reported intercept                       | (p. 65 of data pkg)<br>0.0023 |
| AECOM Slope                                                                                                                                                                                                                                                | 0.9114                                                                                              | OK                               | Reported Slope                           | 0.9114                        |
| AECOM Calculated r                                                                                                                                                                                                                                         | 0.99992                                                                                             | OK                               | Reported r                               | 0.99992                       |
| ALCON Calculated I                                                                                                                                                                                                                                         | 0.99992                                                                                             | OK                               | керопец і                                | 0.99992                       |
| LCS calculation                                                                                                                                                                                                                                            | GP66893-B1 pg.                                                                                      | 65                               |                                          |                               |
| Background Absorbance                                                                                                                                                                                                                                      | 0                                                                                                   |                                  |                                          |                               |
| Total absorbance                                                                                                                                                                                                                                           | 0.851                                                                                               |                                  |                                          |                               |
| Total absorbance - background                                                                                                                                                                                                                              | 0.851                                                                                               |                                  |                                          |                               |
| Instrument Concentration (mg/L)                                                                                                                                                                                                                            | 0.9312                                                                                              |                                  |                                          |                               |
| Sample weight (Kg)                                                                                                                                                                                                                                         | 0.0025                                                                                              |                                  |                                          |                               |
| Final Volume (L)                                                                                                                                                                                                                                           | 0.1                                                                                                 |                                  |                                          |                               |
| Dilution Factor                                                                                                                                                                                                                                            | 1                                                                                                   |                                  |                                          |                               |
| AECOM Calculated LCS Result (mg/Kg)                                                                                                                                                                                                                        | 37.2                                                                                                | OK                               | Reported Result (mg/Kg)                  | 37.2                          |
| (gg)                                                                                                                                                                                                                                                       |                                                                                                     |                                  |                                          |                               |
| %R = Found/True*100                                                                                                                                                                                                                                        | pg. 46                                                                                              |                                  |                                          |                               |
| True Value (mg/Kg)                                                                                                                                                                                                                                         | 40                                                                                                  |                                  |                                          |                               |
| AECOM Calculated %R                                                                                                                                                                                                                                        | 93.1                                                                                                | OK rounding                      | Reported %R                              | 93.0                          |
|                                                                                                                                                                                                                                                            |                                                                                                     |                                  |                                          |                               |
| MS calculation                                                                                                                                                                                                                                             |                                                                                                     | B-F5-16.0-16.5 (JI               | B14312-15) pgs. 65                       |                               |
| Background absorbance reading                                                                                                                                                                                                                              | 0                                                                                                   |                                  |                                          |                               |
| Total absorbance                                                                                                                                                                                                                                           | 0.348                                                                                               |                                  |                                          |                               |
| Total absorbance - background                                                                                                                                                                                                                              |                                                                                                     |                                  |                                          |                               |
|                                                                                                                                                                                                                                                            | 0.348                                                                                               |                                  |                                          |                               |
| Instrument Concentration (mg/L)                                                                                                                                                                                                                            |                                                                                                     |                                  |                                          |                               |
|                                                                                                                                                                                                                                                            | 0.348                                                                                               |                                  |                                          |                               |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L)                                                                                                                                                                                        | 0.348<br>0.3793                                                                                     |                                  |                                          |                               |
| Instrument Concentration (mg/L) Sample weight (Kg)                                                                                                                                                                                                         | 0.348<br>0.3793<br>0.00251                                                                          |                                  |                                          |                               |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L)                                                                                                                                                                                        | 0.348<br>0.3793<br>0.00251<br>0.1                                                                   |                                  |                                          |                               |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids                                                                                                                                                                         | 0.348<br>0.3793<br>0.00251<br>0.1<br>0.831                                                          | OK                               | Reported Result (mg/Kg)                  | 909                           |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)                                                                                                                      | 0.348<br>0.3793<br>0.00251<br>0.1<br>0.831<br>50                                                    |                                  | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 | 909                           |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100                                                                                                 | 0.348<br>0.3793<br>0.00251<br>0.1<br>0.831<br>50<br>909                                             |                                  | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 | 909                           |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg)                                                                              | 0.348<br>0.3793<br>0.00251<br>0.1<br>0.831<br>50<br>909<br>NSB-F5-16.0-16.5                         |                                  | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 | 909                           |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg)                                                 | 0.348<br>0.3793<br>0.00251<br>0.1<br>0.831<br>50<br>909<br>NSB-F5-16.0-16.5<br>1000<br>0.14         | 5 (JB14312-15) pg                | gs. 48                                   |                               |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg)                                                                              | 0.348<br>0.3793<br>0.00251<br>0.1<br>0.831<br>50<br>909<br>NSB-F5-16.0-16.5                         |                                  | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 | 909                           |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg)                                                 | 0.348<br>0.3793<br>0.00251<br>0.1<br>0.831<br>50<br>909<br>NSB-F5-16.0-16.5<br>1000<br>0.14         | 5 (JB14312-15) pg                | gs. 48  Reported %R                      |                               |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg) AECOM%R                                         | 0.348<br>0.3793<br>0.00251<br>0.1<br>0.831<br>50<br>909<br>NSB-F5-16.0-16.5<br>1000<br>0.14<br>90.9 | 5 (JB14312-15) pg<br>OK rounding | gs. 48  Reported %R                      |                               |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg) AECOM%R  Percent Solids                         | 0.348 0.3793 0.00251 0.1 0.831 50 909  NSB-F5-16.0-16.5 1000 0.14 90.9                              | 5 (JB14312-15) pg<br>OK rounding | gs. 48  Reported %R                      |                               |
| Instrument Concentration (mg/L) Sample weight (Kg) Final Volume (L) Percent solids Dilution Factor  AECOM Calculated MS Result (mg/Kg)  %R = Found/True*100 True Value (mg/Kg) Native concentration (mg/Kg)  AECOM%R  Percent Solids Empty dish weight (g) | 0.348 0.3793 0.00251 0.1 0.831 50 909  NSB-F5-16.0-16.5 1000 0.14 90.9  NSB-F5-16.0-16.5            | 5 (JB14312-15) pg<br>OK rounding | gs. 48  Reported %R                      |                               |

AECOM Page 6 of 8

| Reporting Limit         | NSB-F5-16.0-16.5 | 5 (JB14312 | 2-15) pgs. 65, 24    |      |
|-------------------------|------------------|------------|----------------------|------|
| Low Standard (mg/L)     | 0.01             |            |                      |      |
| Initial weight (Kg)     | 0.00253          |            |                      |      |
| Final volume (L)        | 0.1              |            |                      |      |
| Percent solids          | 0.831            |            |                      |      |
| Dilution Factor         | 1                |            |                      |      |
| Reporting Limit (mg/Kg) | 0.48             | OK         | Reported RL (mg/Kg)= | 0.48 |

## **Sample Calculations**

|                                 | NSB-F5-16.0-16.5 | 5 (JB14312-1 | l5) pgs. 65             |      |
|---------------------------------|------------------|--------------|-------------------------|------|
| Background absorbance reading   | 0.004            |              |                         |      |
| Total absorbance                | 0.009            |              |                         |      |
| Total absorbance - background   | 0.005            |              |                         |      |
| Instrument Response (mg/L)      | 0.003            |              |                         |      |
| Sample weight (Kg)              | 0.00253          |              |                         |      |
| Final Volume (L)                | 0.1              |              |                         |      |
| Percent solids                  | 0.831            |              |                         |      |
| Dilution Factor                 | 1_               |              |                         |      |
| AECOM Calculated Result (mg/Kg) | 0.14             | OK           | Reported Result (mg/Kg) | 0.14 |

AECOM Page 7 of 8

| PPG GARIS Soils by Method 7196          | x - concentration                      | y - response        |                                    |                                 |
|-----------------------------------------|----------------------------------------|---------------------|------------------------------------|---------------------------------|
| SDG#: JB14312R                          | _                                      | _                   |                                    |                                 |
| Batch: GN71477                          | 0                                      | 0                   |                                    |                                 |
| Cr+6 ICAL 09/04/12                      | 0.01                                   | 0.009               |                                    |                                 |
| (p. 125 of data pkg)                    | 0.05                                   | 0.046               |                                    |                                 |
|                                         | 0.1                                    | 0.092               |                                    |                                 |
|                                         | 0.3                                    | 0.273               |                                    |                                 |
|                                         | 0.5                                    | 0.466               |                                    |                                 |
|                                         | 0.8                                    | 0.73                |                                    |                                 |
|                                         | 1                                      | 0.929               |                                    | (n. 405 of data nles)           |
| AECOM Calculated Intercept              | -0.0007                                | OK                  | Reported intercept                 | (p. 125 of data pkg)<br>-0.0007 |
| AECOM Slope                             | 0.9241                                 | OK                  | Reported Slope                     | 0.9241                          |
| AECOM Gloulated r                       | 0.99992                                | OK                  | Reported r                         | 0.99992                         |
| ALCON Calculated I                      | 0.99992                                | OK                  | Reported i                         | 0.99992                         |
| LCS calculation                         | GP66920-B1 pgs                         | . 125, 44           |                                    |                                 |
| Background Absorbance                   | 0                                      |                     |                                    |                                 |
| Total absorbance                        | 0.893                                  |                     |                                    |                                 |
| Total absorbance - background           | 0.893                                  |                     |                                    |                                 |
| Instrument Concentration (mg/L)         | 0.9671                                 |                     |                                    |                                 |
| Sample weight (Kg)                      | 0.0025                                 |                     |                                    |                                 |
| Final Volume (L)                        | 0.1                                    |                     |                                    |                                 |
| Dilution Factor                         | 1                                      |                     |                                    |                                 |
| AECOM Calculated LCS Result (mg/Kg)     | 38.7                                   | OK                  | Reported Result (mg/Kg)            | 38.7                            |
| ALCOM Galculated Loo Result (Ing/Rg)    | 30.1                                   | Oit                 | reported result (mg/reg)           | 30.7                            |
| %R = Found/True*100                     | pg. 44                                 |                     |                                    |                                 |
| True Value (mg/Kg)                      | 40                                     |                     |                                    |                                 |
| AECOM Calculated %R                     | 96.7                                   | OK rounding         | Reported %R                        | 96.8                            |
|                                         | ODGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG |                     | D44040 45D) 405                    |                                 |
| MS calculation                          |                                        | B-F5-16.0-16.5 (JI  | B14312-15R) pgs. 125               |                                 |
| Background absorbance reading           | 0                                      |                     |                                    |                                 |
| Total absorbance                        | 0.417                                  |                     |                                    |                                 |
| Total absorbance - background           | 0.417                                  |                     |                                    |                                 |
| Instrument Concentration (mg/L)         | 0.4520                                 |                     |                                    |                                 |
| Sample weight (Kg)                      | 0.00254                                |                     |                                    |                                 |
| Final Volume (L)                        | 0.1                                    |                     |                                    |                                 |
| Percent solids                          | 0.831                                  |                     |                                    |                                 |
| Dilution Factor                         | 50                                     |                     |                                    |                                 |
| AECOM Calculated MS Result (mg/Kg)      | 1071                                   | OK rounding         | Reported Result (mg/Kg)            | 1070                            |
| %R = Found/True*100                     | CD66020_S2 NG                          | R_E5_16 O_16 5 / II | B14312-15R) pgs. 46                |                                 |
| True Value (mg/Kg)                      | 1190                                   | ול) כ.סו-ט.טו-כ ו-כ | D 14012-13N/ pg5. 40               |                                 |
| Native concentration (mg/Kg)            |                                        |                     |                                    |                                 |
|                                         |                                        |                     |                                    | 00.0                            |
| AFCOM%R                                 | 0.4                                    | OK                  | Reported %R                        | 89.9.1                          |
| AECOM%R                                 | 89.9                                   | OK                  | Reported %R                        | 89.9                            |
| Percent Solids                          | 89.9                                   |                     | Reported %R<br>B14312-15R) pgs. 54 | 89.9                            |
|                                         | 89.9<br><b>GP66920-S2 NSI</b><br>21.26 |                     |                                    | 89.9                            |
| Percent Solids                          | 89.9<br><b>GP66920-S2 NS</b> I         |                     |                                    | 89.9                            |
| Percent Solids<br>Empty dish weight (g) | 89.9<br><b>GP66920-S2 NSI</b><br>21.26 |                     |                                    | 89.9                            |

AECOM Page 8 of 8

| Reporting Limit         | GP66920-S2 NS | B-F5-16.0-16 | 6.5 (JB14312-15R) pgs. 125 |      |
|-------------------------|---------------|--------------|----------------------------|------|
| Low Standard (mg/L)     | 0.01          |              |                            |      |
| Initial weight (Kg)     | 0.00253       |              |                            |      |
| Final volume (L)        | 0.1           |              |                            |      |
| Percent solids          | 0.831         |              |                            |      |
| Dilution Factor         | 1             |              |                            |      |
| Reporting Limit (mg/Kg) | 0.48          | OK           | Reported RL (mg/Kg)=       | 0.48 |

## **Sample Calculations**

|                                 | GP66920-S2 NSB-F5-16.0-16.5 (JB14312-15R) pgs. 125, 23 |    |                                         |      |  |
|---------------------------------|--------------------------------------------------------|----|-----------------------------------------|------|--|
| Background absorbance reading   | 0.006                                                  |    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |      |  |
| Total absorbance                | 0.013                                                  |    |                                         |      |  |
| Total absorbance - background   | 0.007                                                  |    |                                         |      |  |
| Instrument Response (mg/L)      | 0.008                                                  |    |                                         |      |  |
| Sample weight (Kg)              | 0.00253                                                |    |                                         |      |  |
| Final Volume (L)                | 0.1                                                    |    |                                         |      |  |
| Percent solids                  | 0.831                                                  |    |                                         |      |  |
| Dilution Factor                 | 1                                                      |    |                                         |      |  |
| AECOM Calculated Result (mg/Kg) | 0.40                                                   | OK | Reported Result (mg/Kg)                 | 0.40 |  |



09/04/12



### Technical Report for

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14312

Sampling Date: 08/21/12

#### Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 76



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



### **Sections:**

## **Table of Contents**

-1-

| Section 1: Sample Summary                           | 3         |
|-----------------------------------------------------|-----------|
| Section 2: Case Narrative/Conformance Summary       | 5         |
| Section 3: Summary of Hits                          | 7         |
| Section 4: Sample Results                           |           |
| <b>4.1:</b> JB14312-1: NSB-D1-1.0-1.5               | 10        |
| <b>4.2:</b> JB14312-2: NSB-D1-12.0-12.5             | 11        |
| <b>4.3:</b> JB14312-3: NSB-D1-16.0-16.5             | 12        |
| <b>4.4:</b> JB14312-4: NSB-D1-20.0-20.5             | 13        |
| <b>4.5:</b> JB14312-5: NSB-D1-4.0-4.5               |           |
| <b>4.6:</b> JB14312-6: NSB-D1-7.7-8.2               | 15        |
| <b>4.7:</b> JB14312-7: NSB-D2-11.3-11.8             | 16        |
| <b>4.8:</b> JB14312-8: NSB-D2-3.0-3.5               | 17        |
| <b>4.9:</b> JB14312-9: NSB-D2-3.0-3.5X              | 18        |
| <b>4.10:</b> JB14312-10: NSB-D2-6.0-6.5             | 19        |
| <b>4.11:</b> JB14312-11: NSB-D3-3.0-3.5             | 20        |
| <b>4.12:</b> JB14312-12: NSB-D4-1.0-1.5             | 21        |
| <b>4.13:</b> JB14312-13: NSB-F5-20.0-20.5           | 22        |
| <b>4.14:</b> JB14312-14: NSB-EB20120822             | 23        |
| <b>4.15:</b> JB14312-15: NSB-F5-16.0-16.5           | 24        |
| Section 5: Misc. Forms                              |           |
| <b>5.1:</b> Chain of Custody                        | 26        |
| 5.2: Sample Tracking Chronicle                      | 34        |
| 5.3: Internal Chain of Custody                      | 37        |
| Section 6: General Chemistry - QC Data Summaries    | 45        |
| 6.1: Method Blank and Spike Results Summary         | 46        |
| 6.2: Duplicate Results Summary                      | 47        |
| 6.3: Matrix Spike Results Summary                   | 48        |
| 6.4: Percent Solids Raw Data Summary                | 49        |
| Section 7: General Chemistry - Raw Data             | <b>52</b> |
| 7.1: Raw Data GN70834: Chromium, Hexavalent         |           |
| 7.2: Raw Data GN71296: Redox Potential Vs H2        | 58        |
| <b>7.3:</b> Raw Data GN71314: pH                    | 60        |
| <b>7.4:</b> Raw Data GN71316: Redox Potential Vs H2 | 63        |
| 7.5: Raw Data GN71347: Chromium, Hexavalent         | 65        |
| 7 6: Fh nH Phase Diagram                            | 74        |



W

IJ

0,



### **Sample Summary**

Job No:

JB14312

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

|                  |                |          |          |               | _    |                     |
|------------------|----------------|----------|----------|---------------|------|---------------------|
| Sample<br>Number | Collected Date | Time By  | Received | Matri<br>Code |      | Client<br>Sample ID |
| JB14312-1        | 08/21/12       | 10:40 LK | 08/21/12 | SO            | Soil | NSB-D1-1.0-1.5      |
| JB14312-2        | 08/21/12       | 11:56 LK | 08/21/12 | SO            | Soil | NSB-D1-12.0-12.5    |
| JB14312-3        | 08/21/12       | 12:24 LK | 08/21/12 | SO            | Soil | NSB-D1-16.0-16.5    |
| JB14312-4        | 08/21/12       | 12:40 LK | 08/21/12 | SO            | Soil | NSB-D1-20.0-20.5    |
| JB14312-5        | 08/21/12       | 10:45 LK | 08/21/12 | SO            | Soil | NSB-D1-4.0-4.5      |
| JB14312-6        | 08/21/12       | 11:42 LK | 08/21/12 | so            | Soil | NSB-D1-7.7-8.2      |
| JB14312-7        | 08/21/12       | 14:50 LK | 08/21/12 | so            | Soil | NSB-D2-11.3-11.8    |
| JB14312-8        | 08/21/12       | 13:35 LK | 08/21/12 | SO            | Soil | NSB-D2-3.0-3.5      |
| JB14312-9        | 08/21/12       | 13:38 LK | 08/21/12 | SO            | Soil | NSB-D2-3.0-3.5X     |
| JB14312-10       | 08/21/12       | 14:30 LK | 08/21/12 | SO            | Soil | NSB-D2-6.0-6.5      |
| JB14312-11       | 08/21/12       | 14:15 LK | 08/21/12 | SO            | Soil | NSB-D3-3.0-3.5      |
| JB14312-12       | 08/21/12       | 15:00 LK | 08/21/12 | SO            | Soil | NSB-D4-1.0-1.5      |
| JB14312-13       | 08/21/12       |          | 08/21/12 |               | Soil | NSB-F5-20.0-20.5    |
|                  |                |          |          |               |      |                     |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





## Sample Summary (continued)

Job No:

JB14312

AECOM, INC.

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matr<br>Code | <del></del>       | Client<br>Sample ID |
|------------------|-------------------|----------|----------|--------------|-------------------|---------------------|
| JB14312-14       | 08/21/12          | 15:30 LK | 08/21/12 | AQ           | Equipment Blank   | NSB-EB20120822      |
| JB14312-15       | 08/21/12          | 08:45 LK | 08/21/12 | SO           | Soil              | NSB-F5-16.0-16.5    |
| JB14312-15D      | 08/21/12          | 08:45 LK | 08/21/12 | SO           | Soil Dup/MSD      | NSB-F5-16.0-16.5    |
| JB14312-15S      | 08/21/12          | 08:45 LK | 08/21/12 | SO           | Soil Matrix Spike | NSB-F5-16.0-16.5    |





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14312

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 9/4/2012 11:08:07 AM

On 08/21/2012, 14 Sample(s), 0 Trip Blank(s) and 1 Equipment Blank(s) were received at Accutest Laboratories at a temperature of 5 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14312 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Wet Chemistry By Method ASTM D1498-76

Matrix: AO Batch ID: GN71296

Sample(s) JB14201-13DUP were used as the QC samples for Redox Potential Vs H2.

#### Wet Chemistry By Method ASTM D1498-76M

Matrix: SO Batch ID: GN71316

- Sample(s) JB14312-15DUP were used as the QC samples for Redox Potential Vs H2.
- RPD(s) for Duplicate for Redox Potential Vs H2 are outside control limits for sample GN71316-D1. Outside of in house limits, but within reasonable method recovery limits.

#### Wet Chemistry By Method SM18 2540G

Matrix: SO Batch ID: GN71219

The data for SM18 2540G meets quality control requirements.

#### Wet Chemistry By Method SM20 4500H B

Matrix: AQ Batch ID: R115339

- The data for SM20 4500H B meets quality control requirements.
- JB14312-14 for pH: Sample received out of holding time for pH analysis.

#### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP66893

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14312-15DUP, JB14312-15MS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (91\_%) on this sample.
- RPD(s) for Duplicate for Chromium, Hexavalent are outside control limits for sample GP66893-D1. RPD acceptable due to low duplicate and sample concentrations.
- GP66893-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



#### Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN70834

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

#### Wet Chemistry By Method SW846 9045C,D

Matrix: SO Batch ID: GN71314

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Sample(s) JB14312-15DUP were used as the QC samples for pH.

**Summary of Hits Job Number:** JB14312 **Account:** AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Collected: 08/21/12

| Lab Sample ID<br>Analyte                  | Client Sample ID | Result/<br>Qual       | RL   | MDL  | Units             | Method                                               |
|-------------------------------------------|------------------|-----------------------|------|------|-------------------|------------------------------------------------------|
| JB14312-1                                 | NSB-D1-1.0-1.5   |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential Y       |                  | 0.18 B<br>303<br>7.98 | 0.44 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-2                                 | NSB-D1-12.0-12.5 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential Y<br>pH |                  | 0.42 B<br>128<br>7.47 | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-3                                 | NSB-D1-16.0-16.5 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential T<br>pH |                  | 0.63<br>219<br>8.05   | 0.49 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-4                                 | NSB-D1-20.0-20.5 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential 7<br>pH |                  | 0.24 B<br>225<br>8.21 | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-5                                 | NSB-D1-4.0-4.5   |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential Y<br>pH |                  | 1.2<br>273<br>7.84    | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-6                                 | NSB-D1-7.7-8.2   |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential o<br>pH |                  | 0.35 B<br>182<br>7.17 | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-7                                 | NSB-D2-11.3-11.8 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential o<br>pH |                  | 0.41 B<br>178<br>7.65 | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-8                                 | NSB-D2-3.0-3.5   |                       |      |      |                   |                                                      |
| Chromium, Hexa                            | avalent          | 0.61                  | 0.45 | 0.13 | mg/kg             | SW846 3060A/7196A                                    |



### **Summary of Hits Job Number:** JB14312

Account: JB14312 AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/21/12

| Lab Sample ID Client Sample ID Analyte              | Result/<br>Qual       | RL   | MDL  | Units             | Method                                               |
|-----------------------------------------------------|-----------------------|------|------|-------------------|------------------------------------------------------|
| Redox Potential Vs H2<br>pH                         | 577<br>8.85           |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14312-9 NSB-D2-3.0-3.5X                           |                       |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.62<br>287<br>8.70   | 0.46 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-10 NSB-D2-6.0-6.5                           |                       |      |      |                   |                                                      |
| Redox Potential Vs H2<br>pH                         | 300<br>7.86           |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14312-11 NSB-D3-3.0-3.5                           |                       |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 12.9<br>305<br>8.26   | 0.47 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-12 NSB-D4-1.0-1.5                           |                       |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.56<br>294<br>8.28   | 0.44 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-13 NSB-F5-20.0-20.5                         | 5                     |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.24 B<br>297<br>8.32 | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14312-14 NSB-EB20120822                           | }                     |      |      |                   |                                                      |
| Redox Potential Vs H2 pH <sup>a</sup>               | 354<br>7.43           |      |      | mv<br>su          | ASTM D1498-76<br>SM20 4500H B                        |
| JB14312-15 NSB-F5-16.0-16.5                         | 5                     |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.14 B<br>248<br>7.48 | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |

(a) Sample received out of holding time for pH analysis.





| Sample Results     |  |
|--------------------|--|
| Report of Analysis |  |



### **Report of Analysis**

Client Sample ID: NSB-D1-1.0-1.5

 Lab Sample ID:
 JB14312-1
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 90.0

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.18 B | 0.44 | 0.13 | mg/kg | 1  | 08/30/12 19:01 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 303    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 90     |      |      | %     | 1  | 08/29/12 11:45 RO SM18 2540G        |
| рΗ                    | 7.98   |      |      | su    | 1  | 08/30/12 13:10 SA SW846 9045C.D     |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-D1-12.0-12.5

 Lab Sample ID:
 JB14312-2
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 82.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed      | Ву   | Method              |
|-----------------------|--------|------|------|-------|----|---------------|------|---------------------|
| Chromium, Hexavalent  | 0.42 B | 0.48 | 0.14 | mg/kg | 1  | 08/30/12 19:0 | 1 MM | I SW846 3060A/7196A |
| Redox Potential Vs H2 | 128    |      |      | mv    | 1  | 08/30/12      | SA   | ASTM D1498-76M      |
| Solids, Percent       | 82.7   |      |      | %     | 1  | 08/29/12 11:4 | 5 RO | SM18 2540G          |
| pН                    | 7.47   |      |      | su    | 1  | 08/30/12 13:1 | 0 SA | SW846 9045C,D       |

RL = Reporting Limit U = Indicates a result < MDL



### 4

### **Report of Analysis**

Client Sample ID: NSB-D1-16.0-16.5

 Lab Sample ID:
 JB14312-3
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 82.2

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.63   | 0.49 | 0.14 | mg/kg | 1  | 08/30/12 19:01 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 219    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 82.2   |      |      | %     | 1  | 08/29/12 11:45 RO SM18 2540G        |
| pН                    | 8.05   |      |      | su    | 1  | 08/30/12 13:10 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### 4

### **Report of Analysis**

Client Sample ID: NSB-D1-20.0-20.5

 Lab Sample ID:
 JB14312-4
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 83.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.24 B | 0.48 | 0.14 | mg/kg | 1  | 08/30/12 19:01 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 225    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 83.9   |      |      | %     | 1  | 08/29/12 11:45 RO SM18 2540G        |
| pН                    | 8.21   |      |      | su    | 1  | 08/30/12 13:10 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### 1

### **Report of Analysis**

Client Sample ID: NSB-D1-4.0-4.5 Lab Sample ID: JB14312-5

Matrix: SO - Soil

Date Sampled: 08/21/12Date Received: 08/21/12Percent Solids: 83.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed       | By Method            |
|-----------------------|--------|------|------|-------|----|----------------|----------------------|
| Chromium, Hexavalent  | 1.2    | 0.48 | 0.14 | mg/kg | 1  | 08/30/12 19:01 | MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 273    |      |      | mv    | 1  | 08/30/12       | SA ASTM D1498-76M    |
| Solids, Percent       | 83.1   |      |      | %     | 1  | 08/29/12 11:45 | RO SM18 2540G        |
| pН                    | 7.84   |      |      | su    | 1  | 08/30/12 13:10 | SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### 4

### **Report of Analysis**

Client Sample ID: NSB-D1-7.7-8.2 Lab Sample ID: JB14312-6

Matrix: SO - Soil

Date Sampled: 08/21/12Date Received: 08/21/12Percent Solids: 83.4

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed E       | By Method            |
|-----------------------|--------|------|------|-------|----|------------------|----------------------|
| Chromium, Hexavalent  | 0.35 B | 0.48 | 0.14 | mg/kg | 1  | 08/30/12 19:01 M | IM SW846 3060A/7196A |
| Redox Potential Vs H2 | 182    |      |      | mv    | 1  | 08/30/12 S       | A ASTM D1498-76M     |
| Solids, Percent       | 83.4   |      |      | %     | 1  | 08/29/12 11:45 R | O SM18 2540G         |
| pН                    | 7.17   |      |      | su    | 1  | 08/30/12 13:10 S | A SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-D2-11.3-11.8

 Lab Sample ID:
 JB14312-7
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 82.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.41 B | 0.48 | 0.14 | mg/kg | 1  | 08/30/12 19:01 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 178    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 82.7   |      |      | %     | 1  | 08/29/12 11:45 RO SM18 2540G        |
| рH                    | 7.65   |      |      | su    | 1  | 08/30/12 13:10 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



JB14312

### 4

### **Report of Analysis**

Client Sample ID: NSB-D2-3.0-3.5 Lab Sample ID: JB14312-8

Matrix: SO - Soil

Date Sampled: 08/21/12Date Received: 08/21/12Percent Solids: 89.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.61   | 0.45 | 0.13 | mg/kg | 1  | 08/30/12 19:01 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 577    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 89.1   |      |      | %     | 1  | 08/29/12 11:45 RO SM18 2540G        |
| рН                    | 8.85   |      |      | su    | 1  | 08/30/12 13:10 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### 4

### **Report of Analysis**

Client Sample ID: NSB-D2-3.0-3.5X

 Lab Sample ID:
 JB14312-9
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 87.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.62   | 0.46 | 0.13 | mg/kg | 1  | 08/30/12 19:01 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 287    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 87.6   |      |      | %     | 1  | 08/29/12 11:45 RO SM18 2540G        |
| pН                    | 8.70   |      |      | su    | 1  | 08/30/12 13:10 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-D2-6.0-6.5 Lab Sample ID: JB14312-10 Matrix: SO - Soil

**Date Sampled:** 08/21/12 **Date Received:** 08/21/12 **Percent Solids:** 60.5

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed       | By   | Method            |
|-----------------------|--------|------|------|-------|----|----------------|------|-------------------|
| Chromium, Hexavalent  | 0.19 U | 0.66 | 0.19 | mg/kg | 1  | 08/30/12 19:0  | 1 MM | SW846 3060A/7196A |
| Redox Potential Vs H2 | 300    |      |      | mv    | 1  | 08/30/12       | SA   | ASTM D1498-76M    |
| Solids, Percent       | 60.5   |      |      | %     | 1  | 08/29/12 11:4: | 5 RO | SM18 2540G        |
| pH                    | 7.86   |      |      | su    | 1  | 08/30/12 13:10 | 0 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-D3-3.0-3.5 Lab Sample ID: JB14312-11 Matrix: SO - Soil

**Date Sampled:** 08/21/12 **Date Received:** 08/21/12 **Percent Solids:** 84.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                                       | Result       | RL   | MDL  | Units       | DF     | Analyzed By Method                                                |
|-----------------------------------------------|--------------|------|------|-------------|--------|-------------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 12.9<br>305  | 0.47 | 0.14 | mg/kg<br>mv | 1<br>1 | 08/30/12 19:04 MM SW846 3060A/7196A<br>08/30/12 SA ASTM D1498-76M |
| Solids, Percent<br>pH                         | 84.3<br>8.26 |      |      | %<br>su     | 1<br>1 | 08/29/12 11:45 RO SM18 2540G<br>08/30/12 13:10 SA SW846 9045C,D   |

RL = Reporting Limit U = Indicates a result < MDL





### **Report of Analysis**

Page 1 of 1

Client Sample ID: NSB-D4-1.0-1.5 Lab Sample ID: JB14312-12

SO - Soil

**Date Sampled:** 08/21/12 **Date Received:** 08/21/12 **Percent Solids:** 90.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

Matrix:

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.56   | 0.44 | 0.13 | mg/kg | 1  | 08/30/12 19:04 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 294    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 90.1   |      |      | %     | 1  | 08/29/12 11:45 RO SM18 2540G        |
| рH                    | 8.28   |      |      | su    | 1  | 08/30/12 13:10 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-F5-20.0-20.5

 Lab Sample ID:
 JB14312-13
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 83.8

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                                                          | Result                | RL   | MDL  | Units            | DF          | Analyzed By Method                                                                                |
|------------------------------------------------------------------|-----------------------|------|------|------------------|-------------|---------------------------------------------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>Solids, Percent | 0.24 B<br>297<br>83.8 | 0.48 | 0.14 | mg/kg<br>mv<br>% | 1<br>1<br>1 | 08/30/12 19:04 MM SW846 3060A/7196A<br>08/30/12 SA ASTM D1498-76M<br>08/29/12 11:45 RO SM18 2540G |
| рН                                                               | 8.32                  |      |      | su               | 1           | 08/30/12 13:10 SA SW846 9045C,D                                                                   |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

 Client Sample ID:
 NSB-EB20120822

 Lab Sample ID:
 JB14312-14
 Date Sampled:
 08/21/12

 Matrix:
 AQ - Equipment Blank
 Date Received:
 08/21/12

**Percent Solids:** n/a

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                                       | Result          | RL    | MDL    | Units      | DF     | Analyzed By Method                                         |
|-----------------------------------------------|-----------------|-------|--------|------------|--------|------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 0.0014 U<br>354 | 0.010 | 0.0014 | mg/l<br>mv | 1<br>1 | 08/21/12 23:14 MM SW846 7196A<br>08/30/12 SA ASTM D1498-76 |
| pH <sup>a</sup>                               | 7.43            |       |        | su         | 1      | 08/21/12 22:05 AS SM20 4500H B                             |

(a) Sample received out of holding time for pH analysis.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



### **Report of Analysis**

Page 1 of 1

Client Sample ID: NSB-F5-16.0-16.5

 Lab Sample ID:
 JB14312-15
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 83.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.14 B | 0.48 | 0.14 | mg/kg | 1  | 08/30/12 17:25 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 248    |      |      | mv    | 1  | 08/30/12 SA ASTM D1498-76M          |
| Solids, Percent       | 83.1   |      |      | %     | 1  | 08/29/12 11:45 RO SM18 2540G        |
| рH                    | 7.48   |      |      | su    | 1  | 08/30/12 13:10 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



| ah Info              | rmation:                   | <b>.</b>                 |                 | rne Chan    | -or-oustody is a   | LEGAL DOCUMENT. All relevant fields must be o | completed and  | accurate,                 | Ta         | isk:          | GAR         | IS- Northern Car      | nal Boris                                        | igs        |                |   |
|----------------------|----------------------------|--------------------------|-----------------|-------------|--------------------|-----------------------------------------------|----------------|---------------------------|------------|---------------|-------------|-----------------------|--------------------------------------------------|------------|----------------|---|
|                      | ACCUTEST                   | Project Info             |                 |             | Other Information: |                                               |                |                           |            |               |             | mples: 15             |                                                  | -          |                |   |
|                      | 2235 Route 130 , Dayton NJ | Site ID #:<br>Project #: | PPG Garfield A  | lve         |                    | Send Invoice to: Lisa Krov                    | vitz           |                           | +          | TAT           |             | ee Spec. Instructions |                                                  |            |                | _ |
|                      | 08810                      | Site                     | 60213772.5.A    |             |                    | Address: 250 Apollo Drive                     |                |                           | 100        |               |             | d Filtered , H= Hol   | RL                                               | sh         |                |   |
|                      |                            | Address:                 | 70 Carteret Ave | enue        |                    | City/State. Chelmsford, M.                    | A 01824        | Phone #: 978-905-2278     | Se         | Trotes.       | r= riei     | d riitered , H= Hoi   | d                                                |            |                |   |
| b PM:                | Matt Cordova               | City Jersey              | City State, 2   | Zin N.I     | 07304              | PO#: 40256ACM                                 |                |                           | No.        |               |             |                       | -                                                | 0          | 2.2            |   |
| one/Fa<br>I email:   | X: 732-329-0200/           | PM Name:                 | Chris Martell   | -10 140     | 107304             |                                               |                |                           | 3          |               |             |                       | J                                                | 312        |                |   |
| email                |                            | Phone/Fax:               | 732-564-3633    |             |                    | CC Hardcopy to Erin Fari                      | rell. AEC      | om<br>OM, Piscataway, NJ  | - 18       |               | T           |                       |                                                  | T          | 7              | Т |
|                      |                            | PM Email:                | Christopher.M   | lartell@aec | om.com             |                                               |                | - My resolution, No       | eservative |               |             |                       |                                                  |            |                |   |
| I EIW #              | Field Sample I             | No. /Identifica          | tion            | MATRIX CODE | G=GRAB C=COMP      | SAMPLE DATE                                   | #OF CONTAINERS | Comment                   | Analysis   | GARA-HEXCHROM | GARA-PH-ORP |                       |                                                  |            |                |   |
| 1 NS                 | SB-D1-1-1.5                | - [                      |                 | so          | G                  | 08/21/2012 10:40                              | 1              |                           | ٩          | X             | X           | 1-1-                  | <u> </u>                                         | <u> </u>   |                | H |
| 2 NS                 | SB-D1-12-12.5              | 2                        |                 | so          | G                  | 08/21/2012 11:56                              | 1              |                           |            | X             | X           |                       | $\vdash$                                         | wC         | FLR            | f |
| 3 NS                 | SB-D1-16-16.5              | 3                        |                 | so          | G                  | 08/21/2012 12:24                              | 1              |                           |            | X             | х           |                       |                                                  | ME         | 38             | F |
| NS                   | B-D1-20-20.5               | 4                        |                 | so          | G                  | 08/21/2012 12:40                              | 1              |                           |            | X             | X           |                       | <del>                                     </del> | we         | 78             | F |
| NS                   | B-D1-4-4.5 —               | - 5                      |                 | so          | G                  | 08/21/2012 10:45                              | 1              |                           |            | X             | X           |                       |                                                  |            |                | F |
| NSI                  | B-D1-7.7-8.2               | 6                        |                 | so          | G                  | 08/21/2012 11:42                              | 1              |                           | 85         | Х             | X           |                       |                                                  |            |                | H |
| NSE                  | B-D2-11.3-11.8             | 7                        |                 | so          | G                  | 08/21/2012 14:50                              | 1              |                           |            | Х             | X           |                       |                                                  |            |                |   |
| NSI                  | B-D2-3-3.5                 | 8                        |                 | so          | G                  | 08/21/2012 13:35                              | 1              |                           | -          | х             | X           |                       | ļ                                                |            |                | _ |
| NSE                  | B-D2-3-3.5X                | 9                        |                 | so          | G                  | 08/21/2012 13:38                              | 1              |                           | -          | X             | X           |                       |                                                  |            |                | _ |
| NSE                  | 3-D2-6-6.5                 | <i>(</i> 0               |                 | so          | G                  | 08/21/2012 14:30                              | 1              |                           | -          | X             | X           |                       |                                                  |            | _              | _ |
|                      |                            | (/                       |                 | so          | G                  | 08/21/2012 14:15                              | 1              |                           | -          | X             | X           |                       |                                                  |            |                |   |
| itional (<br>idard T | Comments/Special Instruct  | tions:                   |                 | RELINQU     | ISHED BY           | / AFFILIATION DATE                            | TIME I         | ACCEPTED BY / AFFILIATION |            |               |             |                       |                                                  |            |                |   |
| uaru I               | M1                         |                          |                 | ( Juta      | 49 /or             | MAECOM SPILIZ                                 |                | 17/20 8-21-               | 1          |               | DATE        | TIME Sam              |                                                  | pt Conditi | _              | _ |
| 2                    | A11 a.i.in) E8 6           | ECHNE!                   | 3               | 7           | -artg              | 8-21-12 18                                    | 25             | 8-21                      | . 17       | -             |             | 1825                  | - Y/                                             |            | 7/N            | Y |
| 1                    | ALL SAMPLES R              | PRINCE                   | aren)           |             |                    |                                               |                |                           |            | 1             |             | 1015                  | Y/<br>Y/                                         |            | // N           | Y |
| PR                   | reserved as a              | FFLON                    | (1)             |             |                    |                                               |                |                           |            |               |             |                       | Y/                                               |            |                | Y |
|                      |                            |                          | •               |             | Chinns             |                                               |                |                           |            |               |             |                       |                                                  |            |                |   |
|                      |                            |                          |                 |             | Shipper:           |                                               |                | DATE/TIME:                |            |               |             | 8                     | loe,                                             | - 1        | tag l          |   |
|                      |                            | 5.0                      | L               |             | Tracking #         |                                               |                | Custody Seal(s):          |            |               |             | - Jones               | Samples on                                       |            | Sample intact? |   |

JB14312: Chain of Custody Page 1 of 8



| Lab Infor           | mation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                 | The Chain-  | of-Custody is a    | LEGAL DOCUMENT                          | T. All relevant fields must be          | completed and                                      | Scourate,                 | [        | Task                                     |                                                                     | GARIS                  | S- Northe                               | rn Canal   | Borings         |           |         |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------|-------------|--------------------|-----------------------------------------|-----------------------------------------|----------------------------------------------------|---------------------------|----------|------------------------------------------|---------------------------------------------------------------------|------------------------|-----------------------------------------|------------|-----------------|-----------|---------|--|--|--|--|
|                     | ACCUTEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Project Info     |                 |             | Other Information: |                                         |                                         |                                                    |                           |          |                                          |                                                                     | Total # of Samples: 15 |                                         |            |                 |           |         |  |  |  |  |
|                     | 2235 Route 130 , Dayton NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Site ID #:       | PPG Garfield A  | ve          |                    |                                         | ce to: Lisa Krov                        | vitz                                               |                           |          |                                          |                                                                     |                        |                                         |            |                 |           |         |  |  |  |  |
| tuureaa.            | 08810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project #:       | 60213772.5.A    |             |                    | Address:                                |                                         |                                                    |                           |          |                                          | TAT see Spec. Instructions Rush  Notes: F= Field Filtered , H= Hold |                        |                                         |            |                 |           |         |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site<br>Address: | 70 Carteret Ave | enue        |                    | City/State.                             |                                         |                                                    | Phone #: 978-905-2278     |          | Notes                                    | otes: F                                                             | = Fleld                | Filtered ,                              | H= Hold    |                 |           |         |  |  |  |  |
|                     | Matt Cordova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | City Jersey      | City State, 2   | in N.I      | 07304              | PO #:                                   | 400504.044                              |                                                    |                           |          | 2                                        |                                                                     |                        |                                         |            |                 |           |         |  |  |  |  |
| hone/Fa<br>M email: | X: 732-329-0200/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PM Name:         | Chris Martell   | -ip 140     | 107304             | Send EDD                                | 40256ACM                                |                                                    |                           |          | 3                                        |                                                                     |                        |                                         |            | ) f             | 31431     | 17      |  |  |  |  |
| w email:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone/Fax:       | 732-564-3633    |             |                    | CC Hardco                               |                                         | NJLABDATA@aecom.com Erin Farrell, AECOM, Piscatawa |                           |          | Š                                        |                                                                     |                        |                                         | Т          |                 |           | -       |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM Email:        | Christopher.M   | arteli@aeco | om.com             |                                         | Py to Elin Farien, P                    |                                                    | OM, Piscataway, NJ        |          | servative                                |                                                                     |                        |                                         |            |                 |           |         |  |  |  |  |
| тем #               | Field Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | No. /Identifica  | tion            | MATRIX CODE | G=GRAB C=COMP      |                                         | SAMPLE DATE                             | #OF CONTAINERS                                     | Comment                   | Araberie | H. H. H. H. H. H. H. H. H. H. H. H. H. H | GARA-HEXCHROM                                                       | GARA-PH-ORP            |                                         |            |                 |           |         |  |  |  |  |
| 12 NS               | B-D4-1-1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - (              | 7               | so          | G                  | 08/21/                                  | /2012 15:00                             | 1                                                  |                           |          |                                          | X                                                                   | ð<br>X                 |                                         | $\dashv$   | $\dashv$        |           | +       |  |  |  |  |
| 13 NS               | B-F5-20-20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - (              | 3               | so          | G                  | 08/21/                                  | /2012 09:02                             | 1                                                  |                           |          | -                                        | x                                                                   | X                      |                                         | $\dashv$   | -               | -         | +       |  |  |  |  |
| 14 EB               | 082112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1              | 4               | wa          | G                  | 08/21/                                  | /2012 15:30                             | 2                                                  | Preserved: Nane           |          | -                                        | $\frac{x}{x}$                                                       | x                      |                                         | $\dashv$   | +               |           | +       |  |  |  |  |
| 15 NS               | B-F5-16-16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - (              | 5               | so          | G                  | 08/21/                                  | 2012 08:45                              | 3                                                  | 2 Jars for MS/MSD         |          | -                                        | x                                                                   | X                      | $\dashv$                                |            |                 |           | +       |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             |                    |                                         |                                         |                                                    |                           |          | H                                        | +                                                                   |                        |                                         |            | -               | -         | +       |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             |                    | *************************************** |                                         |                                                    |                           |          | -                                        | +                                                                   |                        |                                         | +          | -               |           | +       |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             |                    |                                         |                                         |                                                    |                           |          |                                          | +                                                                   |                        |                                         | _          | _               | _         | -       |  |  |  |  |
|                     | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                  |                 |             |                    |                                         |                                         |                                                    |                           |          | L                                        | +                                                                   | $\dashv$               |                                         | _          | _               | _         | 1       |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             |                    |                                         |                                         | -                                                  |                           |          | L                                        | +                                                                   | $\dashv$               | _                                       | _          | _               |           | 1       |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             |                    |                                         | *************************************** |                                                    |                           |          | L                                        | $\perp$                                                             |                        | _                                       |            |                 |           | $\perp$ |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             | $\dashv$           |                                         |                                         |                                                    |                           |          |                                          | $\perp$                                                             | _                      |                                         |            |                 |           | $\perp$ |  |  |  |  |
| 1141                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             |                    |                                         |                                         |                                                    |                           |          |                                          |                                                                     |                        | - 1                                     |            |                 | - 1       | 1       |  |  |  |  |
|                     | Comments/Special Instruc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                 | RELINCUI    | SHED BY            | / AFFILIATION                           | V DATE                                  | annie I                                            | ACCEPTED BY / AFFILIATION |          | CARGO I                                  |                                                                     |                        |                                         |            |                 |           | 1       |  |  |  |  |
| ndard TA            | pH = 7.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                | 1 )             | Must        | ul 1               | DE AFCO                                 | 14 8/31/12<br>-12 /8                    | الحسس                                              | 17,12 8-2                 |          |                                          | DA                                                                  |                        | TIME                                    | Sample     | Receipt 0       | onditions |         |  |  |  |  |
|                     | 11 - 7 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (A)              | dollz           | 1257        | 150                | 18-21                                   | -11                                     | 11 .                                               | X Z                       | -1-12    |                                          |                                                                     |                        | 1645                                    |            | Y/N             | Y/N       | Y       |  |  |  |  |
| 0 (                 | パー パン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | w,               | 1-11            |             |                    |                                         | 7 / 1                                   | 4                                                  | / - >                     |          |                                          |                                                                     |                        |                                         |            | Y/N             | Y/N       | Y       |  |  |  |  |
| 8 f                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (               |             |                    |                                         |                                         |                                                    |                           |          |                                          |                                                                     |                        |                                         |            | Y/N             | Y/N       | Y       |  |  |  |  |
| 1                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             | SY(0) (1)          |                                         |                                         | District Control                                   |                           |          |                                          |                                                                     |                        |                                         |            | Y/N             | Y/N       | Y       |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             | Shipper:           | ALL STREET, SALES                       |                                         | SEPTEMBER SHIP                                     |                           |          |                                          | Sheley                                                              |                        |                                         |            |                 |           | 丁       |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                 |             | Crippel.           |                                         |                                         |                                                    | DAT                       | E/TIME:  |                                          |                                                                     |                        |                                         | 8          | - E             | intact?   | 1 5     |  |  |  |  |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                | 200             | 1           | racking #          | :                                       |                                         |                                                    | Custody                   | Seal(s): |                                          |                                                                     |                        | *************************************** | Temp in 0C | Samples on Ice? | Sample in |         |  |  |  |  |

JB14312: Chain of Custody Page 2 of 8







### **Accutest Laboratories Sample Receipt Summary**

| Accutest Job Number: JB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14312        |              | Client:   |            |              |            | Project:                               |              |          |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------|------------|--------------|------------|----------------------------------------|--------------|----------|----------------------------------------|
| Date / Time Received: 8/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 21/2012      |              |           | Delivery I | Method:      | :          | Airbill #'s:                           |              |          |                                        |
| Cooler Temps (Initial/Adjus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ted): #      | 1: (5/5);    | 0         |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
| Cooler Security                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or N         | _            |           |            | Y or         | r <b>N</b> | Sample Integrity - Documentation       | ΥΥ           | or N     |                                        |
| Custody Seals Present:      Very seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal of the seal |              | _            | COC Pr    |            | $\checkmark$ |            | Sample labels present on bottles:      | <b>✓</b>     |          |                                        |
| 2. Custody Seals Intact:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | ] 4. Sr      | npl Dates | s/Time OK  | $\checkmark$ |            | 2. Container labeling complete:        | ✓            |          |                                        |
| Cooler Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Υ            | or N         |           |            |              |            | 3. Sample container label / COC agree: | $\checkmark$ |          |                                        |
| 1. Temp criteria achieved:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\checkmark$ |              |           |            |              |            | Sample Integrity - Condition           | <u>Y</u>     | or N     |                                        |
| Cooler temp verification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | В            | ar Therm     |           |            |              |            | Sample recvd within HT:                | <b>✓</b>     |          |                                        |
| 3. Cooler media:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | le           | ce (Bag)     |           |            |              |            | All containers accounted for:          | <b>✓</b>     |          |                                        |
| 4. No. Coolers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 1            |           |            |              |            | 3. Condition of sample:                |              | Intact   |                                        |
| Quality Control Preservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | on Y         | or N         | N/A       |            |              |            | Sample Integrity - Instructions        | Υ            | or N     | N/A                                    |
| 1. Trip Blank present / cooler:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | $\checkmark$ |           |            |              |            | 1. Analysis requested is clear:        | <u> </u>     |          |                                        |
| 2. Trip Blank listed on COC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | $\checkmark$ |           |            |              |            | Bottles received for unspecified tests |              | <b>V</b> |                                        |
| 3. Samples preserved properly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | : 🗸          |              |           |            |              |            | Sufficient volume recvd for analysis:  | ✓            |          |                                        |
| 4. VOCs headspace free:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              | <b>✓</b>  |            |              |            | 4. Compositing instructions clear:     |              |          | $\checkmark$                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            | 5. Filtering instructions clear:       |              |          | ✓                                      |
| Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |              |           |            |              |            |                                        |              |          |                                        |
| Accutest Laboratories<br>V:732.329.0200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |              |           |            |              |            | 6 Highway 130<br>2.329.3499            |              |          | Dayton, New Jersey<br>www/accutest.com |

JB14312: Chain of Custody Page 3 of 8



| Ľ  |
|----|
| ō  |
| Ģ  |
| ā  |
|    |
| ge |
| Ĕ  |
| ā  |
| 듯  |
| O  |
| ō  |
| 9  |
| •  |
|    |
|    |
|    |
|    |

| Requested Date: | 8/22/2012                                 | Received Date: | 8/21/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/4/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | MJ                                        | TAT (Days):    | 4         |
|                 |                                           |                |           |

Revise ID to NSB-D1-1.0-1.5 Change: Sample #: JB14312-1

NSB-D1-1-1.5

Revise ID to NSB-D1-12.0-12.5 Change: Sample #: JB14312-2

NSB-D1-12-12.5

Change: Sample #: JB14312-3

Revise ID to NSB-D1-16.0-16.5

NSB-D1-16-16.5

Revise ID to NSB-D1-20.0-20.5 Change: Sample #: JB14312-4

NSB-D1-20-20.5

JB14312: Chain of Custody Page 4 of 8

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Lisa Krowitz

Above Changes Per:

**Date:** 8/22/2012

Page 1 of 4



| Requested Date: | 8/22/2012                                 | Received Date: | 8/21/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/4/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | MJ                                        | TAT (Days):    | 4         |

MJ TAT (Days): Change: Revise ID to NSB-D1-4.0-4.5

Sample #: JB14312-5

NSB-D1-4-4.5

**Sample #:** JB14312-8

Revise ID to NSB-D2-3.0-3.5

Change:

NSB-D2-3-3.5

**Sample #:** JB14312-9

Revise ID to NSB-D2-3.0-3.5X

Change:

NSB-D2-3-3.5X **Sample #:** JB14312-10

#: 2-10

Revise ID to NSB-D2-6.0-6.5

Change:

NSB-D2-6-6.5

Above Changes Per:
To Client: This Change Order is confi

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Lisa Krowitz

**Date:** 8/22/2012

Page 2 of 4

JB14312: Chain of Custody Page 5 of 8



| - 1           |
|---------------|
| JB14312_      |
|               |
| <del>~~</del> |
| $\sim$        |
| .,            |
| ◂             |
|               |
| $\overline{}$ |
| $\sim$        |
| ш             |
| _             |
| •             |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
|               |
| : .           |
| -             |
| യ             |
| nge Order:    |
| o             |
| _             |
| _             |
|               |
| _             |
| 4             |
| w             |
| 7             |
| ≃′            |
| _             |
| _             |

| Requested Date: | 8/22/2012                                 | Received Date: | 8/21/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/4/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | LMJ                                       | TAT (Days):    | 4         |

Sample #: JB14312-11

Revise ID to NSB-D3-3.0-3.5 Change:

NSB-D3-3-3.5

Sample #: JB14312-12

Revise ID to NSB-D4-1.0-1.5

Change:

Revise ID to NSB-F5-20.0-20.5

Change:

NSB-D4-1-1.5

Sample #: JB14312-13

Revise ID to NSB-EB20120822 Change:

NSB-F5-20-20.5

Sample #: JB14312-14

EB082112

JB14312: Chain of Custody

Page 6 of 8

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Lisa Krowitz

Above Changes Per:

**Date:** 8/22/2012

Page 3 of 4



JB14312\_8/22/2012 Job Change Order:

| Requested Date: | 8/22/2012                                 | Received Date: | 8/21/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/4/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | MJ                                        | TAT (Days):    | 41        |

Change: Revise ID to NSB-F5-16.0-16.5

Sample #: JB14312-15, -15D, 15S

JB14312: Chain of Custody Page 7 of 8

Above Changes Per:

**Date:** 8/22/2012

Page 4 of 4

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Job Change Order:

JB14312\_8/31/2012

8/31/2012 Requested Date:

Account Name:

8/21/2012 9/4/2012

Received Date:

FULT1

Deliverable: TAT (Days):

Due Date:

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ MC

> Project CSR:

Change:

Sample #: JB14312-15

Due to XCR spike recovery log in FE2/7, TOCLK, SULFS,

Change: log in XXCRAR

NSB-F5-16.0-16.5

Sample #: JB14312-1 thru 13, 15

JB14312: Chain of Custody

Page 8 of 8

Above Changes Per:

Date: 8/31/2012

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Page 1 of 1

### **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14312

| Sample<br>Number                    | Method                                                             | Analyzed                                                           | Ву             | Prepped     | Ву     | Test Codes                 |
|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------|-------------|--------|----------------------------|
| JB14312-1<br>NSB-D1-1.0             | Collected: 21-AUG-12<br>0-1.5                                      | 10:40 By: LK                                                       | Receiv         | ved: 21-AUG | -12 By | r: AS                      |
| JB14312-1<br>JB14312-1<br>JB14312-1 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A |                                                                    | SA<br>SA<br>MM | 30-AUG-12   |        | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-2<br>NSB-D1-12              | Collected: 21-AUG-12<br>.0-12.5                                    | 11:56 By: LK                                                       | Receiv         | ved: 21-AUG | -12 By | : AS                       |
| JB14312-2<br>JB14312-2              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA       | 30-AUG-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-3<br>NSB-D1-16              | Collected: 21-AUG-12<br>.0-16.5                                    | 12:24 By: LK                                                       | Receiv         | ved: 21-AUG | -12 By | r: AS                      |
| JB14312-3<br>JB14312-3              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA       | 30-AUG-12   | МР     | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-4<br>NSB-D1-20              | Collected: 21-AUG-12                                               | 12:40 By: LK                                                       | Receiv         | ved: 21-AUG | -12 By | v: AS                      |
| JB14312-4<br>JB14312-4              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA       | 30-AUG-12   | МР     | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-5<br>NSB-D1-4.0             | Collected: 21-AUG-12<br>0-4.5                                      | 10:45 By: LK                                                       | Receiv         | ved: 21-AUG | -12 By | v: AS                      |
| JB14312-5<br>JB14312-5              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA       | 30-AUG-12   | МР     | SOL104<br>EH<br>PH<br>XCRA |

### **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14312

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву       | Prepped     | Ву      | Test Codes                 |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------|-------------|---------|----------------------------|
| JB14312-6<br>NSB-D1-7.   | Collected: 21-AUG-12<br>7-8.2                                      | 11:42 By: LK                                                       | Receiv   | ved: 21-AUG | 3-12 By | r: AS                      |
| JB14312-6<br>JB14312-6   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-7<br>NSB-D2-11   | Collected: 21-AUG-12 .3-11.8                                       | 14:50 By: LK                                                       | Receiv   | ved: 21-AUG | 3-12 By | r: AS                      |
| JB14312-7<br>JB14312-7   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-8<br>NSB-D2-3.   | Collected: 21-AUG-12<br>0-3.5                                      | 13:35 By: LK                                                       | Receiv   | ved: 21-AUG | 6-12 By | r: AS                      |
| JB14312-8<br>JB14312-8   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-9<br>NSB-D2-3.   | Collected: 21-AUG-12<br>0-3.5X                                     | 13:38 By: LK                                                       | Receiv   | ved: 21-AUG | 3-12 By | r: AS                      |
| JB14312-9<br>JB14312-9   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-10<br>NSB-D2-6.  | Collected: 21-AUG-12<br>0-6.5                                      | 14:30 By: LK                                                       | Receiv   | ved: 21-AUG | 6-12 By | r: AS                      |
| JB14312-10<br>JB14312-10 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:01 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |

# 5.2

### **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14312

| Sample<br>Number         | Method                                                                     | Analyzed                                                           | Ву       | Prepped     | Ву      | Test Codes                 |
|--------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|----------|-------------|---------|----------------------------|
| JB14312-11<br>NSB-D3-3.  | Collected: 21-AUG-12<br>0-3.5                                              | 14:15 By: LK                                                       | Receiv   | ved: 21-AUC | G-12 By | 7: AS                      |
| JB14312-11<br>JB14312-11 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A         | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:04 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-12<br>NSB-D4-1.  | 2 Collected: 21-AUG-12<br>0-1.5                                            | 15:00 By: LK                                                       | Receiv   | ved: 21-AUC | G-12 By | v: AS                      |
| JB14312-12<br>JB14312-12 | 2 SM18 2540G<br>2 ASTM D1498-76M<br>2 SW846 9045C,D<br>2 SW846 3060A/7196A | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:04 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-13<br>NSB-F5-20  | Collected: 21-AUG-12                                                       | 09:02 By: LK                                                       | Receiv   | ved: 21-AUC | G-12 By | 7: AS                      |
| JB14312-13<br>JB14312-13 | SM18 2540G<br>SASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A        | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 19:04 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |
| JB14312-14<br>NSB-EB20   | Collected: 21-AUG-12<br>120822                                             | 15:30 By: LK                                                       | Receiv   | ved: 21-AUC | G-12 By | 7: AS                      |
| JB14312-14               | SM20 4500H B<br>SW846 7196A<br>ASTM D1498-76                               | 21-AUG-12 22:05<br>21-AUG-12 23:14<br>30-AUG-12                    |          |             |         | PH<br>XCR<br>EH            |
| JB14312-15<br>NSB-F5-16  | Collected: 21-AUG-12<br>.0-16.5                                            | 08:45 By: LK                                                       | Receiv   | ved: 21-AUC | G-12 By | v: AS                      |
| JB14312-15<br>JB14312-15 | SM18 2540G<br>SASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A        | 29-AUG-12 11:45<br>30-AUG-12<br>30-AUG-12 13:10<br>30-AUG-12 17:25 | SA<br>SA | 30-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |

**Account:** ENSRNJ AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-1.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-1.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-1.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-1.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-1.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-1.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-1.1             | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-1.1             | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-1.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-1.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-1.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-1.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-1.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-1.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-1.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-1.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-1.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-1.1             | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-1.1             | Ye Chen              | Secured Storage      |                | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-2.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-2.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-2.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-2.1             | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-2.1             | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-2.1             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-2.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-2.1             | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-2.1             | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-2.1             | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-2.1             | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-2.1             | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-2.1             | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-2.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-3.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-3.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-3.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-3.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Bil4312-3.1   Secured Storage   Todd Shoemaker   Secured Staging Area   08/29/12 08:27   Retrieve from Storage   Bil4312-3.1   Todd Shoemaker   Secured Staging Area   08/29/12 08:27   Retrieve from Storage   Bil4312-3.1   Secured Storage   Brian Racin   08/29/12 11:19   Return to Storage   Bil4312-3.1   Secured Storage   Brian Racin   08/29/12 11:33   Retrieve from Storage   Bil4312-3.1   Brian Racin   Sanjay Advani   08/29/12 13:33   Custody Transfer   Sanjay Advani   Secured Storage   08/29/12 17:01   Return to Storage   Bil4312-3.1   Sanjay Advani   Secured Storage   08/29/12 17:01   Return to Storage   Secured Storage   O8/29/12 17:01   Return to Storage   Secured Storage   O8/29/12 08:17   Return to Storage   Secured Storage   O8/30/12 06:59   Retrieve from Storage   Secured Storage   O8/30/12 06:50   Retrieve from Storage   Secured Storage   O8/30/12 06:50   Retrieve from Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Staging Area   O8/30/12 07:00   Return to Storage   Secured Staging Area   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Staging Area   O8/30/12 07:00   Return to Storage   Secured Storage   O8/30/12 07:00   Return to Storage   Secured Staging Area   O8/30   | Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-3.1   Secured Staging Area   Robert OConnor   Secured Storage   Data   Robert OConnor   Secured Storage   Secured Storage   Data   Secured Storage   Brian Racin   Sanjay Advani   Secured Storage   Brian Racin   Sanjay Advani   Secured Storage   Data   Secured Storage   Data   Secured Storage   Data   Secured Storage   Adam Scott   Secured Storage   Data   Secured Storage   Adam Scott   Secured Storage   Data   Secured Storage   Adam Scott   Secured Staging Area   Mayur Patel   Secured Storage   Secure   | JB14312-3.1             | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-3.1   Robert OConnor   Secured Storage   Brian Racin   O8/29/12 11:19   Return to Storage   JB14312-3.1   Brian Racin   Sanjay Advani   O8/29/12 13:33   Retrieve from Storage   JB14312-3.1   Sanjay Advani   Secured Storage   O8/29/12 17:01   Return to Storage   JB14312-3.1   Sanjay Advani   Secured Storage   O8/30/12 07:05   Return to Storage   JB14312-3.1   Adam Scott   Secured Staging Area   O8/30/12 07:00   Return to Storage   JB14312-3.1   Secured Staging Area   O8/30/12 07:00   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/30/12 08:10   Retrieve from Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/30/12 08:10   Retrieve from Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/31/12 14:48   Retrieve from Storage   JB14312-3.1   Secured Staging Area   O8/31/12 14:49   Return to Storage   JB14312-3.1   Secured Staging Area   O8/31/12 16:14   Return to Storage   JB14312-3.1   Secured Staging Area   O8/31/12 16:14   Return to Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 16:14   Return to Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Robert OConnor   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Staging Area   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Staging Area   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/29/12 13:33   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 07:00   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/3   | JB14312-3.1             | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-3.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14312-3.1   Sanjay Advani   Secured Storage   O8/29/12 13:33   Custody Transfer   Sanjay Advani   O8/29/12 13:33   Custody Transfer   Custorage   JB14312-3.1   Sanjay Advani   Secured Storage   O8/29/12 17:01   Return to Storage   JB14312-3.1   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-3.1   Secured Staging Area   O8/30/12 07:00   Return to Storage   JB14312-3.1   Mayur Patel   Secured Storage   O8/30/12 08:10   Retrieve from Storage   JB14312-3.1   Mayur Patel   Secured Storage   O8/30/12 11:42   Return to Storage   JB14312-3.1   Adam Scott   Secured Staging Area   O8/31/12 14:48   Retrieve from Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/31/12 16:17   Retrieve from Storage   JB14312-3.1   Secured Storage   Oave Hunkele   O8/27/12 13:59   Retrieve from Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/27/12 15:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/27/12 15:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/27/12 10:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/27/12 10:35   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 07:00   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 07:00   Return to Storage   JB14312-4.1   Secu   | JB14312-3.1             | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-3.1   Brian Racin   Sanjay Advani   O8/29/12 13:33   Custody Transfer   Sanjay Advani   Secured Storage   O8/29/12 17:01   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-3.1   Adam Scott   O8/30/12 06:50   Return to Storage   JB14312-3.1   Mayur Patel   Secured Staging Area   O8/30/12 07:00   Return to Storage   JB14312-3.1   Mayur Patel   Secured Storage   O8/30/12 11:42   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/30/12 11:44   Return to Storage   JB14312-3.1   Secured Staging Area   O8/30/12 11:42   Return to Storage   JB14312-3.1   Secured Staging Area   Ye Chen   O8/31/12 14:49   Return to Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Minhaj Hashmi   O8/27/12 13:59   Return to Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/27/12 12:08   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   Sanjay Advani   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   Sanjay Advani   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Brian Racin   Sanjay Advani   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Sanjay Advani   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Sanjay Advani   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage    | JB14312-3.1             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-3.1   Sanjay Advani   Secured Storage   O8/29/12 17:01   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-3.1   Adam Scott   Secured Staging Area   O8/30/12 08:10   Return to Storage   JB14312-3.1   Mayur Patel   O8/30/12 08:10   Retrieve from Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/30/12 11:42   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/31/12 14:49   Retrieve from Storage   JB14312-3.1   Secured Staging Area   Ye Chen   O8/31/12 14:49   Retrieve from Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/31/12 16:17   Retrieve from Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Retrieve from Storage   JB14312-3.1   Secured Storage   Dave Hunkele   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Dave Hunkele   Secured Storage   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 11:42   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 14:49   Return to Storage   JB1   | JB14312-3.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-3.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-3.1   Secured Staging Area   O8/30/12 07:00   Return to Storage   JB14312-3.1   Mayur Patel   Secured Storage   O8/30/12 11:42   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/30/12 11:42   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/31/12 14:48   Retrieve from Storage   JB14312-3.1   Secured Staging Area   O8/30/12 11:42   Return to Storage   JB14312-3.1   Secured Staging Area   O8/31/12 16:17   Retrieve from Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Minhaj Hashmi   O8/27/12 13:59   Return to Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Staging Area   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Staging Area   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Staging Area   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Staging Area   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 11:42   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 11:42   Return to Stor   | JB14312-3.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-3.1   Adam Scott   Secured Staging Area   Mayur Patel   08/30/12 07:00   Return to Storage   JB14312-3.1   Mayur Patel   Secured Storage   08/30/12 08:10   Retrieve from Storage   JB14312-3.1   Mayur Patel   Secured Storage   08/30/12 11:42   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   Adam Scott   08/31/12 14:48   Retrieve from Storage   JB14312-3.1   Secured Staging Area   Ye Chen   08/31/12 14:49   Return to Storage   JB14312-3.1   Secured Staging Area   Ye Chen   08/31/12 19:40   Return to Storage   JB14312-3.1   Ye Chen   Secured Storage   08/31/12 19:40   Return to Storage   JB14312-3.1   Secured Storage   Dave Hunkele   08/27/12 13:59   Retrieve from Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   08/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Minhaj Hashmi   08/27/12 15:08   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   08/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   08/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Storage   Robert OConnor   08/29/12 08:57   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   08/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   08/30/12 08:50   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   08/30/12 08:50   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Mayur Patel   Secured Staging Area   08/30/12 08:50   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Mayur Patel   Secured Staging Area   08/30/12 08:50   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Mayur Patel   Secured Staging Area   08/30/12 11:42   Retrieve from Storage   JB14312-4.1   Secured Stag   | JB14312-3.1             | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-3.1   Secured Staging Area   Mayur Patel   Secured Storage   D8/30/12 08:10   Retrieve from Storage   JB14312-3.1   Secured Storage   Adam Scott   Secured Storage   O8/30/12 11:42   Return to Storage   JB14312-3.1   Adam Scott   Secured Staging Area   O8/31/12 14:48   Return to Storage   JB14312-3.1   Secured Staging Area   Ye Chen   O8/31/12 16:17   Retrieve from Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-4.1   Secured Storage   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Minhaj Hashmi   Secured Storage   O8/27/12 15:08   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Staging Area   Robert OConnor   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Secured Storage   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Return to Storage   JB14312-4.1   Secured Storage     | JB14312-3.1             | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-3.1   Mayur Patel   Secured Storage   Adam Scott   O8/30/12 11:42   Return to Storage   JB14312-3.1   Secured Storage   Adam Scott   O8/31/12 14:48   Return to Storage   JB14312-3.1   Secured Staging Area   Ye Chen   O8/31/12 16:17   Returive from Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Return to Storage   JB14312-4.1   Secured Storage   Dave Hunkele   O8/27/12 13:59   Return to Storage   JB14312-4.1   Secured Storage   O8/27/12 15:08   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/27/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Robert OConnor   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Secured Storage   Brian Racin   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 07:00   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 07:00   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 07:00   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 07:00   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 07:00   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Retrieve from Storage   JB14312-4.1   Secured Storage   O8/20/12 14:48   Return to Storage   JB14312-4.1   Secured Storage   O8/20/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   O8/20/12 08:20   Retri   | JB14312-3.1             | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-3.1 Secured Storage Adam Scott Secured Staging Area (08/31/12 14:48 Retrieve from Storage JB14312-3.1 Secured Staging Area Ye Chen (08/31/12 14:49 Return to Storage JB14312-3.1 Ye Chen Secured Storage (08/31/12 16:17 Retrieve from Storage JB14312-3.1 Ye Chen Secured Storage (08/31/12 16:17 Retrieve from Storage JB14312-4.1 Dave Hunkele Secured Storage (08/31/12 19:40 Return to Storage JB14312-4.1 Dave Hunkele Secured Staging Area (08/27/12 13:59 Retrieve from Storage JB14312-4.1 Secured Storage Minhaj Hashmi (08/27/12 15:08 Retrieve from Storage JB14312-4.1 Secured Storage Todd Shoemaker (08/27/12 20:07 Return to Storage JB14312-4.1 Secured Storage Todd Shoemaker (08/29/12 08:27 Retrieve from Storage JB14312-4.1 Secured Storage Todd Shoemaker (08/29/12 08:27 Retrieve from Storage JB14312-4.1 Secured Storage Robert OConnor (08/29/12 08:27 Retrieve from Storage JB14312-4.1 Secured Storage Brian Racin (08/29/12 13:31 Retrieve from Storage JB14312-4.1 Secured Storage Brian Racin (08/29/12 13:31 Retrieve from Storage JB14312-4.1 Secured Storage Brian Racin (08/29/12 13:33 Custody Transfer JB14312-4.1 Secured Storage Adam Scott (08/30/12 08:10 Return to Storage JB14312-4.1 Secured Storage Adam Scott (08/30/12 08:10 Return to Storage JB14312-4.1 Secured Storage Adam Scott (08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott (08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott (08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott (08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott (08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Staging Area (08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Staging Area (08/31/12 14:49 Return to Storage JB14312-4.1 Secured Storage (08/31/12 14:49 Return to Storage JB14312-4.1 Secured Storage (08/21/12 13:59 Retrieve from Storage JB14312-4.1 Secured Storage (08/21/12 13:59 Retrieve from Storage JB14312-4.1 Secured Storage (08/21/12 13:59 Retrieve from Storage JB14312- | JB14312-3.1             | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-3.1 Adam Scott Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-3.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-3.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-4.1 Secured Storage Dave Hunkele Secured Staging Area 08/27/12 13:59 Return to Storage JB14312-4.1 Dave Hunkele Secured Staging Area 08/27/12 13:59 Return to Storage JB14312-4.1 Minhaj Hashmi Secured Storage 08/27/12 15:08 Retrieve from Storage JB14312-4.1 Minhaj Hashmi Secured Storage 08/27/12 15:08 Retrieve from Storage JB14312-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-4.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 11:19 Return to Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:31 Custody Transfer JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Storage Dave Hunkele 08/30/12 08:00 Retrieve from Storage JB14312-4.1 Secured Storage Dave Hunkele 08/27/12 13:59 Return to Storage | JB14312-3.1             | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-3.1   Secured Staging Area   Ye Chen   Secured Storage   O8/31/12 16:17   Retrieve from Storage   JB14312-3.1   Ye Chen   Secured Storage   O8/31/12 19:40   Return to Storage   JB14312-4.1   Secured Storage   Dave Hunkele   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Minhaj Hashmi   O8/27/12 13:59   Return to Storage   JB14312-4.1   Minhaj Hashmi   Secured Storage   O8/27/12 13:59   Return to Storage   JB14312-4.1   Minhaj Hashmi   Secured Storage   O8/27/12 12:08   Retrieve from Storage   JB14312-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Return to Storage   JB14312-4.1   Todd Shoemaker   Secured Staging Area   O8/29/12 08:27   Return to Storage   JB14312-4.1   Secured Storage   Robert OConnor   O8/29/12 08:57   Retrieve from Storage   JB14312-4.1   Robert OConnor   Secured Storage   O8/29/12 11:19   Return to Storage   JB14312-4.1   Brian Racin   Sanjay Advani   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Brian Racin   Sanjay Advani   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Sanjay Advani   Secured Storage   O8/29/12 17:01   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 11:42   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 11:44   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 11:49   Retrieve from Storage   JB14312-4.1   Secured Storage   Dave Hunkele   Secured Staging Area   O8/29/12 13:59   Retrieve from Storage   JB14312-5.1   Secur   | JB14312-3.1             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-4.1   Secured Storage   Dave Hunkele   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Minhaj Hashmi   O8/27/12 15:08   Retrieve from Storage   JB14312-4.1   Minhaj Hashmi   Secured Storage   O8/27/12 15:08   Retrieve from Storage   JB14312-4.1   Minhaj Hashmi   Secured Storage   O8/27/12 22:07   Return to Storage   JB14312-4.1   Todd Shoemaker   Secured Staging Area   O8/29/12 08:27   Retrieve from Storage   JB14312-4.1   Secured Staging Area   Robert OConnor   O8/29/12 08:27   Return to Storage   JB14312-4.1   Robert OConnor   Secured Storage   O8/29/12 08:57   Retrieve from Storage   JB14312-4.1   Robert OConnor   Secured Storage   O8/29/12 11:19   Return to Storage   JB14312-4.1   Brian Racin   Sanjay Advani   O8/29/12 13:31   Retrieve from Storage   JB14312-4.1   Sanjay Advani   Secured Storage   O8/29/12 13:33   Custody Transfer   JB14312-4.1   Sanjay Advani   Secured Storage   O8/29/12 17:01   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 06:59   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/30/12 08:10   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/31/12 14:48   Retrieve from Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/31/12 14:49   Return to Storage   JB14312-4.1   Secured Storage   Adam Scott   O8/31/12 16:17   Retrieve from Storage   JB14312-4.1   Secured Storage   Dave Hunkele   O8/27/12 13:59   Retrieve from Storage   JB14312-5.1   Secured Storage   Dave Hunkele   Secured Staging Area   O8/27/12 13:59   Retrieve from Storage   JB14312-5.1   Secured Storage   Dave Hunkele   Secured Storage   O8/27/12 13:59   Retrieve from    | JB14312-3.1             | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-4.1 Secured Storage Dave Hunkele Secured Staging Area 08/27/12 13:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-4.1 Minhaj Hashmi Secured Storage 08/27/12 22:07 Return to Storage JB14312-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-4.1 Secured Staging Area Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-4.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14312-4.1 Robert OConnor Secured Storage 08/29/12 11:19 Return to Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:33 Custody Transfer JB14312-4.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14312-4.1 Secured Storage Adam Scott 08/29/12 13:33 Custody Transfer JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Staging Area Nobert OConnor 08/29/12 08:27 Return to Storage | JB14312-3.1             | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-4.1 Dave Hunkele Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Return to Storage JB14312-4.1 Minhaj Hashmi Secured Storage 08/27/12 22:07 Return to Storage JB14312-4.1 Minhaj Hashmi Secured Storage 08/27/12 22:07 Return to Storage JB14312-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-4.1 Todd Shoemaker Secured Staging Area Robert OConnor 08/29/12 08:27 Return to Storage JB14312-4.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14312-4.1 Robert OConnor Secured Storage 08/29/12 11:19 Return to Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14312-4.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 08:10 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Storage 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Storage 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Storage O8/29/12 08:57 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Storage O8/29/12 08:57 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoema | JB14312-3.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-4.1 Secured Staging Area JB14312-4.1 Minhaj Hashmi Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Todd Shoemaker JB14312-4.1 Todd Shoemaker JB14312-4.1 Secured Staging Area JB14312-4.1 Secured Staging Area JB14312-4.1 Secured Staging Area JB14312-4.1 Secured Staging Area JB14312-4.1 Secured Staging Area JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Staging Area JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-4.1 Secured Storage JB14312-5.1 | JB14312-4.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-4.1 Minhaj Hashmi Secured Storage 08/27/12 22:07 Return to Storage JB14312-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-4.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14312-4.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Return to Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 11:19 Return to Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14312-4.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14312-4.1 Sanjay Advani Secured Storage 08/29/12 17:01 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Adam Scott Secured Staging Area 08/30/12 07:00 Return to Storage JB14312-4.1 Mayur Patel Secured Storage 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Storage Secured Storage 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Secured Storage Dave Hunkele 08/27/12 13:59 Return to Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Return to Storage JB14312-5.1 Secured Storage Minhaj Hashmi 08/27/12 15:08 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Reture from Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 | JB14312-4.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-4.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14312-4.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14312-4.1 Robert OConnor Secured Storage 08/29/12 11:19 Return to Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 11:19 Return to Storage JB14312-4.1 Brian Racin Sanjay Advani 08/29/12 13:31 Retrieve from Storage JB14312-4.1 Sanjay Advani Secured Storage 08/29/12 17:01 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-5.1 Dave Hunkele Secured Staging Area 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Storage Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:57 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:57 Retrieve from Storage JB14312-5.1 Secur | JB14312-4.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-4.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Return to Storage JB14312-4.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 11:19 Return to Storage JB14312-4.1 Brian Racin 08/29/12 13:33 Retrieve from Storage JB14312-4.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14312-4.1 Sanjay Advani Secured Storage 08/29/12 17:01 Return to Storage JB14312-4.1 Sanjay Advani Secured Storage 08/29/12 17:01 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                 | JB14312-4.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-4.1 Secured Staging Area Robert OConnor Secured Storage O8/29/12 08:57 Retrieve from Storage JB14312-4.1 Robert OConnor Secured Storage O8/29/12 11:19 Return to Storage JB14312-4.1 Secured Storage Brian Racin O8/29/12 13:31 Retrieve from Storage JB14312-4.1 Brian Racin Sanjay Advani O8/29/12 13:33 Custody Transfer JB14312-4.1 Sanjay Advani Secured Storage O8/29/12 17:01 Return to Storage JB14312-4.1 Secured Storage Adam Scott O8/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Mayur Patel O8/30/12 07:00 Return to Storage JB14312-4.1 Secured Staging Area Mayur Patel O8/30/12 08:10 Retrieve from Storage JB14312-4.1 Mayur Patel Secured Storage O8/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott O8/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott O8/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen O8/31/12 16:17 Retrieve from Storage JB14312-4.1 Secured Staging Area Ye Chen O8/31/12 19:40 Return to Storage JB14312-4.1 Ye Chen Secured Storage O8/27/12 13:59 Retrieve from Storage JB14312-5.1 Dave Hunkele Secured Staging Area O8/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi O8/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker O8/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker O8/29/12 08:27 Return to Storage JB14312-5.1 Secured Staging Area Robert OConnor O8/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JB14312-4.1             | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-4.1 Robert OConnor Secured Storage Brian Racin 08/29/12 11:19 Return to Storage JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14312-4.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14312-4.1 Sanjay Advani Secured Storage 08/29/12 17:01 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                           | JB14312-4.1             | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-4.1 Secured Storage Brian Racin 08/29/12 13:31 Retrieve from Storage JB14312-4.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14312-4.1 Sanjay Advani Secured Storage 08/29/12 17:01 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 07:00 Return to Storage JB14312-4.1 Mayur Patel Secured Storage 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JB14312-4.1             | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-4.1 Brian Racin Sanjay Advani 08/29/12 13:33 Custody Transfer JB14312-4.1 Sanjay Advani Secured Storage 08/29/12 17:01 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Adam Scott Secured Staging Area 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Mayur Patel Secured Storage 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Storage Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JB14312-4.1             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-4.1 Sanjay Advani Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 07:00 Return to Storage JB14312-4.1 Mayur Patel Secured Storage 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Mayur Patel Secured Storage 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JB14312-4.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-4.1 Secured Storage Adam Scott 08/30/12 06:59 Retrieve from Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage  JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Minhaj Hashmi 08/27/12 22:07 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Storage Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JB14312-4.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-4.1 Adam Scott Secured Staging Area Mayur Patel 08/30/12 07:00 Return to Storage JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Mayur Patel Secured Storage 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage  JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JB14312-4.1             | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-4.1 Secured Staging Area Mayur Patel 08/30/12 08:10 Retrieve from Storage JB14312-4.1 Mayur Patel Secured Storage 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Adam Scott Secured Staging Area 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Minhaj Hashmi 08/27/12 22:07 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JB14312-4.1             | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-4.1 Mayur Patel Secured Storage 08/30/12 11:42 Return to Storage JB14312-4.1 Secured Storage Adam Scott 08/31/12 14:48 Retrieve from Storage JB14312-4.1 Adam Scott Secured Staging Area 08/31/12 14:49 Return to Storage JB14312-4.1 Secured Staging Area Ye Chen 08/31/12 16:17 Retrieve from Storage JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Secured Staging Area 08/27/12 13:59 Return to Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 22:07 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JB14312-4.1             | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-4.1 Secured Storage Adam Scott Secured Staging Area O8/31/12 14:48 Retrieve from Storage O8/31/12 14:49 Return to Storage O8/31/12 14:49 Return to Storage O8/31/12 14:49 Return to Storage O8/31/12 16:17 Retrieve from Storage O8/31/12 16:17 Retrieve from Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/31/12 13:59 Retrieve from Storage O8/27/12 13:59 Retrieve from Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 15:08 Retrieve from Storage O8/27/12 15:08 Retrieve from Storage O8/27/12 22:07 Return to Storage O8/27/12 22:07 Return to Storage O8/29/12 08:27 Retrieve from Storage O8/29/12 08:27 Retrieve from Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/ | JB14312-4.1             | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-4.1 Secured Staging Area Ye Chen Secured Storage O8/31/12 14:49 Return to Storage O8/31/12 16:17 Retrieve from Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/31/12 19:40 Return to Storage O8/27/12 13:59 Retrieve from Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 15:08 Retrieve from Storage O8/27/12 15:08 Retrieve from Storage O8/27/12 22:07 Return to Storage O8/27/12 22:07 Return to Storage O8/29/12 08:27 Retrieve from Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return  | JB14312-4.1             | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-4.1 Secured Staging Area Ye Chen Secured Storage O8/31/12 16:17 Retrieve from Storage O8/31/12 19:40 Return to Storage  JB14312-5.1 Secured Storage Dave Hunkele O8/27/12 13:59 Retrieve from Storage JB14312-5.1 Dave Hunkele Secured Staging Area O8/27/12 13:59 Return to Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi O8/27/12 15:08 Retrieve from Storage JB14312-5.1 Minhaj Hashmi Secured Storage O8/27/12 22:07 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker O8/29/12 08:27 Retrieve from Storage JB14312-5.1 Todd Shoemaker Secured Staging Area O8/29/12 08:27 Return to Storage JB14312-5.1 Secured Staging Area Robert OConnor O8/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JB14312-4.1             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-4.1 Ye Chen Secured Storage 08/31/12 19:40 Return to Storage  JB14312-5.1 Secured Storage Dave Hunkele 08/27/12 13:59 Retrieve from Storage JB14312-5.1 Dave Hunkele Secured Staging Area 08/27/12 13:59 Return to Storage JB14312-5.1 Secured Staging Area Minhaj Hashmi 08/27/12 15:08 Retrieve from Storage JB14312-5.1 Minhaj Hashmi Secured Storage 08/27/12 22:07 Return to Storage JB14312-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14312-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JB14312-4.1             |                      | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-5.1 Secured Storage Dave Hunkele Secured Staging Area 08/27/12 13:59 Retrieve from Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 13:59 Return to Storage O8/27/12 15:08 Retrieve from Storage O8/27/12 15:08 Retrieve from Storage O8/27/12 22:07 Return to Storage O8/27/12 22:07 Return to Storage O8/29/12 08:27 Retrieve from Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage O8/29/12 08:27 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JB14312-4.1             | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-5.1Dave HunkeleSecured Staging Area08/27/12 13:59Return to StorageJB14312-5.1Secured Staging AreaMinhaj Hashmi08/27/12 15:08Retrieve from StorageJB14312-5.1Minhaj HashmiSecured Storage08/27/12 22:07Return to StorageJB14312-5.1Secured StorageTodd Shoemaker08/29/12 08:27Retrieve from StorageJB14312-5.1Todd ShoemakerSecured Staging Area08/29/12 08:27Return to StorageJB14312-5.1Secured Staging AreaRobert OConnor08/29/12 08:57Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JB14312-4.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-5.1Secured Staging AreaMinhaj Hashmi08/27/12 15:08Retrieve from StorageJB14312-5.1Minhaj HashmiSecured Storage08/27/12 22:07Return to StorageJB14312-5.1Secured StorageTodd Shoemaker08/29/12 08:27Retrieve from StorageJB14312-5.1Todd ShoemakerSecured Staging Area08/29/12 08:27Return to StorageJB14312-5.1Secured Staging AreaRobert OConnor08/29/12 08:57Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JB14312-5.1             |                      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-5.1Minhaj HashmiSecured Storage08/27/12 22:07Return to StorageJB14312-5.1Secured StorageTodd Shoemaker08/29/12 08:27Retrieve from StorageJB14312-5.1Todd ShoemakerSecured Staging Area08/29/12 08:27Return to StorageJB14312-5.1Secured Staging AreaRobert OConnor08/29/12 08:57Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JB14312-5.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-5.1Secured StorageTodd Shoemaker08/29/12 08:27Retrieve from StorageJB14312-5.1Todd ShoemakerSecured Staging Area08/29/12 08:27Return to StorageJB14312-5.1Secured Staging AreaRobert OConnor08/29/12 08:57Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JB14312-5.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JB14312-5.1             |                      |                      |                |                       |
| JB14312-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JB14312-5.1             | Secured Storage      |                      |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14312-5.1             |                      |                      |                |                       |
| JB14312-5.1 Robert OConnor Secured Storage 08/29/12 11:19 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JB14312-5.1             | Secured Staging Area |                      |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14312-5.1             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| JB14312-5.1 | Secured Storage<br>Brian Racin | D: D:                |                |                       |
|-------------|--------------------------------|----------------------|----------------|-----------------------|
|             | Brian Racin                    | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| ID14212 5 1 | 211411 1144111                 | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-5.1 | Sanjay Advani                  | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-5.1 | Secured Storage                | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-5.1 | Adam Scott                     | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-5.1 | Secured Staging Area           | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-5.1 | Mayur Patel                    | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-5.1 | Secured Storage                | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-5.1 | Adam Scott                     | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-5.1 | Secured Staging Area           | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-5.1 | Ye Chen                        | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-6.1 | Dave Hunkele                   | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-6.1 | Secured Staging Area           | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-6.1 | Minhaj Hashmi                  | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-6.1 | Todd Shoemaker                 | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-6.1 | Secured Staging Area           | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-6.1 | Robert OConnor                 | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-6.1 | Brian Racin                    | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-6.1 | Sanjay Advani                  | Secured Storage      |                | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-6.1 | Adam Scott                     | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-6.1 | Secured Staging Area           | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-6.1 | Mayur Patel                    | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-6.1 | Adam Scott                     | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-6.1 | Secured Staging Area           | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-6.1 | Ye Chen                        | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-7.1 | Secured Storage                | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-7.1 | Dave Hunkele                   | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-7.1 | Secured Staging Area           | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-7.1 | Minhaj Hashmi                  | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
|             | Secured Storage                | Todd Shoemaker       |                | Retrieve from Storage |
|             | Todd Shoemaker                 | Secured Staging Area |                | Return to Storage     |
|             | Secured Staging Area           | Robert OConnor       |                | Retrieve from Storage |
|             | Robert OConnor                 | Secured Storage      |                | Return to Storage     |
|             | Secured Storage                | Brian Racin          |                | Retrieve from Storage |
|             | Brian Racin                    | Sanjay Advani        |                | Custody Transfer      |
|             | Sanjay Advani                  | Secured Storage      |                | Return to Storage     |
|             | Secured Storage                | Adam Scott           |                | Retrieve from Storage |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-7.1             | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-7.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-7.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-7.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-7.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-7.1             | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-7.1             | Ye Chen              | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-8.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-8.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-8.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-8.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-8.1             | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-8.1             | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-8.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-8.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-8.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-8.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-8.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-8.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-8.1             | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-8.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-9.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-9.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-9.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-9.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-9.1             | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-9.1             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-9.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-9.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-9.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-9.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-9.1             | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
|                         | -                    |                      |                | -                     |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Number       | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|--------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-9.1  | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-9.1  | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-9.1  | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-10.1 | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-10.1 | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-10.1 | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-10.1 | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-10.1 | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-10.1 | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-10.1 | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-10.1 | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-10.1 | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-10.1 | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-10.1 | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-10.1 | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-10.1 | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-10.1 | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-10.1 | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-10.1 | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-10.1 | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-10.1 | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-10.1 | Ye Chen              | Secured Storage      |                | Return to Storage     |
| JB14312-11.1 | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-11.1 | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-11.1 | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-11.1 | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-11.1 | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-11.1 | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-11.1 | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-11.1 | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-11.1 | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-11.1 | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-11.1 | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-11.1 | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-11.1 | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-11.1 | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-11.1 | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-11.1 | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-11.1 | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-11.1 | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-11.1 | Ye Chen              | Secured Storage      |                | Return to Storage     |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-12.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-12.1            | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-12.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-12.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-12.1            | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-12.1            | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-12.1            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-12.1            | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-12.1            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-12.1            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-12.1            | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-12.1            | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-12.1            | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-12.1            | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-12.1            | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-12.1            | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-12.1            | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-12.1            | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-12.1            | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-13.1            | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-13.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-13.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-13.1            | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-13.1            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-13.1            | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-13.1            | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-13.1            | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-13.1            | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-13.1            | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-13.1            | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-13.1            | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-13.1            | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-13.1            | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-14.2            | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-14.2            | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-14.2            | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-14.2            | Secured Storage      | Dave Hunkele         | 08/30/12 08:39 | Retrieve from Storage |
|                         |                      |                      |                |                       |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-14.2            | Dave Hunkele         | Secured Staging Area | 08/30/12 08:41 | Return to Storage     |
| JB14312-14.2            | Secured Staging Area | Sanjay Advani        |                | Retrieve from Storage |
| JB14312-14.2            | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-15.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-15.1            | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-15.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-15.1            | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-15.1            | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-15.1            | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-15.1            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-15.1            | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-15.1            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-15.1            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-15.1            | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-15.1            | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-15.1            | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-15.1            | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-15.1            | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-15.1            | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-15.1            | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-15.1            | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-15.1            | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-15.2            | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-15.2            | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-15.2            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-15.2            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-15.2            | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-15.2            | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-15.2            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-15.2            | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-15.2            | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-15.2            | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-15.2            | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-15.2            | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-15.2            | Secured Storage      | Brian Racin          | 09/01/12 08:33 | Retrieve from Storage |
| JB14312-15.2            | Brian Racin          | Shirley Grzybowski   | 09/01/12 08:36 | Custody Transfer      |
| JB14312-15.2            | Shirley Grzybowski   | Secured Storage      | 09/01/12 11:01 | Return to Storage     |
| JB14312-15.3            | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-15.3            | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-15.3            | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-15.3            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-15.3            | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-15.3            | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-15.3            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-15.3            | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-15.3            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-15.3            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-15.3            | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-15.3            | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-15.3            | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-15.3            | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-15.3            | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-15.3            | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-15.3            | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-15.3            | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-15.3            | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |





### General Chemistry

QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary



### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14312 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                              | Batch ID                                      | RL    | MB<br>Result | Units                  | Spike<br>Amount  | BSP<br>Result       | BSP<br>%Recov         | QC<br>Limits                  |
|----------------------------------------------------------------------|-----------------------------------------------|-------|--------------|------------------------|------------------|---------------------|-----------------------|-------------------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent<br>Chromium, Hexavalent | GN70834<br>GP66893/GN71347<br>GP66893/GN71347 | 0.010 | 0.0          | mg/l<br>mg/kg<br>mg/kg | .15<br>40<br>853 | 0.15<br>37.2<br>772 | 100.0<br>93.0<br>90.5 | 90-110%<br>80-120%<br>80-120% |

Associated Samples:

Batch GN70834: JB14312-14

Batch GN/0034 0B14312 14 Batch GP66893: JB14312-1, JB14312-2, JB14312-3, JB14312-4, JB14312-5, JB14312-6, JB14312-7, JB14312-8, JB14312-9, JB14312-10, JB14312-11, JB14312-12, JB14312-13, JB14312-15 (\*) Outside of QC limits



6.2

### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

### Login Number: JB14312 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                                | Batch ID                              | QC<br>Sample                           | Units             | Original<br>Result   | DUP<br>Result      | RPD                         | QC<br>Limits            |
|------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-------------------|----------------------|--------------------|-----------------------------|-------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>Redox Potential Vs H2 | GP66893/GN71347<br>GN71296<br>GN71316 | JB14312-15<br>JB14201-13<br>JB14312-15 | mg/kg<br>mv<br>mv | 0.14 B<br>327<br>248 | 0.58<br>310<br>289 | 122.2(a)<br>5.3<br>15.3*(b) | 0-20%<br>0-10%<br>0-13% |
| pH                                                                     | GN71314                               | JB14312-15                             | su                | 7.48                 | 7.17               | 4.2                         | 0-5%                    |

### Associated Samples:

Batch GN71296: JB14312-14

Batch GN71314: JB14312-1, JB14312-2, JB14312-3, JB14312-4, JB14312-5, JB14312-6, JB14312-7, JB14312-8, JB14312-9, JB14312-10, JB14312-11, JB14312-12, JB14312-13, JB14312-15

Batch GN71316: JB14312-1, JB14312-2, JB14312-3, JB14312-4, JB14312-5, JB14312-6, JB14312-7, JB14312-8, JB14312-9, JB14312-10, JB14312-11, JB14312-12, JB14312-13, JB14312-15

Batch GP66893: JB14312-1, JB14312-2, JB14312-3, JB14312-4, JB14312-5, JB14312-6, JB14312-7, JB14312-8, JB14312-9, JB14312-10, JB14312-11, JB14312-12, JB14312-13, JB14312-15

- (\*) Outside of QC limits
- (a) RPD acceptable due to low duplicate and sample concentrations.
- (b) Outside of in house limits, but within reasonable method recovery limits.



### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14312 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec     | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|----------|--------------|
| Chromium, Hexavalent | GP66893/GN71347 | JB14312-15   | mg/kg | 0.14 B             | 1000            | 909          | 90.7(a)  | 75-125%      |
| Chromium, Hexavalent | GP66893/GN71347 | JB14312-15   | mg/kg | 0.14 B             | 47.5            | 18.7         | 39.0N(b) | 75-125%      |

### Associated Samples:

Batch GP66893: JB14312-1, JB14312-2, JB14312-3, JB14312-4, JB14312-5, JB14312-6, JB14312-7, JB14312-8, JB14312-9, JB14312-9 10, JB14312-11, JB14312-12, JB14312-13, JB14312-15

- (\*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
  (a) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.
- (b) Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (91\_%) on this  ${\tt sample.}$



### Percent Solids Raw Data Summary Job Number: JB14312

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| G I ID14212.1                                              | A 1 1     | 20 AUG 121 DO   | N. 41 1 | C) / 10 07 / 0 C |
|------------------------------------------------------------|-----------|-----------------|---------|------------------|
| <b>Sample:</b> JB14312-1 <b>ClientID:</b> NSB-D1-1.0-1.5   | Analyzed: | 29-AUG-12 by RO | Method  | SM18 2540G       |
| Wet Weight (Total)                                         | 34.07     | g               |         |                  |
| Tare Weight                                                | 26.7      | g               |         |                  |
| Dry Weight (Total)                                         | 33.33     | g               |         |                  |
| Solids, Percent                                            | 90        | %               |         |                  |
| <b>Sample:</b> JB14312-2 <b>ClientID:</b> NSB-D1-12.0-12.5 | Analyzed: | 29-AUG-12 by RO | Method  | SM18 2540G       |
| Wet Weight (Total)                                         | 31.3      | g               |         |                  |
| Tare Weight                                                | 21.6      | g               |         |                  |
| Dry Weight (Total)                                         | 29.62     | g               |         |                  |
| Solids, Percent                                            | 82.7      | %               |         |                  |
| <b>Sample:</b> JB14312-3 <b>ClientID:</b> NSB-D1-16.0-16.5 | Analyzed: | 29-AUG-12 by RO | Method  | SM18 2540G       |
| Wet Weight (Total)                                         | 32.59     | g               |         |                  |
| Tare Weight                                                | 25.12     | g               |         |                  |
| Dry Weight (Total)                                         | 31.26     | g               |         |                  |
| Solids, Percent                                            | 82.2      | %               |         |                  |
| Sample: JB14312-4<br>ClientID: NSB-D1-20.0-20.5            | Analyzed: | 29-AUG-12 by RO | Method  | SM18 2540G       |
| Wet Weight (Total)                                         | 35.27     | g               |         |                  |
| Tare Weight                                                | 25.95     | g               |         |                  |
| Dry Weight (Total)                                         | 33.77     | g               |         |                  |
| Solids, Percent                                            | 83.9      | %               |         |                  |
| Sample: JB14312-5<br>ClientID: NSB-D1-4.0-4.5              | Analyzed: | 29-AUG-12 by RO | Method  | SM18 2540G       |
| Wet Weight (Total)                                         | 33.52     | g               |         |                  |
| Tare Weight                                                | 26.18     | g               |         |                  |
| Dry Weight (Total)                                         | 32.28     | g               |         |                  |
| Solids, Percent                                            | 83.1      | %               |         |                  |
| Sample: JB14312-6<br>ClientID: NSB-D1-7.7-8.2              | Analyzed: | 29-AUG-12 by RO | Method  | SM18 2540G       |
| Wet Weight (Total)                                         | 30.98     | g               |         |                  |
| Tare Weight                                                | 25.15     | g               |         |                  |
| Dry Weight (Total)                                         | 30.01     | g               |         |                  |
| Solids, Percent                                            | 83.4      | %               |         |                  |



### Percent Solids Raw Data Summary Job Number: JB14312

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14312-7<br>ClientID: NSB-D2-11.3-11.8                   | Analyzed:                       | 29-AUG-12 by RC  | Method: | SM18 2540G |
|-------------------------------------------------------------------|---------------------------------|------------------|---------|------------|
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 29.88<br>23.06<br>28.7<br>82.7  | g<br>g<br>g<br>% |         |            |
| Sample: JB14312-8<br>ClientID: NSB-D2-3.0-3.5                     | Analyzed:                       | 29-AUG-12 by RC  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 25.63<br>19.29<br>24.94<br>89.1 | g<br>g<br>g<br>% |         |            |
| Sample: JB14312-9<br>ClientID: NSB-D2-3.0-3.5X                    | Analyzed:                       | 29-AUG-12 by RC  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 28.83<br>22.31<br>28.02<br>87.6 | g<br>g<br>g<br>% |         |            |
| Sample: JB14312-10<br>ClientID: NSB-D2-6.0-6.5                    | Analyzed:                       | 29-AUG-12 by RC  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 27.03<br>20.88<br>24.6<br>60.5  | g<br>g<br>g<br>% |         |            |
| Sample: JB14312-11<br>ClientID: NSB-D3-3.0-3.5                    | Analyzed:                       | 29-AUG-12 by RC  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 27.76<br>22.02<br>26.86<br>84.3 | g<br>g<br>g<br>% |         |            |
| <b>Sample:</b> JB14312-12 <b>ClientID:</b> NSB-D4-1.0-1.5         | Analyzed:                       | 29-AUG-12 by RC  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 23.37<br>17.64<br>22.8<br>90.1  | g<br>g<br>g<br>% |         |            |



Page 3 of 3

### Percent Solids Raw Data Summary Job Number: JB14312

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14312-13<br>ClientID: NSB-F5-20.0-20.5                  | Analyzed:                       | 29-AUG-12 by RO  | <b>Method:</b> SM18 2540G |
|-------------------------------------------------------------------|---------------------------------|------------------|---------------------------|
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 31.46<br>22.15<br>29.95<br>83.8 | g<br>g<br>g<br>% |                           |
| Sample: JB14312-15<br>ClientID: NSB-F5-16.0-16.5                  | Analyzed:                       | 29-AUG-12 by RO  | <b>Method:</b> SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 28.11<br>21.26<br>26.95<br>83.1 | g<br>g<br>g<br>% |                           |





|   | General Chemistry |  |
|---|-------------------|--|
|   |                   |  |
|   |                   |  |
| I | Raw Data          |  |
|   |                   |  |
|   |                   |  |



Prep Date:

Analysis Date:

Instrument ID:

### **Hexavalent Chromium**

Bottle Sample BKGRD Analyzed Sample ID Sample # Absorbance Abs Times Absorbance
Test Title: XCr
GN Batch: GN70834
Analyst: MM/CKW

NA

8/21/2012

Н

Y Values Corr Sample X Values Final Vol. Sam Vol. Absorbance Conc(mg/l) (ml) (ml)

(ml) Dilution Method: SW846 7196A

Note: Use 4 for CLP list pointer, 1 for reg. List pointer.

Corr. Coef: 0.99993

Units

Final Conc.

MDL RDL

| Cat. Bib.   0,000   NA   2020   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,000   0,0    |             |                  |                                                  |          |                                                  |                                       |                                                  | i            |                                                  |                 | Corr. Coef:        | 0.99993                               |              |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|--------------------------------------------------|----------|--------------------------------------------------|---------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|-----------------|--------------------|---------------------------------------|--------------|-------|
| STD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | Cal. Blk.        | 0.000                                            | NA       | 20:20                                            | 0.000                                 | 0.0000                                           |              |                                                  |                 |                    |                                       |              |       |
| STD2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | \$TD1            | 0.010                                            | NA .     | NA                                               | 0.010                                 |                                                  |              |                                                  |                 | Slope:             | 0.8886                                |              |       |
| STD4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | STD2             | 0.043                                            | NA       | NA                                               | 0.043                                 | 0.0500                                           |              |                                                  |                 |                    |                                       |              |       |
| STDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | STD3             | 0.089                                            | NA       | NA                                               | 0.089                                 | 0.1000                                           |              |                                                  |                 | Y intercept:       | 0.0006                                |              |       |
| STD6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | STD4             | 0.271                                            | NA       | NA                                               | 0.271                                 | 0.3000                                           |              |                                                  |                 |                    |                                       |              |       |
| STO7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | STD5             | 0.441                                            | NA       | NA                                               | 0.441                                 | 0.5000                                           |              |                                                  |                 |                    |                                       |              |       |
| CCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | STD6             | 0.719                                            | NA       | NA                                               | 0.719                                 | 0.8000                                           | Final Vol.   | Sam. Vol.                                        |                 |                    |                                       |              |       |
| CCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | STD7             | 0.884                                            | NA       | 20:23                                            | 0.884                                 | 1.0000                                           | (ml)         | <u>(ml)</u>                                      | <u>Dilution</u> | <u>Final Conc.</u> | <u>Units</u>                          | MDL          | RDL   |
| CCY   0.441   NA   1288   0.000   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0008   0.0   |             | CCV              | 0.447                                            | NA       | 21:32                                            | 0.447                                 | 0.5024                                           | NA           | NA                                               | NA              | NA                 | mg/l                                  | 0.001        | 0.010 |
| CN7094-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             | ССВ              | 0.000                                            | NA       | 21:32                                            | 0.000                                 | -0.0006                                          | NA           | NA                                               | NA              | NA                 | mg/l                                  | 0.0013       | 0.010 |
| ONTOSSA-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | GN70834-MB1      | 0.000                                            | 0.000    | 21:38                                            | 0.000                                 | -0.0006                                          | 50.0         | 50.0                                             | 1               | -0.001             | mg/l                                  | 0.0014       | 0.010 |
| CN76834-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                  |                                                  | 0.000    |                                                  | 0.133                                 | 0,1490                                           | 50.0         | 50.0                                             | 1               | 0,149              | mg/l                                  | 0.0014       | 0.010 |
| GN7884-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                  |                                                  | 0.000    | 21:38                                            |                                       | 0.0995                                           | 50.0         | 50.0                                             | 1               | 0.100              | mg/l                                  | 0.0014       | 0.010 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | GN70834-D1       | _                                                | 0.000    | 21:38                                            | 0.000                                 | -0.0006                                          | 50.0         | 50.0                                             | 1               | -0.001             | mg/l                                  | 0.0014       | 0.010 |
| 2 JB14297-5 DOOD 0.000 121.38 D.000 J.0001 59.0 B.0.0 1 D.0008 mg/l D.0014 D.010 2 JB14297-5 D.000 0.000 121.38 D.000 J.0000 59.0 B.0.0 1 D.0001 mg/l D.0014 D.010 2 JB14297-5 D.000 0.000 JB1238 D.000 JB10 JB10 JB10 JB10 JB10 JB10 JB10 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2           |                  |                                                  |          |                                                  | 0.003                                 | 0.0027                                           | 50.0         | 50.0                                             | 1               | 0.003              | mg/l                                  | 0.0014       | 0.010 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |                                                  |          |                                                  |                                       |                                                  |              | 50.0                                             | 1               | 0.006              |                                       | 0.0014       | 0.010 |
| 2 JBH4297-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             | 1                |                                                  |          |                                                  |                                       |                                                  |              |                                                  | 1               |                    |                                       | 0.0014       | 0.010 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |                                                  |          |                                                  |                                       |                                                  |              |                                                  | +               |                    |                                       |              | 0.010 |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |                                                  |          |                                                  |                                       |                                                  |              |                                                  |                 | +                  | _                                     |              |       |
| CCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  |                                                  |          |                                                  |                                       |                                                  |              |                                                  | -               |                    |                                       |              |       |
| CCB 0.000 NA 2138 0.000 -0.0008 NA NA NA NA NA NA NA NA NA NA NA NA NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                  |                                                  |          |                                                  |                                       |                                                  |              |                                                  | _               |                    |                                       |              |       |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                  |                                                  |          |                                                  |                                       |                                                  | <del> </del> |                                                  |                 |                    |                                       |              |       |
| BI14297.5DILCONF   0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2           |                  |                                                  |          |                                                  | · · · · · · · · · · · · · · · · · · · |                                                  |              |                                                  |                 | <del></del>        |                                       |              |       |
| B-1297-SPHADJPSCC   0.004   0.000   2142   0.004   0.0714   50.0   50.0   1   0.071   mg/l   0.0014   0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                  |                                                  |          |                                                  |                                       |                                                  | <del> </del> |                                                  | 1               |                    |                                       |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I.D.        |                  |                                                  |          |                                                  |                                       |                                                  |              |                                                  |                 | <del>-</del>       |                                       |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ا ا         | 1459140LUWDJE3CC | 0.004                                            | 0.000    | 21.42                                            |                                       |                                                  |              |                                                  |                 |                    |                                       | _            |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  | ·        |                                                  |                                       |                                                  |              |                                                  |                 | <del>†</del>       |                                       |              |       |
| FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010    FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   CCV 0.438 NA 2142 0.438 0.4823 NA NA NA NA NA mg/l 0.0013 0.010   CCB 0.000 NA 2142 0.000 -0.0008 NA NA NA NA NA mg/l 0.0013 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 50.0 1 -0.001 mg/l 0.0014 0.010   FALSE -0.0008 50.0 50.0 50.0 1 -0.001 mg/l 0.00 |             |                  |                                                  |          | <del>                                     </del> |                                       |                                                  |              | ·                                                | +               | t .                |                                       |              | _     |
| FALSE   -0.0008   50.0   50.0   1   -0.001   mg/l   0.0014   0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | 16)              | BAT DE                                           | איניאלו  | -                                                |                                       |                                                  |              | ·                                                | <del></del>     | 1                  |                                       |              |       |
| FALSE   -0.0006   S0.0   S0.0   1   -0.001   mg/l   0.0014   0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  | 107 20                                           | CULU     | <b>1</b>                                         |                                       |                                                  | t            | <del>                                     </del> | -               |                    |                                       |              | _     |
| CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | //               | 6580000                                          | 11.5     | 11201                                            |                                       |                                                  | 1            | t                                                | +               |                    |                                       |              |       |
| CCV   0.438 NA   21.42   0.438   0.4923 NA NA NA NA NA   MQ   0.0013   0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | ( //             | -0.4(00)                                         | 140-     | ( Prop                                           | 1                                     |                                                  | <del></del>  |                                                  | +               |                    |                                       |              |       |
| CCB   0.000   NA   21/42   0.000   -0.0006   NA   NA   NA   NA   NA   Ma   mg/l   0.0013   0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del> | 001              | 0.400                                            | 110      | 64.346                                           |                                       |                                                  | <del></del>  | <del>                                     </del> | +               |                    |                                       |              | _     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  |          | tanger and the second                            | <del> </del>                          |                                                  | 1            | <del>                                     </del> |                 |                    |                                       | _            |       |
| FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   CCV   0.441   NA   2312   0.441   0.4957   NA   NA   NA   NA   NA   mg/l   0.0013   0.010   CCB   0.000   NA   22.12   0.000   -0.0006   NA   NA   NA   NA   NA   mg/l   0.0013   0.010   I JB14312-14   0.000   0.000   23.14   0.000   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l   0.0014   0.010   FALSE   -0.0006   50.0   50.0   1   -0.001   mg/l |             | CCB              | 0.000                                            | NA /     | 1 12000                                          |                                       |                                                  |              |                                                  |                 |                    |                                       |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  | MY       | 8-37                                             | T                                     |                                                  |              | <del></del>                                      | <u> </u>        |                    |                                       |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  |          |                                                  |                                       | <del> </del>                                     |              |                                                  |                 |                    |                                       |              | _     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  |          | -                                                |                                       |                                                  |              | <del></del>                                      | _               |                    |                                       |              | _     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  |          | -                                                | <u> </u>                              | <del> </del>                                     | ·            | <del> </del>                                     | +               | <u> </u>           | 1                                     |              | _     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  |          |                                                  |                                       |                                                  |              | <del> </del>                                     | <del></del>     |                    |                                       |              | _     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  |          |                                                  |                                       |                                                  |              | <del></del>                                      |                 |                    | 1                                     |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  |          | ļ                                                |                                       | <del>                                     </del> |              | _                                                | +               |                    |                                       |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | -                | <del> </del>                                     |          | -                                                |                                       | <del>                                     </del> | <del></del>  |                                                  |                 |                    |                                       |              |       |
| CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  | ļ                                                |          |                                                  | <del></del>                           | <del> </del>                                     | +            |                                                  | <del></del>     |                    |                                       |              |       |
| CCB   0.000   NA   23:12   0.000   -0.0006   NA   NA   NA   NA   NA   MA   MA   Ma   Ma   Ma   Ma   Ma   M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | 001              | 0.444                                            |          | 00.40                                            | t                                     |                                                  | +            |                                                  | . <del> </del>  | +                  | 1 -                                   |              |       |
| 1 JB14312-14 0.000 0.000 23:14 0.000 -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010     FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                  |                                                  |          |                                                  |                                       | <del> </del>                                     |              | +                                                | +               |                    |                                       |              | _     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | <del></del>      |                                                  |          |                                                  | 1                                     | <del>                                     </del> |              |                                                  |                 |                    | <u> </u>                              |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1           | JB14312-14       | 0.000                                            | 0.000    | 23:14                                            |                                       |                                                  |              |                                                  | <del> </del>    |                    |                                       |              | -     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | ļ                | <del> </del>                                     |          |                                                  |                                       | <del>                                     </del> |              |                                                  | <del></del>     |                    |                                       |              | _     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  | <u> </u>                                         |          |                                                  |                                       | <del></del>                                      |              | <del></del>                                      | +               |                    | <del></del>                           |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  |                                                  |          |                                                  |                                       |                                                  | 1            | _                                                |                 | +                  |                                       |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | <del> </del>     | <del> </del>                                     |          | <del> </del>                                     | <del></del>                           |                                                  |              | _                                                |                 |                    |                                       |              | _     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  | ļ                                                |          |                                                  |                                       |                                                  | <del></del>  | +                                                |                 | +                  | -                                     |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -           |                  | <del> </del>                                     | ļ        | ļ                                                | <del>  </del>                         | <del></del>                                      |              |                                                  | +               | +                  | · · · · · · · · · · · · · · · · · · · |              | -     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | -                | <del>                                     </del> | <u> </u> | ļ                                                | <b>†</b>                              |                                                  | <del></del>  |                                                  | +               |                    | -                                     |              |       |
| CCV         0.441         NA         23:14         0.441         0.4957         NA         MA         NA         NA         mg/l         0.0013         0.010           CCB         0.000         NA         23:14         0.000         -0.0006         NA         NA         NA         NA         mg/l         0.0013         0.010           FALSE         -0.0006         50.0         50.0         1         -0.001         mg/l         0.0014         0.010           FALSE         -0.0006         50.0         50.0         1         -0.001         mg/l         0.0014         0.010           FALSE         -0.0006         50.0         50.0         1         -0.001         mg/l         0.0014         0.010           FALSE         -0.0006         50.0         50.0         1         -0.001         mg/l         0.0014         0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del> |                  |                                                  | ļ        | ļ                                                |                                       | 1                                                | <del> </del> | +                                                |                 |                    |                                       |              |       |
| CCB         0.000         NA         23:14         0.000         -0.0006         NA         NA         NA         NA         mg/l         0.0013         0.010           FALSE         -0.0006         50.0         50.0         1         -0.001         mg/l         0.0014         0.010           FALSE         -0.0006         50.0         50.0         1         -0.001         mg/l         0.0014         0.010           FALSE         -0.0006         50.0         50.0         1         -0.001         mg/l         0.0014         0.010           FALSE         -0.0006         50.0         50.0         1         -0.001         mg/l         0.0014         0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |                                                  |          | 1,022/8/10/10                                    |                                       | <del> </del>                                     |              |                                                  |                 | <del></del>        |                                       |              |       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ļ <u> </u>  |                  | <del> </del>                                     |          |                                                  | ·                                     |                                                  | +            | <u> </u>                                         |                 |                    |                                       |              |       |
| FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010  FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010  FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             | CCB              | 0.000                                            | NA NA    | 23.14                                            |                                       |                                                  |              |                                                  |                 |                    |                                       |              |       |
| FALSE -0.0006 50.0 \$00 1 -0.001 mg/l 0.0014 0.010 FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b></b>     | ļ                | ļ                                                | ļ        | ļ                                                | <del></del>                           |                                                  | +            | -                                                | -               |                    |                                       |              |       |
| FALSE -0.0006 50.0 50.0 1 -0.001 mg/l 0.0014 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>    |                  | <b></b>                                          |          | ļ                                                |                                       |                                                  |              | <del></del>                                      | +               |                    |                                       |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                  |                                                  |          | 1                                                |                                       |                                                  |              |                                                  | <del></del>     |                    |                                       | <del>,</del> |       |
| FALSE   -0.0006   50.0   50.0   1   -0.001   mg/  0.0014   0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |                                                  |          |                                                  | 1                                     |                                                  |              |                                                  |                 |                    |                                       |              |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L           | <u> </u>         | <u> </u>                                         | l        | 1                                                | FAL\$E                                | -0.0006                                          | 50.0         | 50.0                                             | 1 1             | -0.001             | mg/l                                  | 0.0014       | 0.010 |



| <b>—</b>                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                 |
|------------------------------------------|-----------------------------------------------------------------------|
| Test: Hexavalent Chromium                | MDL = 0.0013 mg/l GNBatch ID: 61\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |
| Product: XCr                             | RDL = 0.010 mg/l Date: 8/4/202                                        |
| Method: SW846 7196A                      | Units = mg/l                                                          |
| Digestion Batch QC Summary               | · · · · · · · · · · · · · · · · · · ·                                 |
| Method Blank ID GN 10834 MB) Date: 82400 | CL Result: AMDL RDL: 0 (10) <rdl: (10)<="" th=""></rdl:>              |
| Spike Blank ID:6N034-Bl Date:            | Result: 49 Spike: 15 %Rec.: 40 37                                     |
| Duplicate ID: 4NVO2A -D Samp. Result:    |                                                                       |
| MS ID: 6N 10834-S Samp. Result: 0        | MS Result: 100 Spike: 15 %Rec: 147%                                   |
| Diluted Sample ID: JBH2275 Samp. Re      | sult: O Dil. Result: O %RPDO                                          |
| pH adj. PS ID: Samp. Result:_            | O MS Result: 011 Spike: 15 %Rec: 41 3%                                |
| Analysis Batch QC Summary Units =        | mg/l                                                                  |
| CCV: 821202 Result: 502 TV:_             | (3) %Rec.: 100.4%                                                     |
|                                          | %Rec.: 49.2%                                                          |
| CCV: Result: 442 TV:                     | 4 %Rec.: 96.4%                                                        |
| CCV: 8210CN Result: 4AL TV:              | 50 %Rec.: 00.19                                                       |
| CCV: TV: Result: TV:                     | 4 %Rec.: 4                                                            |
| CCV : Result: TV:_                       | %Rec.:                                                                |
| CCB: 8/21/202 Result: AMDL RDL:          | 0.00 <rdl: (m2-<="" th=""></rdl:>                                     |
| CCB: Result: RDL:                        |                                                                       |
| CCB: Result: RDL:                        | + <rdl: +<="" th=""></rdl:>                                           |
| CCB: 2010 Result: LMDL RDL:              | 0.00 <rdl: th="" vy<=""></rdl:>                                       |
| CCB: Result: RDL:                        | + <rdl: 4+<="" th=""></rdl:>                                          |
| CCB: Result: RDL:_                       | <rdl:< th=""></rdl:<>                                                 |
|                                          |                                                                       |
| Reagent Reference Numbers:               |                                                                       |
| her attached                             | •                                                                     |
| - /XX WWW.                               |                                                                       |
|                                          |                                                                       |
| Initial Calibration Source:              |                                                                       |
| Continuing Calibration Source:           |                                                                       |
|                                          |                                                                       |
| Analyst: NM CKN Date: 3/21/200           | 2                                                                     |
| Comments:                                |                                                                       |

Fem: GN076-01 R w. Date: 1/10/11





### Hexavalent Chromium pH Adjustment Log Mathad: SW846 71964

| Method: 2446        | 40 / 190A |                           |
|---------------------|-----------|---------------------------|
| pH adj. start time: | 21:00     | <br>pH Adjust. Date       |
| pH adj. end time:   | 21:25     | <br>GN Batch ID: <u>£</u> |

| pH Adjust. Date: | 8/2 | 4/200 | 2 |
|------------------|-----|-------|---|
| GN Batch ID:     | M   | 72/51 |   |

|                   |                                     |                         |                   |                          |            | <del></del>             |
|-------------------|-------------------------------------|-------------------------|-------------------|--------------------------|------------|-------------------------|
| Sample ID         | Initial<br>Sample<br>Volume<br>(ml) | Final<br>Volume<br>(ml) | pH after<br>H2SO4 | bkg pH<br>after<br>H2SO4 | Spike Info | Comments                |
| ccv               | 45                                  | 40                      | 1.84              |                          | 5ML        | 5 ppm Whan              |
| ccv               | <del>  -\_/</del>                   | <u> </u>                | 1.01_             |                          | <u> </u>   | O VPINOWIN              |
| ccv               | 1                                   |                         |                   |                          |            |                         |
| ccv               |                                     |                         |                   |                          |            |                         |
| ССВ               | 45                                  | 30                      | 1.93              |                          |            |                         |
| ССВ               | 1 -7                                |                         | 10 100            |                          |            |                         |
| ССВ               |                                     | -                       |                   |                          |            |                         |
| ССВ               |                                     |                         |                   |                          |            |                         |
| MSJB47297-5       | 45                                  | 50                      | 193               | 1.84                     | IML_       | 7.5 ppm Moslute         |
| DUP +             |                                     | 1                       | 196               | 1.82                     |            |                         |
| SB\{}\            |                                     |                         | 189               | 1-81                     | Im         | 75 pm Michiel           |
| PB MBI            |                                     |                         | 197               | 173                      |            |                         |
| 1JBK297-3         |                                     |                         | 1.88              | 179                      |            |                         |
| 24                |                                     |                         | 192               | 1.80                     |            |                         |
| 35                |                                     |                         | 190               | 1-85                     |            |                         |
| 46                |                                     |                         | 193               | 1.72                     |            |                         |
| 5. –7             |                                     |                         | 197               | 1-86                     |            |                         |
| 68                | <u> </u>                            |                         | 185               | 172                      |            |                         |
| 79                | 4                                   | 4                       | 194               | 1.79                     |            |                         |
| 8. JB14312-14     | 45                                  | \$                      | 1.85              | 172                      |            |                         |
| 9.                |                                     |                         |                   |                          | ļ          |                         |
| 10.               |                                     |                         |                   |                          |            |                         |
| 11.               | 1                                   |                         |                   |                          |            |                         |
| 12.               |                                     |                         |                   |                          |            |                         |
| 13.               |                                     |                         |                   | · .                      |            |                         |
| 14.               |                                     |                         |                   |                          | ļ          |                         |
| 15.               |                                     |                         |                   |                          |            |                         |
| 16.               |                                     |                         |                   | ļ                        |            |                         |
| 17.               |                                     |                         | <del> </del>      | <b> </b>                 |            |                         |
| 18.               |                                     |                         |                   |                          | +          |                         |
| 19.               |                                     |                         |                   |                          | -          |                         |
| 20.<br>P8/B142975 | 45                                  | 50                      | 179               | 1-69                     | 1422       | WIN IML 75 ppm Mox will |
|                   | 45                                  | 1                       | 1-91              | 195                      | MU 10 P    | 1.5 Alluban             |
| DIF 4             | 4_                                  | 4                       | 111               | 1000                     | 1          | 1 - S (MULLANA)         |
| DIL               |                                     | ·                       | <u> </u>          |                          |            |                         |

| Reagent Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |       |
| Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analyst Analys | Date: PRADIM QC Reviewer: | Date: |

Form: GN077-01 Day Data-1/10/11





### Hexavalent Chromium pH Adjustment Log

Method: SW846 7196A pH adj. start time:

| pH adj. end time:   |                                                  | 20.15                                            | -              | GN Batch ID: 61 108 | <u> </u>                             |
|---------------------|--------------------------------------------------|--------------------------------------------------|----------------|---------------------|--------------------------------------|
|                     | Initial                                          |                                                  |                |                     |                                      |
|                     | Sample                                           | Final<br>Volume                                  | pH after       | •                   |                                      |
| 5 - 15 UD           | Volume<br>(ml)                                   | (ml)                                             | H2SO4          | Comments            | Spike Info.                          |
| Sample ID           | 45                                               | 40                                               | 1.90           | MARKE               |                                      |
| Calibration Blank   | 45                                               | <del> </del>                                     | 1.84           | Syam HAHA MYLLLL    | 0.10 ml of 5 mg/l to 50 ml FV        |
| 0.010 mg/l standard |                                                  | <del>                                     </del> | 173            | SAME ALLEN TON TON  | 0.50 ml of 5 mg/l to 50 mL FV        |
| 0.050 mg/l standard |                                                  | <del>                                     </del> |                |                     | 1.00 ml of 5 mg/l to 50 mL FV        |
| ).100 mg/l standard | <del>                                     </del> | <del>                                     </del> | 179            |                     | 3.00 ml of 5 mg/l to 50 mL FV        |
| .300 mg/l standard  | <del>                                     </del> | <del>                                     </del> | 200            |                     | 5.00 ml of 5 mg/l to 50 mL FV        |
| ).500 mg/l standard | <del>                                     </del> |                                                  | 1-92           |                     | 8.00 ml of 5 mg/l to 50 mL FV        |
| ).800 mg/l standard | 1                                                | <del>  ]</del>                                   | 1.89           |                     | 10.0 ml of 5 mg/l to 50 mL FV        |
| 1.00 mg/l standard  | 14_                                              | 4                                                | 195]           |                     | 20.0 ml of 5 mg/l to 50 mL FV        |
| 2.00 mg/l standard  |                                                  | ļ                                                |                |                     | 20.0 (iii 0) 3 (iig/ to 30 iii.) 1 v |
| -                   |                                                  |                                                  |                | -                   |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  | -              |                     |                                      |
|                     | _                                                |                                                  |                |                     |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     | <del> </del>                                     |                                                  |                |                     |                                      |
|                     | -                                                | <u> </u>                                         |                |                     |                                      |
|                     |                                                  |                                                  | <u> </u>       |                     |                                      |
|                     |                                                  | 1                                                |                |                     |                                      |
|                     |                                                  | <del> </del>                                     | <del> </del>   |                     |                                      |
|                     | <del></del>                                      |                                                  |                |                     |                                      |
| `                   |                                                  | <del> </del>                                     | <del> </del>   |                     |                                      |
|                     |                                                  | -                                                | <del> </del> - |                     |                                      |
|                     |                                                  |                                                  | <del> </del>   |                     | · · ·                                |
| ***                 | ļ                                                | <del>                                     </del> |                |                     |                                      |
|                     |                                                  | ļ                                                | <u> </u>       |                     |                                      |
|                     |                                                  | ļ <u>.</u>                                       | ļ              | ·                   |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  |                |                     |                                      |
|                     |                                                  |                                                  | <u> </u>       |                     |                                      |

| Reagent        | Information: | <br> |
|----------------|--------------|------|
| <del>T</del> . |              |      |

\_\_\_\_\_ Date: 8/21/2022\_

Form: GN078-01 Rev. Date: 1/10/11



### Reagent Information Log - XCR - water - 7196A

| Reagent                                                  | Exp. Date | Reagent # or Manufacturer/Lot |
|----------------------------------------------------------|-----------|-------------------------------|
| Calibration Source: Hexavalent Chromium, 1000 mg/L Stock | 1/12/2015 | Absolute Grade Lot# 011212    |
| Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock | 5/31/2017 | Ultra Scientific Lot# L00439  |
| External Check                                           | NA        | NA                            |
| Spiking Solution Source                                  | 1/12/2015 | Absolute Grade Lot# 011212    |
| Diphenyl carbazide Solution                              | appar     | 6NE3-3339-XX                  |
| Sulfuric Acid, 10%                                       | 2/21/pere | ENES-3-374-XIV                |
|                                                          |           |                               |
|                                                          |           |                               |
|                                                          |           | <u>,</u>                      |
|                                                          |           |                               |

Form: GN087A-23 Rev. Date: 10/3/05





Test: Redox Potential
Matrix: Aqueous ○
Matrix: Solid ●

Test Code: REDOX Method: ASTM D1498-76 Method: ASTM D1498-76 Mod. 
 Analyst:
 SANJAYA

 Date:
 08/30/12

 GN Batch ID:
 GN71296

 Temp (Deg C):
 25

| Quality Cont | trol Summary    |               |       |       |       |        |        |
|--------------|-----------------|---------------|-------|-------|-------|--------|--------|
| Sample ID:   | GN71296-D1      | -<br>Results: | 327.2 | Dup:  | 309.9 | % RPD: | 5.43%  |
| Ferrous-Fer  | ric True: 675   | -             |       | Found | 648.3 | % Rec  | 96.04% |
| pH 4 Quinhy  | drone True: 462 |               |       | Found | 456.9 | % Rec  | 98.90% |
| pH 4 Quinhy  | drone True: 462 |               |       | Found | 443.7 | % Rec  | 96.04% |
| pH 4 Quinhy  | drone True: 462 |               |       | Found |       | % Rec  |        |
| pH 7 Quinhy  | drone True: 285 |               |       | Found | 271.2 | % Rec  | 95.16% |
| pH 7 Quinhy  | drone True: 285 |               |       | Found | 262.4 | % Rec  | 92.07% |
| pH 7 Quinhy  | drone True: 285 |               |       | Found |       | % Rec  |        |

| Sample #:               | mv vs. Ag/AgCI<br>Electrode             | Corrected results (mv vs. Hydrogen electrode) *** |
|-------------------------|-----------------------------------------|---------------------------------------------------|
| Ferrous-Ferric Solution | 473                                     | 648.3                                             |
| pH 4 Quinhydrone        | 281.5                                   | 456.9                                             |
| pH 7 Quinhydrone        | 95.6                                    | 271.2                                             |
| Dup GN71296-D1          | 134.6                                   | 309.9                                             |
| 1. JB14201-13           | 151.9                                   | 327.2                                             |
| 2. JB14312-14           | 178.7                                   | 354.3                                             |
| 3.                      | *************************************** |                                                   |
| 4.                      |                                         |                                                   |
| 5                       | <del></del>                             |                                                   |
| 6.                      | <del></del>                             | •                                                 |
| 7.                      |                                         |                                                   |
| 8.                      |                                         | <del></del>                                       |
| 9.                      |                                         | ·                                                 |
| pH 4 Quinhydrone        | 268.3                                   | 443.7                                             |
| pH 7 Quinhydrone        | 87                                      | 262.4                                             |
| 10.                     |                                         |                                                   |
| 11.                     |                                         | · · · · · · · · · · · · · · · · · · ·             |
| 12.                     |                                         |                                                   |
| 13.                     |                                         |                                                   |
| 14.                     |                                         |                                                   |
| 15.                     |                                         |                                                   |
| 16                      |                                         |                                                   |
| 17.                     |                                         |                                                   |
| 18.                     |                                         |                                                   |
| 19.                     |                                         |                                                   |
| pH 4 Quinhydrone        |                                         |                                                   |
| pH 7 Quinhydrone        | *                                       |                                                   |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers: | Redox Standard: GNE-314 | 156-ORP Exp:9/15/12 |                                                    |       |
|------------------|-------------------------|---------------------|----------------------------------------------------|-------|
| Comments:        |                         |                     | 1                                                  |       |
|                  |                         |                     | <del>-                                      </del> |       |
| Analyst: S.A.    | Date: <u>08/30/12</u>   | QC Reviewer:        | 1900                                               | Date: |

Rev. Date: 3/27/2007



| G | N | 71 | 12 | 9 |
|---|---|----|----|---|
|   |   |    |    |   |

| SACCI | JTEST. |
|-------|--------|

|         |   | 38  |  |
|---------|---|-----|--|
| Balance | # | ~ v |  |

| Analyst S t A      |
|--------------------|
| Method EH          |
| Prep Date \$130112 |
| GP# GN71296-EH     |

Sample Prep Log

| Sample ID             | Sample Size  | Final Volume |
|-----------------------|--------------|--------------|
| 30/4201-12            | GALL         |              |
| 36/4201-13<br>-13/10p | Capal        |              |
| 3/3/12-14             | GONL<br>GONL |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       | •            |              |
|                       |              |              |
|                       |              | -            |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |
|                       |              |              |

| Form:  | GN1   | 66-02  |
|--------|-------|--------|
| Rev. D | Date: | 8/5/05 |

QC Review\_



Test: (pH, Corrosivity Method: SW846 9040B or SW846 9045C

Thermometer ID: 6539

Correction Factor: 0

Product: (PH, CORR Analyst: SANJAYA

GN Batch ID: \_\_\_\_ Analysis Date: \_\_

pH Meter ID:

GN71314 8/30/2012 50

QC Summary

Duplicate ID: GN71314-D1 Sam
Dup Result: 7.17 %

Sample ID: JB14312-15

% RPD: 4.23%

Uncorrected/ Wt./Vol. used Corrected Temp in for soilds Result Corrosivity Sample ID Read time Deg C. Buffer Check: 4 25 3.97 12:02 Buffer Check: 7 25 6.98 Buffer Check: 10 25 9.98 GN71314-D1 25 7.17 7.98 25 JB14312-1 JB14312-10 25 7.86 JB14312-11 25 8.26 JB14312-12 25 8.28 25 8.32 JB14312-13 JB14312-15 25 7.48 JB14312-2 25 7.47 JB14312-3 25 8.05 JB14312-4 25 8.21 25 Buffer Check: 4 3.97 Buffer Check: 10 25 10.01 7.84 JB14312-5 25 JB14312-6 25 7.17 25 JB14312-7 7.65 JB14312-8 25 8.85 JB14312-9 25 8.70 JB15010-1 25 10.12 JB15010-2 25 8.04 Buffer Check: 7 7.04 25 13:10 Buffer Check: 13 13.03 **Buffer Check:** Buffer Check:

| Comments:           |                  | 11 01 | *************************************** |
|---------------------|------------------|-------|-----------------------------------------|
|                     |                  |       |                                         |
|                     |                  |       |                                         |
| Validated By:       | Nancy Cole       |       | 2                                       |
| Document Control #: | AGN_PH_CORPAO.01 |       |                                         |



|   | M   |     |     |
|---|-----|-----|-----|
| £ | ACC | JTE | ST. |

Balance #

| Analyst S.A        |
|--------------------|
| Method EHIDH       |
| Prep Date 8 /29/12 |
|                    |
| GP# G-N71314-pH    |
| GN 71316-eH        |

Sample Prep Log

| Sample ID  | Sample Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Final Volume      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3614312-1  | 30.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | added 30n LPCH20  |
| -2         | 5024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | added Sonh princo |
| -3         | 50.6x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| ~4         | 50.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -5,        | 50.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -6         | S0.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -7         | 50.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|            | 5068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| -9         | 50.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -10        | 50.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|            | <u>50 G</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
| -12        | 50.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -15        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| -15        | 50.6 <sub>X</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | added 30ml Mino   |
| -15Ap      | 30.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| 3/5/50/0-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | and ded SONL PTHO |
| -2         | 20.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|            | Agent Manager (Control of Control |                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            | water and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                   |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_



| С |   |   |
|---|---|---|
|   | п | × |
|   |   |   |

| Reagent    | Information Log |
|------------|-----------------|
| Test Name: | pH              |

GN71314

| Reagent               |                                 |
|-----------------------|---------------------------------|
| pH 2 Buffer Solution  | FICHER LOT#115910 EXP 11/30/13  |
| pH 4 Buffer Solution  | BDH LOT#2110255 EXP 9/30/13     |
| pH 7 Buffer Solution  | RICCA LOT#2111388 EXP 10/30/13  |
| pH 10 Buffer Solution | FISCHER LOT#105427 EXP 09/30/12 |
| pH 13 Buffer Solution | AQUA SOL. LOT#1080516 EXP 08/30 |
|                       |                                 |

Form: GN087-01 Rev. Date:8/30/2012



**Test: Redox Potential Test Code: REDOX** Analyst: **SANJAYA** Date: 08/30/12 Matrix: Aqueous 0 Method: ASTM D1498-76 • GN71316 Matrix: Solid Method: ASTM D1498-76 Mod. GN Batch ID: Temp (Deg C): 25

| Sample ID:   | GN71316-D1      | Results: | 247.8 | Dup:  | 289.1 | % RPD: | 15.38%  |
|--------------|-----------------|----------|-------|-------|-------|--------|---------|
| Ferrous-Ferr | ic True: 675    |          |       | Found | 615.3 | % Rec  | 91.16%  |
| pH 4 Quinhy  | drone True: 462 |          |       | Found | 482.8 | % Rec  | 104.50% |
| pH 4 Quinhye | drone True: 462 |          |       | Found | 453.9 | % Rec  | 98.25%  |
| pH 4 Quinhy  | drone True: 462 |          |       | Found | 446.1 | % Rec  | 96.56%  |
| pH 7 Quinhy  | drone True: 285 |          |       | Found | 284.9 | % Rec  | 99.96%  |
| pH 7 Quinhy  | drone True: 285 |          |       | Found | 264.9 | % Rec  | 92.95%  |
| pH 7 Quinhy  | drone True: 285 |          |       | Found | 259.3 | % Rec  | 90.98%  |

| Sample #:               | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv<br>vs. Hydrogen electrode)<br>*** |  |  |
|-------------------------|-----------------------------|---------------------------------------------------------|--|--|
| Ferrous-Ferric Solution | 440                         | 615.3                                                   |  |  |
| pH 4 Quinhydrone        | 307.3                       | 482.8                                                   |  |  |
| pH 7 Quinhydrone        | 109.5                       | 284.9                                                   |  |  |
| Dup GN71316-D1          | 113.7                       | 289.1                                                   |  |  |
| 1. JB14312-1            | 127.3                       | 302.6                                                   |  |  |
| 2. JB14312-10           | 124.2                       | 299.6                                                   |  |  |
| 3. JB14312-11           | 129.3                       | 304.7                                                   |  |  |
| 4. JB14312-12           | 118.2                       | 293.6                                                   |  |  |
| 5. JB14312-13           | 121.3                       | 296.8                                                   |  |  |
| 6. JB14312-15           | 72.4                        | 247.8                                                   |  |  |
| 7. JB14312-2            | <del>-4</del> 7.5           | 127.9                                                   |  |  |
| 8. JB14312-3            | 44                          | 219.3                                                   |  |  |
| 9. JB14312-4            | 49.4                        | 224.8                                                   |  |  |
| pH 4 Quinhydrone        | 278.6                       | 453.9                                                   |  |  |
| pH 7 Quinhydrone        | 89.5                        | 264.9                                                   |  |  |
| 10. JB14312-5           | 97.5                        | 272.9                                                   |  |  |
| 11. JB14312-6           | 6.4                         | 181.8                                                   |  |  |
| 12. JB14312-7           | 2.8                         | 178.1                                                   |  |  |
| 13. JB14312-8           | 401.7                       | 577.1                                                   |  |  |
| 14. JB14312-9           | 212                         | 287.4                                                   |  |  |
| 15. JB15010-1           | 112.5                       | 287.9                                                   |  |  |
| 16. JB15010-2           | 174.7                       | 350                                                     |  |  |
| 17.                     |                             |                                                         |  |  |
| 18.                     |                             |                                                         |  |  |
| 19.                     |                             |                                                         |  |  |
| pH 4 Quinhydrone        | 270.8                       | 446.1                                                   |  |  |
| pH 7 Quinhydrone        | 83.9                        | 259.3                                                   |  |  |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

Reagent Numbers: Redox Standard: GNE-31456-ORP Exp:9/15/12

| Comments:    |                |             | 1, 1                |     |  |       |  |
|--------------|----------------|-------------|---------------------|-----|--|-------|--|
|              |                |             | П                   | 7   |  |       |  |
| Analyst: S A | Date: 08/30/12 | OC Reviewer | $\parallel \rangle$ | 1.1 |  | Date. |  |

F/N GN141.DOC Rev. Date: 3/27/2007

63 of 76
ACCUTEST

JB14312

LABORATORIES



Balance #\_\_\_\_\_\_

| $\langle A \rangle$ |
|---------------------|
| Analyst 🜙 · 🕂       |
| Method EHIIH        |
| Prep Date 8/29/12   |
| GP# GN 71314-PH     |
| 6N71316-eH          |

Sample Prep Log

| Sample ID  | Sample Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Final Volume      |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 3/5/43/2-1 | 30.95.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | added 30n LPEH20  |
| -2         | 5029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | abded SONL PILITE |
| -3         | 5067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| ~4         | 50.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -5.        | 50.15 <u>- </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| -6         | 50.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| _7         | 50.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -8         | 506z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| -9         | 50.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -10        | \$0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
| -11        | 50 Cg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -12        | 50.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| 3          | . <u>503</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                 |
| -15        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | added 30nLPH20    |
| -15Ap      | 30.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                 |
| 3/5/5010-1 | 50.2g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and ded SON PAtro |
| -2_        | 50.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                 |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|            | - Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Cont |                   |

| Form | : GN1 | 66-02  |
|------|-------|--------|
| Rev. | Date: | 8/5/05 |

QC Review\_\_\_\_\_



RDL

Units

MDL.

Y Values Corr Final Vol. Sam Wt. BKGRD Analysis Sample X Values Sample Final Conc. Conc(mg/l) Dilution (ml) (g) Times Absorbance Sample # Absorbance Abs Method: SW846 3060A, 7196A Test Title: **XCRA** GN71347 GN Batch: Analyst: MM Note: All results below shown on a wet weight basis. Prep Date: 8/30/2012 Analysis Date: 8/30/2012 Instrument ID: D Corr Coef

| Instrument ID:                 | D                                                |                                                  |                |                |                    |                   |                                                  |          | Corr. Coef:       | 0.99992        |                |         |
|--------------------------------|--------------------------------------------------|--------------------------------------------------|----------------|----------------|--------------------|-------------------|--------------------------------------------------|----------|-------------------|----------------|----------------|---------|
| 1 - 1 min 1                    | T                                                |                                                  | 40,00          | 0.000          | 0.0000             |                   |                                                  |          | <u> </u>          | V              |                |         |
| Cal. Blk.                      | 0.000                                            | NA NA                                            | 10:02<br>NA    | 0.000          | 0.0100             |                   |                                                  |          | Slope:            | 0.9114         |                |         |
| STD 1                          | 0.010<br>0.047                                   | NA NA                                            | NA NA          | 0.047          | 0.0500             |                   |                                                  |          |                   |                |                |         |
| STD 3                          | 0.094                                            | NA NA                                            | NA             | 0.094          | 0.1000             |                   |                                                  |          | Y intercept:      | 0.0023         |                |         |
| STD 4                          | 0.278                                            | NA                                               | NA             | 0.278          | 0.3000             |                   |                                                  |          |                   |                |                |         |
| STD 5                          | 0.460                                            | NA                                               | NA             | 0.460          | 0.5000             |                   |                                                  |          |                   |                |                |         |
| STD 6                          | 0.739                                            | NA                                               | NA             | 0.739          | 0.8000             | <u>Final Vol.</u> |                                                  |          |                   | Units          | MDL.           | RDL     |
| STD 7                          | 0.906                                            | NA NA                                            | 10:05          | 0.906          | 1.0000             | <u>(ml)</u>       | T07.07-1-1-1                                     | Dilution | Final Conc.<br>NA | mg/l           | 0.003          | 0.010   |
| CCV                            | 0.420                                            | NA NA                                            | 17:18          | 0.420          | 0.4583             | NA NA             | NA<br>NA                                         | NA<br>NA | NA NA             | mg/l           | 0.003          | 0.010   |
| CCB                            | 0.000                                            | NA NA                                            | 17:18          | 0.000          | -0.0025            | NA<br>100.0       | 2.5000                                           | 1        | -0.102            | mg/kg          | 0.117          | 0.400   |
| GP66893-MB1                    | 0.000                                            | 0.000                                            | 17:25          | 0.000<br>0.851 | -0.0025<br>0.9312  | 100.0             | 2,5000                                           | 1        | 37.247            | mg/kg          | 0.117          | 0.400   |
| GP66893-B1                     | 0.851                                            | 0,000                                            | 17:25<br>17:25 | 0.360          | 0.3925             | 100.0             | 2.5300                                           | 1        | 15.512            | mg/kg          | 0.116          | 0.395   |
| GP66893-S1                     | 0.365<br>0.017                                   | 0.005                                            | 17:25          | 0.013          | 0.0117             | 100.0             | 2.4500                                           | 1        | 0.478             | mg/kg          | 0.120          | 0,408   |
| GP66893-D1                     | 0.009                                            | 0.004                                            | 17:25          | 0.005          | 0.0029             | 100.0             | 2.5300                                           | 1        | 0.116             | mg/kg          | 0.116          | 0.395   |
| JB14312-15<br>JB14312-15PSCONF | <del>                                     </del> | 0.001                                            | 17:25          | 0.425          | 0.4638             | 100.0             | 2.5300                                           | 2        | 36.662            | mg/kg          | 0.232          | 0.791   |
| GP66893-B2                     | >3                                               | OVR                                              |                | FALSE          | -0.0025            | 100.0             | 2,5000                                           | 11       | -0.102            | mg/kg          | 0.117          | 0.400   |
| GP66893-S2                     | >3                                               | OVR                                              |                | FALSE          | -0.0025            | 100.0             | 2.5000                                           | 1        | -0.102            | mg/kg          | 0.117          | 20.000  |
| GP66893-B2                     | 0.354                                            | 0,000                                            | 17:25          | 0.354          | 0.3859             | 100.0             | 2.5000                                           | 50       | 771.742           | mg/kg          | 5.860<br>5.837 | 19.920  |
| GP66893-S2                     | 0.348                                            | 0.000                                            | 17:25          | 0.348          | 0.3793             | 100.0             | 2.5100                                           | 50       | 755.554           | mg/kg          | 0.003          | 0.010   |
| CCV                            | 0.414                                            | NA                                               | 17.25          | 0.414          | 0.4517             | NA                | NA                                               | NA<br>NA | NA<br>NA          | mg/l<br>mg/l   | 0.003          | 0.010   |
| CCB                            | 0.000                                            | NA                                               | 17:25          | 0.000          | -0.0025            | NA<br>188.0       | NA                                               | NA       | #DIV/0!           | mg/kg          | #DIV/01        | #DIV/0! |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0<br>100.0    |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  |                                                  |                | FALSE          | -0.0025<br>-0.0025 | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/01 |
|                                |                                                  |                                                  |                | FALSE<br>FALSE | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/01           | mg/kg          | #DIV/0!        | #DIV/01 |
|                                | <del> </del>                                     |                                                  |                | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0I           | rng/kg         | #DIV/0!        | #DIV/0! |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
| ccv                            | 0.431                                            | NA                                               | 18:53          | 0.431          | 0.4704             | NA                | NA                                               | NA       | NA NA             | mg/l           | 0.003          | 0.010   |
| ССВ                            | 0.000                                            | NΑ                                               | 18:53          | 0.000          | -0.0025            | NA NA             | NA                                               | NA NA    | NA NA             | mg/l           | 0.003          | 0.405   |
| JB14312-1                      | 0.020                                            | 0.014                                            | 19:01          | 0.006          | 0.0040             | 100.0             | 2.4700                                           | 11       | 0.164<br>0.344    | mg/kg<br>mg/kg | 0.120          | 0.408   |
| JB14312-2                      | 0.020                                            | 0.010                                            | 19:01          | 0.010          | 0.0084             | 100.0             | 2.4500                                           | 1 1      | 0.521             | mg/kg          | 0.119          | 0.407   |
| JB14312-3                      | 0.019                                            | 0.005                                            | 19:01          | 0.014          | 0.0128             | 100.0             | 2.4600<br>2.5100                                 | 1        | 0.205             | mg/kg          | 0.117          | 0.398   |
| JB14312-4                      | 0.010                                            | 0.003                                            | 19:01          | 0.007          | 0.0051             | 100.0             | 2.4700                                           | 1 1      | 0.963             | mg/kg          | 0.119          | 0.405   |
| JB14312-5                      | 0.036                                            | 0.012                                            | 19:01          | 0.024          | 0.0073             | 100.0             | 2,5400                                           | 1        | 0.289             | mg/kg          | 0.115          | 0.394   |
| JB14312-6                      | 0.017                                            | 0.008                                            | 19:01          | 0.010          | 0.0084             | 100.0             | 2.4800                                           | 1        | 0.340             | mg/kg          | 0.118          | 0.403   |
| JB14312-7                      | 0.023                                            | 0.010                                            | 19:01          | 0.015          | 0.0136             | 100.0             | 2.4900                                           | _ 1      | 0.546             | mg/kg          | 0.118          | 0.402   |
| JB14312-8<br>JB14312-9         | 0.023                                            | 0.008                                            | 19:01          | 0.015          | 0.0139             | 100.0             | 2.5700                                           | 1        | 0.541             | mg/kg          | 0.114          | 0.389   |
| JB14312-10                     | 0.004                                            | 0.003                                            | 19:01          | 0.001          | -0.0014            | 100.0             | 2,4800                                           | 11       | -0.058            | mg/kg          | 0.118          | 0.403   |
| CCV                            | 0.426                                            | NA                                               | 19:01          | 0.426          | 0.4649             | NA                | NA_                                              | NA       | NA NA             | mg/l           | 0.003          | 0.010   |
| CCB                            | 0.000                                            | NA                                               | 19:01          | 0.000          | -0.0025            | NA NA             | NA                                               | NA NA    | NA<br>10.045      | mg/l           | 0.003          | 0.392   |
| JB14312-11                     | 0.304                                            | 0.048                                            | 19:04          | 0.256          | 0.2783             | 100.0             | 2.5500                                           | 1 1      | 10.915<br>0.503   | mg/kg<br>mg/kg | 0.115          | 0.392   |
| JB14312-12                     | 0.026                                            | 0.012                                            | 19:04          | 0.014          | 0.0128             | 100.0             | 2.5500                                           | 1        | 0.203             | mg/kg          | 0.116          | 0.395   |
| JB14312-13                     | 0.011                                            | 0.004                                            | 19:04          | 0.007          | 0.0051<br>-0.0025  | 100.0             | 2.5300                                           | 1        | #DIV/0!           | mg/kg          | #DIV/01        | #D1V/0! |
|                                |                                                  | -                                                |                | FALSE          | -0.0025            | 100.0             | <del>                                     </del> | 1 1      | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  |                                                  | -              | FALSE<br>FALSE | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  |                                                  | <del> </del>   | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0I           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  | +                                                |                | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
|                                |                                                  | <del>                                     </del> | -              | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/01        | #DIV/0! |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0             |                                                  | 1        | #DIV/0!           | mg/kg          | #DIV/0!        | #DIV/0! |
| CCV                            | 0.421                                            | NA                                               | 19:04          | 0.421          | 0.4594             | NA                | NA                                               | NA_      | NA<br>iii         | mg/l           | 0.003          | 0.010   |
| ССВ                            | 0.000                                            | NA .                                             | 19:04          | 0.000          | -0.0025            | NA.               | NA                                               | NAME     | NA NA             | mg/l           | 0.003          | 0.010   |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0             | 2.5000                                           |          | -0.102<br>-0.102  | mg/kg<br>mg/kg | 0.117          | 0.400   |
|                                |                                                  |                                                  |                | FALSE          | -0.0025            | 100.0             | 2.5000                                           |          | -0.102            | mg/kg          | 0.117          | 0.400   |
|                                |                                                  |                                                  |                | FALSE          | -0.9025            | 100.0             | 2,5000<br>2,5000                                 |          | -0.102            | mg/kg          | 0.117          | 0.400   |
|                                |                                                  |                                                  |                | FALSE          | -0.002 <b>5</b>    | 100.0             | 2,5000                                           |          | -0.102            | mg/kg          | 0.117          | 0.400   |
|                                |                                                  |                                                  |                | FALSE          | 1 -0.0023          | <del>)</del> ''   |                                                  |          |                   | - Hand         |                |         |



| QC Reports: |              | FALSE                                   | -0.0025 | 100.0 | GN.              | 71347                                            | -0.102      | mg/kg   |       | 0.400 |
|-------------|--------------|-----------------------------------------|---------|-------|------------------|--------------------------------------------------|-------------|---------|-------|-------|
| QO Noporto. |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2,5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             | NA NA        | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | #VALUE! | NA    | NA               | NA                                               | NA          | mg/l    | 0.003 | 0.010 |
| CCV         | NA NA        |                                         | #VALUE! | NA    | NA               | NA                                               | NA NA       | mg/l    | 0.003 | 0.010 |
| CCB         |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             | <del></del>  | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0,400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0,102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0,400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              |                                         | -0.0025 | 100.0 | 2,5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   |         | NA    | NA               | NA                                               | NA          | mg/l    | 0.003 | 0.010 |
| CCV         | NA NA        | : "                                     | #VALUE! | NA NA | NA NA            | NA NA                                            | NA          | mg/l    | 0.003 | 0.010 |
| CCB         | NA           |                                         | #VALUE! | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 |       |                  | 1 1                                              | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000<br>2.5000 | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | ·                | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | + +                                              | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1 1                                              | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | <del>                                     </del> | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           |                                                  | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           |                                                  | NA          | mg/l    | 0.003 | 0.010 |
| CCV         | NA           |                                         | #VALUE! | NA    | NA NA            | NA NA                                            | NA NA       | rng/l   | 0.003 | 0.010 |
| ССВ         | NA _         |                                         | #VALUEI | NA NA | NA.              | NA NA                                            | <del></del> | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1-1-                                             | -0.102      |         | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 11                                               | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | <del>1</del>                                     | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 11                                               | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2,5000           | 1 1                                              | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 111                                              | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2,5000           | 11                                               | -0.102      | _mg/kg_ |       | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 11                                               | -0.102      | mg/kg   | 0.117 | 0.400 |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2,5000           | 11                                               | -0.102      | mg/kg   | 0.117 |       |
| COV         | NA NA        |                                         | #VALUE! | NA    | NA               | NA NA                                            | NA NA       | mg/l    | 0.003 | 0.01  |
| CCV         | NA NA        |                                         | #VALUE! | NA    | NA               | NA.                                              | NA NA       | mg/l    | 0.003 | 0.01  |
| CCB         |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 11                                               | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 11                                               | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           | 1                                                | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2,5000           | 1                                                | -0.102      | mg/kg   |       | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           |                                                  | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           |                                                  | -0.102      | mg/kg   | 0.117 | 0.40  |
|             | <del>+</del> | FALSE                                   | -0.0025 | 100.0 | 2.5000           |                                                  | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           |                                                  | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | PALSE                                   | #VALUE! | NA.   | NA               | NA                                               | NA          | mg/l    | 0.003 | 0.01  |
| ccv         | NA NA        |                                         | #VALUE! |       | NA.              | NA NA                                            | NA          | mg/l    | 0.003 | 0.0   |
| CCB         | NA NA        | EALCE                                   | -0.0025 | 100.0 | 2.5000           |                                                  | -0.102      | mg/kg   | 0.117 | 0.40  |
|             |              | FALSE                                   | -0.0025 | 100.0 |                  |                                                  | -0.102      | mg/kg   | 0.117 | _     |
|             |              | FALSE                                   | -0.0025 | 100.0 | 2.5000           |                                                  | -0.102      | mg/kg   | 0.117 | 0.4   |
|             |              | FALSE                                   | -0.0025 | 100.0 |                  |                                                  | -0,102      | mg/kg   | 0.117 |       |
|             |              | FALSE                                   | -0.0025 | 100.0 | -                |                                                  | -0.102      | mg/kg   | 0.117 |       |
|             |              | FALSE                                   |         | 100.0 |                  |                                                  | -0.102      | mg/kg   | 0.117 | 0.4   |
|             |              | FALSE                                   | -0.0025 | 100.0 |                  |                                                  | -0.102      | mg/kg   | 0.117 | 0.4   |
|             |              | FALSE                                   | -0.0025 | 100.0 |                  |                                                  | -0.102      | mg/kg   | 0.117 | 0.4   |
|             |              | FALSE                                   | -0.0025 |       |                  |                                                  | -0.102      | mg/kg   | 0.117 | 0.4   |
|             |              | FALSE                                   | -0.0025 |       |                  |                                                  | -0.102      | mg/kg   |       | 0.4   |
|             |              | FALSE_                                  | -0.0025 |       | 2,500<br>NA      | NA NA                                            | NA NA       | mg/l    | 0.005 |       |
| CCV         | NA NA        |                                         | #VALUE  |       |                  |                                                  | NA NA       | mg/l    | 0.005 |       |
| CCB         | NA NA        |                                         | #VALUE  | ! NA  | NA.              | INA                                              |             |         |       |       |



### 1.5

|      | •      |  |
|------|--------|--|
| ACCL | JTEST. |  |

### Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

|                                                  |                                                  |               |           |            |             | pH Meter ID:   | _23               |                       |
|--------------------------------------------------|--------------------------------------------------|---------------|-----------|------------|-------------|----------------|-------------------|-----------------------|
|                                                  |                                                  |               |           |            |             | Digestion Date |                   | 4                     |
| adj. start time:                                 |                                                  | W:48          | 1024      | 16:58      | 10:40       | pH adj. Date:  | 930200            |                       |
| adj. end time:                                   |                                                  | 16:53         | 195.32    | 16:58      | 10746       | GN Batch ID:   | 6NT134            | 7                     |
|                                                  | Sample                                           |               | Final     |            | bkg pH      |                |                   |                       |
| P66893                                           | Weight in                                        | pH after      | Volume    | pH after   | after       | Spike          | Spike             | Digestate             |
| mple ID                                          | g                                                | HNO3          | (ml)      | H2SO4      | H2SO4       | Amounts        | Solution          | Description/Comments  |
| /                                                |                                                  | 7.82          | 100       | 102        |             | 5.0m1          | loppm             | Wta                   |
| 1                                                |                                                  | 113           | +         | 170        |             | L              | ' {               |                       |
| · .                                              |                                                  |               |           |            |             |                | $\mathcal{V}$     |                       |
| }                                                |                                                  |               |           |            |             |                |                   |                       |
|                                                  |                                                  | 763           | 100       | 173        |             |                |                   |                       |
|                                                  |                                                  | 746           | 4         | 102        |             |                |                   |                       |
|                                                  |                                                  |               |           |            |             |                |                   |                       |
|                                                  |                                                  |               |           |            |             |                |                   | ·                     |
| Sol) 5014312-15                                  | 2.53                                             | 741           | 100       | 1.90       | 192         | Lomi           | 100ppm<br>ppcroy  | ASSX                  |
| Insol.)   ~15                                    | 2.53                                             | 796           | 1         | 192        | ar          | 0.0130         | eperoy            |                       |
| V -15                                            | a.45                                             | 791           | }         | 19A-       | 170         |                | •                 |                       |
| Sol)                                             | 2.50                                             | 100           |           | 199        | 1.72        | lioni          | lor pem<br>obligh | A250/                 |
| Insol)                                           | 1                                                | 7.93          |           | 170        | OVE         | 0,0117         | 06/104            |                       |
|                                                  |                                                  | 1.24          |           | 191        | 1.70        |                |                   |                       |
| 11.711-15                                        | 2.53                                             | 759           |           | 195        | 1-78        |                |                   | 1: ght gellou         |
| B14312-15                                        | 2.47                                             | 721           |           | 193        | 1001        |                | ·                 | int blows             |
| \ -a                                             | 2.45                                             | 736           |           | da         | 194         |                |                   | 0 0                   |
| -3                                               | 2.46                                             | 770           | +         | 192        | 174         |                |                   | CLERY                 |
| -4                                               | 2.51                                             | 790           |           | 180        | 171         |                |                   | Clear                 |
| 1 -5                                             | 2.47                                             | 7.9A          |           | iai        | 178         | ·              |                   | Clear<br>light yellow |
| -6                                               | 2.54                                             | 700           |           | 170        | 1.100       |                |                   | '0 0                  |
| -1                                               | 2.48                                             | 141           |           | 192        | 173         |                |                   |                       |
|                                                  | 2.49                                             | 7.10          |           | 100        | (89)        |                |                   |                       |
| -8<br>-9                                         | 2.57                                             | 777           |           | 185        | 191         |                |                   |                       |
| - (o                                             | 2.48                                             | 701           |           | Tai        | 195         |                |                   | cler 44 M             |
| <del>                                     </del> | 2.55                                             | 760           |           | 100        | 1.99        |                |                   | ttight yellow         |
| -1a                                              | 2.55                                             | 101           |           | 201        | 190         |                |                   |                       |
| -13                                              | 2.53                                             | 134           | 4         | 190        | 1-10        |                |                   | cless                 |
|                                                  |                                                  |               |           |            | <u> </u>    |                |                   |                       |
|                                                  |                                                  |               |           |            |             | /              | 4                 |                       |
|                                                  |                                                  |               | *         | ~          | 2011        |                | $\Delta A_{}$     |                       |
|                                                  |                                                  |               |           |            |             | Λc             | N                 |                       |
|                                                  |                                                  |               |           |            |             |                |                   |                       |
|                                                  |                                                  |               |           |            |             |                |                   |                       |
| Insol)                                           | 20                                               | 790           | 100       | 1.93       | 184         |                |                   | dilution (S)          |
| (Insat.)                                         | 251                                              | 780           | Ī         | 1.07       | 1713        |                |                   | dilution (:(4)        |
|                                                  | 253                                              | 729           | 14        | 1.00       | 1.00        | 23 mL 100      | nem 'MDGW         | el - 1/2 duuticy      |
| djusted PS                                       | 16-6-7                                           |               | <u> </u>  |            |             |                | [ 1,              |                       |
| dil.                                             | <del>                                     </del> | t             |           |            |             |                |                   |                       |
| 31431d - 15                                      | 2.53                                             |               |           |            | ·····       |                |                   |                       |
| agent Reference l                                | nformatio                                        | n - refer to  | attached  | reagent re | eference i  | nformation pa  | ge(s).            |                       |
| 00000 ug/g x Insol                               | uble spilee                                      | wt(a) x 52/   | 323.2}/ms | sample wt  | (g) = Insol | uble spike amo | unt of PbCrO      | 4                     |
| 2 2 2 0 0 dg/g / 11100!                          | 7 1                                              | \ /           |           | ×1         | 71 11       | Λ              |                   |                       |
| d analyst check:                                 | ( /K                                             | $\mathcal{N}$ |           | Anayst:    | VLM         |                |                   |                       |
| / / /                                            |                                                  |               |           | Date:      | alasha      | id.            |                   |                       |



| Toot.  | Hexava  | lant C  | hra  | mium |
|--------|---------|---------|------|------|
| i ESt. | LIÈYGAG | ICIIL O | 1110 |      |

Product: XCr

MDL = 0.117 mg/kgRDL = 0.40 mg/kg GNBatch ID: GNTPAT

Method: SW846 3060A/7196A

| Method. 344040 3000A   | 77 1007              |               |                                                      | <del> </del>                                                |                       |   |
|------------------------|----------------------|---------------|------------------------------------------------------|-------------------------------------------------------------|-----------------------|---|
| Digestion Batch QC S   | ummary               | Units =       | mg/kg                                                |                                                             |                       |   |
| Method Blank ID        | BMBI Date: 4         | 0120 12012 RE | esult: <u>4MDL_</u> RDL:                             | <u>040 </u> <r< td=""><td>DL:<u>1/02</u></td><td></td></r<> | DL: <u>1/02</u>       |   |
| Sol. Spike Blank ID:   | 0898 8 Date          | e:            | Result: 37.25                                        | Spike: <u>40.00</u> %                                       | 6Rec. <u>931%</u>     |   |
| Insol. Spike Blank ID: | 10893 B2 Date        | <u>+</u>      | Result: 771.74 S                                     | pike: <u>152</u> /%                                         | Rec.: <u>102</u> 5%   |   |
| Duplicate ID: 6000     | -DI Samp. Re         | esult:        | Dup. Result:4                                        | B %RPD                                                      | 1207%                 |   |
| Sol. MS ID: 4000292    | <b>~1</b>            | lt:M          | S Result: <u>1551</u>                                | Spike: <u>3915-3</u> 9                                      | %Rec: <u>28.9</u> %   |   |
| Insol. MS ID: 4700999  |                      | sult:         | MS Result: 156.59                                    | Spike: <u>033-31</u>                                        | %Rec: <u>91.09</u>    |   |
| Post Spike ID: UBH30   |                      | esult: 4      | PS Result: 30.81                                     | _ Spike: <u>40.4(</u>                                       | ) %Rec: <u>00.0</u> % |   |
| Diluted Sample ID:     |                      | np. Result:   | Dil. Result:_                                        | %                                                           | RPD:                  |   |
| pH adj. PS ID:         | Samp. Re             |               | MS Result:                                           | Spike:                                                      | _ %Rec:               |   |
|                        |                      |               |                                                      |                                                             |                       |   |
| Analysis Batch QC Sumi | nary L               | Inits = mg/l  |                                                      |                                                             |                       |   |
| - h- h- n-             | N-6                  |               | AU . A                                               | •                                                           |                       |   |
| ccv: <u>8600000</u>    |                      | TV: _0.500    | %Rec.: 01.0%                                         |                                                             |                       |   |
| ccv:                   |                      | TV: _0.500    | %Rec.: 10.46                                         |                                                             |                       |   |
| ccv:                   | Result: <u>.4710</u> | TV: _0.500    | %Rec.: 440%                                          |                                                             |                       |   |
| ccv:                   | Result: 465          | TV: _0.500    | %Rec.: 03.0%                                         |                                                             |                       |   |
| cc. 4                  | Result: 459          | TV: _0.500    | %Rec.: 91,05%                                        | -                                                           |                       | • |
| CCV:                   | Result:              | TV: _0.500    | %Rec.:                                               |                                                             |                       |   |
| ccv:                   | Result:              | TV: _0.500    | %Rec.:                                               | `~                                                          |                       |   |
| ccv:                   | Result:              | TV: _0.500    | %Rec.:                                               |                                                             |                       |   |
| ccv:                   | Result:              | TV: _0.500    | %Rec.:                                               |                                                             |                       |   |
| alala                  | . 10.4.7.5           |               | IM >                                                 |                                                             |                       |   |
| ссв: 8000CD            | Result: <u>LMDL</u>  | <del>-</del>  | <rdl: td="" û<=""><td></td><td></td><td></td></rdl:> |                                                             |                       |   |
| CCB:                   | Result:              | RDL:_0.010    | <rdl:< td=""><td></td><td></td><td></td></rdl:<>     |                                                             |                       |   |
| CCB:                   | Result:              | RDL:_0.010    | <rdl:< td=""><td></td><td></td><td></td></rdl:<>     |                                                             |                       |   |
| CCB:                   | Result:              | RDL:_0.010    | <rdl:< td=""><td></td><td></td><td></td></rdl:<>     |                                                             |                       |   |
| ссв:                   | Result: 4            | RDL:_0.010    | <rdl:< td=""><td>••,</td><td></td><td></td></rdl:<>  | ••,                                                         |                       |   |
| CCB:                   | Result:              | RDL:_0.010    | <rdl:< td=""><td></td><td></td><td></td></rdl:<>     |                                                             |                       |   |
| CCB:                   | Result:              | RDL:_0.010    | <rdl:< td=""><td></td><td>•</td><td></td></rdl:<>    |                                                             | •                     |   |
| CCB:                   | Result:              | RDL:_0.010    | <rdl:< td=""><td></td><td></td><td></td></rdl:<>     |                                                             |                       |   |
| CCB:                   | Result:              | RDL:_0.010    | <rdl:< td=""><td></td><td></td><td></td></rdl:<>     |                                                             |                       |   |
| <u> </u>               |                      |               |                                                      |                                                             |                       |   |

Analyst Date: <u>9000000</u>

Comments:

Form: GN066-01 Rev. Date: 4/25/11



Lyongles, use versuce Spiller

6.17

### ACCUTEST LABS DAYTON, NJ

## 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

| ſ                                                                                                                   |                     |                       |              | ō                                      |                | spike      | spike                           | (v)              | (a)              | ا يو             | e)               | [و               | ؈                | e e              | رو               | a                |
|---------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|--------------|----------------------------------------|----------------|------------|---------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                                                                                     |                     |                       |              | Use calculated or                      | default spike? | 40.404     | #DIV/0! Ffault (40 mg/kg) spike | calculated spike | catculated spike | calculated spike |
|                                                                                                                     |                     | Est. Read- Calculated | Spike        | Amount in                              | mg/kg          | 40.404     | #DIV/0i                         | #VALUE!          |
|                                                                                                                     |                     | Est. Read-            | back on      | curve in                               | mg/l           | 0.511      | i0//\IQ#                        | #VALUE!          | #VAI UF!         |
|                                                                                                                     | Actual mi<br>of 100 | ppm to                | spike on     | dilution of                            | sample.        | 0.23       |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| oike amount.                                                                                                        | Suggested           | ml of 100             | ppm to spike | Dilution to on dilution of dilution of | sample.        | 0.228      | #DIV/0i                         | #VALUE!          | #VALUE!          | #VALUE!          | i∃NT∀∧#          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VAI LIF         |
| d add the s                                                                                                         |                     |                       | Actual       | Dilution to                            | pe nseq        | 2          |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| post-spike ar                                                                                                       |                     |                       | Suggested    | Dilution to                            | nse            | 0          | 0                               | #VALUE!          | #\\A     F       |
| the diluted                                                                                                         |                     |                       |              | Dilution                               |                | yes        | 2                               | #VALUE! #VALUE!  | UE! #VALUE!      | #VALUE!          | UE! #VALUE!      | UE! #VALUE!      | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #\\A             |
| nl aliquot of                                                                                                       |                     | Amount in             | ml to add    | of 100 ppm                             | solution       | 0.455      | 0.000                           | #VALUE!          | #\\A  E          |
| n take a 45 ı                                                                                                       |                     |                       |              | Results in                             | mg/kg.         | *45.0      |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| NOTE: Always ditute post-spike first, then take a 45 ml aliquot of the diluted post-spike and add the spike amount. |                     |                       |              | Weight in 45 Results in of 100 ppm     |                | 1.1385     | 0                               | #VALUE!          | 13111VW          |
| ys dilute post                                                                                                      |                     | PS Aliquot            | Weight in g  | Digested in                            | 100 ml         | 2.53 ~     |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| NOTĖ: Alwa                                                                                                          |                     |                       |              |                                        | Sample ID      | JB14312-15 |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |

| BLE SPIKE<br>ON                            | Amount    | Spiked | 752.970 | 833.300 | * #VALUE! | <b>₩</b> VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
|--------------------------------------------|-----------|--------|---------|---------|-----------|-----------------|---------|---------|---------|---------|---------|
| 3060A/7196A INSOLUBLE SPIKE<br>CALCULATION | Weight of | Sample | 2.5     | 2.51    |           |                 |         |         |         |         |         |
| 3060A/719<br>C                             | Weight of | PbCr04 | 0.0117  | 0.013   |           |                 | į       |         |         |         |         |



### Hexavalent Chromium pH Adjustment Log

Method: SW846 3060A/7196A

)H adj. start time: oH adj. end time:

pH adjustment Date: f-30-20|2-GN Batch ID: 61

|                     |                                                  | (                                                |                                                    | ( )                                              |                                                  |                    |
|---------------------|--------------------------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------|
|                     | Sample                                           |                                                  | Final                                              |                                                  |                                                  |                    |
|                     | Weight in                                        |                                                  | Volume                                             | pH after                                         |                                                  |                    |
| Sample ID           | g                                                | HNO3                                             | (ml)                                               | H2SO4                                            | Comments                                         | Spike Info.        |
| Calibration Blank   | NA                                               | 7.91                                             | 100                                                | 198                                              | 0                                                |                    |
| .010 mg/l standard  | NA                                               | 7.52                                             |                                                    | 244                                              | JOHN ALSOLAN                                     | 0.10 ml of 10 mg/l |
| 0.050 mg/l standard | NA                                               | 7.72                                             |                                                    | 207                                              |                                                  | 0.50 ml of 10 mg/l |
| ),100 mg/l standard | NA                                               | 7-47                                             |                                                    | 208                                              |                                                  | 1.00 ml of 10 mg/l |
| .300 mg/l standard  | NA                                               | 7.74                                             |                                                    | 2.11                                             |                                                  | 3.00 ml of 10 mg/l |
| ).500 mg/l standard | NA                                               | 7.71                                             |                                                    | 192                                              |                                                  | 5.00 ml of 10 mg/l |
| ),800 mg/l standard | NA                                               | 4.61                                             |                                                    | 1.98                                             |                                                  | 8.00 ml of 10 mg/l |
| .00 mg/l standard   | NA                                               | 7.42                                             | J/                                                 | 2001                                             | V                                                | 19.0 ml of 10 mg/l |
|                     |                                                  |                                                  |                                                    |                                                  | <u> </u>                                         | 1                  |
|                     |                                                  | 1                                                |                                                    |                                                  |                                                  |                    |
|                     |                                                  |                                                  |                                                    |                                                  |                                                  |                    |
|                     |                                                  |                                                  |                                                    |                                                  |                                                  |                    |
|                     | 1                                                |                                                  |                                                    |                                                  |                                                  |                    |
|                     |                                                  |                                                  |                                                    |                                                  |                                                  |                    |
|                     |                                                  |                                                  |                                                    |                                                  |                                                  |                    |
|                     | 1                                                |                                                  |                                                    |                                                  |                                                  |                    |
|                     | +                                                |                                                  |                                                    |                                                  |                                                  |                    |
|                     |                                                  |                                                  |                                                    |                                                  |                                                  |                    |
|                     |                                                  |                                                  |                                                    |                                                  |                                                  | M                  |
|                     | <u></u>                                          |                                                  |                                                    | <del>                                     </del> |                                                  | VV                 |
|                     | <del>                                     </del> |                                                  |                                                    | <del>                                     </del> |                                                  |                    |
|                     |                                                  |                                                  |                                                    | <del>                                     </del> |                                                  |                    |
|                     |                                                  |                                                  |                                                    | <del>  /</del>                                   |                                                  |                    |
|                     |                                                  |                                                  |                                                    | <del>/</del>                                     |                                                  |                    |
|                     |                                                  | <del></del>                                      | <del>                                     </del>   | 1 -                                              |                                                  | \                  |
|                     | <del> </del>                                     |                                                  | <del>                                     </del>   | <del>                                     </del> |                                                  | /                  |
|                     | <del>- </del>                                    | -                                                | <del>  /                                    </del> | <del> </del>                                     | <del>                                     </del> |                    |
|                     |                                                  |                                                  | <del>  /                                   </del>  | -                                                |                                                  |                    |
|                     |                                                  |                                                  | /                                                  |                                                  | -                                                |                    |
|                     |                                                  | <del> </del>                                     | <del>/</del>                                       | <del> </del>                                     |                                                  |                    |
|                     |                                                  | <del> /</del>                                    |                                                    |                                                  |                                                  |                    |
| <u> </u>            |                                                  | <del> /</del>                                    | ļ                                                  | <del>                                     </del> |                                                  |                    |
|                     | <u> </u>                                         | <del>  /</del>                                   |                                                    |                                                  |                                                  |                    |
|                     | <u> </u>                                         | <del>                                     </del> |                                                    | 1                                                |                                                  |                    |
|                     | _                                                |                                                  | <del> </del>                                       |                                                  |                                                  |                    |
|                     |                                                  |                                                  | ļ <u> </u>                                         | ļ <u> </u>                                       |                                                  |                    |
|                     |                                                  |                                                  |                                                    |                                                  |                                                  |                    |

Reagent Reference Information - refer to attached reagent reference information page(s).

{1000000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

Form: GN068-01 Rev. Date:5/22/06



### MM ACCUTEST.

## HEXAVALENT CHROMIUM STANDARD PREPARATION LOG

Product: \_

GN or GP Number: 红

| 1                        |                                |               | 1000         |         |          | Final Conc.        |            |         |          |
|--------------------------|--------------------------------|---------------|--------------|---------|----------|--------------------|------------|---------|----------|
| Intermediate<br>Standard |                                | Stock         | Stock        |         | Final    | Oi<br>Infermediate | Expiration |         |          |
| Description              | Stock used to prepare standard | concentration | used in ml   | Diluent | Volume   | (mg/l)             | Date       | Analyst | Date     |
| 10 ppm                   | Absolute Grade Lot # 041215    | 1000 ppm      | 1.0 mi       | ā       | 100 mfs  | 10 mg/l            | 4/12/2015  | 77      | 2-30-2   |
| 100 ppm                  |                                | 1000 ppm      | 10 mi        | ī       | 100 mls  | 100 mg/l           |            | -       |          |
| 5 ppm                    |                                | 1000 ppm      | 1.0 ml       | ΙG      | 200 mg/l | 5 mg/l             |            |         |          |
| 7.5 ppm                  |                                | 1000 ppm      | 1.5 ml       | IO      | 200 mg/l | 7.5 mg/l           |            |         |          |
| 10 ppm                   | Ultra lot L00439               | 1000 ppm      | 1.0 ml       | DI      | 100 mg/l | 10 mg/l            | 5/31/2017  |         |          |
|                          |                                |               | Intermediate |         |          |                    |            |         |          |
|                          |                                | Intermediate  | or Stock     |         |          | Final Conc.        |            |         |          |
| Standard                 | Intermediate or Stock used to  | or Stock      | volume       |         | Final    | Of Standard        | Expiration |         |          |
| Description              | prepare standard               | concentration | used in ml   | Diluent | Volume   | (mg/l)             | Date       | Analyst | Date     |
| .010 ppm                 | 10.0 ppm abs                   | 10.0 ppm      | 0.1 ppm      | IQ      | 100 mls  | 0.01 mg/l          | 1-18-1     | 2.2     | 7-30-12  |
| .050 ppm                 | <b>a</b>                       | ļ             | 0.5 ppm      | DI      |          | 0.05 mg/l          |            |         |          |
| .10 ppm                  |                                |               | 1.0 ppm      | DI      |          | 0.10 mg/i          |            |         |          |
| .30 ppm                  |                                |               | 3.0 ppm      | DI      |          | 0.30 mg/l          |            |         |          |
| .50 ppm                  |                                |               | 5.0 ppm      | DI      |          | 0.50 mg/l          |            |         |          |
| .80 ppm                  |                                |               | 8.0 ppm      | DI      |          | 0.80 mg/l          |            |         |          |
| 1.00 ppm                 | <b>-</b>                       | <b>→</b>      | 10.0 ppm     |         | ,<br>Jo  | 1.0 mg/l           | 7          | ->c     | <b>\</b> |
|                          |                                |               |              |         |          |                    |            |         |          |
|                          |                                | _             |              |         |          |                    |            |         |          |
|                          |                                |               |              |         |          |                    |            |         |          |
|                          |                                |               |              |         |          |                    |            |         |          |
|                          |                                |               |              |         |          |                    |            |         |          |
|                          |                                |               |              |         |          |                    |            |         |          |
|                          |                                |               |              |         |          |                    |            |         |          |

Form: GN205-02 Rev. Date:10/16/09



# HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 39||343|

Thermometer Correction factor:  $D/-\lambda/\beta/1$ 

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg.

|           |               |            | Temp. in deg. C    | Temp. in deg. C        | Temp. in deg. C                         | Temp, in deg. C    |
|-----------|---------------|------------|--------------------|------------------------|-----------------------------------------|--------------------|
|           |               |            | Hot Plate #        | Hot Plate # <u>ス</u> - | Hot Plate # 2 -                         | Hot Plate # ユ -    |
| Digestion |               |            | Uncorrected/Correc | Uncorrected/Correc     | Uncorrected/Correc   Uncorrected/Correc | Uncorrected/Correc |
| 3atch ID  | Description   | Time       | ted                | ted                    | ted                                     | ted                |
|           | Starting Time | 9.20       | 02/06              | 92/90                  | 90/42                                   | 90/90              |
|           | Time 1        | 4:50       | 90/10              | 99/66                  | 90/9                                    | 90/40              |
|           | Ending Time   | 10/20      | 90/46              | 90140                  | 90192                                   | 90/06              |
|           |               |            |                    |                        |                                         |                    |
|           | Starting Time | Time 10:30 | 90/40              | 90/190                 | 90/93                                   | 90/40              |
|           | Time 1        | ش/!!       | 90/40              | 99/90                  | 90/41                                   | 90/90              |
| ·         | Ending Time   | 11:30      | 06/66              | 90/40                  | 90/92                                   | ab/06              |
|           |               |            |                    |                        |                                         |                    |
|           | Starting Time | 13,40      | 90/90              | 92/40                  | 80/99                                   | 00/40              |
|           | Time 1        | 01/.61     | 90/40              | 93/40                  | 90/92                                   | 0 1/00             |
|           | Ending Time   | 13:40      | 90190              | 92190                  | 90/92                                   | 90/90              |

Analyst: 2nd Analyst Check:

Date:

Rev. Date: 8/08/12 Form: GN074-02



| GN/GP Batch ID:                                 | 4N71347 |
|-------------------------------------------------|---------|
| J. 1. J. L. L. L. L. L. L. L. L. L. L. L. L. L. |         |

# Reagent Information Log - XCRA (soil 3060A/7196)

| Reagent                                  | Exp. Date               | Reagent # or Manufacturer/Lot |
|------------------------------------------|-------------------------|-------------------------------|
| Calibration Source: Hexavalent Chromium, |                         |                               |
| 1000 mg/L Stock                          | 4/12/2015               | Absolute Grade Lot # 041212   |
| Calibration Checks: Hexavalent Chromium, |                         |                               |
| 1000 mg/L Stock                          | 5/31/2017               | Ultra lot # L00439            |
|                                          |                         |                               |
| Spiking Solution Source                  | 4/12/2015               | Absolute Grade Lot # 041212   |
| Lead Chromate (Insoluble Hexavalent      |                         |                               |
| Chromium Spike)                          | 7/26/2017               | Sigma Aldrich Lot # BCBG0578V |
| Magnesium Chloride, Anhydrous            | 7/11/2016               | Alfa Aesar Lot # B17X012      |
|                                          |                         |                               |
| 1N NaOH                                  |                         |                               |
|                                          | A.F                     |                               |
| Digestion Solution                       | 9/24/12                 | mex-32323-x(A                 |
|                                          | n Lullio                | 6 6 12                        |
| Phosphate Buffer Solution                | 2/14/13                 | GUE 8-33273-XCRA              |
| 5.0 M Nitric Acid                        | 38bcB                   | ante-zila-xara                |
|                                          |                         |                               |
| Diphenylcarbazide Solution               | aboper                  | ENTS-33418-XN                 |
| Sulfuric Acid, 10%                       | applea                  | ENTO-2000 -XX                 |
| Odnario 7 Ola, 1070                      | - Kriters               | 21902-33500                   |
| Filter                                   | NA                      | F2EA19811                     |
| Teflon Chips                             | <u>NA</u>               | 919120                        |
|                                          | . Security of an artist | . /                           |
|                                          |                         | $\sqrt{M}$                    |
|                                          |                         | V []# [                       |

Form: GN087A-21B Rev. Date: 2/18/10





|                   | Hd   | eH (MV) |
|-------------------|------|---------|
| Phase Change Line | 0    | 1027.7  |
|                   | 14   | -105.6  |
|                   |      |         |
| Sample Number     | Н    | eH (mv) |
| JB14312-2         | 7.47 | 128     |
| JB14312-3         | 8.05 | 219     |
| JB14312-4         | 8.21 | 225     |
| JB14312-5         | 7.84 | 273     |
| JB14312-6         | 7.17 | 182     |
| JB14312-1         | 7.98 | 303     |
| JB14312-7         | 7.65 | 178     |
| JB14312-8         | 8.85 | 222     |
| JB14312-9         | 8.7  | 287     |

| 700 ₁     | 650           | 600       | 8         | 220       | 200<br>200 |           |           | rod<br>400 | toə       | jə e      | oue        | еје<br>БР | l 10Î | .ecte | 100<br>100 |
|-----------|---------------|-----------|-----------|-----------|------------|-----------|-----------|------------|-----------|-----------|------------|-----------|-------|-------|------------|
| 14 -105.6 | pH eH (mv)    | 7.47 128  |           | 8.21 225  |            |           |           |            |           | 8.7 287   | 7.86 300   |           |       |       |            |
|           | Sample Number | JB14312-2 | JB14312-3 | JB14312-4 | JB14312-5  | JB14312-6 | JB14312-1 | JB14312-7  | JB14312-8 | JB14312-9 | JB14312-10 |           |       |       |            |

--- JB14312-6

→ JB14312-1

-\*- JB14312-5

-+-- JB14312-2

**Eh pH Phase Diagram**Phase Diagram based on the HCrO<sub>4</sub>·ICr(OH)<sub>3</sub> ratio
Below phase change line indicates reducing environment.
Above phase change line indicates oxidizing environment

→ JB14312-3

JB14312-4

 $\bigcirc$ 

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

■Phase Change Line

4

13

12

7

9

0

ω

ဖ

2

4

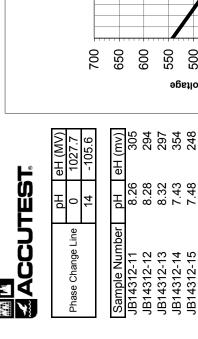
된

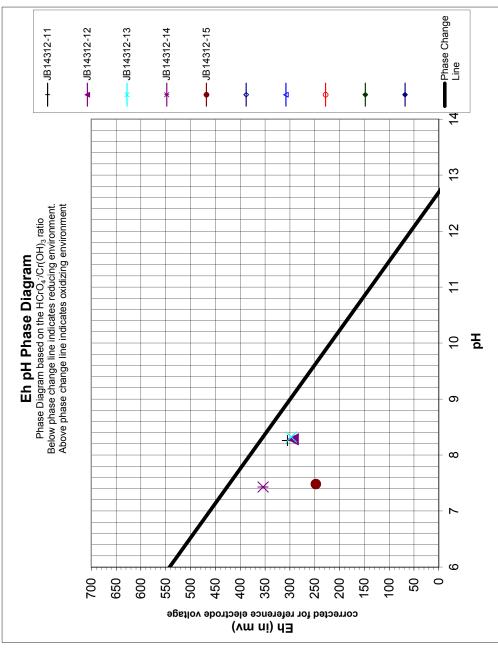
→ JB14312-10

→ JB14312-9

--- JB14312-8

 $\triangleleft$ 


90


-50

-100

<del>---</del> JB14312-7

Reference for graph: SW846 method 3060A





Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A

■Phase Change Line

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A

лм) нә

Hd

Phase Change Line

M M ACCUTEST.

-105.6 1027.7

4 0

Sample Number | pH | eH (mv)



09/07/12



# Technical Report for

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14312R

Sampling Date: 08/21/12

### Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 135



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



## **Sections:**

# **Table of Contents**

-1-

| Section 1: Sample Summary                        | 3         |
|--------------------------------------------------|-----------|
| Section 2: Case Narrative/Conformance Summary    | 5         |
| Section 3: Summary of Hits                       | 7         |
| Section 4: Sample Results                        | 9         |
| <b>4.1:</b> JB14312-1R: NSB-D1-1.0-1.5           | 10        |
| <b>4.2:</b> JB14312-2R: NSB-D1-12.0-12.5         | 11        |
| <b>4.3:</b> JB14312-3R: NSB-D1-16.0-16.5         | 12        |
| <b>4.4:</b> JB14312-4R: NSB-D1-20.0-20.5         | 13        |
| <b>4.5:</b> JB14312-5R: NSB-D1-4.0-4.5           | 14        |
| <b>4.6:</b> JB14312-6R: NSB-D1-7.7-8.2           | 15        |
| <b>4.7:</b> JB14312-7R: NSB-D2-11.3-11.8         | 16        |
| <b>4.8:</b> JB14312-8R: NSB-D2-3.0-3.5           | 17        |
| <b>4.9:</b> JB14312-9R: NSB-D2-3.0-3.5X          | 18        |
| <b>4.10:</b> JB14312-10R: NSB-D2-6.0-6.5         | 19        |
| <b>4.11:</b> JB14312-11R: NSB-D3-3.0-3.5         | 20        |
| <b>4.12:</b> JB14312-12R: NSB-D4-1.0-1.5         | 21        |
| <b>4.13:</b> JB14312-13R: NSB-F5-20.0-20.5       | 22        |
| <b>4.14:</b> JB14312-15R: NSB-F5-16.0-16.5       | 23        |
| Section 5: Misc. Forms                           | <b>24</b> |
| <b>5.1:</b> Chain of Custody                     | 25        |
| 5.2: Sample Tracking Chronicle                   | 33        |
| <b>5.3:</b> Internal Chain of Custody            |           |
| Section 6: General Chemistry - QC Data Summaries |           |
| 6.1: Method Blank and Spike Results Summary      | 44        |
| 6.2: Duplicate Results Summary                   | 45        |
| 6.3: Matrix Spike Results Summary                |           |
| 6.4: Inst QC GN71159: Total Organic Carbon       |           |
| 6.5: Inst QC GN71475: Total Organic Carbon       | 49        |
| 6.6: XCR 3rd Tier Analyses                       | 51        |
| 6.7: Percent Solids Raw Data Summary             | 52        |
| Section 7: General Chemistry - Raw Data          | 55        |
| 7.1: Raw Data GN71159: Total Organic Carbon      | 56        |
| 7.2: Raw Data GN71475: Total Organic Carbon      | 96        |
| 7.3: Raw Data GN71477: Chromium, Hexavalent      | 125       |
| 7.4: Raw Data GN71534: Sulfide Screen            | 133       |
| 7.5. Raw Data GN71538: Iron Ferrous              | 13/       |



# **Sample Summary**

Job No:

JB14312R

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code | <del></del> | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|-------------|---------------------|
| JB14312-1R       | 08/21/12          | 10:40 LK | 08/21/12 | SO            | Soil        | NSB-D1-1.0-1.5      |
| JB14312-2R       | 08/21/12          | 11:56 LK | 08/21/12 | SO            | Soil        | NSB-D1-12.0-12.5    |
| JB14312-3R       | 08/21/12          | 12:24 LK | 08/21/12 | SO            | Soil        | NSB-D1-16.0-16.5    |
| JB14312-4R       | 08/21/12          | 12:40 LK | 08/21/12 | SO            | Soil        | NSB-D1-20.0-20.5    |
| JB14312-5R       | 08/21/12          | 10:45 LK | 08/21/12 | SO            | Soil        | NSB-D1-4.0-4.5      |
| JB14312-6R       | 08/21/12          | 11:42 LK | 08/21/12 | SO            | Soil        | NSB-D1-7.7-8.2      |
| JB14312-7R       |                   |          | 08/21/12 |               | Soil        | NSB-D2-11.3-11.8    |
|                  |                   |          |          |               |             |                     |
| JB14312-8R       | 08/21/12          | 13:35 LK | 08/21/12 | SO            | Soil        | NSB-D2-3.0-3.5      |
| JB14312-9R       | 08/21/12          | 13:38 LK | 08/21/12 | SO            | Soil        | NSB-D2-3.0-3.5X     |
| JB14312-10R      | 08/21/12          | 14:30 LK | 08/21/12 | SO            | Soil        | NSB-D2-6.0-6.5      |
| JB14312-11R      | 08/21/12          | 14:15 LK | 08/21/12 | SO            | Soil        | NSB-D3-3.0-3.5      |
| JB14312-12R      | 08/21/12          | 15:00 LK | 08/21/12 | SO            | Soil        | NSB-D4-1.0-1.5      |
| JB14312-13R      | 08/21/12          | 09:02 LK | 08/21/12 | SO            | Soil        | NSB-F5-20.0-20.5    |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





# Sample Summary (continued)

AECOM, INC.

Job No: JB14312R

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample      | Collected |          |          | Matr |      | Client           |
|-------------|-----------|----------|----------|------|------|------------------|
| Number      | Date      | Time By  | Received | Code | Type | Sample ID        |
| JB14312-15R | 08/21/12  | 08:45 LK | 08/21/12 | SO   | Soil | NSB-F5-16.0-16.5 |





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14312R

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 9/7/2012 8:47:07 AM

On 08/21/2012, 15 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 5 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14312R was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. 14 Samples are active for this report.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

### Wet Chemistry By Method ASTM D3872-86

Matrix: SO Batch ID: GN71538

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14312-15RDUP, JB14312-15RMS were used as the QC samples for Iron, Ferrous.
- The following samples were run outside of holding time for method ASTM D3872-86: JB14312-15R The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

#### Wet Chemistry By Method LLOYD KAHN 1988 MOD

Matrix: SO Batch ID: GP66744

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB13733-20DUP, JB13733-20MS were used as the QC samples for Total Organic Carbon.

#### Wet Chemistry By Method SM18 4500S2-A

Matrix: SO Batch ID: GN71534

- The data for SM18 4500S2-A meets quality control requirements.
- The following samples were run outside of holding time for method SM18 4500S2-A: JB14312-15R The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

#### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP66920

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14312-15RDUP, JB14312-15RMS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (85.1%) on this sample.
- GP66920-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

# **Summary of Hits Job Number:** JB14312R

**Job Number:** JB14312R **Account:** AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/21/12

| Lab Sample ID<br>Analyte | Client Sample ID | Result/<br>Qual | RL   | MDL  | Units | Method            |
|--------------------------|------------------|-----------------|------|------|-------|-------------------|
| JB14312-1R               | NSB-D1-1.0-1.5   |                 |      |      |       |                   |
| Chromium, Hex            | avalent          | 1.8             | 0.44 | 0.13 | mg/kg | SW846 3060A/7196A |
| JB14312-2R               | NSB-D1-12.0-12.5 | 5               |      |      |       |                   |
| Chromium, Hex            | avalent          | 0.40 B          | 0.48 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14312-3R               | NSB-D1-16.0-16.5 | 5               |      |      |       |                   |
| Chromium, Hexa           | avalent          | 1.6             | 0.49 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14312-4R               | NSB-D1-20.0-20.5 | 5               |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.46 B          | 0.48 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14312-5R               | NSB-D1-4.0-4.5   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 4.3             | 0.48 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14312-6R               | NSB-D1-7.7-8.2   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.35 B          | 0.48 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14312-7R               | NSB-D2-11.3-11.8 | 3               |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.35 B          | 0.48 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14312-8R               | NSB-D2-3.0-3.5   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 3.0             | 0.45 | 0.13 | mg/kg | SW846 3060A/7196A |
| JB14312-9R               | NSB-D2-3.0-3.5X  |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 2.1             | 0.46 | 0.13 | mg/kg | SW846 3060A/7196A |
| JB14312-10R              | NSB-D2-6.0-6.5   |                 |      |      |       |                   |
| No hits reported         | in this sample.  |                 |      |      |       |                   |
| JB14312-11R              | NSB-D3-3.0-3.5   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 6.6             | 0.47 | 0.14 | mg/kg | SW846 3060A/7196A |
|                          |                  |                 |      |      |       |                   |



# **Summary of Hits**

Job Number: JB14312R Account: AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/21/12

| Lab Sample ID Client Sample ID<br>Analyte                                  | Result/<br>Qual       | RL                  | MDL        | Units               | Method                                                    |
|----------------------------------------------------------------------------|-----------------------|---------------------|------------|---------------------|-----------------------------------------------------------|
| JB14312-12R NSB-D4-1.0-1.5                                                 |                       |                     |            |                     |                                                           |
| Chromium, Hexavalent                                                       | 2.3                   | 0.44                | 0.13       | mg/kg               | SW846 3060A/7196A                                         |
| JB14312-13R NSB-F5-20.0-20.5                                               |                       |                     |            |                     |                                                           |
| Chromium, Hexavalent                                                       | 0.49                  | 0.48                | 0.14       | mg/kg               | SW846 3060A/7196A                                         |
| JB14312-15R NSB-F5-16.0-16.5                                               |                       |                     |            |                     |                                                           |
| Chromium, Hexavalent<br>Iron, Ferrous <sup>a</sup><br>Total Organic Carbon | 0.40 B<br>0.95<br>961 | 0.48<br>0.20<br>120 | 0.14<br>58 | mg/kg<br>%<br>mg/kg | SW846 3060A/7196A<br>ASTM D3872-86<br>LLOYD KAHN 1988 MOD |

<sup>(</sup>a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.





| Sample Results     |  |
|--------------------|--|
| Report of Analysis |  |



# **Report of Analysis**

Client Sample ID: NSB-D1-1.0-1.5 Lab Sample ID: JB14312-1R Matrix: SO - Soil

**Date Sampled:** 08/21/12 **Date Received:** 08/21/12 **Percent Solids:** 90.0

Project: PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | $\mathbf{RL}$ | MDL  | Units | DF | Analyzed By       | Method            |
|----------------------|--------|---------------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent | 1.8    | 0.44          | 0.13 | mg/kg | 1  | 09/04/12 15:35 RI | SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



4

# **Report of Analysis**

Client Sample ID: NSB-D1-12.0-12.5

 Lab Sample ID:
 JB14312-2R
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 82.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.40 B | 0.48 | 0.14 | mg/kg | 1  | 09/04/12 15:35 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D1-16.0-16.5

 Lab Sample ID:
 JB14312-3R
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 82.2

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 1.6    | 0.49 | 0.14 | mg/kg | 1  | 09/04/12 15:35 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D1-20.0-20.5

 Lab Sample ID:
 JB14312-4R
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 83.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.46 B | 0.48 | 0.14 | mg/kg | 1  | 09/04/12 15:35 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D1-4.0-4.5
Lab Sample ID: JB14312-5R
Matrix: SO - Soil

Date Sampled: 08/21/12Date Received: 08/21/12Percent Solids: 83.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 4.3    | 0.48 | 0.14 | mg/kg | 1  | 09/04/12 15:35 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



## .

# **Report of Analysis**

Client Sample ID: NSB-D1-7.7-8.2 Lab Sample ID: JB14312-6R Matrix: SO - Soil

Date Sampled: 08/21/12Date Received: 08/21/12Percent Solids: 83.4

Project: PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.35 B | 0.48 | 0.14 | mg/kg | 1  | 09/04/12 15:35 RI SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D2-11.3-11.8 Lab Sample ID: JB14312-7R

**Date Sampled:** 08/21/12 Matrix: SO - Soil **Date Received:** 08/21/12 **Percent Solids:** 82.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.35 B | 0.48 | 0.14 | mg/kg | 1  | 09/04/12 15:35 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit

B = Indicates a result > = MDL but < RL



# **Report of Analysis**

Client Sample ID: NSB-D2-3.0-3.5 Lab Sample ID: JB14312-8R Matrix: SO - Soil

**Date Sampled:** 08/21/12 **Date Received:** 08/21/12

**Project:** PPG Northern Canal Borings, Jersey City, NJ Percent Solids: 89.1

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent | 3.0    | 0.45 | 0.13 | mg/kg | 1  | 09/04/12 15:35 RI | SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



#### .

### Page 1 of 1

# **Report of Analysis**

Client Sample ID: NSB-D2-3.0-3.5X

 Lab Sample ID:
 JB14312-9R
 Date Sampled:
 08/21/12

 Matrix:
 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 87.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 2.1    | 0.46 | 0.13 | mg/kg | 1  | 09/04/12 15:35 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D2-6.0-6.5 Lab Sample ID: JB14312-10R Matrix: SO - Soil

**Date Sampled:** 08/21/12 **Date Received:** 08/21/12 **Percent Solids:** 60.5

**Project:** PPG Northern Canal Borings, Jersey City, NJ

**General Chemistry** 

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.19 U | 0.66 | 0.19 | mg/kg | 1  | 09/04/12 15:35 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-D3-3.0-3.5 Lab Sample ID: JB14312-11R Matrix: SO - Soil

**Date Sampled:** 08/21/12 **Date Received:** 08/21/12 **Percent Solids:** 84.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte             | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|---------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium Hexavalent | 6.6    | 0.47 | 0.14 | mø/kø | 1  | 09/04/12 15:38 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



JB14312R

Page 1 of 1

# **Report of Analysis**

Page 1 of 1

Client Sample ID: NSB-D4-1.0-1.5

Lab Sample ID: JB14312-12R

Matrix: SO - Soil

Date Sampled: 08/21/12

Percent Solids: 90.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 2.3    | 0.44 | 0.13 | mg/kg | 1  | 09/04/12 15:38 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F5-20.0-20.5 Lab Sample ID: JB14312-13R Matrix: SO - Soil

 JB14312-13R
 Date Sampled:
 08/21/12

 SO - Soil
 Date Received:
 08/21/12

 Percent Solids:
 83.8

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.49   | 0.48 | 0.14 | mg/kg | 1  | 09/04/12 15:38 RI SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

 Client Sample ID:
 NSB-F5-16.0-16.5

 Lab Sample ID:
 JB14312-15R

 Matrix:
 SO - Soil

Date Sampled: 08/21/12 Date Received: 08/21/12 Percent Solids: 83.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                    | Result   | RL   | MDL  | Units | DF | Analyzed By Method                     |
|----------------------------|----------|------|------|-------|----|----------------------------------------|
| Chromium, Hexavalent       | 0.40 B   | 0.48 | 0.14 | mg/kg | 1  | 09/04/12 13:14 RI SW846 3060A/7196A    |
| Iron, Ferrous <sup>a</sup> | 0.95     | 0.20 |      | %     | 1  | 09/05/12 JA ASTM D3872-86              |
| Sulfide Screen b           | NEGATIVE |      |      |       | 1  | 09/05/12 JA SM18 4500S2-A              |
| Total Organic Carbon       | 961      | 120  | 58   | mg/kg | 1  | 09/04/12 11:13 SJG LLOYD KAHN 1988 MOD |

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (b) The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



JB14312R

4



Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



|            |                    |                     |                         |                                | The Chain   |               |              | _ACCUTE  All relevant fields must be |                 |                                         |                  | ΙŦ           | ask:          | 0.00         |              |           |            |                |           |
|------------|--------------------|---------------------|-------------------------|--------------------------------|-------------|---------------|--------------|--------------------------------------|-----------------|-----------------------------------------|------------------|--------------|---------------|--------------|--------------|-----------|------------|----------------|-----------|
|            | rmation:           |                     | Project Infe            | ormation:                      |             |               | Other Infor  |                                      | - pressure di N |                                         |                  | F.           |               | # of Sai     | mples: 15    | rn Canal  | Borings    |                |           |
| ab:        | ACCUTE             |                     | Site ID #:              | PPG Garfield A                 | ve          |               |              | e to: Lisa Kro                       | arit-           |                                         |                  | _            |               |              |              |           |            |                |           |
| ddress     | 2235 Rout<br>08810 | te 130 , Dayton NJ  | Project #:              | 60213772.5.A                   |             | ************* | Address:     | 250 Apollo Dri                       |                 |                                         |                  |              | TA            |              | ee Spec. Ins |           | Rush       | T              |           |
|            |                    |                     | Site                    | 70 Carteret Ave                | nue         |               | City/State.  | Chelmsford, M                        |                 | Phone #                                 | 978-905-2278     | - 1          | Notes:        | F= Field     | Filtered,    | H= Hold   |            |                |           |
| ah PM      | Matt Cord          | dave                | Address:                |                                |             |               |              |                                      |                 | Thomas                                  | 770-903-2276     | 9            |               |              |              |           |            |                |           |
|            | ax: 732-329-       |                     | City Jersey<br>PM Name: | City State, Z<br>Chris Martell | ip NJ       | 07304         |              | 40256ACM                             |                 |                                         |                  |              |               |              |              |           | JB1        | 431            | 7         |
| / email    | l:                 |                     | Phone/Fax               | 732-564-3633                   |             |               | Send EDD t   |                                      | A@aecom.        | com                                     |                  |              |               |              |              |           |            |                |           |
|            |                    |                     | PM Email:               | Christopher.Ma                 | artell@aec  | om com        | CC Hardcop   | by to Erin Fa                        | rrell, AEC      | OM, Piscataw                            | ay, NJ           | Preservative |               |              |              |           |            |                |           |
|            |                    |                     |                         |                                | T           | C=COMP        |              | DATE                                 | INERS           |                                         |                  | Pres         |               | <del> </del> |              |           |            |                |           |
| TEM#       |                    | Field Sample        | No. /Identifica         | tion                           | MATRIX CODE | G=GRAB (      |              | SAMPLE DATE                          | #OF CONTAINERS  |                                         | Comment          | Analysis     | GARA-HEXCHROM | GARA-PH-ORP  |              |           |            |                |           |
|            | SB-D1-1-1.         |                     | - [                     |                                | so          | G             | 08/21/       | 2012 10:40                           | 1               |                                         |                  |              | X             | X            |              |           |            |                | $\dashv$  |
| _          | SB-D1-12-          |                     | - Z                     |                                | so          | G             | 08/21/       | 2012 11:56                           | 1               |                                         |                  |              | х             | х            |              |           | u          | CF             | LE        |
|            | SB-D1-16-          |                     | -3                      |                                | so          | G             | 08/21/       | 2012 12:24                           | 1               |                                         |                  |              | х             | х            |              |           | 1          | `              | 8         |
|            | SB-D1-20-2         |                     | - 4                     |                                | so          | G             | 08/21/2      | 2012 12:40                           | 1               |                                         |                  |              | х             | х            |              |           | ı          | 10 2           | 8         |
| <b>-</b>   | SB-D1-4-4.         | -                   | - 5                     |                                | so          | G             | 08/21/2      | 2012 10:45                           | 1               | *************************************** |                  |              | x             | ×            |              |           |            |                | 1         |
| <b>-</b>   | B-D1-7.7-          | 8.2 ~               | 6                       |                                | so          | G             | 08/21/2      | 2012 11:42                           | 1               |                                         |                  | 167          | Х             | х            |              |           |            |                | $\top$    |
| <b>-</b>   | B-D2-11.3          | L-11.8              |                         |                                | so          | G             | 08/21/2      | 1012 14:50                           | 1               |                                         |                  |              | Х             | х            |              |           |            |                | 1         |
| <b>#</b> - | iB-D2-3-3,5        | 5                   | 8                       |                                | so          | G             | 08/21/2      | 012 13:35                            | 1               |                                         |                  |              | Х             | Х            |              | $\top$    |            | $\top$         | $\dagger$ |
| -          | B-D2-3-3.5         | -                   | 9                       |                                | so          | G             | 08/21/2      | 012 13:38                            | 1               |                                         |                  |              | Х             | Х            |              | $\top$    |            | $\top$         | $\dagger$ |
|            | B-D2-6-6.5         |                     | 10                      |                                | so          | G             | 08/21/2      | 012 14:30                            | 1               |                                         |                  |              | Х             | Х            |              |           |            | $\top$         | $\dagger$ |
|            | B-D3-3-3.5         | ts/Special Instru   | - (/                    |                                | so          | G             |              | 012 14:15                            | 1               |                                         |                  |              | х             | х            |              |           |            | 1              | $\dagger$ |
| dard T     | TAT                | oropecial instru    | cuons:                  |                                | ( July      | 19 /C         | LAFFILIATION | DATE<br>S/ZIJIZ                      | TIME            | ACCEPTED BY                             |                  |              |               | DATE         | TIME         | Sample    | Receipt Co | nditions       |           |
| 2          | A 0 1 - 7          |                     | AAAVE!                  | 3 .                            | 1777        | 140           | 8-21-        | 12 11                                | 125             |                                         |                  | 6-1          |               |              | 154          | S         | Y/N        | Y/N            | 1         |
|            | ALL &              | AMPLES F<br>RYED AS | CEP ELAM.               | 51 EA)                         | -           |               |              |                                      |                 |                                         | 3.6              |              | -             |              | 1825         |           | Y/N        | Y/N            | -         |
| PF         | RESER              | RVED AS             | APPLICA!                | orell/                         |             | (Victoria)    |              |                                      |                 |                                         |                  |              |               |              |              | +         | Y/N<br>Y/N | Y/N            |           |
|            |                    |                     |                         | 0                              |             |               |              |                                      |                 |                                         |                  |              |               |              |              |           |            | Y/N            | +         |
|            |                    |                     |                         |                                |             | Shipper:      |              |                                      |                 |                                         | DATE/TIME:       |              |               |              |              | in OC     | on loe?    | act?           |           |
|            |                    |                     | 5.0                     | L                              |             | Tracking #    |              |                                      |                 |                                         | Custody Seal(s): |              |               |              |              | Temp in ( | Samples on | Sample intact? |           |

JB14312R: Chain of Custody Page 1 of 8



|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               | The Chain-   |               | LEGAL DOCUMEN     |             |           |                |                      |                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ask:          | 040         |             |           |                 |                |             |
|------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|--------------|---------------|-------------------|-------------|-----------|----------------|----------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------|-----------|-----------------|----------------|-------------|
| Lab Info   |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Project Info     | rmation:      |              |               | Other Info        |             |           |                |                      |                                        | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | # of Sa     | mples: 15   | ern Cana  | Boring          | S              |             |
| Lab:       | ACCUTE                                       | ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Site ID #:       | PPG Garfield  | Ave          |               | Send Invoi        | ce to:      | sa Krowi  | t-z            |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |           |                 |                |             |
| Address:   | 08810                                        | e 130 , Dayton NJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Project #:       | 60213772.5.   |              |               | Address:          | 250 Apo     | llo Drive | <u> </u>       |                      |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TAT           |             | e Spec. Ins |           | Rus             | h              |             |
|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Site<br>Address: | 70 Carteret A | venue        |               | City/State.       |             |           |                | Phone #: 9           | 78-905-2278                            | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | F≃ Flei     | Filtered ,  | H= Hold   |                 |                |             |
| Lab PM:    | Matt Cord                                    | iova                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | City Jersey      | City Crew     | 70           | T             |                   |             |           |                |                      |                                        | Lab Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |             |             |           |                 |                |             |
| Phone/Fa   | X: 732-329-0                                 | 200/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PM Name:         | Chris Marte   | , Zip NJ     | 07304         | PO #:<br>Send EDD | 40256AC     | CM        |                |                      |                                        | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             |             |           | )               | B143           | 17          |
| PM email   | <u>:                                    </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Phone/Fax:       | 732-564-363   | 3            |               | CC Hardco         | DV to F     | rin Farre | Baecom.        | com<br>OM, Piscatawa | n. M.I.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | T           | T           | 1         |                 | 217            | 1           |
|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PM Email:        | Christopher   | Martell@aeco | om.com        |                   |             |           |                | Om, Flacetawa        | ау, 143                                | Preservative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |             |             |           |                 |                |             |
| TEM #      |                                              | Field Sample N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lo. /Identificat | tion          | MATRIX CODE  | G=GRAB C=COMP |                   | SAMPLE DATE |           | #OF CONTAINERS |                      | Comment                                | Analysis Pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | GARA-HEXCHROM | GARA-PH-ORP |             |           |                 |                |             |
| 12 NS      | SB-D4-1-1                                    | .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1               | 7             | so           | G             | 08/21             | /2012 15:0  | 00        | 1              |                      |                                        | ٩                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X             | X           | -           |           |                 |                | $\vdash$    |
| 13 NS      | SB-F5-20-2                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - (              | 3             | so           | G             | 08/21             | /2012 09:0  | )2        | 1              |                      | ************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х             | X           |             |           |                 |                | +           |
| 14 EB      | 3082112                                      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 1              | 4             | wq           | G             | 08/21             | /2012 15:3  | 30        | 2              |                      | Preserved: None                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х             | X           |             |           |                 |                | +           |
| 15 NS      | 6B-F5-16-1                                   | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -1               | 5             | so           | G             | 08/21/            | /2012 08:4  | 5         | 3              |                      | 2 Jars for MS/MSD                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Х             | х           |             |           | _               | $\dashv$       | +           |
|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |              |               |                   |             |           |                |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |           | $\dashv$        |                | +           |
|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |              |               |                   |             |           |                |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |           |                 |                | +           |
|            | ***************************************      | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | ****             |               |              |               |                   |             |           |                |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |           | 1               |                | +           |
|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |              |               |                   |             |           |                |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |           |                 |                | +           |
|            |                                              | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |               |              |               |                   |             |           |                |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             | 1         | 1               |                | +           |
|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |              |               |                   |             |           |                |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |           | $\neg \uparrow$ |                | +           |
| ditional ( | Comment                                      | s/Special Instruct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lone             |               |              |               |                   |             |           |                |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             | $\dashv$  |                 |                | +           |
|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1 1           | KEUINGUI     | SHED BY       | PAFFILIATION      |             | ATE       | TIME           | ACCEPTED BY /        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | DATE        | TIME        | Sampl     | Receint         | Conditions     |             |
|            | 11                                           | = 7.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100              | 12.117        | 200          | 12            | THE               | 77 8/2      | 11/12     | _              | 17,10                | 8-51-1                                 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |             | 1645        | Campi     | Y/N             |                | Y/1         |
| v i        | 011                                          | = 1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | W 8              | 2/21/11       | 7            |               | 10.01             |             | -12       | <u> </u>       |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _             |             |             |           | Y/N             |                | Y/I         |
| ps †       | ľ'                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (             |              |               |                   |             | _         | -              |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -             |             |             |           | Y/N             | Y/N            | Υ/          |
| 1          | •                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |              |               |                   |             |           |                |                      |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             |           | Y/N             | Y/N            | Y/1         |
|            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |               |              | Shipper:      |                   |             |           |                |                      | DATE/TIME:                             | A STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STRE |               |             |             | 8         | Ceo             | g              | ~           |
|            | -                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5                | 00            | 1            | Fracking #    | :                 |             |           |                |                      | Custody Seal(s):                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |             |             | Temp in 0 | Samples on      | Sample Intact? | Trip Blank? |

JB14312R: Chain of Custody Page 2 of 8







### **Accutest Laboratories Sample Receipt Summary**

| Accutest Job Number: JB14                                                                                                                         | 312                                            |             | Client: |                     |        |     | Project:                                                                                                                                                                                                                |             |      |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------|---------|---------------------|--------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|----------------------------------------|
| Date / Time Received: 8/21/                                                                                                                       | 2012                                           |             |         | Delivery N          | Method | :   | Airbill #'s:                                                                                                                                                                                                            |             |      |                                        |
| Cooler Temps (Initial/Adjusted                                                                                                                    | d): <u>#1</u> :                                | (5/5); 0    | !       |                     |        |     |                                                                                                                                                                                                                         |             |      |                                        |
| Cooler Security  1. Custody Seals Present: 2. Custody Seals Intact:  ✓                                                                            | or N                                           |             | COC Pre | esent:<br>s/Time OK | Y o    | r N | Sample Integrity - Documentation  1. Sample labels present on bottles: 2. Container labeling complete:                                                                                                                  | <u>Y</u> ✓  | or N |                                        |
| Cooler Temperature  1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers:                                      | <b>✓</b><br>Bar                                | Therm (Bag) |         |                     |        |     | 3. Sample container label / COC agree:  Sample Integrity - Condition  1. Sample recvd within HT:  2. All containers accounted for:  3. Condition of sample:                                                             | У<br>Ү<br>У | or N |                                        |
| Quality Control _Preservation 1. Trip Blank present / cooler: 2. Trip Blank listed on COC: 3. Samples preserved properly: 4. VOCs headspace free: | <u>Y</u> □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | or N        | N/A     |                     |        |     | Sample Integrity - Instructions  1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear: | Y           | or N | N/A  V                                 |
| Comments                                                                                                                                          |                                                |             |         |                     |        |     | 1                                                                                                                                                                                                                       |             |      | 7                                      |
| Accutest Laboratories<br>V:732.329.0200                                                                                                           |                                                |             |         |                     |        |     | 5 Highway 130<br>12.329.3499                                                                                                                                                                                            |             |      | Dayton, New Jersey<br>www/accutest.com |

JB14312R: Chain of Custody

Page 3 of 8



Job Change Order:

| Requested Date: | 8/22/2012                                 | Received Date: | 8/21/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/4/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | MJ                                        | TAT (Days):    | 41        |

Revise ID to NSB-D1-1.0-1.5 Change: Sample #: JB14312-1

NSB-D1-1-1.5

Revise ID to NSB-D1-12.0-12.5 Change: Sample #: JB14312-2

NSB-D1-12-12.5

Change: Sample #: JB14312-3

Revise ID to NSB-D1-16.0-16.5

NSB-D1-16-16.5

Revise ID to NSB-D1-20.0-20.5 Change: Sample #: JB14312-4

NSB-D1-20-20.5

JB14312R: Chain of Custody Page 4 of 8

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Lisa Krowitz

Above Changes Per:

**Date:** 8/22/2012

Page 1 of 4



**Date:** 8/22/2012

Lisa Krowitz

Page 2 of 4

| Requested Date: | 8/22/2012                                 | Received Date: | 8/21/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/4/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | MJ                                        | TAT (Days):    | 4         |

Revise ID to NSB-D1-4.0-4.5 Change:

Sample #: JB14312-5

Revise ID to NSB-D2-3.0-3.5 Change: Sample #: JB14312-8

NSB-D1-4-4.5

NSB-D2-3-3.5

Revise ID to NSB-D2-3.0-3.5X Change: Sample #: JB14312-9

NSB-D2-3-3.5X

Revise ID to NSB-D2-6.0-6.5 Change: Sample #: JB14312-10

NSB-D2-6-6.5

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service Above Changes Per:

JB14312R: Chain of Custody Page 5 of 8

8/21/2012 9/4/2012 FULT1 4 Received Date: Deliverable: TAT (Days): Due Date: PPG Northern Canal Borings 70 Caven Point AECOM, INC. 8/22/2012 Š Requested Date: Account Name: Project

Revise ID to NSB-D3-3.0-3.5 Change:

Sample #: JB14312-11

CSR:

NSB-D3-3-3.5

Sample #: JB14312-12

Revise ID to NSB-D4-1.0-1.5

Change:

NSB-D4-1-1.5

Sample #: JB14312-13

Revise ID to NSB-F5-20.0-20.5

Change:

NSB-F5-20-20.5 Sample #: JB14312-14

Revise ID to NSB-EB20120822

Change:

EB082112

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

**Date:** 8/22/2012

Lisa Krowitz

Above Changes Per:

Page 3 of 4

JB14312R: Chain of Custody

Page 6 of 8

| Requested Date: | 8/22/2012                                 | Received Date: | 8/21/2012 |
|-----------------|-------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                               | Due Date:      | 9/4/2012  |
| Project         | PPG Northern Canal Borings 70 Caven Point | Deliverable:   | FULT1     |
| CSR:            | MJ                                        | TAT (Days):    | 4         |

Change: Revise ID to NSB-F5-16.0-16.5

Sample #: JB14312-15, -15D, 15S

Above Changes Per:

**Date:** 8/22/2012

Page 4 of 4

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

JB14312R: Chain of Custody Page 7 of 8



Job Change Order:

JB14312\_8/31/2012

Received Date:

8/21/2012 9/4/2012

Due Date:

Deliverable: TAT (Days):

PPG Northern Canal Borings, Jersey City, NJ

MC

Project CSR: Sample #: JB14312-15

AECOM, INC. 8/31/2012

Requested Date: Account Name: FULT1

Due to XCR spike recovery log in FE2/7, TOCLK, SULFS,

Change:

NSB-F5-16.0-16.5

Sample #: JB14312-1 thru 13, 15

Change: log in XXCRAR

Above Changes Per:

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Date: 8/31/2012

Page 1 of 1

JB14312R: Chain of Custody Page 8 of 8

Job No:

JB14312R

### **Internal Sample Tracking Chronicle**

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                          | Analyzed        | Ву     | Prepped     | Ву      | Test Codes |
|--------------------------|---------------------------------|-----------------|--------|-------------|---------|------------|
| JB14312-1F<br>NSB-D1-1.0 | Collected: 21-AUG-12<br>0-1.5   | 10:40 By: LK    | Receiv | ed: 21-AUG- | -12 By: | AS         |
| JB14312-1F               | R SW846 3060A/7196A             | 04-SEP-12 15:35 | RI     | 31-AUG-12   | YC      | XCRA       |
| JB14312-2F<br>NSB-D1-12  | Collected: 21-AUG-12<br>.0-12.5 | 11:56 By: LK    | Receiv | ed: 21-AUG- | -12 By: | AS         |
| JB14312-2F               | R SW846 3060A/7196A             | 04-SEP-12 15:35 | RI     | 31-AUG-12   | YC      | XCRA       |
| JB14312-3F<br>NSB-D1-16  | Collected: 21-AUG-12<br>.0-16.5 | 12:24 By: LK    | Receiv | ed: 21-AUG- | -12 By: | AS         |
| JB14312-3F               | 2 SW846 3060A/7196A             | 04-SEP-12 15:35 | RI     | 31-AUG-12   | YC      | XCRA       |
| JB14312-4F<br>NSB-D1-20  | Collected: 21-AUG-12<br>.0-20.5 | 12:40 By: LK    | Receiv | ed: 21-AUG- | -12 By: | AS         |
| JB14312-4F               | R SW846 3060A/7196A             | 04-SEP-12 15:35 | RI     | 31-AUG-12   | YC      | XCRA       |
| JB14312-5F<br>NSB-D1-4.0 | Collected: 21-AUG-12<br>0-4.5   | 10:45 By: LK    | Receiv | ed: 21-AUG- | -12 By: | AS         |
| JB14312-5F               | R SW846 3060A/7196A             | 04-SEP-12 15:35 | RI     | 31-AUG-12   | YC      | XCRA       |
| JB14312-6F<br>NSB-D1-7.  | Collected: 21-AUG-12<br>7-8.2   | 11:42 By: LK    | Receiv | ed: 21-AUG- | -12 By: | AS         |
| JB14312-6F               | 2 SW846 3060A/7196A             | 04-SEP-12 15:35 | RI     | 31-AUG-12   | YC      | XCRA       |
| JB14312-7F<br>NSB-D2-11  | Collected: 21-AUG-12 .3-11.8    | 14:50 By: LK    | Receiv | ed: 21-AUG- | -12 By: | AS         |
| JB14312-7F               | 2 SW846 3060A/7196A             | 04-SEP-12 15:35 | RI     | 31-AUG-12   | YC      | XCRA       |
| JB14312-8F<br>NSB-D2-3.0 | Collected: 21-AUG-12<br>0-3.5   | 13:35 By: LK    | Receiv | ed: 21-AUG- | -12 By: | AS         |
| JB14312-8F               | 2 SW846 3060A/7196A             | 04-SEP-12 15:35 | RI     | 31-AUG-12   | YC      | XCRA       |

### **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14312R

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                                   | Analyzed               | Ву        | Prepped                | Ву      | Test Codes     |
|--------------------------|------------------------------------------|------------------------|-----------|------------------------|---------|----------------|
| JB14312-9F               | R Collected: 21-AUG-12                   | 13:38 By: LK           | Receiv    | ved: 21-AUG            | 1-12 By | v: AS          |
| NSB-D2-3.0               |                                          |                        |           |                        |         |                |
| JB14312-9F               | R SW846 3060A/7196A                      | 04-SEP-12 15:35        | RI        | 31-AUG-12              | YC      | XCRA           |
| JB14312-10<br>NSB-D2-6.0 | PCollected: 21-AUG-12<br>0-6.5           | 14:30 By: LK           | Receiv    | ved: 21-AUG            | 3-12 By | v: AS          |
| JB14312-10               | <b>PSW</b> 846 3060A/7196A               | 04-SEP-12 15:35        | RI        | 31-AUG-12              | 2 YC    | XCRA           |
| JB14312-11<br>NSB-D3-3.0 | RCollected: 21-AUG-12<br>0-3.5           | 14:15 By: LK           | Receiv    | ved: 21-AUG            | 4-12 By | v: AS          |
| JB14312-11               | <b>IS</b> W846 3060A/7196A               | 04-SEP-12 15:38        | RI        | 31-AUG-12              | 2 YC    | XCRA           |
| JB14312-12<br>NSB-D4-1.0 | RCollected: 21-AUG-12<br>0-1.5           | 15:00 By: LK           | Receiv    | ved: 21-AUG            | -12 By  | v: AS          |
| JB14312-12               | RSW846 3060A/7196A                       | 04-SEP-12 15:38        | RI        | 31-AUG-12              | 2 YC    | XCRA           |
| JB14312-13<br>NSB-F5-20  | Collected: 21-AUG-12<br>.0-20.5          | 09:02 By: LK           | Receiv    | ved: 21-AUG            | 3-12 By | v: AS          |
| JB14312-13               | <b>IS</b> W846 3060A/7196A               | 04-SEP-12 15:38        | RI        | 31-AUG-12              | YC      | XCRA           |
| JB14312-15<br>NSB-F5-16  | RCollected: 21-AUG-12<br>.0-16.5         | 08:45 By: LK           | Receiv    | ved: 21-AUG            | -12 By  | v: AS          |
|                          | RLLOYD KAHN 1988 I<br>RSW846 3060A/7196A |                        | SJG<br>RI | 04-SEP-12<br>31-AUG-12 |         | TOCLK<br>XCRA  |
|                          | RASTM D3872-86<br>RSM18 4500S2-A         | 05-SEP-12<br>05-SEP-12 | JA<br>JA  |                        |         | FE2/7<br>SULFS |

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| ID14212.1.1             | 0 10                 |                      |                |                       |
| JB14312-1.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-1.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-1.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-1.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-1.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-1.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-1.1             | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-1.1             | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-1.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-1.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-1.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-1.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-1.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-1.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-1.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-1.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-1.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-1.1             | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-1.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-2.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-2.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-2.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-2.1             | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-2.1             | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-2.1             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-2.1             | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-2.1             | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-2.1             | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-2.1             | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-2.1             | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-2.1             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-2.1             | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-2.1             | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-2.1             | Ye Chen              | Secured Storage      |                | Return to Storage     |
| JB14312-3.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-3.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-3.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-3.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
|                         |                      |                      |                |                       |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-3.1             | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-3.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-3.1             | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-3.1             | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-3.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-3.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-3.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-3.1             | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-3.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-3.1             | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-3.1             | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-3.1             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-3.1             | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-3.1             | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-3.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-4.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-4.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-4.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-4.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-4.1             | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-4.1             | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-4.1             | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-4.1             | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-4.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-4.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-4.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-4.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-4.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-4.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-4.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-4.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-4.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-4.1             | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-4.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-5.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-5.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-5.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-5.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-5.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-5.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-5.1             | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-5.1             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| JB14312-5.1 | Secured Storage<br>Brian Racin | D: D:                |                |                       |
|-------------|--------------------------------|----------------------|----------------|-----------------------|
|             | Brian Racin                    | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| ID14212 5 1 | 211411 1144111                 | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-5.1 | Sanjay Advani                  | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-5.1 | Secured Storage                | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-5.1 | Adam Scott                     | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-5.1 | Secured Staging Area           | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-5.1 | Mayur Patel                    | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-5.1 | Secured Storage                | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-5.1 | Adam Scott                     | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-5.1 | Secured Staging Area           | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-5.1 | Ye Chen                        | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-6.1 | Dave Hunkele                   | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-6.1 | Secured Staging Area           | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-6.1 | Minhaj Hashmi                  | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-6.1 | Todd Shoemaker                 | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-6.1 | Secured Staging Area           | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-6.1 | Robert OConnor                 | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-6.1 | Brian Racin                    | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-6.1 | Sanjay Advani                  | Secured Storage      |                | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-6.1 | Adam Scott                     | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-6.1 | Secured Staging Area           | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-6.1 | Mayur Patel                    | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-6.1 | Secured Storage                | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-6.1 | Adam Scott                     | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-6.1 | Secured Staging Area           | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-6.1 | Ye Chen                        | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-7.1 | Secured Storage                | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-7.1 | Dave Hunkele                   | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-7.1 | Secured Staging Area           | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-7.1 | Minhaj Hashmi                  | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
|             | Secured Storage                | Todd Shoemaker       |                | Retrieve from Storage |
|             | Todd Shoemaker                 | Secured Staging Area |                | Return to Storage     |
|             | Secured Staging Area           | Robert OConnor       |                | Retrieve from Storage |
|             | Robert OConnor                 | Secured Storage      |                | Return to Storage     |
|             | Secured Storage                | Brian Racin          |                | Retrieve from Storage |
|             | Brian Racin                    | Sanjay Advani        |                | Custody Transfer      |
|             | Sanjay Advani                  | Secured Storage      |                | Return to Storage     |
|             | Secured Storage                | Adam Scott           |                | Retrieve from Storage |



**Account:** ENSRNJ AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-7.1             | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-7.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-7.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-7.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-7.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-7.1             | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-7.1             | Ye Chen              | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-8.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-8.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-8.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-8.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-8.1             | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-8.1             | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-8.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-8.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-8.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-8.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-8.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-8.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-8.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-8.1             | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-8.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-9.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-9.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-9.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-9.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-9.1             | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-9.1             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-9.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-9.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-9.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-9.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-9.1             | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-9.1             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
|                         | -                    |                      |                | -                     |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-9.1             | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-9.1             | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-9.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-10.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-10.1            | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-10.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-10.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-10.1            | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-10.1            | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-10.1            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-10.1            | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-10.1            | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-10.1            | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-10.1            | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-10.1            | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-10.1            | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-10.1            | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-10.1            | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-10.1            | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-10.1            | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-10.1            | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-10.1            | Ye Chen              | Secured Storage      |                | Return to Storage     |
| JB14312-11.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-11.1            | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-11.1            | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14312-11.1            | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-11.1            | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-11.1            | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-11.1            | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-11.1            | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-11.1            | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-11.1            | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-11.1            | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-11.1            | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-11.1            | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-11.1            | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14312-11.1            | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-11.1            | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-11.1            | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-11.1            | Secured Staging Area | Ye Chen              |                | Retrieve from Storage |
| JB14312-11.1            | Ye Chen              | Secured Storage      |                | Return to Storage     |
|                         |                      |                      |                |                       |



**Account:** ENSRNJ AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-12.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-12.1            | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-12.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-12.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-12.1            | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-12.1            | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-12.1            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-12.1            | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-12.1            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-12.1            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-12.1            | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14312-12.1            | Secured Storage      | Adam Scott           | 08/30/12 06:59 | Retrieve from Storage |
| JB14312-12.1            | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-12.1            | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-12.1            | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-12.1            | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-12.1            | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-12.1            | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-12.1            | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-13.1            | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-13.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-13.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-13.1            | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-13.1            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-13.1            | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Brian Racin          | 08/29/12 13:31 | Retrieve from Storage |
| JB14312-13.1            | Brian Racin          | Sanjay Advani        | 08/29/12 13:33 | Custody Transfer      |
| JB14312-13.1            | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-13.1            | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-13.1            | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-13.1            | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14312-13.1            | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-13.1            | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-13.1            | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-13.1            | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-15.1            | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-15.1            | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14312-15.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-15.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
|                         |                      |                      |                |                       |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample. Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|--------------------------|----------------------|----------------------|----------------|-----------------------|
|                          |                      |                      |                |                       |
| JB14312-15.1             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-15.1             | Todd Shoemaker       | Secured Staging Area |                | Return to Storage     |
| JB14312-15.1             | Secured Staging Area | Robert OConnor       |                | Retrieve from Storage |
| JB14312-15.1             | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-15.1             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-15.1             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-15.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-15.1             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
| JB14312-15.1             | Adam Scott           | Secured Staging Area |                | Return to Storage     |
| JB14312-15.1             | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-15.1             | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-15.1             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-15.1             | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-15.1             | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-15.1             | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-15.2             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14312-15.2             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-15.2             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-15.2             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14312-15.2             | Secured Storage      | Todd Shoemaker       |                | Retrieve from Storage |
| JB14312-15.2             | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-15.2             | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-15.2             | Robert OConnor       | Secured Storage      | 08/29/12 11:19 | Return to Storage     |
| JB14312-15.2             | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-15.2             | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-15.2             | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-15.2             | Ye Chen              | Secured Storage      |                | Return to Storage     |
| JB14312-15.2             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-15.2             | Brian Racin          | Shirley Grzybowski   | 09/01/12 08:36 | Custody Transfer      |
| JB14312-15.2             | Shirley Grzybowski   | Secured Storage      |                | Return to Storage     |
| JB14312-15.3             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14312-15.3             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14312-15.3             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14312-15.3             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14312-15.3             | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14312-15.3             | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14312-15.3             | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14312-15.3             | Robert OConnor       | Secured Storage      |                | Return to Storage     |
| JB14312-15.3             | Secured Storage      | Brian Racin          |                | Retrieve from Storage |
| JB14312-15.3             | Brian Racin          | Sanjay Advani        |                | Custody Transfer      |
| JB14312-15.3             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14312-15.3             | Secured Storage      | Adam Scott           |                | Retrieve from Storage |
|                          |                      |                      |                |                       |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14312-15.3            | Adam Scott           | Secured Staging Area | 08/30/12 07:00 | Return to Storage     |
| JB14312-15.3            | Secured Staging Area | Mayur Patel          | 08/30/12 08:10 | Retrieve from Storage |
| JB14312-15.3            | Mayur Patel          | Secured Storage      | 08/30/12 11:42 | Return to Storage     |
| JB14312-15.3            | Secured Storage      | Adam Scott           | 08/31/12 14:48 | Retrieve from Storage |
| JB14312-15.3            | Adam Scott           | Secured Staging Area | 08/31/12 14:49 | Return to Storage     |
| JB14312-15.3            | Secured Staging Area | Ye Chen              | 08/31/12 16:17 | Retrieve from Storage |
| JB14312-15.3            | Ye Chen              | Secured Storage      | 08/31/12 19:40 | Return to Storage     |
| JB14312-15.3            | Secured Storage      | Adam Scott           | 09/05/12 07:12 | Retrieve from Storage |
| JB14312-15.3            | Adam Scott           | Secured Staging Area | 09/05/12 07:13 | Return to Storage     |
| JB14312-15.3            | Secured Staging Area | Jayshree Amin        | 09/05/12 08:47 | Retrieve from Storage |
| JB14312-15.3            | Jayshree Amin        | Secured Storage      | 09/05/12 16:58 | Return to Storage     |





### General Chemistry

QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary

#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14312R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                                      | Batch ID                                                         | RL                  | MB<br>Result        | Units                        | Spike<br>Amount      | BSP<br>Result       | BSP<br>%Recov | QC<br>Limits                  |
|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------|---------------------|------------------------------|----------------------|---------------------|---------------|-------------------------------|
| Chromium, Hexavalent Chromium, Hexavalent Iron, Ferrous Total Organic Carbon | GP66920/GN71477<br>GP66920/GN71477<br>GN71538<br>GP66744/GN71475 | 0.40<br>0.20<br>100 | 0.0<br><0.20<br>0.0 | mg/kg<br>mg/kg<br>%<br>mg/kg | 40<br>785.15<br>2000 | 38.7<br>707<br>1920 | 96.8<br>90.0  | 80-120%<br>80-120%<br>80-120% |

Associated Samples:

Batch GN71538: JB14312-15R

Batch GP/65744: JB14312-15R
Batch GP66744: JB14312-15R
Batch GP66920: JB14312-15R
Batch GP66920: JB14312-1R, JB14312-2R, JB14312-3R, JB14312-4R, JB14312-5R, JB14312-6R, JB14312-7R, JB14312-8R, JB14312-9R, JB14312-10R, JB14312-11R, JB14312-12R, JB14312-13R, JB14312-15R

(\*) Outside of QC limits



#### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14312R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | DUP<br>Result | RPD  | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|---------------|------|--------------|
| Chromium, Hexavalent | GP66920/GN71477 | JB14312-15R  | mg/kg | 0.40 B             | 0.45          | 11.8 | 0-20%        |
| Iron, Ferrous        | GN71538         | JB14312-15R  | 8     | 0.95               | 0.95          | 0.0  | 0-26%        |
| Sulfide Screen       | GN71534         | JB14312-15R  |       | NEGATIVE           | NEGATIVE      |      | 0-%          |
| Total Organic Carbon | GP66744/GN71159 | JB13733-20   | mg/kg | 4440               | 3650          | 19.5 | 0-37%        |

Associated Samples:

Batch GN71534: JB14312-15R

Batch GN71534: JB14312-15R Batch GP67344: JB14312-15R Batch GP66744: JB14312-15R Batch GP66920: JB14312-1R, JB14312-2R, JB14312-3R, JB14312-4R, JB14312-5R, JB14312-6R, JB14312-7R, JB14312-8R, JB14312-9R, JB14312-10R, JB14312-11R, JB14312-12R, JB14312-15R

(\*) Outside of QC limits



6.3

### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14312R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec     | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|----------|--------------|
| Chromium, Hexavalent | GP66920/GN71477 | JB14312-15R  | 5. 5  | 0.40 B             | 48.5            | 26.6         | 54.0N(a) | 75-125%      |
| Chromium, Hexavalent | GP66920/GN71477 | JB14312-15R  |       | 0.40 B             | 1190            | 1070         | 89.9(b)  | 75-125%      |
| Iron, Ferrous        | GN71538         | JB14312-15R  | %     | 0.95               | 57.8            | 56.6         | 96.0     | 62-130%      |
| Total Organic Carbon | GP66744/GN71159 | JB13733-20   | mg/kg | 4440               | 5330            | 8240         | 71.3     | 46-113%      |

Associated Samples:

Batch GN71538: JB14312-15R Batch GP66744: JB14312-15R

Batch GP66920: JB14312-1R, JB14312-2R, JB14312-3R, JB14312-4R, JB14312-5R, JB14312-6R, JB14312-7R, JB14312-8R, JB14312-9R,

JB14312-10R, JB14312-11R, JB14312-12R, JB14312-13R, JB14312-15R

- (\*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (85.1%) on this sample.
- (b) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



### Accutest Laboratories Instrument Runlog Inorganics Analyses

#### Login Number: JB14312R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20828S1.TXT Date Analyzed: 08/28/12 Methods: LLOYD KAHN 1988 MOD Analyst: SJG Run ID: GN71159

Parameters: Total Organic Carbon

| Time  | Sample<br>Description | Dilution PS<br>Factor Recov | Comments                                              |
|-------|-----------------------|-----------------------------|-------------------------------------------------------|
| 10:55 | GN71159-STD1          | 1                           | STDA                                                  |
| 11:09 | GN71159-STD2          | 1                           | STDB                                                  |
| 11:59 | GN71159-STD3          | 1                           | STDC                                                  |
| 12:16 | GN71159-STD4          | 1                           | STDD                                                  |
| 12:49 | GN71159-STD5          | 1                           | STDE                                                  |
| 13:12 | GN71159-STD6          | 1                           | STDF                                                  |
| 13:27 | GN71159-STD7          | 1                           | STDG                                                  |
| 09:24 | GN71159-CRI1          | 1                           |                                                       |
| 09:39 | GN71159-HSTD1         | 1                           |                                                       |
| 09:51 | GN71159-ICV1          | 1                           |                                                       |
| 10:10 | GN71159-CCV1          | 1                           |                                                       |
| 10:28 | GP66744-MB1           | 1                           |                                                       |
| 10:41 | GP66744-B1            | 1                           |                                                       |
| 10:55 | JB13733-20            | 1                           | (sample used for QC only; not part of login JB14312R) |
| 11:05 | ZZZZZZ                | 1                           |                                                       |
| 11:17 | ZZZZZZ                | 1                           |                                                       |
| 11:44 | ZZZZZZ                | 1                           |                                                       |
| 11:57 | ZZZZZZ                | 1                           |                                                       |
| 12:10 | ZZZZZZ                | 1                           |                                                       |
| 12:26 | ZZZZZZ                | 1                           |                                                       |
| 13:00 | ZZZZZZ                | 1                           |                                                       |
| 13:18 | GN71159-CCV2          | 1                           |                                                       |
| 13:31 | ZZZZZZ                | 1                           |                                                       |
| 13:40 | ZZZZZZ                | 1                           |                                                       |
| 13:51 | ZZZZZZ                | 1                           |                                                       |
| 15:12 | GP66744-D1            | 1                           |                                                       |
| 15:27 | GP66744-S1            | 1                           |                                                       |
| 15:41 | ZZZZZZ                | 1                           |                                                       |
| 16:14 | ZZZZZZ                | 1                           |                                                       |
| 16:40 | GN71159-CCV3          | 1                           |                                                       |

Refer to raw data for calibration curve and standards.



# Login Number: JB14312R Account: ENSRNJ - AECOM, INC. Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20828S1.TXT

Date Analyzed: 08/28/12 Methods: LLOYD KAHN 1988 MOD

Run ID: GN71159 Units: mg/l

| Sample Number | Parameter            | Result | RL  | IDL/MDL | True<br>Value | % Recov. | QC<br>Limits |
|---------------|----------------------|--------|-----|---------|---------------|----------|--------------|
| GN71159-CRI1  | Total Organic Carbon | 89.3   | 100 | 49      | 100           | 89.3     | 70-130       |
| GN71159-HSTD1 | Total Organic Carbon | 4910   | 100 | 49      | 5000          | 98.2     | 90-110       |
| GN71159-ICV1  | Total Organic Carbon | 1830   | 100 | 49      | 2000          | 91.5     | 90-110       |
| GN71159-CCV1  | Total Organic Carbon | 2440   | 100 | 49      | 2500          | 97.6     | 90-110       |
| GN71159-CCV2  | Total Organic Carbon | 2470   | 100 | 49      | 2500          | 98.8     | 90-110       |
| GN71159-CCV3  | Total Organic Carbon | 2350   | 100 | 49      | 2500          | 94.0     | 90-110       |

(!) Outside of QC limits

#### Accutest Laboratories Instrument Runlog Inorganics Analyses

# Login Number: JB14312R Account: ENSRNJ - AECOM, INC. Project: PPG Northern Canal Borings, Jersey City, NJ

Date Analyzed: 09/04/12 File ID: B20904S1.TXT Methods: LLOYD KAHN 1988 MOD Run ID: GN71475

Analyst: SJG Parameters: Total Organic Carbon

| Time  |               | Dilution<br>Factor | Comments |
|-------|---------------|--------------------|----------|
| 12:28 | GN71475-STD1  | 1                  | STDA     |
| 12:53 | GN71475-STD2  | 1                  | STDB     |
| 13:02 | GN71475-STD3  | 1                  | STDC     |
| 13:22 | GN71475-STD4  | 1                  | STDD     |
| 13:38 | GN71475-STD5  | 1                  | STDE     |
| 13:51 | GN71475-STD6  | 1                  | STDF     |
| 14:00 | GN71475-STD7  | 1                  | STDG     |
| 09:38 | GN71475-CRI1  | 1                  |          |
| 09:52 | GN71475-HSTD1 | 1                  |          |
| 10:13 | GN71475-ICV1  | 1                  |          |
| 10:31 | GN71475-CCV1  | 1                  |          |
| 10:46 | GP66744-MB2   | 1                  |          |
| 11:03 | GP66744-B2    | 1                  |          |
| 11:13 | JB14312-15R   | 1                  |          |
| 11:23 | ZZZZZZ        | 1                  |          |
| 12:44 | ZZZZZZ        | 1                  |          |
| 13:01 | GN71475-CCV2  | 1                  |          |
| 13:28 | ZZZZZZ        | 1                  |          |
| 14:22 | ZZZZZZ        | 1                  |          |
| 14:50 | ZZZZZZ        | 1                  |          |
| 15:07 | GN71475-CCV3  | 1                  |          |

Refer to raw data for calibration curve and standards.

49 of 135
ACCUTEST
B14312R LABORATORIES JB14312R

#### Instrument QC Summary Inorganics Analyses

# Login Number: JB14312R Account: ENSRNJ - AECOM, INC. Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20904S1.TXT

Run ID: GN71475

Date Analyzed: 09/04/12 Methods: LLOYD KAHN 1988 MOD

Units: mg/l

|               |                      |        |     |         | True  |          | QC     |
|---------------|----------------------|--------|-----|---------|-------|----------|--------|
| Sample Number | Parameter            | Result | RL  | IDL/MDL | Value | % Recov. | Limits |
| GN71475-CRI1  | Total Organic Carbon | 94.1   | 100 | 49      | 100   | 94.1     | 70-130 |
| GN71475-HSTD1 | Total Organic Carbon | 5060   | 100 | 49      | 5000  | 101.2    | 90-110 |
| GN71475-ICV1  | Total Organic Carbon | 1930   | 100 | 49      | 2000  | 96.5     | 90-110 |
| GN71475-CCV1  | Total Organic Carbon | 2690   | 100 | 49      | 2500  | 107.6    | 90-110 |
| GN71475-CCV2  | Total Organic Carbon | 2660   | 100 | 49      | 2500  | 106.4    | 90-110 |
| GN71475-CCV3  | Total Organic Carbon | 2660   | 100 | 49      | 2500  | 106.4    | 90-110 |

(!) Outside of QC limits

### **Report of Analysis**

Client Sample ID: NSB-F5-16.0-16.5 Lab Sample ID: JB14312-15R Matrix: SO - Soil

**Date Sampled:** 08/21/12 **Date Received:** 08/21/12 Percent Solids: 83.1

PPG Northern Canal Borings, Jersey City, NJ **Project:** 

#### **General Chemistry**

| Analyte                    | Result   | RL   | MDL  | Units | DF | Analyzed By        | Method              |
|----------------------------|----------|------|------|-------|----|--------------------|---------------------|
| Chromium, Hexavalent       | 0.40 B   | 0.48 | 0.14 | mg/kg | 1  | 09/04/12 13:14 RI  | SW846 3060A/7196A   |
| Iron, Ferrous <sup>a</sup> | 0.95     | 0.20 |      | %     | 1  | 09/05/12 JA        | ASTM D3872-86       |
| Sulfide Screen b           | NEGATIVE |      |      |       | 1  | 09/05/12 JA        | SM18 4500S2-A       |
| Total Organic Carbon       | 961      | 120  | 58   | mg/kg | 1  | 09/04/12 11:13 SJC | LLOYD KAHN 1988 MOD |

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6
- (b) The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit

B = Indicates a result > = MDL but < RL





Page 1 of 3

# **Percent Solids Raw Data Summary Job Number:** JB14312R

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| <b>Sample:</b> JB14312-1                                   | Analyzadı   | 29-AUG-12 by RC | Mathad.   | SM18 2540G  |
|------------------------------------------------------------|-------------|-----------------|-----------|-------------|
| ClientID: NSB-D1-1.0-1.5                                   | Analyzeu.   | 27-A00-12 by RC | , without | 5W110 2540G |
| Wet Weight (Total)                                         | 34.07       | g               |           |             |
| Tare Weight                                                | 26.7        | g               |           |             |
| Dry Weight (Total)<br>Solids, Percent                      | 33.33<br>90 | g<br>%          |           |             |
| Solids, Percent                                            | 90          | 70              |           |             |
| <b>Sample:</b> JB14312-2 <b>ClientID:</b> NSB-D1-12.0-12.5 | Analyzed:   | 29-AUG-12 by RC | ) Method: | SM18 2540G  |
| Wet Weight (Total)                                         | 31.3        | g               |           |             |
| Tare Weight                                                | 21.6        | g               |           |             |
| Dry Weight (Total)                                         | 29.62       | g               |           |             |
| Solids, Percent                                            | 82.7        | %               |           |             |
| <b>Sample:</b> JB14312-3 <b>ClientID:</b> NSB-D1-16.0-16.5 | Analyzed:   | 29-AUG-12 by RC | Method:   | SM18 2540G  |
| Wet Weight (Total)                                         | 32.59       | g               |           |             |
| Tare Weight                                                | 25.12       | g               |           |             |
| Dry Weight (Total)                                         | 31.26       | g               |           |             |
| Solids, Percent                                            | 82.2        | %               |           |             |
| <b>Sample:</b> JB14312-4 <b>ClientID:</b> NSB-D1-20.0-20.5 | Analyzed:   | 29-AUG-12 by RC | Method:   | SM18 2540G  |
| Wet Weight (Total)                                         | 35.27       | g               |           |             |
| Tare Weight                                                | 25.95       | g               |           |             |
| Dry Weight (Total)                                         | 33.77       | g               |           |             |
| Solids, Percent                                            | 83.9        | %               |           |             |
| <b>Sample:</b> JB14312-5 <b>ClientID:</b> NSB-D1-4.0-4.5   | Analyzed:   | 29-AUG-12 by RC | Method:   | SM18 2540G  |
| Wet Weight (Total)                                         | 33.52       | g               |           |             |
| Tare Weight                                                | 26.18       | g               |           |             |
| Dry Weight (Total)                                         | 32.28       | g               |           |             |
| Solids, Percent                                            | 83.1        | %               |           |             |
| <b>Sample:</b> JB14312-6 <b>ClientID:</b> NSB-D1-7.7-8.2   | Analyzed:   | 29-AUG-12 by RC | Method:   | SM18 2540G  |
| Wet Weight (Total)                                         | 30.98       | g               |           |             |
| Tare Weight                                                | 25.15       | g               |           |             |
| Dry Weight (Total)                                         | 30.01       | g               |           |             |
| Solids, Percent                                            | 83.4        | %               |           |             |



Page 2 of 3

# **Percent Solids Raw Data Summary Job Number:** JB14312R

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| <b>Sample:</b> JB14312-7                                  | Analyzad     | 29-AUG-12 by RO | Mathad:  | SM18 2540G   |
|-----------------------------------------------------------|--------------|-----------------|----------|--------------|
| ClientID: NSB-D2-11.3-11.8                                | Analyzeu.    | 25-A00-12 by RO | Wictiou. | 51V110 2540G |
| Wet Weight (Total)                                        | 29.88        | g               |          |              |
| Tare Weight                                               | 23.06        | g               |          |              |
| Dry Weight (Total)<br>Solids, Percent                     | 28.7<br>82.7 | g<br>%          |          |              |
| Solids, Percent                                           | 02.7         | 90              |          |              |
| <b>Sample:</b> JB14312-8 <b>ClientID:</b> NSB-D2-3.0-3.5  | Analyzed:    | 29-AUG-12 by RO | Method:  | SM18 2540G   |
| Wet Weight (Total)                                        | 25.63        | g               |          |              |
| Tare Weight                                               | 19.29        | g               |          |              |
| Dry Weight (Total)                                        | 24.94        | g               |          |              |
| Solids, Percent                                           | 89.1         | %               |          |              |
| <b>Sample:</b> JB14312-9 <b>ClientID:</b> NSB-D2-3.0-3.5X | Analyzed:    | 29-AUG-12 by RO | Method:  | SM18 2540G   |
| Wet Weight (Total)                                        | 28.83        | g               |          |              |
| Tare Weight                                               | 22.31        | g               |          |              |
| Dry Weight (Total)                                        | 28.02        | g               |          |              |
| Solids, Percent                                           | 87.6         | %               |          |              |
| <b>Sample:</b> JB14312-10 <b>ClientID:</b> NSB-D2-6.0-6.5 | Analyzed:    | 29-AUG-12 by RO | Method:  | SM18 2540G   |
| Wet Weight (Total)                                        | 27.03        | g               |          |              |
| Tare Weight                                               | 20.88        | g               |          |              |
| Dry Weight (Total)                                        | 24.6         | g               |          |              |
| Solids, Percent                                           | 60.5         | %               |          |              |
| Sample: JB14312-11<br>ClientID: NSB-D3-3.0-3.5            | Analyzed:    | 29-AUG-12 by RO | Method:  | SM18 2540G   |
| Wet Weight (Total)                                        | 27.76        | g               |          |              |
| Tare Weight                                               | 22.02        | g               |          |              |
| Dry Weight (Total)                                        | 26.86        | g               |          |              |
| Solids, Percent                                           | 84.3         | %               |          |              |
| Sample: JB14312-12<br>ClientID: NSB-D4-1.0-1.5            | Analyzed:    | 29-AUG-12 by RO | Method:  | SM18 2540G   |
| Wet Weight (Total)                                        | 23.37        | g               |          |              |
| Tare Weight                                               | 17.64        | g               |          |              |
| Dry Weight (Total)                                        | 22.8         | g               |          |              |
| Solids, Percent                                           | 90.1         | %               |          |              |



Page 3 of 3

# **Percent Solids Raw Data Summary Job Number:** JB14312R

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14312-13<br>ClientID: NSB-F5-20.0-20.5                  | Analyzed:                       | 29-AUG-12 by RO  | <b>Method:</b> SM18 2540G |
|-------------------------------------------------------------------|---------------------------------|------------------|---------------------------|
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 31.46<br>22.15<br>29.95<br>83.8 | g<br>g<br>g<br>% |                           |
| Sample: JB14312-15<br>ClientID: NSB-F5-16.0-16.5                  | Analyzed:                       | 29-AUG-12 by RO  | <b>Method:</b> SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 28.11<br>21.26<br>26.95<br>83.1 | g<br>g<br>g<br>% |                           |





| General Chemistry |  |  |
|-------------------|--|--|
|                   |  |  |
| Raw Data          |  |  |
|                   |  |  |
|                   |  |  |



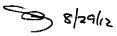
|               | Sample<br>Name | Sample ID                                         | Method       | Туре     | Date / Time                    | Conc.      | Mean Area | cv     |
|---------------|----------------|---------------------------------------------------|--------------|----------|--------------------------------|------------|-----------|--------|
| 1             | CRI            |                                                   | tocsscal.met | Unknown  | 08/28/12 09:2                  | 0.08928 %  | 462       | 4.04%  |
| 2             | CRI            |                                                   | tocsscal.met | Unknown  | 08/28/12 09:2                  | 0.08928 %  | 462       | 4.04%  |
| 3             | HSTD           |                                                   | tocsscal.met | Unknown  | 08/28/12 09:3                  | 4.908 %    | 19352     | 0.342% |
| 4             | HSTD           |                                                   | tocsscal.met | Unknown  | 08/28/12 09:3                  | 4.908 %    | 19352     | 0.342% |
| 5             | ICV            |                                                   | tocsscal.met | Unknown  | 08/28/12 09:5                  | 1.827 %    | 7273      | 6.68%  |
| 6             | ICV            |                                                   | tocsscal.met | Unknown  | 08/28/12 09:5                  | 1.827 %    | 7273      | 6.68%  |
| 7             | CCV            |                                                   | tocsscal.met | Unknown  | 08/28/12 10:1                  | 2.440 %    | 9679      | 0.820% |
| 8             | CCV            |                                                   | tocsscal.met | Unknown  | 08/28/12 10:1                  | 2.440 %    | 9679      | 0.820% |
| 9             | GP66744-ME     | TOCLK                                             | tocss.met    | Unknown  | 08/28/12 10:2                  | -0.00286 % | 0         | 0.00%  |
| 10            | GP66744-ME     | TOCLK                                             | tocss.met    | Unknown  | 08/28/12 10:2                  | -0.00286 % | - 0       | 0.00%  |
| 11            | GP66744-B1     |                                                   | tocss.met    | Unknown  | 08/28/12 10:4                  | 0.1751 %   | 6976      | 2.73%  |
| 12            | GP66744-B1     |                                                   | tocss.met    | Unknown  | 08/28/12 10:4                  | 0.1751 %   | 6976      | 2.73%  |
| 13            | JB13733-20     | (A)                                               | tocss.met    | Unknown  | 08/28/12 10:5                  | 0.3223 %   | 12787     | 13.9%  |
| 14            | JB13733-20     |                                                   | tocss.met    | Unknown  | 08/28/12 10:5                  | 0.3223 %   | 12787     | 13.9%  |
| 15            | JB13733-10     | 1                                                 | tocss.met    | Unknown  | 08/28/12 11:0                  | 1.639 %    | 6953      | 10.9%  |
| 16            | JB13733-10     | V                                                 | tocss.met    | Unknown  | 08/28/12 11:0                  | 1.639 %    | 6953      |        |
| 17            | JB13733-11     | 2)                                                | tocss.met    | Unknown  | 08/28/12 11:1                  | 0.9550 %   | 2077      | 10.9%  |
|               | JB13733-11     | -                                                 | tocss.met    | Unknown  | 08/28/12 11:1                  | 0.9550 %   |           | 24.7%  |
| 19            | JB13733-12     | (A)                                               | tocss.met    | Unknown  | 08/28/12 11:4                  |            | 2077      | 24.7%  |
| 20            | JB13733-12     | <del>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ </del> | tocss.met    | Unknown  | 08/28/12 11:4                  | 2.596 %    | 10731     | 20.6%  |
|               | JB13733-12     | <del>                                     </del>  | tocss.met    | Unknown  |                                | 2.596 %    | 10731     | 20.6%  |
| 22            | JB13733-12     |                                                   | tocss.met    | Unknown  | 08/28/12 11:4<br>08/28/12 11:4 | 2.596 %    | 10731     | 20.6%  |
|               | JB13733-13     | -                                                 | tocss.met    | Unknown  | 08/28/12 11:4                  | 2.596 %    | 10731     | 20.6%  |
|               | JB13733-13     | <del>                                     </del>  | tocss.met    | Unknown  | <del></del>                    | 1.635 %    | 6742      | 3.41%  |
|               | JB13733-13     | <del> - </del>                                    | tocss.met    | Unknown  | 08/28/12 11:5                  | 1.635 %    | 6742      | 3.41%  |
|               | JB13733-14     |                                                   |              |          | 08/28/12 12:1                  | 1.298 %    | 18489     | 0.998% |
|               | JB13733-14     |                                                   | tocss.met    | Unknown  | 08/28/12 12:1                  | 1.298 %    | 18489     | 0.998% |
|               | JB13733-16     | <b></b>                                           | tocss.met    | Unknown  | 08/28/12 12:2                  | 1.159 %    | 16777     | 4.76%  |
|               | JB13733-18     | <u> </u>                                          | tocss.met    | Unknown  | 08/28/12 12:2                  | 1.159 %    | 16777     | 4.76%  |
|               | JB13733-18     | <del>-</del>                                      | tocss.met    | Unknown  | 08/28/12 13:0                  | 0.4054 %   | 16064     | 20.5%  |
|               | JB13733-18     |                                                   | tocss.met    | Unknown  | 08/28/12 13:0                  | 0.4054 %   | 16064     | 20.5%  |
|               | JB13733-18     |                                                   | tocss.met    | Unknown  | 08/28/12 13:0                  | 0.4054 %   | 16064     | 20.5%  |
|               | CCV            | 0                                                 | tocss.met    | Unknown  | 08/28/12 13:0                  | 0.4054 %   | 16064     | 20.5%  |
|               | CCV            |                                                   |              | Unknown  | 08/28/12 13:1                  | 2.472 %    | 9802      | 2.52%  |
|               |                | _                                                 | tocsscal.met | <b>_</b> | 08/28/12 13:1                  | 2.472 %    | 9802      | 2.52%  |
|               | JB13733-19     | (4)                                               | tocss.met    | Unknown  | 08/28/12 13:3                  | 3.425 %    | 14054     | 1.17%  |
|               | JB13733-19     | 1                                                 | tocss.met    | Unknown  | 08/28/12 13:3                  | 3.425 %    | 14054     | 1.17%  |
| _             |                | <u> </u>                                          | tocss.met    | Unknown  | 08/28/12 13:4                  | 0.08598 %  | 1860      | 14.5%  |
|               |                |                                                   | tocss.met    | Unknown  | 08/28/12 13:4                  | 0.08598 %  | 1860      | 14.5%  |
|               |                | A                                                 |              | Unknown  | 08/28/12 13:5                  | 0.2059 %   | 4347      | 11.5%  |
|               | JB13733-22     | T                                                 |              | Unknown  | 08/28/12 13:5                  | 0.2059 %   | 4347      | 11.5%  |
| - 1           | GP66744-D1     | 1                                                 |              | Unknown  | 08/28/12 15:1                  | 0.2649 %   | 10553     | 27.8%  |
|               | GP66744-D1     |                                                   |              | Unknown  | 08/28/12 15:1                  | 0.2649 %   | 10553     | 27.8%  |
| _             |                | 1                                                 |              | Unknown  | 08/28/12 15:1                  | 0.2649 %   | 10553     | 27.8%  |
|               |                |                                                   |              | Unknown  | 08/28/12 15:1                  | 0.2649 %   | 10553     | 27.8%  |
|               | GP66744-S1     |                                                   |              | Unknown  | 08/28/12 15:2                  | 0.5982 %   | 12227     | 2.30%  |
| $\rightarrow$ | GP66744-S1     | _                                                 |              | Unknown  | 08/28/12 15:2                  | 0.5982 %   | 12227     | 2.30%  |
| $\rightarrow$ | JB13733-11     | (A)                                               | tocss.met    | Unknown  | 08/28/12 15:4                  | 1.678 %    | 16619     | 3.59%  |
|               | JB13733-11     |                                                   | tocss.met    | Unknown  | 08/28/12 15:4                  | 1.678 %    | 16619     | 3.59%  |
| 49            | JB13733-21     | +                                                 | tocss.met    | Unknown  | 08/28/12 16:1                  | 0.2585 %   | 10266     | 39.1%  |

weight toolow review 1.09

62082851.TOC

TOCK

GN 71159




|    | Sample<br>Name | Sample ID | Method       | Туре     | Date / Time   | Conc.    | Mean Area | CV    |
|----|----------------|-----------|--------------|----------|---------------|----------|-----------|-------|
| 50 | JB13733-21     |           | tocss.met    | Unknown  | 08/28/12 16:1 | 0.2585 % | 10266     | 39.1% |
| 51 | JB13733-21     |           | tocss.met    | Unknown  | 08/28/12 16:1 | 0.2585 % |           | 39.1% |
| 52 | JB13733-21     |           | tocss.met    | Unknown  | 08/28/12 16:1 | 0.2585 % | 10266     | 39.1% |
| 53 | CCV            |           | tocsscal.met | Unknown  | 08/28/12 16:4 | 2.353 %  | 9338      |       |
| 54 | CCV            |           | tocsscal.met | <u> </u> | 08/28/12 16:4 | 2.353 %  | 9338      | 3.08% |

b2082851.70C

TOCLK

GN 71159





TOCLK

62082851.70C

Test: Total Organic Carbon Product: TOC

Units = mg/kg

B-39 Balance ID:

Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID 71159 Date 8/28/12

| Sample ID   | Sample Weight | Bottle #                     | Sample Description & comments |
|-------------|---------------|------------------------------|-------------------------------|
| CRI         | ·             |                              |                               |
| HSTD        |               |                              |                               |
| #CV (KHP)   |               |                              |                               |
| ceV         |               |                              |                               |
| GP66744-MB1 | (.0 000       |                              | middle                        |
| ·           | (,000)        |                              |                               |
| GP66744-BI  | 1.0000        | un inggansu khingthadh nikki |                               |
|             | (,0000        |                              |                               |
| JB13733-20  | 1.0033        | 4                            |                               |
|             | 1.0028        |                              |                               |
|             | 1.0022        |                              | ÷.                            |
|             | 1.0008        |                              |                               |
| JB13733-10  | 0.1076        | 3                            |                               |
|             | 0,1051        |                              |                               |
|             | 0.1067        |                              |                               |
|             | 0.1031        |                              | superal file                  |
| JB13733-11  | 0.0549        | 3                            | weight too low rerum 0.25q    |
|             | 0.0508        |                              | ,                             |
|             | 0.0541        |                              |                               |
|             | 0.0526        |                              |                               |
| JB13733-12  | 0.1092 .      | 3                            |                               |
|             | 0.1025        |                              |                               |
|             | 0.1013        |                              |                               |
|             | 0.1065        |                              |                               |

| Analyst: Date: Date: Date: | QCReviewer: Date:               |                  |
|----------------------------|---------------------------------|------------------|
| Comments:                  |                                 |                  |
| MS/BS - 100ml of           | 20000 mg C/L -> 1.09 felica Ser | d TV= 2000 mg /6 |
|                            | alucese                         | ره               |
|                            | 0                               |                  |

Form: GN-058a Rev. Date: 11/11/08







Test: Total Organic Carbon

Units = mg/kg

Product: TOC Balance ID: Method: Corp. Eng. 81 M/SW846 9060 M of EPA Region 2 Lloyd Kahn (circle one) GN Batch ID 71159 Date 8 | 28 | 12

RDL = 1000 mg/kg or 100 mg/kg (circle one)

Analyst

| Sample ID   | Sample Weight | Bottle #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample Description & comments                                                                                   |
|-------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| JB13733-13  | 0.1039        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|             | 0.1029        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|             | 0.1009        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|             | 0.1028        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| JB13733-14  | 0.3630        | ų                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|             | 0.3592        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|             | 0.3596        | Agent was stiffed a sign and stiffed to the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the contract of the co |                                                                                                                 |
|             | 0.3539        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| JB13733-16  | 0.3770        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|             | 0.3561        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|             | 0.3628        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|             | o,3554        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
| JB13733-18  | 1.0032        | <b>2</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |
|             | 1.0000        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|             | 1.0069        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|             | 1.0037        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | entral de la companya de la companya de la companya de la companya de la companya de la companya de la companya |
| ccv         |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
| JB13733-19  | 0.1060        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                 |
|             | 0.1016        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |
|             | 0.1062        | 19 x 118 m x 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                 |
| э°          | 5.1064        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | William Control                                                                                                 |
| JB13733- Z1 | 0.5195        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | weight too low rerum 1,0 q                                                                                      |
|             | 0.5178        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                                                                               |
|             | 0.5359        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |

| Analyst:<br>Manager Review: | Date: 8/28/12 C | QCReviewer:                             | Date: |  |
|-----------------------------|-----------------|-----------------------------------------|-------|--|
| Comments:                   | <u> </u>        |                                         |       |  |
|                             |                 |                                         |       |  |
|                             | ¥ %             | * * * * * * * * * * * * * * * * * * * * |       |  |

Form: GN-058a Rev. Date: 11/11/08



Product: TOC





**Test: Total Organic Carbon** 

Units = mg/kg

Balance ID: B-39

GN Batch ID 71159 Date 8 28 12

RDL = 1000 mg/kg or 100 mg/kg (circle one)

Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

Analyst\_

| Sample ID     | Sample Weight   | Bottle #      | Sample Description & comments |
|---------------|-----------------|---------------|-------------------------------|
|               | 0.50 <u>65</u>  |               |                               |
| JB13733-22    | დ.5330          | 2             |                               |
|               | 0.5148          |               |                               |
|               | 6.5377          |               |                               |
|               | 0.5219          |               |                               |
| GP66744-D1    | 1.0677          | 4             | JB13733-20                    |
| •             | 1.0064          | a Jakandan (1 |                               |
|               | 1.0039          |               |                               |
|               | 1.0027          |               |                               |
| GP66744-SI    | 0.5231          | 4             |                               |
|               | 0.5163          |               | TV= 3871                      |
|               | 6.5104          |               | \/                            |
|               | 0.5126          |               | . V                           |
| J. 813733- 11 | 0.25 <b>4</b> 8 | 3             |                               |
|               | 0.2472          |               |                               |
|               | 0.2545          |               | .4                            |
|               | 0.2537          |               |                               |
| JB13733-21    | 1.0054          | 2             |                               |
|               | 1,0011          |               |                               |
|               | 1.0004          |               |                               |
|               | 1.0020          |               |                               |
|               |                 | 1             |                               |

| Analyst:<br>Manager Review | Date: 8 28 12 | QCReviewer: | Date: |  |
|----------------------------|---------------|-------------|-------|--|
| Comments:                  |               |             |       |  |
|                            |               | ·           |       |  |
|                            |               |             |       |  |

Form: GN-058a Rev. Date: 11/11/08



GENERAL CHEMISTRY STANDARD PREPARATION LOG Glass prpots Class A

Product: TOCLK GN or GP Number: GN 71159

|                      |                               |               |              |         | _      | Final Conc.  |            |               |          |
|----------------------|-------------------------------|---------------|--------------|---------|--------|--------------|------------|---------------|----------|
|                      |                               |               | Stock        |         |        | jo           |            |               |          |
|                      | Stock used to                 | Stock         | volume used  |         | Final  | Intermediate | Expiration |               |          |
| Standard Description | prepare standard              | concentration | in m         | Diluent | Volume | (mg/l)       |            | Analyst       | Date     |
| GNE7-33059-TOC       | Fisher 110579                 | Sucrose       | 47.50        | ₹#20    | 1000   | 200 000      | 8 28 12    | đ             | 2/06/8   |
|                      | •                             |               | h            | _       | -      |              | 1          |               |          |
| GNE7-33060-TOC       | Fisher Cett.72 A              | Chicago a     | 1            | +       |        |              |            | )             |          |
| 1                    | 10000                         | O larcope     | 9:39         | 5       | Ь      | 20,600       | +          | <i>i</i>      | V        |
|                      |                               |               |              |         |        |              |            |               |          |
|                      |                               |               | Intermediate |         |        |              |            |               |          |
|                      | Intermediate or Stock         | Intermediate  | or Stock     |         |        | Final Conc.  |            |               |          |
|                      | used to prepare               | or Stock      | volume used  | -       | Final  | of Standard  | Expiration | -             |          |
| Standard Description | standard                      | concentration | in mi        | Diluent | Volume | (l/bm)       | Date       | Analyst       | Dafe     |
| Sucrosa Stols        |                               |               |              |         |        |              |            |               |          |
| GNE7-33061-70C       | GNE 7-33059-TOC               | 200000        | o.           | DE 420  | 1001   | 1000         | 5/28/12    | 86            | 8 28 1,2 |
| GNE1-33062-19C       | -                             |               | انم          | -       | -      | 2000         |            | )<br>         | 2        |
| GNE 7- 33063-TOC     |                               |               | 8.0          |         |        | 8000         |            |               | -        |
| GNE7-33064-TOC       | _                             |               | 12.5         |         |        | 25000        | _          | <u> </u>      |          |
| GNE7-33065-70C       | ,                             |               | 20.0         |         |        | 40000        |            |               |          |
| GNE1-33066-TOC       | $\geq$                        | ò             | 25.0         | }       | ,      | Spago        | 3          | -,            |          |
|                      |                               |               |              |         |        |              |            |               |          |
| Glucose Stds         |                               |               |              |         |        |              |            |               |          |
| )-70C                | GNE7-33067-70C GNE7-33060-70C | . conos       | 40.0         | Dt H.O  | 100ml  | 20000        | 8/28/12    | (X            |          |
| GNE 7-33068-TOC      | -4                            | 1             |              |         | -      | 27000        | 4          | $\mathcal{P}$ | d        |
|                      |                               |               |              | ,       |        |              | ,          | ,             | -        |
|                      | •                             |               |              |         |        | ,            |            |               |          |
|                      |                               | 7             |              | _       |        | -            |            |               |          |

Rev. Date:2/26/03 Form: GN121

B-39 Blonce



## Reagent Information Log - TOC - Soil

| Reagent                             | Reagent # or Manufacturer/Lot |
|-------------------------------------|-------------------------------|
| Sucrose Stock Solution, 200000 mg/L | GNE7-33059-TOC 8/28/12        |
| Glucose Stock Solution, 50000 ug/L  | GNE7-33060-TOC 8/28/12        |
| Glucose Check Solution, 25000 ug/L  | GNE7-33068-TOC 8/28/12        |
| Nitric Acid, Reagent Grade          | K50030 Bakor 2/7/17           |
| Glucose Stock Solution, 2000 mg/L   | GNE7-33067-TOC 8/28/12        |
| KHP 20000 ppm                       | GNSTK-863-TOC 11/14/12        |
|                                     |                               |
|                                     |                               |
|                                     |                               |
|                                     |                               |
|                                     |                               |
|                                     |                               |

All standards and stocks were made as described in the SOP for this method (circle one): If no (N), see attached page for standards prep.

Form: GN-087 1-66 Rev. Date: 4/26/01



#### **General Information**

Organization:

Accutest Laboratories

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20818\$2.TOC

Comment:

**Instrument Conditions** 

Instrument Attachments:

TOC-5000 + SSM 5000

Calibration Curves

Filename:

b20818s1.cal

Title:

b20818s1.cal

Calculation method:

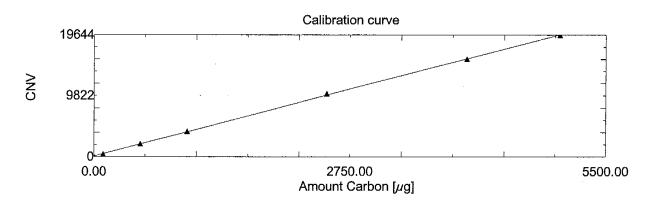
Lin. regression without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume | CNV   | lbs C [µg | SD  | CV     |
|-------------|-----------|--------|----------------|-----------|--------|-------|-----------|-----|--------|
| STDA        | 0.0       | 0.000  | 1              | 0         | 100.0  | 0     | 0.000     | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 1              | 427       | 100.0  | 427   | 100.0     | 7   | 1.66%  |
| STDC        | 0.5       | 0.5000 | 1              | 2087      | 100.0  | 2087  | 500.0     | 2   | 0.136% |
| STDD .      | 1.0       | 1.000  | 1              | 4137      | 100.0  | 4136  | 1000      | 60  | 1.45%  |
| STDE        | 2.5       | 2.500  | 1              | 10123     | 100.0  | 10123 | 2500      | 50  | 0.503% |
| STDF        | 4.0       | 4.000  | 1              | 15727     | 100.0  | 15726 | 4000      | 226 | 1.44%  |
| STDG        | 5.0       | 5.000  | 1              | 19644     | 100.0  | 19644 | 5000      | 205 | 1.04%  |

Slope:

3.9206


Intercept:

111.99

R^2:

0.999775

Accutest Laboratories,



#### Samples

Sample Name:

STDA

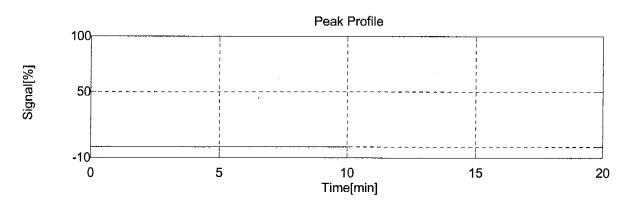
Sample ID:

0.0

Remark:

Comment:

Cal Curve:


1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 10:55:13 |

| Mean Area | Conc   | Result | SD    | CV    | CNV | Modified |
|-----------|--------|--------|-------|-------|-----|----------|
| 0         | 0.000% |        | 0.000 | 0.00% | 0   |          |

| No. | Range | Area | CNV | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|-----|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 0   | 0.0000 |       | ***** | 08/18/2012 10:48:13 | b20818s1.cal |
| 2   | 5     | . 0  | 0   | 0.0000 |       | ***** | 08/18/2012 10:55:13 | b20818s1.cal |

Accutest Laboratories,



### Samples

Sample Name:

**STDB** 

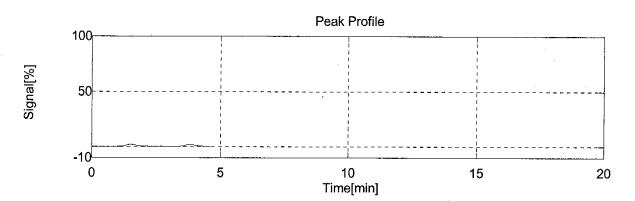
Sample ID:

0.1

Remark:

Comment:

Cal Curve:


1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 11:09:44 |

| Mean Area | Conc    | Result | SD    | CV    | CNV | Modified |
|-----------|---------|--------|-------|-------|-----|----------|
| 427       | 0.1000% |        | 0.000 | 0.00% | 427 |          |

| No. | Range | Area | CNV | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|-----|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 422  | 422 | 0.10000 |       | ***** | 08/18/2012 11:01:52 | b20818s1.cal |
| 2   | 5     | 432  | 432 | 0.10000 |       | ***** | 08/18/2012 11:09:44 | b20818s1.cal |

Accutest Laboratories,



### Samples

Sample Name:

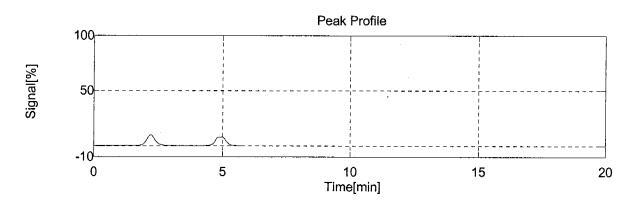
STDC

Sample ID:

0.5

Remark:

Comment:


Cal Curve:

1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |  |  |
|----------|----------|----------|---------------------|--|--|
| Standard | SSM-TC   | 1.000    | 08/18/2012 11:59:35 |  |  |

| Mean Area | Conc    | Result  | SD    | CV    | CNV  | Modified |
|-----------|---------|---------|-------|-------|------|----------|
|           |         | 1100211 | 0.2   | ,     | 0.11 | Modified |
| 2087      | 0.5000% |         | 0.000 | 0.00% | 2087 | ,        |

| No. | Range | Area | CNV  | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 2085 | 2085 | 0.50000 |       | ***** | 08/18/2012 11:34:17 | b20818s1.cal |
| 2   | 5     | 2089 | 2089 | 0.50000 |       | ***** | 08/18/2012 11:59:35 | b20818s1.cal |



#### <u>Samples</u>

Sample Name:

**STDD** 

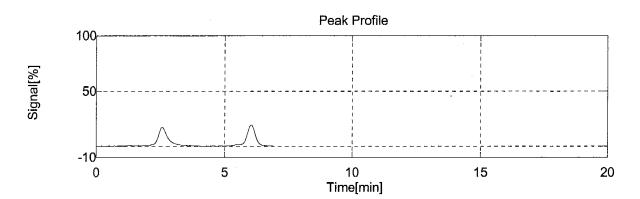
Sample ID:

1.0

Remark:

Comment:

Cal Curve:


1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time |  |  |
|----------|----------|----------|-----------|--|--|
| Standard | SSM-TC   | 1.000    |           |  |  |

| Mean Area | Conc   | Result | SD    | cv    | CNV  | Modified |
|-----------|--------|--------|-------|-------|------|----------|
| 4136      | 1.000% |        | 0.000 | 0.00% | 4136 |          |

| No. | Range | Area | CNV  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 4179 | 4179 | 1.0000 |       | ***** | 08/18/2012 12:10:59 | b20818s1.cal |
| 2   | 5     | 4094 | 4094 | 1.0000 |       | ***** | 08/18/2012 12:16:37 | b20818s1.cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

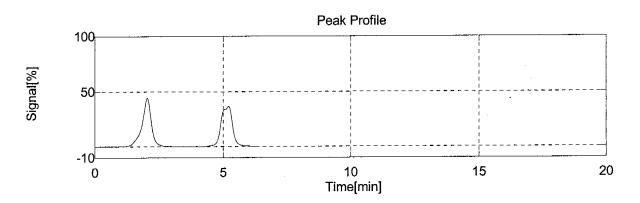
STDE

Sample ID:

2.5

Remark:

Comment:


Cal Curve:

1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 12:49:48 |

|   | Mean Area | Conc   | Result | SD    | cv    | CNV   | Modified |
|---|-----------|--------|--------|-------|-------|-------|----------|
| ı | 10123     | 2.500% |        | 0.000 | 0.00% | 10123 |          |

| No. | Range | Area  | CNV   | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 10159 | 10159 | 2.5000 |       | ***** | 08/18/2012 12:21:40 | b20818s1.cal |
| 2   | 5     | 10087 | 10087 | 2.5000 |       | ***** | 08/18/2012 12:49:48 | b20818s1.cal |



#### Samples

Sample Name:

STDF

Sample ID:

4.0

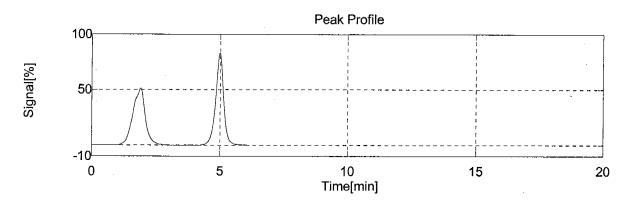
Remark:

Comment:

Cal Curve:

1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1,000    | 08/18/2012 13:12:57 |


| Mean Area | Conc | Result | SD    | cv    | CNV   | Modified |
|-----------|------|--------|-------|-------|-------|----------|
| 15726     |      |        | 0.000 | 0.00% | 15726 |          |

| No. | Range | Area  | CNV   | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 15566 | 15566 | 4.0000 |       | ****  | 08/18/2012 12:59:09 | b20818s1.cal |
| 2   | 5     | 15887 | 15887 | 4.0000 |       | ***** | 08/18/2012 13:12:57 | b20818s1.cal |

Accutest Laboratories,

08/18/2012 13:28:26

JB14312R



#### <u>Samples</u>

Sample Name:

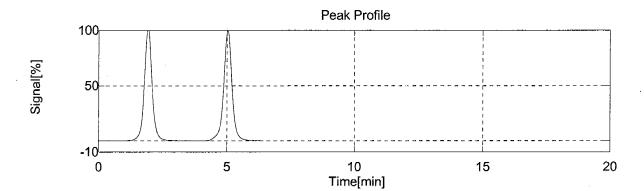
**STDG** 

Sample ID:

5.0

Remark:

Comment:


Cal Curve:

1: b20818s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/18/2012 13:27:43 |

| Mean Area | Conc   | Result | SD    | cv    | CNV   | Modified |
|-----------|--------|--------|-------|-------|-------|----------|
| 19644     | 5.000% |        | 0.000 | 0.00% | 19644 |          |

| No. | Range | Area  | CNV   | Conc   | Excl. | Notes  | Date/Time           | Cal Curve    |
|-----|-------|-------|-------|--------|-------|--------|---------------------|--------------|
| 1   | 5     | 19499 | 19499 | 5.0000 |       | **h*** | 08/18/2012 13:20:11 | b20818s1.cal |
| 2   | 5     | 19789 | 19789 |        |       | *****  | 08/18/2012 13:27:43 | b20818s1.cal |



Accutest Laboratories,

08/18/2012 13:28:26

#### **General Information**

Organization:

Accutest Laboratories

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20828S1.TOC

Comment:

**Instrument Conditions** 

Instrument Attachments:

TOC-5000 + SSM 5000

**Calibration Curves** 

Filename:

b20818s1.cal

Title:

b20818s1.cal

Calculation method:

Lin. regression without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume   | CNV   | lbs C [μg | SD  | cv     |
|-------------|-----------|--------|----------------|-----------|----------|-------|-----------|-----|--------|
| STDA        | 0.0       | 0.000  | 2              | 0         | 0.00000  | 0     | 0.000     | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 2              | 427       | 0.000    | 427   | 100.0     | 7   | 1.66%  |
| STDC        | 0.5       | 0.5000 | 2              | 2087      | -0.00000 | 2087  | 500.0     | 2   | 0.136% |
| STDD        | 1.0       | 1.000  | 2              | 4137      | 0.00000  | 4136  | 1000      | 60  | 1.45%  |
| STDE        | 2.5       | 2.500  | 2              | 10123     | 0.00000  | 10123 | 2500      | 50  | 0.503% |
| STDF        | 4.0       | 4.000  | 2              | 15727     | 00000000 | 15726 | 4000      | 226 |        |
| STDG        | 5.0       | 5.000  | 2              | 19644     | 0.00000  | 19644 | 5000      | 205 |        |

Slope:

3.9206

Intercept:

111.99

R^2:

0.999775

Accutest Laboratories,

08/28/2012 17:01:22

JB14312R

#### **Samples**

Sample Name:

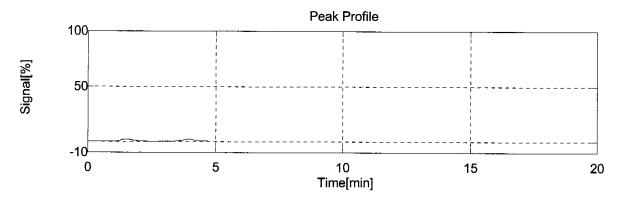
CRI

Sample ID:

Remark: Comment:

Method:

tocsscal.met


Cal Curve:

1: b20818s1.cal

| Туре    | Type Analysis |       | Date/Time |  |  |
|---------|---------------|-------|-----------|--|--|
| Unknown | SSM-TC        | 1.000 |           |  |  |

| Conc | Resu     | ult SD  | cv    | Modified |
|------|----------|---------|-------|----------|
| 32   | 0.08928% | 0.00361 | 4.04% |          |

| No. | Range | Area | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 452  | 0.086725 |       | ****  | 08/28/2012 09:17:54 | b20818s1.cal |
| 2   | 5     | 472  | 0.091826 |       | ****  | 08/28/2012 09:24:15 | b20818s1.cal |



#### Samples

Sample Name:

**HSTD** 

Sample ID: Remark:

Comment:

Method:

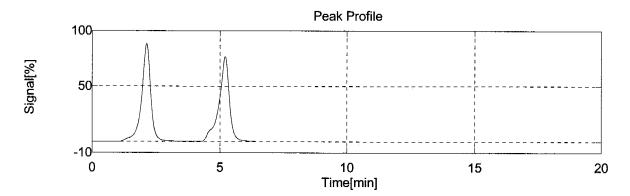
tocsscal.met

Accutest Laboratories,

08/28/2012 17:01:22

Page 2 / 24




Cal Curve:

b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 09:39:00 |

| Mean Area | Conc   | Result | SD      | cv     | Modified |
|-----------|--------|--------|---------|--------|----------|
| 19352     | 4.908% |        | 0.01677 | 0.342% | ı        |

| No. | Range | Area  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 19399 | 4.9194 |       | ****  | 08/28/2012 09:33:44 | b20818s1.cal |
| 2   | 5     | 19306 | 4.8957 | ·     |       | 08/28/2012 09:39:00 | b20818s1.cal |



#### <u>Samples</u>

Sample Name:

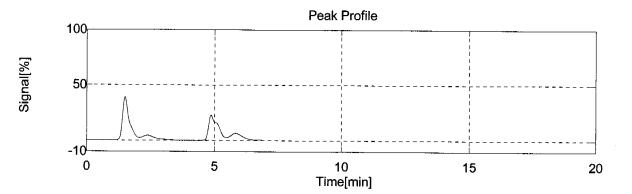
**ICV** 

Sample ID:

Remark:

Comment: Method:

tocsscal.met


Cal Curve: 1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 09:51:15 |

Accutest Laboratories,

| Меап Агеа | Conc   | Result | SD     | cv    | Modified |
|-----------|--------|--------|--------|-------|----------|
| 7273      | 1.827% |        | 0.1221 | 6.68% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7612 | 1.9130 |       | ****  | 08/28/2012 09:46:03 | b20818s1.cal |
| 2   | 5     | 6935 | 1.7403 |       | ***** | 08/28/2012 09:51:15 | b20818s1.cal |



#### <u>Samples</u>

Sample Name:

CCV

Sample ID:

Remark:

Comment:

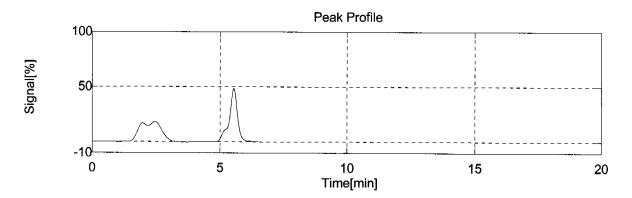
Method:

tocsscal.met

Cal Curve:

1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time |  |
|---------|----------|----------|-----------|--|
| Unknown | SSM-TC   | 1.000    |           |  |


| Mean Area | Conc   | Result | SD      | CV     | Modified |
|-----------|--------|--------|---------|--------|----------|
| 9679      | 2.440% |        | 0.02002 | 0.820% |          |

Accutest Laboratories,

08/28/2012 17:01:23

JB14312R

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9735 | 2.4545 |       | ***   | 08/28/2012 10:01:14 | b20818s1.cal |
| 2   | 5     | 9624 | 2.4262 |       | ***** | 08/28/2012 10:10:49 | b20818s1.cal |



#### <u>Samples</u>

Sample Name:

GP66744-MB1

Sample ID:

TOCLK

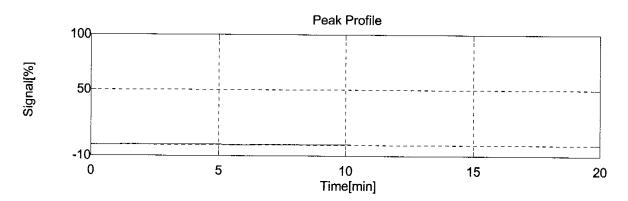
Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

|   | Туре    | Analysis | Dilution | Date/Time      |
|---|---------|----------|----------|----------------|
| Ū | Jnknown | SSM-TC   | 1.000    | 00,20,20,20,00 |

| Mean Area | Conc      | Result | SD      | cv    | Weight | Modified |
|-----------|-----------|--------|---------|-------|--------|----------|
| 0         | -0.00286% |        | 0.00000 | 0.00% | 1000   |          |

| No. | Range | Area | Weight | Conc      | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-----------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 1000   | -0.002856 |       | ***** | 08/28/2012 10:22:01 | b20818s1.cal |
| 2   | 5     | 0    | 1000   | -0.002856 |       | ***** | 08/28/2012 10:28:38 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

GP66744-B1

Sample ID:

Remark:

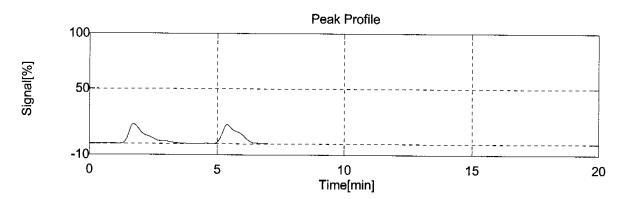
Comment:

tocss.met

Method: Cal Curve:

1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 10:41:28 |


| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 6976      | 0.1751% |        | 0.00478 | 2.73% | 1000   |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 7109 | 1000   | 0.17847 |       | ***** | 08/28/2012 10:36:58 | b20818s1.cal |
| 2   | 5     | 6844 | 1000   | 0.17171 |       | ***** | 08/28/2012 10:41:28 | b20818s1.cal |

Accutest Laboratories,

08/28/2012 17:01:23

JB14312R



#### <u>Samples</u>

Sample Name:

JB13733-20

Sample ID:

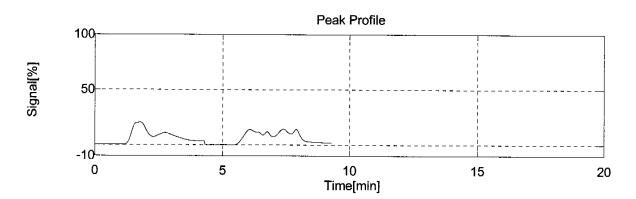
Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 10:55:32 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 12787     | 0.3223% |        | 0.04485 | 13.9% | 1003   |          |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 11543 | 1003   | 0.29060 |       | ***   | 08/28/2012 10:48:59 | b20818s1.cal |
| 2   | 5     | 14031 | 1003   | 0.35403 |       | ***** | 08/28/2012 10:55:32 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB13733-10

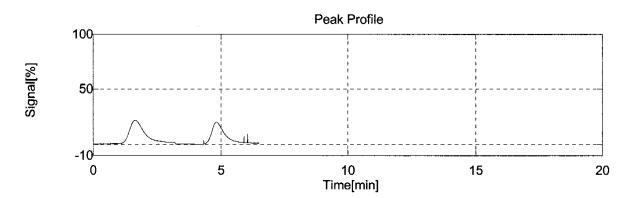
Sample ID:

Remark: Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |
|---------|----------|----------|---------------------|--|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 11:05:11 |  |

| Mean Area | Conc |        | Result | SD     | CV    | Weight | Modified |
|-----------|------|--------|--------|--------|-------|--------|----------|
| 6953      |      | 1.639% |        | 0.1785 | 10.9% | 106.4  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7560 | 107.6  | 1.7655 |       | ***** | 08/28/2012 11:00:36 | b20818s1.cal |
| 2   | 5     | 6347 | 105.1  | 1.5131 |       | ****  | 08/28/2012 11:05:11 | b20818s1.cal |

Accutest Laboratories,



#### **Samples**

Sample Name:

JB13733-11

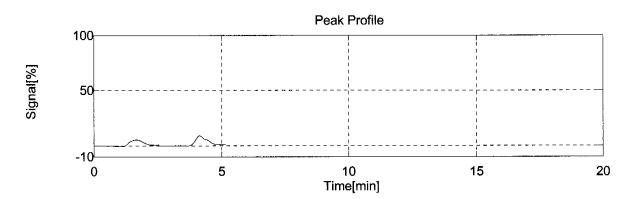
Sample ID: Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 11:17:12 |

| Mean Area | Conc    | Result | SD     | cv    | Weight | Modified |
|-----------|---------|--------|--------|-------|--------|----------|
| 2077      | 0.9550% |        | 0.2356 | 24.7% | 52.85  |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 1809 | 54.90  | 0.78842 |       | ****  | 08/28/2012 11:12:44 | b20818s1.cal |
| 2   | 5     | 2346 | 50.80  | 1.1217  |       | ***** | 08/28/2012 11:17:12 | b20818s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

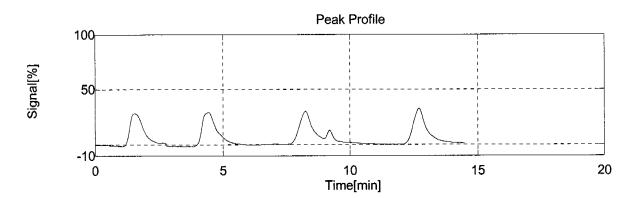
JB13733-12

Sample ID: Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 11:44:54 |

| Mean Area | Conc   | Result | SD     | cv    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 10731     | 2.596% |        | 0.5351 | 20.6% | 104.9  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 8284  | 109.2  | 1.9088 |       | ***** | 08/28/2012 11:21:29 | b20818s1.cal |
| 2   | 5     | 11431 | 102.5  | 2.8166 |       | ***** | 08/28/2012 11:31:20 | b20818s1.cal |
| 3   | 5     | 12694 | 101.3  | 3.1680 |       | ***** | 08/28/2012 11:38:37 | b20818s1.cal |
| 4   | 5     | 10518 | 106.5  | 2.4922 |       | ***** | 08/28/2012 11:44:54 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

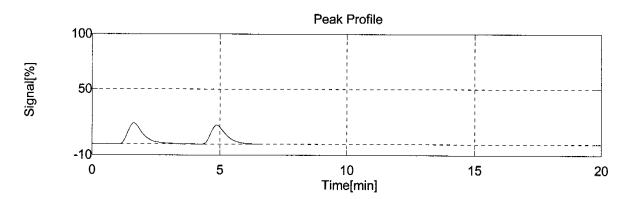
JB13733-13

Sample ID: Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 11:57:25 |

| Mean Area | Conc   | Result | SD      | cv    | Weight | Modified |
|-----------|--------|--------|---------|-------|--------|----------|
| 6742      | 1.635% |        | 0.05580 | 3.41% |        |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 6934 | 103.9  | 1.6747 |       | ***** | 08/28/2012 11:52:14 | b20818s1.cal |
| 2   | 5     | 6550 | 102.9  | 1.5958 |       | ***** | 08/28/2012 11:57:25 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB13733-14

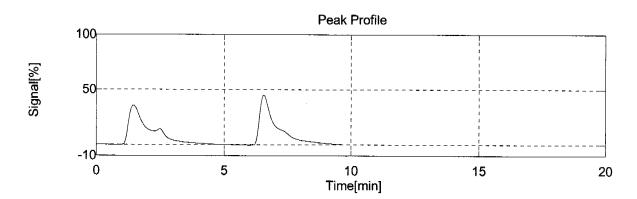
Sample ID:

Remark:

Comment:

Method:

tocss.met


Cal Curve:

1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time |
|---------|----------|----------|-----------|
| Unknown | SSM-TC   | 1.000    |           |

| Mean Area | Conc   | Result | SD      | cv     | Weight | Modified |
|-----------|--------|--------|---------|--------|--------|----------|
| 18489     | 1.298% |        | 0.01296 | 0.998% | 361.1  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 18456 | 363.0  | 1.2889 |       | ***** | 08/28/2012 12:04:36 | b20818s1.cal |
| 2   | 5     | 18522 | 359.2  | 1.3073 |       | ***** | 08/28/2012 12:10:54 | b20818s1.cal |



#### Samples

Sample Name:

JB13733-16

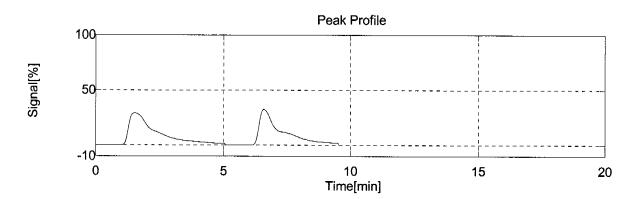
Sample ID: Remark:

Comment:

Method: tocss.met

1: b20818s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time |
|---------|----------|----------|-----------|
| Unknown | SSM-TC   | 1.000    |           |


| Mean Area | Conc   | Result | SD      | cv    | Weight | Modified |
|-----------|--------|--------|---------|-------|--------|----------|
| 16777     | 1.159% |        | 0.05517 | 4.76% | 366.5  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 17815 | 377.0  | 1.1977 |       | ***** | 08/28/2012 12:18:08 | b20818s1.cal |
| 2   | 5     | 15740 | 356.0  | 1.1197 |       | ***** | 08/28/2012 12:26:30 | b20818s1.cal |

Accutest Laboratories,

08/28/2012 17:01:23

JB14312R



#### <u>Samples</u>

Sample Name:

JB13733-18

Sample ID: Remark:

Comment:

Method:

tocss.met

1: b20818s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:00:48 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 16064     | 0.4054% |        | 0.08291 | 20.5% | 1003   |          |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 19295 | 1003   | 0.48772 |       | ***** | 08/28/2012 12:36:03 | b20818s1.cal |
| 2   | 5     | 14889 | 1000   | 0.37691 |       | ***** | 08/28/2012 12:46:51 | b20818s1.cal |
| 3   | 5     | 18060 | 1007   | 0.45465 |       | ***** | 08/28/2012 12:53:55 | b20818s1.cal |
| 4   | 5     | 12012 | 1004   | 0.30241 |       | ***** | 08/28/2012 13:00:48 | b20818s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

CCV

Sample ID:

Remark: Comment:

Method:

tocsscal.met

Cal Curve:

1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:18:41 |

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 9802      | 2.472% |        | 0.06222 | 2.52% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9630 | 2.4277 |       | ****  | 08/28/2012 13:12:57 | b20818s1.cal |
| 2   | 5     | 9975 | 2.5157 | ·     | ****  |                     | b20818s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

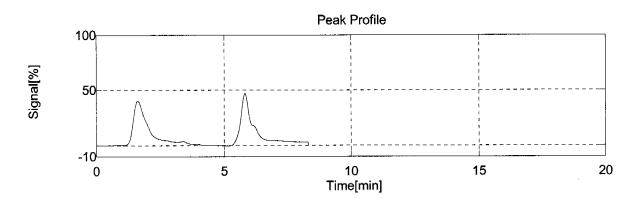
JB13733-19

Sample ID: Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:31:52 |  |  |

| Mean Area | Conc | Result | SD      | cv    | Weight | Modified |
|-----------|------|--------|---------|-------|--------|----------|
| 14054     |      |        | 0.03998 | 1.17% | 103.8  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 14465 | 106.0  | 3.4537 |       | ***** | 08/28/2012 13:24:43 | b20818s1.cal |
| 2   | 5     | 13644 | 101.6  | 3.3971 |       | ***** | 08/28/2012 13:31:52 | b20818s1.cal |

Accutest Laboratories,

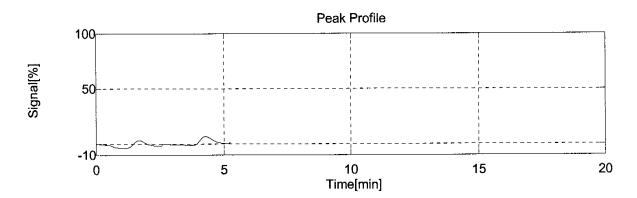


#### Samples

Sample Name: JB13733-21

Sample ID: Remark: Comment:

Method: tocss.met


1: b20818s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:40:26 |

| Mean Area | Conc     | Result | SD      | CV    | Weight | Modified |
|-----------|----------|--------|---------|-------|--------|----------|
| 1860      | 0.08598% |        | 0.01251 | 14.5% | 518.7  |          |

| No. | Range | Area | Weight | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 1683 | 519.5  | 0.077133 |       | ***** | 08/28/2012 13:36:07 | b20818s1.cal |
| 2   | 5     | 2037 | 517.8  | 0.094824 |       | ***** | 08/28/2012 13:40:26 | b20818s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB13733-22

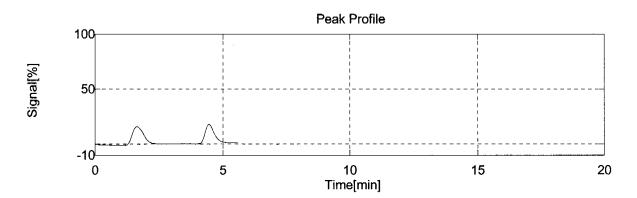
Sample ID: Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 13:51:21 |  |  |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 4347      | 0.2059% |        | 0.02365 | 11.5% | 523.9  |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 4764 | 533.0  | 0.22262 |       | ***** | 08/28/2012 13:47:04 | b20818s1.cal |
| 2   | 5     | 3930 | 514.8  | 0.18917 |       | ***** | 08/28/2012 13:51:21 | b20818s1.cal |

Accutest Laboratories,



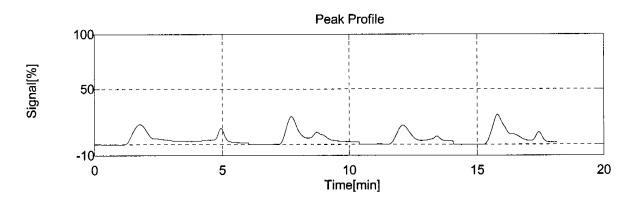
#### <u>Samples</u>

Sample Name: GP66744-D1 Sample ID: JB13733-20

Remark: Comment:

Method: tocss.met

1: b20818s1.cal Cal Curve:


| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 15:12:23 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 10553     | 0.2649% |        | 0.07364 | 27.8% | 1005   |          |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 12773 | 1008   | 0.32047 |       | ***** | 08/28/2012 14:01:00 | b20818s1.cal |
| 2   | 5     | 11084 | 1006   | 0.27807 |       | ***** | 08/28/2012 14:58:14 | b20818s1.cal |
| 3   | 5     | 6314  | 1004   | 0.15758 |       | ****  | 08/28/2012 15:04:46 | b20818s1.cal |
| 4   | 5     | 12043 | 1003   | 0.30350 |       | ***** | 08/28/2012 15:12:23 | b20818s1.cal |

Accutest Laboratories,



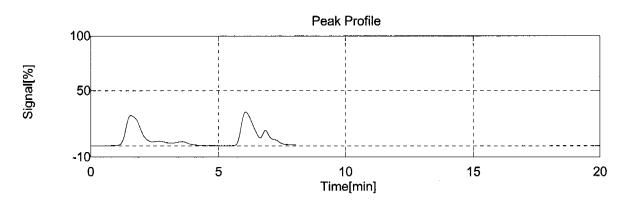


#### <u>Samples</u>

Sample Name: GP66744-S1 Sample ID: JB13733-20

Remark: Comment:

Method: tocss.met


1: b20818s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 15:27:21 |  |  |

| Mean Area | Conc    | Result | SD      | cv | Weight | Modified |
|-----------|---------|--------|---------|----|--------|----------|
| 12227     | 0.5982% |        | 0.01376 |    | 516.7  |          |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 12180 | 523.1  | 0.58843 |       | ***** | 08/28/2012 15:21:06 | b20818s1.cal |
| 2   | 5     | 12274 | 510.3  | 0.60789 |       | ****  | 08/28/2012 15:27:21 | b20818s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

JB13733-11

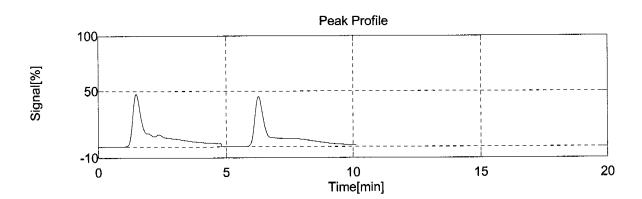
Sample ID: Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20818s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 08/28/2012 15:41:59 |

| Mean Area | Conc | Result | SD      | cv | Weight | Modified |
|-----------|------|--------|---------|----|--------|----------|
| 16619     |      |        | 0.06029 |    | 251.0  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 16450 | 254.8  | 1.6355 |       | ***** | 08/28/2012 15:34:43 | b20818s1.cal |
| 2   | 5     | 16789 | 247.2  | 1.7207 |       | 女女女女女 | 08/28/2012 15:41:59 | b20818s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

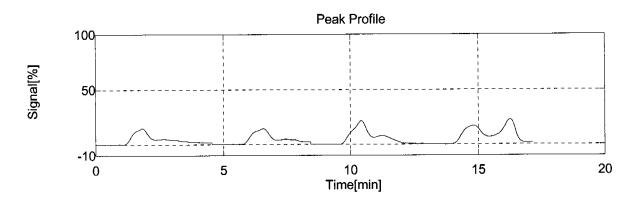
JB13733-21

Sample ID: Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20818s1.cal

|   | Туре    | Analysis | Dilution | Date/Time           |
|---|---------|----------|----------|---------------------|
| Ī | Jnknown | SSM-TC   | 1.000    | 08/28/2012 16:14:43 |

| Mean Area | Conc    | Result | SD     | cv    | Weight | Modified |
|-----------|---------|--------|--------|-------|--------|----------|
| 10266     | 0.2585% |        | 0.1010 | 39.1% | 1002   | _        |

| No. | Range | Area  | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 7494  | 1005   | 0.18728 |       | ****  | 08/28/2012 15:51:15 | b20818s1.cal |
| 2   | 5     | 6876  | 1001   | 0.17233 |       | ***** | 08/28/2012 15:57:51 | b20818s1.cal |
| 3   | 5     | 11236 | 1000   | 0.28362 |       | ***** | 08/28/2012 16:06:38 | b20818s1.cal |
| 4   | 5     | 15458 | 1002   | 0.39064 |       | ***** | 08/28/2012 16:14:43 | b20818s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

CCV

Sample ID: Remark:

Comment:

Method: Cal Curve: tocsscal.met

1: b20818s1.cal

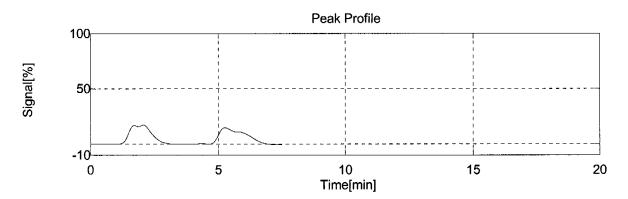
| Type | Analysis | Dilution |
|------|----------|----------|

| Unknown   | SSM-TC | 1.000  |    | 08/28 | /2012 16:40:27 |
|-----------|--------|--------|----|-------|----------------|
|           |        |        |    |       | Madified       |
| Mean Area | Conc   | Result | SD | CV    | Modified       |

2.353%

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9137 | 2.3019 |       | ***** | 08/28/2012 16:33:00 | b20818s1.cal |
| 2   | 5     | 9539 | 2.4045 |       | ***** | 08/28/2012 16:40:27 | b20818s1.cal |

Accutest Laboratories,


9338

08/28/2012 17:01:23

Date/Time

3.08%

0.07250



#### Statistics / Summary

| Sample Name | Analysis | Conc.      | Abs C [μg] |
|-------------|----------|------------|------------|
| CRI         | SSM-TC   | 0.08928 %  | 89         |
| HSTD        | SSM-TC   | 4.908 %    | 4907       |
| ICV         | SSM-TC   | 1.827 %    | 1826       |
| ccv         | SSM-TC   | 2.422 %    | 2421       |
| GP66744-MB1 | SSM-TC   | -0.00286 % | -28        |
| GP66744-B1  | SSM-TC   | 0.1751 %   | 1750       |
| JB13733-20  | SSM-TC   | 0.3223 %   | 3232       |
| JB13733-10  | SSM-TC   | 1.639 %    | 1745       |
| JB13733-11  | SSM-TC   | 1.317 %    | 2355       |
| JB13733-12  | SSM-TC   | 2.596 %    | 2708       |
| JB13733-13  | SSM-TC   | 1.635 %    | 1691       |
| JB13733-14  | SSM-TC   | 1.298 %    | 4687       |
| JB13733-16  | SSM-TC   | 1.159 %    | 4250       |
| JB13733-18  | SSM-TC   | 0.4054 %   | 4068       |
| JB13733-19  | SSM-TC   | 3.425 %    | 3556       |
| JB13733-21  | SSM-TC   | 0.1722 %   | 1517       |
| JB13733-22  | SSM-TC   | 0.2059 %   | 1080       |
| GP66744-D1  | SSM-TC   | 0.2649 %   | 2663       |
| GP66744-S1  | SSM-TC   | 0.5982 %   | 3090       |

Accutest Laboratories,

08/28/2012 17:01:23



Page 24 / 24

|    | ,              | T         |              |         | *************************************** | ···-      | GA        | / 714  |
|----|----------------|-----------|--------------|---------|-----------------------------------------|-----------|-----------|--------|
|    | Sample<br>Name | Sample ID | Method       | Туре    | Date / Time                             | Conc.     | Mean Area | cv     |
| 1  | CRI            |           | tocsscal.met | Unknown | 09/04/12 09:3                           | 0.09412 % | 391       | 25.0%  |
| 2  | CRI            |           | tocsscal.met | Unknown | 09/04/12 09:3                           | 0.09412 % | 391       | 25.0%  |
| 3  | HSTD           |           | tocsscal.met | Unknown | 09/04/12 09:5                           | 5.057 %   | 19098     | 1.18%  |
| 4  | HSTD           |           | tocsscal.met | Unknown | 09/04/12 09:5                           | 5.057 %   | 19098     | 1,18%  |
| 5  | ICV            | KHP       | tocsscal.met | Unknown | 09/04/12 10:1                           | 1.927 %   | 7157      | 1.66%  |
| 6  | ICV            | KHP       | tocsscal.met | Unknown | 09/04/12 10:1                           | 1.927 %   | 7157      | 1.66%  |
| 7  | CCV            |           | tocsscal.met | Unknown | 09/04/12 10:3                           | 2.689 %   | 9827      | 1.71%  |
| 8  | CCV            |           | tocsscal.met | Unknown | 09/04/12 10:3                           | 2.689 %   | 9827      | 1.71%  |
| 9  | GP66744-MB     | TOCLK     | tocss.met    | Unknown | 09/04/12 10:4                           | 0.000 %   | 0         | 0.00%  |
| 10 | GP66744-MB     | TOCLK     | tocss.met    | Unknown | 09/04/12 10:4                           | 0.000 %   | 0         | 0.00%  |
| 11 | GP66744-B2     |           | tocss.met    | Unknown | 09/04/12 11:0                           | 0.1919 %  | 7129      | 1.02%  |
| 12 | GP66744-B2     |           | tocss.met    | Unknown | 09/04/12 11:0                           | 0.1919 %  | 7129      | 1.02%  |
| 13 | JB14312-15R    |           | tocss.met    | Unknown | 09/04/12 11:1                           | 0.07983 % | 2650      | 1.74%  |
| 14 | JB14312-15R    |           | tocss.met    | Unknown | 09/04/12 11:1                           | 0.07983 % | 2650      | 1.74%  |
| 15 | JB15015-1R     |           | tocss.met    | Unknown | 09/04/12 11:2                           | 0.08386 % | 357       | 103%   |
| 16 | JB15015-1R     |           | tocss.met    | Unknown | 09/04/12 11:2                           | 0.08386 % | 357       | 103%   |
| 17 | JB15015-1R     |           | tocss.met    | Unknown | 09/04/12 12:4                           | 0.06113 % | 2442      | 42.5%  |
| 18 | JB15015-1R     |           | tocss.met    | Unknown | 09/04/12 12:4                           | 0.06113 % | 2442      | 42.5%  |
| 19 | JB15015-1R     |           | tocss.met    | Unknown | 09/04/12 12:4                           | 0.06113 % | 2442      | 42.5%  |
| 20 | JB15015-1R     |           | tocss.met    | Unknown | 09/04/12 12:4                           | 0.06113 % | 2442      | 42.5%  |
| 21 | CCV            | =70.0.    | tocsscal.met | Unknown | 09/04/12 13:0                           | 2.655 %   | 9706      | 0.672% |
| 22 | CCV            |           | tocsscal.met | Unknown | 09/04/12 13:0                           | 2.655 %   | 9706      | 0.672% |
| 23 | JB14201-12R    |           | tocss.met    | Unknown | 09/04/12 13:2                           | 25.64 %   | 112645    | 0.00%  |
| 24 | JB14201-12R    |           | tocss.met    | Unknown | 09/04/12 14:2                           | 24.33 %   | 7928      | 19.0%  |
| 25 | JB14201-12R    | ****      | tocss.met    | Unknown | 09/04/12 14:2                           | 24.33 %   | 7928      | 19.0%  |
| 26 | JB14201-12R    |           | tocss.met    | Unknown | 09/04/12 14:2                           | 24.33 %   | 7928      | 19.0%  |
| 27 | JB14201-12R    | 1100      | tocss.met    | Unknown | 09/04/12 14:2                           | 24.33 %   | 7928      | 19.0%  |
| 28 | JB14519-15R    |           | tocss.met    | Unknown | 09/04/12 14:5                           | 3.853 %   | 7318      | 17.9%  |
| 29 | JB14519-15R    |           | tocss.met    | Unknown | 09/04/12 14:5                           | 3.853 %   | 7318      | 17.9%  |
| 30 | JB14519-15R    |           | tocss.met    | Unknown | 09/04/12 14:5                           | 3.853 %   | 7318      | 17.9%  |
| 31 | JB14519-15R    |           | tocss.met    | Unknown | 09/04/12 14:5                           | 3.853 %   | 7318      | 17.9%  |
| 32 | CCV            |           | tocsscal.met | Unknown | 09/04/12 15:0                           | 2.662 %   | 9731      | 0.647% |
| 33 | CCV            |           | tocsscal.met | Unknown | 09/04/12 15:0                           | 2.662 %   | 9731      | 0.647% |

| 4675071 |    | 4 |      |     |
|---------|----|---|------|-----|
| ***     |    | • |      |     |
| ₩.      | ÄC |   | JTES | 3T. |

TOCK

620904S1.TOC

Test: Total Organic Carbon

Product: TOC

Balance ID: 39

Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle-one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID 71475 Date 9 4 12

| Sample ID   | Sample Weight | Bottle #     | Sample Description & comments |
|-------------|---------------|--------------|-------------------------------|
| CRI         |               |              |                               |
| 1+57D       |               |              |                               |
| ICV (KHP)   |               |              |                               |
| ccV         |               |              |                               |
| GP66744-MB2 | 1.0000        |              |                               |
|             | 1.0000        |              |                               |
| GP66744- BZ | 1.0000        | 2 - 18 HZ 77 |                               |
|             | 1,0000        |              | ·                             |
| JB14312-15R | 0,8385        | 2            |                               |
|             | 0.8328        |              |                               |
|             | 0.8475        |              | * .                           |
|             | 0.8262        |              |                               |
| JB15015-1R  | 6.1038        | 2_           |                               |
|             | 0.1019        |              |                               |
|             | 0.1009        |              |                               |
|             | 0.1034        |              |                               |
| 3815015-1R  | 1.0066        | 2.           | weight too low resulting      |
|             | 1.0063        |              | 7                             |
|             | 1.0004        |              | ,                             |
|             | 1.00\$5       |              |                               |
| CCV         | •             |              |                               |
| JB14201-12R | 0.1028        | 15           | overrage serum 0.019          |
|             | 0.1008        |              | 0                             |
|             | 0.1046        |              |                               |

| Analyst: Analyst: Manager Review: | Date: 9 4 12_     | QCReviewer:       | Date:       |              |           |
|-----------------------------------|-------------------|-------------------|-------------|--------------|-----------|
| Comments:                         |                   |                   |             |              |           |
|                                   | BS - 100 pl of 20 | 000 mack -> 1.0 g | Solica Sand | TV= 2000 mg/ | <u>kg</u> |
|                                   |                   | سدمدو             |             |              | <u> </u>  |

Form: GN-058a Rev. Date: 11/11/08



Product: TOC





Test: Total Organic Carbon

Units = mg/kg Balance ID:

Method: Corp. Eng. 81 M/SW846 9060 M of EPA Region 2 Lloyd Kahn (circle one)

GN Batch ID 71475
Date 914/12

RDL = 1000 mg/kg or 100 mg/kg (circle one) Analyst

| JB14201-12A<br>ect | 0.1010 0.0091 0.0089 0.0091 |          |       |
|--------------------|-----------------------------|----------|-------|
| ecv                | 0.0080                      |          |       |
| ecv                | 0.0080                      |          |       |
|                    | 0.0089                      |          |       |
|                    | 0.0091                      |          |       |
|                    |                             |          |       |
| i e                |                             |          |       |
| JB14519-15RT       | 0.0512                      | 1 , 22 . |       |
|                    | 0.0802                      | ,        |       |
|                    | 0.0515                      |          |       |
|                    | 0.0520                      |          |       |
| cev                |                             |          | 9.    |
|                    |                             |          |       |
|                    |                             |          |       |
|                    |                             |          |       |
|                    |                             |          |       |
|                    |                             |          | •     |
|                    |                             |          |       |
|                    | <u></u>                     |          |       |
|                    |                             |          |       |
|                    |                             |          |       |
|                    |                             |          |       |
|                    |                             |          |       |
|                    |                             |          |       |
|                    |                             |          |       |
| yst: 3 Da          | te: 9/4//2 OCRavia          | Wer.     | Date: |
| ager Review:       | te: 9/4//2 QCRevie          |          |       |

Form: GN-058a Rev. Date: 11/11/08



# ACCUTEST

# GENERAL CHEMISTRY STANDARD PREPARATION LOG

Product: TECLK GN or GP Number: GN71475

|                      |                       | _             |                          |          |             |              |            |         |        |
|----------------------|-----------------------|---------------|--------------------------|----------|-------------|--------------|------------|---------|--------|
|                      |                       |               | Stock                    |          |             | Final Conc.  |            |         |        |
| Intermediate         | Stock used to         | Stock         | volume used              |          | Final       | Intermediate | Expiration |         |        |
| Standard Description | prepare standard      | concentration | in m                     | Diluent  | Volume      | (mg/l)       | Date       | Analyst | Date   |
| UNEB-33597-De        | Emo Hoociis           | Surrese       | 43.29                    | DI 12    | 10001       | 200 000      | 9/25/12    | 1       | 9/4/12 |
|                      |                       |               | 7                        |          |             |              |            | 7       |        |
| (AME8-35398-TOC      | Fishey 120314         | Glycose       | 12.59                    | 7        | >           | 50,000       | ->         | 7       | V      |
|                      |                       |               |                          |          |             |              |            |         |        |
|                      |                       |               |                          |          | -           |              |            |         |        |
| ·                    | Intermediate or Stock | Intermediate  | Intermediate<br>or Stock |          | ·           | Final Conc.  |            |         |        |
|                      | used to prepare       | or Stock      | volume used              | ,        | Final       | of Standard  | Expiration | ,       | ii.    |
| Standard Description | standard              | Ę.            | in mi                    | Diluent  | Volume      | (l/gm)       | Date       | Analyst | Date   |
| Sucrese STDS         |                       |               |                          |          |             |              |            |         |        |
| UNEB -33399-TOC      | 6NE8-33397-10C        | 200 000       | 0.5                      | DIA      | 14001       | 000          | 9/25/113   | B       | 9/4/12 |
| 6~1E9-33400-1De      |                       |               | 2.5                      | _        | _           | 0009         | 3          | H       | 1      |
| 6NE8-33401-TDC       |                       |               | 6.0                      |          |             | 0000         |            |         |        |
| 6NEB-33402-70C.      |                       |               | 12.5                     |          |             | 0,009,5      |            |         |        |
| JOT - 23 405 - 4DC   |                       |               | 0-07                     |          |             | 00007        |            |         | _      |
| 6NEB-33 404-TOC      | >                     | ->            | 0.57                     | <b>→</b> | <del></del> | 00009        | P          | ->      |        |
| ,                    |                       |               |                          |          |             |              |            |         |        |
| BIVEASE STD          |                       |               |                          |          |             | -            |            |         | _      |
| 6NE8-33408-TOC       | 6NE8-33398-1DC        | 50000         | 40.0                     | OI BO    | 100mc       | 20000        | 412512     | 1       |        |
| 6 NEB - 33409-12C    | ->                    | <b>~</b>      | 50.0                     | Ŷ        | <b>→</b>    | 25000        | ->         | څ       | y      |
|                      |                       |               |                          |          |             |              |            |         |        |
|                      | •                     |               |                          | •        |             |              |            |         |        |
|                      |                       |               |                          |          |             |              |            |         |        |

Form: GN121 . Rev. Date:2/26/03



3-39 Balance blass Piltets class A:



## TOCLK

GN 71475

# Reagent Information Log - TOC - Soil

| Reagent                             | Reagent # or Manufacturer/Lot |     |
|-------------------------------------|-------------------------------|-----|
| Sucrose Stock Solution, 200000 mg/L | 6NE8-33397-70c 9/2            |     |
| Glucose Stock Solution, 50000 ug/L  | GNE8-33398-TOC 9/2            |     |
| Glucose Check Solution, 25000 ug/L  | GNES- 33409- TOC 9/25         | -   |
| Nitric Acid, Reagent Grade          | K50030 Baken 2/7/             |     |
| Glucose Stock Solution, 2000 ug/L   | GNEE-42408-TOC 9/25           |     |
| CHP 20000ppm soluted                | 64 STK - 863-TOC 11/14        | 12_ |
|                                     |                               |     |
|                                     |                               |     |
|                                     |                               | ٠   |
| *                                   |                               |     |
|                                     |                               |     |
|                                     |                               |     |
|                                     |                               |     |

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN-087 1-66 Rev. Date: 4/26/01



### 7.2

# **TOC-Control**

#### **General Information**

Organization:

**Accutest Laboratories** 

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20829S1.TOC

Comment:

**Instrument Conditions** 

Instrument Attachments:

TOC-5000 + SSM 5000

**Calibration Curves** 

Filename:

b20828s1.cal

Title:

b20828s1.cal

Calculation method:

Lin. regression without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume | CNV | λbs C [μg | SD | CV    |
|-------------|-----------|--------|----------------|-----------|--------|-----|-----------|----|-------|
| STDA        | 0.0       | 0.000  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDB        | 0.1       | 0.1000 | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDC        | 0.5       | 0.5000 | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDD        | 1.0       | 1.000  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDE        | 2.5       | 2.500  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDF        | 4.0       | 4.000  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |
| STDG        | 5.0       | 5.000  | 1              | 0         | 0.000  | 0   | 0.000     | 0  | 0.00% |

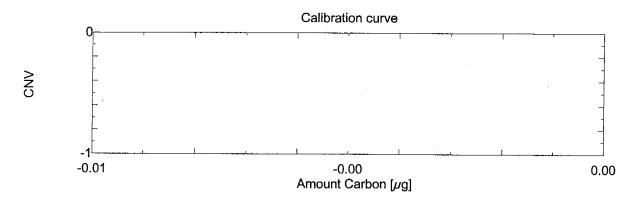
Slope:

0.0000

Intercept:

0.0000

R^2:


0.00000

Accutest Laboratories,

08/29/2012 15:35:44

# N

# **TOC-Control**



#### **Calibration Curves**

Filename:

b20829s1.cal

Title:

b20829s1.cal

Calculation method:

Point to point without zero shift

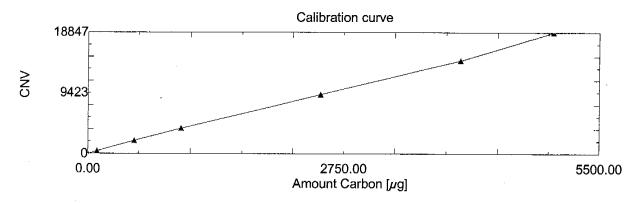
| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume   | CNV   | vpa C [hā | SD  | cv     |
|-------------|-----------|--------|----------------|-----------|----------|-------|-----------|-----|--------|
| STDA        | 0.0       | 0.000  | 2              | 0         | 0.00000  | 0     | 0.000     | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 2              | 417       | 0.00000  | 417   | 100.0     | 73  | 17.6%  |
| STDC        | 0.5       | 0.5000 | 2              | 2013      | 0.00000  | 2012  | 500.0     | 111 | 5.52%  |
| STDD        | 1.0       | 1.000  | 2              | 3920      | 0.1833   | 3920  | 1000      | 202 | 5.16%  |
| STDE        | 2.5       | 2.500  | 2              | 9161      | 100.0    | 9160  | 2500      | 557 | 6.09%  |
| STDF        | 4.0       | 4.000  | 2              | 14454     | 0.00000  | 14454 | 4000      | 328 | 2.27%  |
| STDG        | 5.0       | 5.000  | 2              | 18847     | 66639420 | 18846 | 5000      | 146 | 0.777% |

Slope:

4.1700

Intercept:


0.0000

R^2:

0.00000

Accutest Laboratories,

08/29/2012 15:35:44



#### <u>Samples</u>

Sample Name:

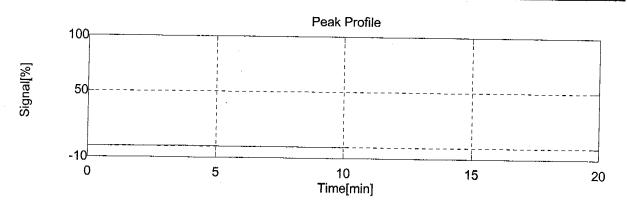
**STDA** 

Sample ID:

0.0

Remark:

Comment:


Cal Curve:

1: b20829s1.cal

| Туре     | Type Analysis |       | Date/Time           |
|----------|---------------|-------|---------------------|
| Standard | SSM-TC        | 1.000 | 08/29/2012 12:28:19 |

| Mean Area | Conc   | Result | SD    | cv    | CNV | Modified |
|-----------|--------|--------|-------|-------|-----|----------|
| 0         | 0.000% |        | 0.000 | 0.00% | 0   |          |

| No. | Range | Area | CNV | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|-----|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 0   | 0.0000 |       | ***** | 08/29/2012 12:14:56 | b20829s1.cal |
| 2   | 5     | 0    | 0   | 0.0000 |       | ***** | 08/29/2012 12:28:19 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

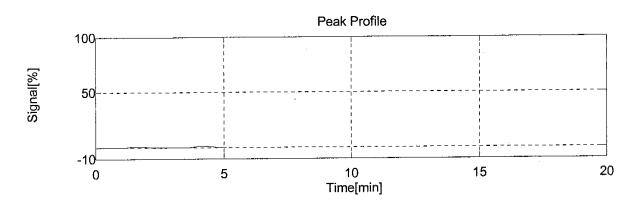
STDB

Sample ID:

0.1

Remark:

Comment:


Cal Curve:

1: b20829s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 12:53:01 |

| Mean Area | Conc    | Result | SD    | cv    | CNV | Modified |
|-----------|---------|--------|-------|-------|-----|----------|
| 417       | 0.1000% |        | 0.000 | 0.00% | 417 |          |

| No. | Range | Area | CNV | Conc    | Exci. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|-----|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 365  | 365 | 0.10000 |       | ****  | 08/29/2012 12:43:49 | b20829s1.cal |
| 2   | 5     | 469  | 469 | 0.10000 |       | ***** | 08/29/2012 12:53:01 | b20829s1.cal |



### <u>Samples</u>

Sample Name:

STDC

Sample ID:

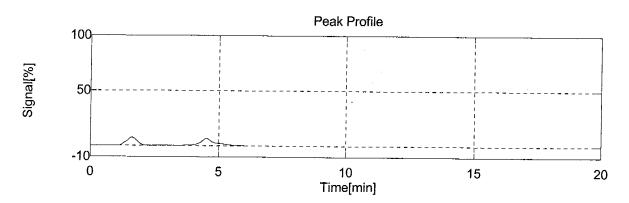
0.5

Remark:

Comment:

Cal Curve:

1: b20829s1.cal


| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 13:02:52 |

| Mean Area | Conc    | Result | SD    | cv    | CNV  | Modified |
|-----------|---------|--------|-------|-------|------|----------|
| 2012      | 0.5000% |        | 0.000 | 0.00% | 2012 |          |

| No. | Range | Area | CNV  | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 1934 | 1934 | 0.50000 |       | ****  | 08/29/2012 12:56:52 | b20829s1.cal |
| 2   | 5     | 2091 | 2091 | 0.50000 |       | ***** | 08/29/2012 13:02:52 | b20829s1.cal |

08/29/2012 15:35:44

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

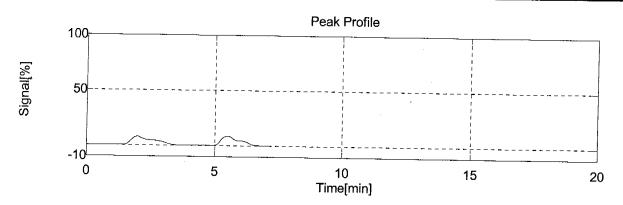
STDD

Sample ID:

1.0

Remark:

Comment:


Cal Curve:

1: b20829s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 13:22:58 |

| Mean Area | Conc • | Result | SD    | cv    | CNV  | Modified |
|-----------|--------|--------|-------|-------|------|----------|
| 3920      | 1.000% |        | 0.000 | 0.00% | 3920 |          |

| No. | Range | Area | CNV  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 4063 | 4063 | 1.0000 |       | ***** | 08/29/2012 13:13:29 | b20829s1.cal |
| 2   | 5     | 3777 | 3777 | 1.0000 |       | ***** | 08/29/2012 13:22:58 | b20829s1.cal |



### Samples

Sample Name:

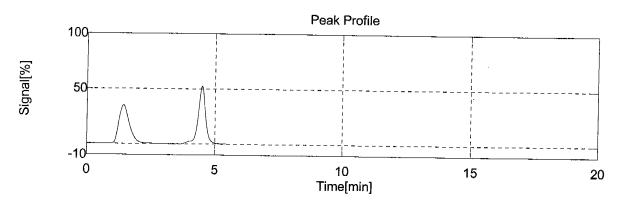
STDE

Sample ID:

2.5

Remark:

Comment:


Cal Curve:

1: b20829s1.cal

| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 13:38:27 |

| Mean Area | Conc   | Result | ·····SD | cv    | CNV  | Modified |
|-----------|--------|--------|---------|-------|------|----------|
| 9160      | 2.500% |        | 0.000   | 0.00% | 9160 |          |

| No. | Range | Area | CNV  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 8766 | 8766 | 2.5000 |       | ***** | 08/29/2012 13:30:59 | b20829s1.cal |
| 2   | . 5   | 9555 | 9555 | 2.5000 |       | ****  | 08/29/2012 13:38:27 | b20829s1.cal |



### **Samples**

Sample Name:

STDF

Sample ID:

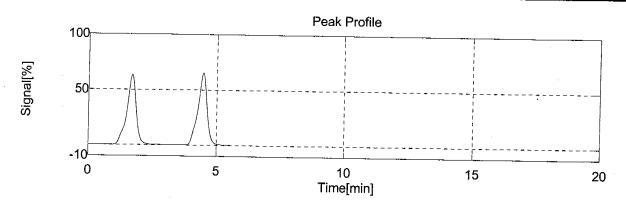
4.0

Remark:

Comment:

Cal Curve:

1: b20829s1.cal


| Туре     | Analysis | Dilution | Date/Time           |
|----------|----------|----------|---------------------|
| Standard | SSM-TC   | 1.000    | 08/29/2012 13:51:07 |

| Mean Area | Conc   | Rešult | SD    | cv    | CNV   | Modified |
|-----------|--------|--------|-------|-------|-------|----------|
| 14454     | 4.000% |        | 0.000 | 0.00% | 14454 |          |

| No. | Range | Area           | CNV   | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|----------------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 14222          | 14222 | 4.0000 |       | ***** | 08/29/2012 13:47:02 | b20829s1.cal |
| 2   | • 5   | <b>,</b> 14686 | 14686 | 4.0000 |       | ***** | 08/29/2012 13:51:07 | b20829s1.cal |

Accutest Laboratories,

08/29/2012 15:35:44



### <u>Samples</u>

Sample Name:

STDG

Sample ID:

5.0

Remark:

Comment:

Cal Curve:

1: b20829s1.cal

| т        |          |          |                     |
|----------|----------|----------|---------------------|
| Туре     | Analysis | Dilution | Date/Time           |
| Standard | SSM-TC   | 1.000    | 08/29/2012 14:00:05 |

| Mean Area | Conc   | Result | SD    | CV    | CNV   | Modified |
|-----------|--------|--------|-------|-------|-------|----------|
| 18846     | 5.000% |        | 0.000 | 0.00% | 18846 |          |

| No. | Range | Агеа  | CNV     | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|---------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 18950 | 18950   | 5.0000 |       | ***** | 08/29/2012 13:55:36 | b20829s1.cal |
| 2   | 5     | 18743 | . 18743 | 5.0000 |       | ****  | 08/29/2012 14:00:05 | b20829s1.cal |

Accutest Laboratories,

08/29/2012 15:35:44

### 7.2

### **TOC-Control**

### **General Information**

Organization:

**Accutest Laboratories** 

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20904S1.TOC

Comment:

Instrument Conditions

Instrument Attachments:

TOC-5000 + SSM 5000

**Calibration Curves** 

Filename:

b20829s1.cal

Title:

b20829s1.cal

Calculation method:

Point to point without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume   | CNV   | lbs C [μg | SD  | CV     |
|-------------|-----------|--------|----------------|-----------|----------|-------|-----------|-----|--------|
| STDA        | 0.0       | 0.000  | 2              | 0         | 0.00000  | 0     | 0.000     | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 2              | 417       | 0.00000  | 417   | 100.0     | 73  | 17.6%  |
| STDC        | 0.5       | 0.5000 | 2              | 2013      | 0.00000  | 2012  | 500.0     | 111 | 5.52%  |
| STDD        | 1.0       | 1.000  | 2              | 3920      | 0.1833   | 3920  | 1000      | 202 | 5.16%  |
| STDE        | 2.5       | 2.500  | 2              | 9161      | 100.0    | 9160  | 2500      | 557 | 6.09%  |
| STDF        | 4.0       | 4.000  | 2              | 14454     | 0.00000  | 14454 | 4000      | 328 | 2.27%  |
| STDG        | 5.0       | 5.000  | 2              | 18847     | 66639420 | 18846 | 5000      | 146 | 0.777% |

 Slope:
 4.1700

 Intercept:
 0.0000

 R^2:
 0.00000

Accutest Laboratories,

### 7.2

### **TOC-Control**

### Samples

Sample Name:

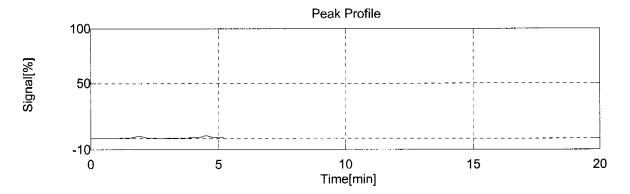
CRI

Sample ID:

Remark: Comment:

Method:

tocsscal.met


Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 09:38:38 |

| Mean Area | Conc     | Result | SD      | cv    | Modified |
|-----------|----------|--------|---------|-------|----------|
| 391       | 0.09412% |        | 0.02356 | 25.0% |          |

| No. | Range | Area | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 460  | 0.11078  |       | ***** | 09/04/2012 09:32:22 | b20829s1.cal |
| 2   | 5     | 323  | 0.077458 |       | ***** | 09/04/2012 09:38:38 | b20829s1.cal |



Page 2 / 15

### <u>Samples</u>

Sample Name:

HSTD

Sample ID:


Remark:

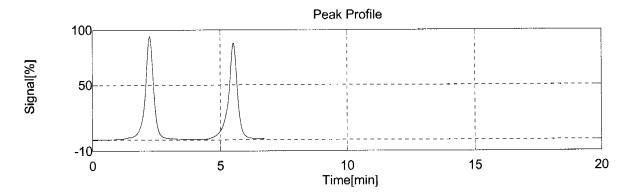
Comment:

Method:

tocsscal.met

Accutest Laboratories,




Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 09:52:44 |

| Mean Area | Conc   | Result | SD      | cv | Modified |
|-----------|--------|--------|---------|----|----------|
| 19098     | 5.057% |        | 0.05956 |    |          |

| No. | Range | Area  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 18913 | 5.0151 |       | ***** | 09/04/2012 09:47:08 | b20829s1.cal |
| 2   | 5     | 19283 | 5.0994 |       | ****  | 09/04/2012 09:52:44 | b20829s1.cal |



### <u>Samples</u>

Sample Name:

ICV

Sample ID:

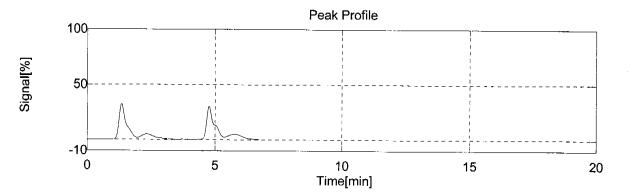
KHP

Remark:

Comment: Method:

tocsscal.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 10:13:08 |

Accutest Laboratories,

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 7157      | 1.927% |        | 0.03198 | 1.66% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7236 | 1.9491 |       | ****  | 09/04/2012 10:06:30 | b20829s1.cal |
| 2   | 5     | 7078 | 1.9039 |       | ****  | 09/04/2012 10:13:08 | b20829s1.cal |



### <u>Samples</u>

Sample Name:

CCV

Sample ID:

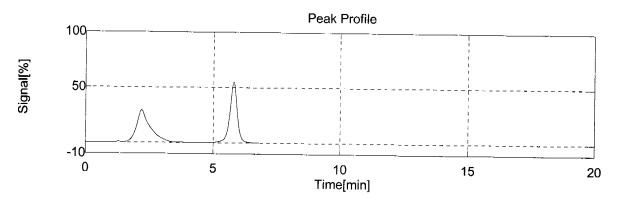
Remark:

Comment:

Method:

tocsscal.met

Cal Curve:


1: b20829s1.cal

|     | Туре | Analysis | Dilution | Date/Time           |
|-----|------|----------|----------|---------------------|
| Unk | nown | SSM-TC   | 1.000    | 09/04/2012 10:31:34 |

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 9827      | 2.689% |        | 0.04588 | 1.71% |          |

Accutest Laboratories,

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9713 | 2.6566 |       | ***** | 09/04/2012 10:21:05 | b20829s1.cal |
| 2   | 5     | 9942 | 2.7215 |       | ***** | 09/04/2012 10:31:34 | b20829s1.cal |



### <u>Samples</u>

Sample Name:

GP66744-MB2

Sample ID:

**TOCLK** 

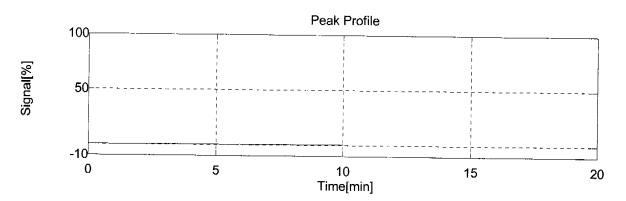
Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 10:46:01 |

|   | Mean Area | Conc   | Result | SD    | CV    | Weight | Modified |
|---|-----------|--------|--------|-------|-------|--------|----------|
| i | 0         | 0.000% |        | 0.000 | 0.00% | 1000   |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 1000   | 0.0000 |       | ***** | 09/04/2012 10:39:07 | b20829s1.cal |
| 2   | 5     | 0    | 1000   | 0.0000 |       | ***** | 09/04/2012 10:46:01 | b20829s1.cai |

Accutest Laboratories,



### Samples

Sample Name:

GP66744-B2

Sample ID:

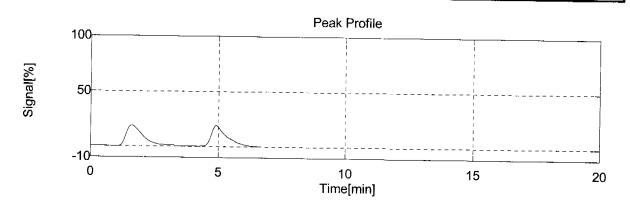
Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 11:03:38 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 7129      | 0.1919% |        | 0.00196 | 1.02% | 1000   |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 7178 | 1000   | 0.19325 |       | ***** | 09/04/2012 10:56:08 | b20829s1.cal |
| 2   | 5     | 7081 | 1000   | 0.19048 |       | ***** | 09/04/2012 11:03:38 | b20829s1.cal |

Page 6 / 15



### Samples

Sample Name:

JB14312-15R

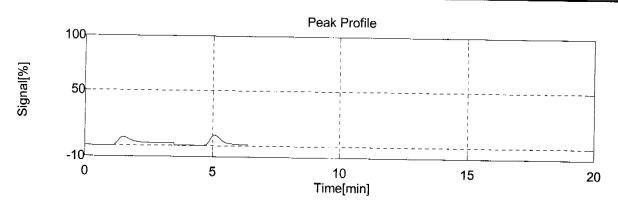
Sample ID:

Remark: Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 11:13:59 |

| Mean Area | Conc     | Result | SD      | CV    | Weight | Modified |
|-----------|----------|--------|---------|-------|--------|----------|
| 2650      | 0.07983% |        | 0.00139 | 1.74% | 835.7  |          |

| No. | Range | Area | Weight | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 2690 | 838.5  | 0.080810 |       | ****  | 09/04/2012 11:09:21 | b20829s1.cal |
| 2   | . 5   | 2610 | 832.8  | 0.078845 |       | ***** | 09/04/2012 11:13:59 | b20829s1.cal |

Accutest Laboratories,



### Samples

Sample Name:

JB15015-1R

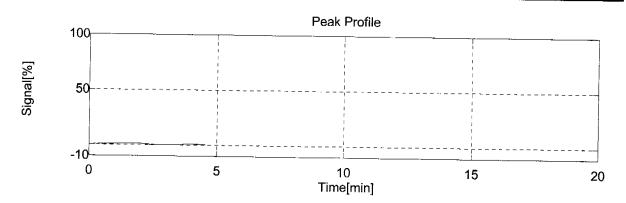
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 11:23:40 |

| Mean Area | Conc     | Result | SD      | cv   | Weight | Modified |
|-----------|----------|--------|---------|------|--------|----------|
| 357       | 0.08386% |        | 0.08665 | 103% | 102.9  |          |

| No. | Range | Area | Weight | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 619  | 103.8  | 0.14513  |       | ****  | 09/04/2012 11:18:46 | b20829s1.cal |
| 2   | 5     | 96   | 101.9  | 0.022592 |       | ***** | 09/04/2012 11:23:40 | b20829s1 cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

JB15015-1R

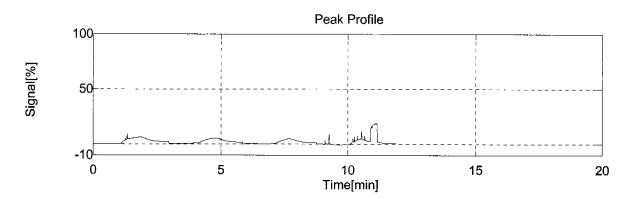
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 12:44:23 |

|   | Mean Area | Conc     | Result | SD      | cv    | Weight | Modified |
|---|-----------|----------|--------|---------|-------|--------|----------|
| L | 2442      | 0.06113% |        | 0.02600 | 42.5% | 1005   |          |

| No. | Range | Area | Weight | Conc     | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|----------|-------|-------|---------------------|--------------|
| 1   | 5     | 2589 | 1007   | 0.064684 | -     | ***** | 09/04/2012 12:18:49 | b20829s1.cal |
| 2   | 5     | 1843 | 1006   | 0.045464 |       | ***** | 09/04/2012 12:24:15 | b20829s1.cal |
| 3   | 5     | 1537 | 1000   | 0.038064 |       | ***** | 09/04/2012 12:35:03 | b20829s1.cal |
| 4   | 5     | 3800 | 1006   | 0.096325 |       |       | 09/04/2012 12:44:23 | b20829s1.cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

CCV

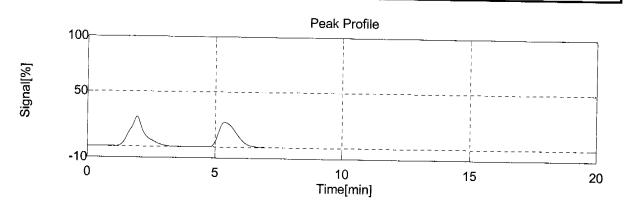
Sample ID:

Remark:

Comment:

Method:

tocsscal.met


Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 13:01:49 |

| Mean Area | Conc   | Result | SD      | CV     | Modified |
|-----------|--------|--------|---------|--------|----------|
| 9706      | 2.655% |        | 0.01783 | 0.672% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9751 | 2.6673 |       | ***** | 09/04/2012 12:51:39 | b20829s1.cal |
| 2   | 5     | 9662 | 2.6421 |       | ****  | 09/04/2012 13:01:49 | b20829s1.cal |



### <u>Samples</u>

Sample Name:

JB14201-12R

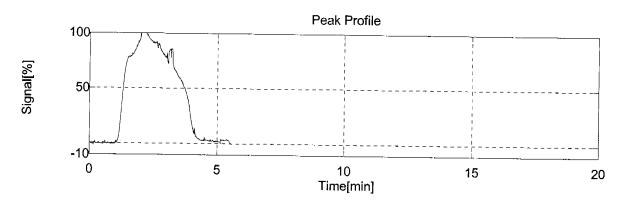
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 13:28:45 |

| Mean Area | Conc   | Result | SD    | cv    | Weight | Modified |
|-----------|--------|--------|-------|-------|--------|----------|
| 112645    | 25.64% |        | 0.000 | 0.00% | 102.8  |          |

| No. | Range | Area   | Weight | Conc   | Excl. | Notes  | Date/Time           | Cal Curve    |
|-----|-------|--------|--------|--------|-------|--------|---------------------|--------------|
| 1   | 5     | 112645 | 102.8  | 25.636 |       | **h*** | 09/04/2012 13:28:45 | b20829s1.cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

JB14201-12R

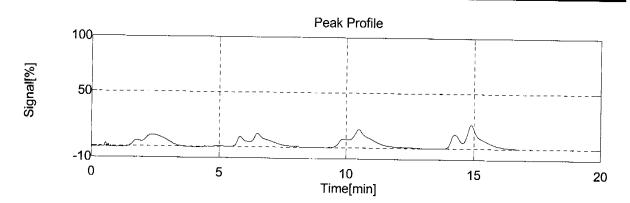
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 14:22:42 |

| Mean Area | Conc   | Result | SD    | cv    | Weight | Modified |
|-----------|--------|--------|-------|-------|--------|----------|
| 7928      | 24.33% |        | 4.631 | 19.0% | 8.775  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7199 | 9.100  | 21.303 |       | ***** | 09/04/2012 14:04:19 | b20829s1.cal |
| 2   | 5     | 5922 | 8.000  | 19.663 |       | ****  | 09/04/2012 14:10:22 | b20829s1.cal |
| 3   | 5     | 8765 | 8.900  | 26.818 |       | ***** | 09/04/2012 14:17:18 | b20829s1.cal |
| 4   | 5     | 9826 | 9.100  | 29.545 |       | ***** | 09/04/2012 14:22:42 | b20829s1.cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

JB14519-15RT

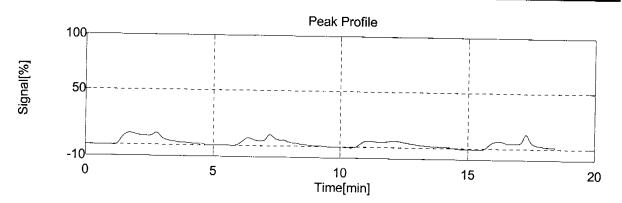
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 14:50:54 |

| Mean Area | Conc   | Result | SD     | cv    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 7318      | 3.853% | -      | 0.6910 | 17.9% | 51.23  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9148 | 51.20  | 4.8758 |       | ***** | 09/04/2012 14:30:55 | b20829s1.cal |
| 2   | 5     | 6835 | 50.20  | 3.6541 |       | ***** | 09/04/2012 14:37:05 | b20829s1.ca/ |
| 3   | 5     | 6718 | 51.50  | 3.4969 |       | ***** | 09/04/2012 14:44:30 | b20829s1.cal |
| 4   | 5     | 6574 | 52.00  | 3.3840 |       | ****  | 09/04/2012 14:50:54 | b20829s1.cal |

Accutest Laboratories,



### <u>Samples</u>

Sample Name:

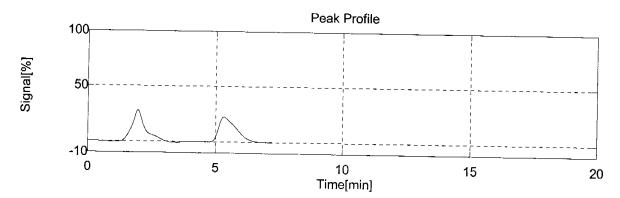
CCV

Sample ID:

Remark:

Comment: Method:

tocsscal.met


Cal Curve: 1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/04/2012 15:07:35 |

| Mean Area | Conc   | Result | SD      | cv     | Modified |
|-----------|--------|--------|---------|--------|----------|
| 9731      | 2.662% |        | 0.01723 | 0.647% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9774 | 2.6738 |       | ****  | 09/04/2012 14:56:29 | b20829s1.cal |
| 2   | 5     | 9688 | 2.6495 |       | ***** | 09/04/2012 15:07:35 | b20829s1.cal |

Accutest Laboratories,



### Statistics / Summary

| Sample Name  | Analysis | Conc.     | Abs C [µg] |
|--------------|----------|-----------|------------|
| CRI          | SSM-TC   | 0.09412 % | 94         |
| HSTD         | SSM-TC   | 5.057 %   | 5057       |
| ICV          | SSM-TC   | 1.927 %   | 1926       |
| ccv          | SSM-TC   | 2.668 %   | 2668       |
| GP66744-MB2  | SSM-TC   | 0.000 %   | 2000       |
| GP66744-B2   | SSM-TC   | 0.1919 %  | 1918       |
| JB14312-15R  | SSM-TC   | 0.07983 % | 667        |
| JB15015-1R   | SSM-TC   | 0.07250 % | 350        |
| JB14201-12R  | SSM-TC   | 24.98 %   |            |
| JB14519-15RT | SSM-TC   | 3.853 %   | 14250      |

Accutest Laboratories, 09/04/2012 15:07:49

### GN71477 ent Chromium

QC Reports:

|                                | Sample                   | BKGRD                                            | Analysis       | Sample         | X Values    | Final Vol.  | Sam Wt.                               |          |                    |                |         |              |
|--------------------------------|--------------------------|--------------------------------------------------|----------------|----------------|-------------|-------------|---------------------------------------|----------|--------------------|----------------|---------|--------------|
| Sample #                       | Absorbance               | Abs                                              | Times          | Absorbance     | Conc(mg/l)  |             |                                       | Dilution | Final Conc.        | Units          | MDL     | RC           |
| Test Title:                    | XCRA                     |                                                  |                |                |             |             | Method:                               | SW846 3  | 060A, 7196A        |                |         |              |
| GN Batch:                      | GN71477                  |                                                  |                |                |             |             |                                       |          |                    |                |         |              |
| Analyst:                       | RI                       | -                                                |                |                | N - 4 A III | 44 . 1.     |                                       |          |                    |                |         |              |
| Prep Date:                     | 8/31/2012<br>3: 9/4/2012 | -                                                |                |                | NOTE: All   | results b   | elow sno                              | wn on a  | wet weight bas     | is.            |         |              |
| Analysis Date<br>Instrument ID |                          |                                                  |                |                |             |             |                                       |          |                    |                |         |              |
| mstrument it                   | ,. L G                   | J                                                |                |                |             |             |                                       |          | Com Conti          | 0.99992        |         |              |
| Cal. Blk.                      | 0.000                    | l NA                                             | 12:28          | 0.000          | 0.0000      |             |                                       |          | Corr. Coef;        | 0.55552        |         |              |
| STD 1                          | 0.009                    | NA NA                                            | NA             | 0.009          | 0.0100      |             |                                       |          | Slope:             | 0.9241         |         |              |
| STD 2                          | 0.046                    | NA NA                                            | NA NA          | 0.046          | 0.0500      |             |                                       |          | Glope.             | 0.5241         |         |              |
| STD 3                          | 0.092                    | NA                                               | NA             | 0.092          | 0.1000      |             |                                       |          | Y intercept:       | -0.0007        |         |              |
| STD 4                          | 0.273                    | NA                                               | NA             | 0.273          | 0.3000      |             |                                       |          | A. 441-7-7-1-1-1-1 |                |         |              |
| STD 5                          | 0.466                    | NA                                               | NA             | 0.466          | 0.5000      |             |                                       |          |                    |                |         |              |
| STD 6                          | 0.730                    | NA                                               | NA             | 0.730          | 0.8000      | Final Vol.  | Sam. Wt.                              |          |                    |                |         |              |
| STD 7                          | 0,929                    | NA                                               | 12:34          | 0.929          | 1.0000      | (ml)        | (a)                                   | Dilution | Final Conc.        | <u>Units</u>   | MDL     | RE           |
| CCV                            | 0.425                    | NA                                               | 13:07          | 0.425          | 0.4606      | NA          | NA                                    | NA       | NA                 | mg/l           | 0.003   | 0.0          |
| ССВ                            | 0.000                    | NA                                               | 13:07          | 0.000          | 0.0008      | NA          | NA                                    | NA       | NA                 | mg/l           | 0.003   | 0.0          |
| GP66920-MB1                    | 0.000                    | 0.000                                            | 13:14          | 0.000          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
| GP66920-B1                     | 0.893                    | 0.000                                            | 13:14          | 0.893          | 0.9671      | 100.0       | 2.5000                                | 1        | 38.683             | mg/kg          | 0.117   | 0.4          |
| GP66920-S1                     | 0.510                    | 0.005                                            | 13:14          | 0.505          | 0.5472      | 100.0       | 2.4800                                | 1        | 22.065             | mg/kg          | 0.118   | 0.4          |
| GP66920-D1                     | 0.013                    | 0.005                                            | 13:14          | 800.0          | 0.0094      | 100.0       | 2.5400                                | 1        | 0.371              | mg/kg          | 0.115   | 0.3          |
| JB14312-15R                    | 0.013                    | 0.006                                            | 13:14          | 0.007          | 0.0083      | 100.0       | 2.5300                                | 1        | 0.329              | mg/kg          | 0.116   | 0.3          |
| B14312-15RPSC                  | 7.                       | 0.002                                            | 13:14          | 0.405          | 0.4390      | 100.0       | 2.5300                                | 2        | 34.704             | mg/kg          | 0.232   | 0.7          |
| GP66920-B2                     | (2) >3                   | OVR                                              |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
| GP66920-S2                     | <b>J</b> →3              | OVR                                              |                | FALSE          | 0.0008      | 100.0       | 2.5400                                | 1        | 0.030              | mg/kg          | 0.115   | 0.3          |
| GP66920-B2                     | 0,326                    | 0.000                                            | 13:14          | 0.326          | 0.3535      | 100.0       | 2.5000                                | 50       | 707.043            | mg/kg          | 5.860   | 20,0         |
| GP66920-S2                     | 0.417                    | 0.000                                            | 13:14          | 0.417          | 0.4520      | 100.0       | 2.5400                                | 50       | 889.749            | mg/kg          | 5,768   | 19.6         |
| CCV                            | 0.425                    | NA<br>NA                                         | 13.14          | 0.425          | 0.4606      | NA NA       | NA NA                                 | NA NA    | NA NA              | mg/l           | 0.003   | 0.0          |
| ССВ                            | 0.000                    | NA                                               | 13:15          | 0.000          | 0.0008      | NA<br>100.0 | NA NA                                 | NA NA    | NA NA              | mg/l           | 0.003   | 0.0          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       |                                       | 1 1      | #DIV/0!            | mg/kg          | #DIV/0! | #DI\<br>#DI\ |
|                                |                          |                                                  |                | FALSE<br>FALSE | 0.0008      | 100.0       |                                       | 1        | #DIV/0!<br>#DIV/0! | mg/kg          | #DIV/0! | #DI\         |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | -                                     | 1        | #DIV/0!            | mg/kg<br>mg/kg | #DIV/0! | #DI\         |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       |                                       | 1        | #DIV/0!            | mg/kg          | #DIV/0! | #DI\         |
|                                | <del></del>              |                                                  |                | FALSE          | 0.0008      | 100.0       |                                       | 1        | #DIV/0!            | mg/kg          | #DIV/0! | #DI\         |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | · · · · · · · · · · · · · · · · · · · | 1        | #DIV/0!            | mg/kg          | #DIV/0! | #DIV         |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       |                                       | 1        | #DIV/0!            | mg/kg          | #DIV/0! | #DI\         |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       |                                       | 1        | #DIV/0!            | mg/kg          | #DIV/0! | #DI\         |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       |                                       | 1        | #DIV/0!            | mg/kg          | #DIV/0! | #DI\         |
| ccv                            | 0.423                    | NA                                               | 15:23          | 0.423          | 0.4585      | . NA        | NA                                    | NA       | NA                 | mg/l           | 0.003   | 0.0          |
| CCB                            | 0.000                    | NA                                               | 15:23          | 0.000          | 0.0008      | NA          | NA                                    | NA       | NA                 | mg/l           | 0.003   | 0.0          |
| JB14312-1R                     | 0.142                    | 0.104                                            | 15:35          | 0.038          | 0.0419      | 100.0       | 2.5500                                | 1        | 1.642              | mg/kg          | 0.115   | 0.3          |
| JB14312-2R                     | 0.035                    | 0.028                                            | 15:35          | 0.007          | 0.0083      | 100.0       | 2.5000                                | 1        | 0.333              | mg/kg          | 0.117   | 0,4          |
| JB14312-3R                     | 0.031                    | 0.000                                            | 15:35          | 0.031          | 0.0343      | 100.0       | 2.5500                                | 1        | 1.345              | mg/kg          | 0.115   | 0.3          |
| JB14312-4R                     | 0.008                    | 0.000                                            | 15:35          | 0.008          | 0.0094      | 100.0       | 2.4500                                | 1        | 0.384              | mg/kg          | 0.120   | 0.4          |
| JB14312-5R                     | 0.126                    | 0.045                                            | 15:35          | 0.081          | 0.0884      | 100.0       | 2.4800                                | 1        | 3.565              | mg/kg          | 0.118   | 0.4          |
| JB14312-6R                     | 0.037                    | 0.031                                            | 15:35          | 0.006          | 0.0072      | 100.0       | 2.4700                                | 1        | 0.294              | mg/kg          | 0.119   | 0.4          |
| JB14312-7R                     | 0.021                    | 0.015                                            | 15:35          | 0.006          | 0.0072      | 100.0       | 2.5100                                | 1        | 0.289              | mg/kg          | 0.117   | 0.3          |
| JB14312-8R                     | 0.072                    | 0.012                                            | 15:35          | 0.060          | 0.0657      | 100.0       | 2.4900                                | 1        | 2.638              | mg/kg          | 0.118   | 0.4          |
| JB14312-9R                     | 0.050                    | 0.008                                            | 15:35          | 0.042          | 0.0462      | 100.0       | 2.4600                                | 1        | 1.878              | mg/kg          | 0.119   | 0.4          |
| JB14312-10R<br>CCV             | 0.000                    | 0.000                                            | 15:35          | 0.000          | 0.0008      | 100.0       | 2.5400                                | 1        | 0.030              | mg/kg          | 0.115   | 0.3          |
| CCB                            | 0.423                    | NA<br>NA                                         | 15:35<br>15:35 | 0.423          | 0.4585      | NA<br>NA    | NA<br>NA                              | NA<br>NA | NA<br>NA           | mg/l           | 0.003   | 0.0          |
| JB14312-11R                    | 0.381                    | 0.254                                            | 15:35          | 0.000          | 0.0008 9    | 100.0       | 2.5000                                | NA<br>1  | 5.527              | mg/l<br>mg/kg  | 0.003   | 0.0          |
| JB14312-11R<br>JB14312-12R     |                          | 0.042                                            | 15:38          | 0.046          | 0.0505      | 100.0       | 2.4600                                | 1        | 2.054              | mg/kg          | 0.117   | 0.4          |
| JB14312-12R<br>JB14312-13R     | 0.009                    | 0.000                                            | 15:38          | 0.009          | 0.0303      | 100.0       | 2.5400                                | 1        | 0.413              | mg/kg          | 0.115   | 0,3          |
| 5517512-15K                    | 0.000                    | 3.000                                            | 10.00          | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.113   | 0.4          |
|                                | <u> </u>                 | <del>                                     </del> |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
| ccv                            | 0.423                    | NA                                               | 15:38          | 0.423          | 0.4585      | , NA        | NA                                    | NA       | NA                 | mg/l           | 0.003   | 0.0          |
| CCB                            | 0,000                    | NA                                               | 15:38          | 0.000          | 0.0008      | NA          | NA                                    | NA       | NA                 | mg/l           | 0.003   | 0.0          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0,117   | 0.4          |
|                                |                          |                                                  |                | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |
| 1                              |                          | 1                                                | l              | FALSE          | 0.0008      | 100.0       | 2.5000                                | 1        | 0.030              | mg/kg          | 0.117   | 0.4          |



### ACCUTEST LABS DAYTON, NJ

# 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

|                                                                                                                     |                                        | ō                                                       |                | spike                           | spike    | e)               | e)               | e<br>e           | é                | e)               | ê                | e<br>e           | ê                |                         |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------|----------------|---------------------------------|----------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|-------------------------|
|                                                                                                                     |                                        | Use calculated or                                       | default spike? | 40.404   fault (40 mg/kg) spike | #DIV/0!  | catculated spike | catculated spike | catculated spike | calculated spike        |
|                                                                                                                     | Calculated                             | Spike<br>Amount in                                      | mg/kg          | 40.404                          | #DIV/0!  | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!                 |
|                                                                                                                     | of 100<br>ppm to Est. Read- Calculated | back on<br>curve in                                     | mg/l           | 0.515                           | 10//\lG# | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | i∃NTV∧# J               |
|                                                                                                                     | 4                                      | spike on<br>dilution of                                 | sample.        | 0.23                            |          |                  |                  |                  |                  |                  |                  |                  |                  |                         |
| ike amount.                                                                                                         | Suggested<br>ml of 100                 | Actual ppm to spike spike on Dilution to on dilution of | sample.        | 0.228                           | 10//\lG# | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE                  |
| nd add the sp                                                                                                       |                                        | Actual<br>Dilution to                                   | pe nsed        | 2                               |          |                  | **               |                  |                  |                  |                  |                  |                  |                         |
| post-spike an                                                                                                       |                                        | Suggested<br>Dilution to                                | esn            | 7                               | 0        | #VALUE!                 |
| the diluted                                                                                                         |                                        | to add<br>100 ppm Dilution                              | pepeeu         | yes                             | OU       | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE! #VALUE! |
| nl aliquot of                                                                                                       | Amount in                              | ml to add<br>of 100 ppm                                 | solution       | 0.455                           | 0.000    | #VALUE!          | #VAI 11F1               |
| n take a 45 r                                                                                                       |                                        | Results in                                              | mg/kg.         | 0.329                           |          |                  |                  |                  |                  |                  |                  |                  |                  |                         |
| NOTE: Always dilute post-spike first, then take a 45 ml aliquot of the diluted post-spike and add the spike amount. |                                        | Weight in 45 Results in of 1                            | Ē              | 1.1385                          | 0        | #VALUE!          | #VAI UF!                |
| ys dilute post                                                                                                      | PS Aliquot                             | Weight in g<br>Digested in                              | 100 m          | 2.53                            |          |                  |                  |                  |                  |                  |                  |                  |                  |                         |
| NOTE: Alwa                                                                                                          |                                        |                                                         | Sample ID      | JB14312-15R                     |          | :                |                  |                  |                  |                  |                  |                  |                  |                         |

| 3060A/7196A INSOLUBLE SPIKE CALCULATION |
|-----------------------------------------|
|-----------------------------------------|

|             |           |        | _       |         |         |         |         | _       |         |         | ,       |
|-------------|-----------|--------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| z           | Amount    | Spiked | 785.149 | 988.150 | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
| CALCULATION | Weight of | Sample | 2.5     | 2.54    |         |         |         |         |         |         | •       |
| ,           | Weight of | PbCr04 | 0.0122  | 0.0156  |         |         |         |         |         |         |         |



| <br>AC | CL | JTE | <b>=</b> 5 | T, |
|--------|----|-----|------------|----|
|        |    |     |            |    |

| Test: | He   | xavalent | Chromium | ı |
|-------|------|----------|----------|---|
| Produ | ict: | XCr      |          |   |

MDL = 0.117 mg/kgRDL = 0.40 mg/kg

GNBatch ID: 6 71477 Date: 9-4-202

| Method: SW846 3060     |                |              |                                                                   |
|------------------------|----------------|--------------|-------------------------------------------------------------------|
| Digestion Batch QC S   | ummary         | Units        | = mg/kg                                                           |
| Method Blank ID: GYLL9 | 20 MB Date:    | 9-4-12       | Result: < RDL: 0-40 < RDL: YJJ                                    |
| Sol. Spike Blank ID:   |                | te:          | Result: 37-68 Spike:40.00 %Rec.: 96.7(                            |
| Insol. Spike Blank ID: | B2 Dat         | e:           | Result: 707.04 Spike: 785.11%Rec.: 90.05                          |
| Duplicate ID:          | V ∫ Samp. F    |              | Dup. Result: 0 31 \ %RPD: 120                                     |
| Sol. MS ID:            | <u> </u>       |              | MS Result: 22.07 Spike: 40.32 %Rec: 53.91                         |
| Insol. MS ID:          | Samp. Re       | 1            | MS Result: PM 75 Spike: 984 (5 %Rec: 9 )                          |
| -                      |                |              | PS Result: <u>74. 40-4</u> Spike: <u>40.40</u> %Rec: <u>65.08</u> |
|                        |                |              | Dil. Result: %RPD:                                                |
|                        |                |              |                                                                   |
| рн аој. РЗ 1D:         | Samp. F        | esuit:       | MS Result: Spike: %Rec:                                           |
| Analysis Batch QC Sum  | mary           | Units = mg/l |                                                                   |
|                        | <b>,</b>       |              |                                                                   |
| ccv: 9-4-12            | Result: 6.46-6 | _ TV: _0.500 | _ %Rec.: 92-12_                                                   |
| CCV:                   | Result:        | TV: _0.500   | %Rec.:\                                                           |
| ccv:                   | Result: 0-4575 | TV: _0.500   | _ %Rec.: <u>_                                    </u>             |
| CCV:                   | Result:        | TV: _0.500   | _ %Rec.:                                                          |
| ccv:                   | Result:        | TV: _0.500   | %Rec.:                                                            |
| ccv:                   | Result:        | TV: _0.500   | %Rec.:                                                            |
| ccv:                   | Result:        | TV: _0.500   | _ %Rec.:                                                          |
| ccv:                   | Result:        | TV: _0.500   | %Rec.:                                                            |
| CCV :                  | Result:        | TV: _0.500   | %Rec.:                                                            |
| A (1 12                |                |              | M .                                                               |
| CCB: 9-4-12            | Result: < kb-  |              |                                                                   |
| CCB:                   | Result:        | RDL:_0.010   | <del> </del>                                                      |
| CCB:                   | Result:        | RDL:_0.010   |                                                                   |
| CCB:\                  | Result:        | RDL:_0.010   | <del></del>                                                       |
| CCB:                   | Result:        | RDL:_0.010   | <del></del>                                                       |
| CCB:                   | Result:        | RDL:_0.010   |                                                                   |
| CCB:                   | Result:        | RDL:_0.010   |                                                                   |
| CCB:                   |                | RDL:_0.010   |                                                                   |
| CCB:                   | Result:        | RDL:_0.010   | <rdl:< th=""></rdl:<>                                             |
|                        |                |              |                                                                   |

| Reagent Reference Informat           | ion - refer to attached reagent r | eference information page(s). |
|--------------------------------------|-----------------------------------|-------------------------------|
| Insoluble spike = PbCrO <sub>4</sub> | Molecular weight = 323.2 g/mol    |                               |
| {1000000 ug/g x Insoluble spik       | ce wt(g) x 52/323.2}/ms sample wt | t(g) = Insoluble spike amount |

| Analyst: | 72 | Date: | 9-4-20/2 |
|----------|----|-------|----------|
|          | •  |       |          |

Comments:\_

Form: GN066-01 Rev Date: 4/25/11



Hexavalent Chromium pH Adjustment Log

| _ |   |
|---|---|
|   | ` |
|   |   |

| ACCUTES             | D I e      |                | Metho     | d Sw846   | 3060A/       | 7196A                | باط           | 148                  |
|---------------------|------------|----------------|-----------|-----------|--------------|----------------------|---------------|----------------------|
|                     |            |                |           |           |              | pH Meter ID:         | 1             |                      |
| •                   | _          | ١.             | • -       |           | i            | Digestion Date       |               | 12012                |
| ł adj. start time:  | 12         | <u> 47 14-</u> |           | 2257      |              | pH adj. Date:        |               | -2-12                |
| l adj. end time:    | · /2       | 157 1 18       | 5-0-      | 13201     | 15:27        | GN Batch ID:         | 67,41         | 477                  |
| 1.01/000            | Sample     |                | Final     |           | bkg pH       |                      |               | `                    |
| 71166720            | Weight in  |                | Volume    | pH after  | after        | Spike                | Spike         | Digestate            |
| mple ID             | g          | HNO3           | (ml)      | H2SO4     | H2SO4        | Amounts              | Solution      | Description/Comments |
| V                   |            | 7,29           | 00        | 7'01      | -            | 5mL                  | 10 ppm        | Vila                 |
| V                   |            | 4.95           | ` (       | 192       |              |                      | 1             |                      |
| V                   |            |                |           |           |              |                      |               |                      |
| V                   |            |                |           |           |              |                      | · .           |                      |
| В                   |            | 7.13           | 100       | 1.95      |              |                      |               |                      |
| 3                   |            | 4.54           | <u> </u>  | 1.50      |              |                      |               |                      |
| 3                   |            |                |           |           |              |                      |               |                      |
| B                   |            |                |           |           |              |                      |               | 4                    |
| (Sol) JB 143/2-5    | 2,48       | 7.52           | (63       | 2010      | 1,92         | IMC                  | 100 00m       | Asolute              |
| (Insol.)            | 5.54       | 4-65           |           | 1.03      | OVE          | .0156                | PENDLY        |                      |
| P                   | 12,54      | 7.47           |           | 1.95      | 1,97         |                      |               | <u></u>              |
| (Sol)               | 2.50       | 4.72           |           | 1,99      | 1,25         | IM                   | (00 ppm       | Absolule.            |
| (Insol)             | 250        | 4.66           |           | 2100      | OVR          | ,0122                | Photos        |                      |
|                     | 2.50       | 4-13           |           | 195       | 1,89         |                      |               |                      |
| B14312-15R          | D,53       | 4.63           |           | 204       | 1,49         |                      |               | light reliber        |
| TR                  | 5.55       | 9.92           |           | 21/2      | 1.93         |                      | · ·           | Brown                |
| ) R                 | 5.50       | 7.90           |           | ブウュ       | 1,92         |                      |               | Dark yellow          |
| 38                  | 727 C      | 7,19           |           | 2.2       | 1.87         |                      |               | clear Clight yelly   |
| 42                  | 9 45       | 793            |           | 1.99      | 1.90         |                      |               | Clear                |
| 5 R                 | 2.48       | 7.69           |           | 201       | 1.44         | '                    |               | Brown                |
| 6 R                 | 5 47       | 7.45           |           | 211       | 1.93         | ·                    | <u> </u>      | yellow,              |
| 7 R                 | 557        | 7.77           |           | 1.95      | 1.89         |                      |               | yellow               |
| × × ×               | 5 449      | 7,00           |           | 202       | 192          |                      |               | light vellow         |
| 7 p                 | 246.       | 7.95           |           | 1,96      | 1.82         |                      |               | Wahl yellow          |
| 10 R                | 2,54       | 7.80           |           | 1.89      | 1.93         |                      |               | V Wear,              |
| TIR                 | 2,50       | 7.52           |           | 20-6      | 1.9-         |                      |               | yellow Brown         |
| 128                 | 2,46       | 7.69           | 1         | 211       | 1.52         |                      |               | Clear Blown          |
| 138                 | 554        | 7.10           | U         | 1.96      | 1.82         |                      |               | Clear Bloom (        |
|                     | 1          |                |           |           |              |                      |               | CROS                 |
|                     |            |                |           |           |              |                      |               |                      |
|                     |            |                | •         | e ·       |              | . %                  | •.            |                      |
|                     |            |                |           |           |              |                      |               |                      |
|                     |            |                |           |           |              |                      |               |                      |
|                     |            |                |           |           |              |                      |               |                      |
| (Insol)             | 2.50       | 7.66           | 00        | 1.99      | 1.09         |                      |               | dilution (=50        |
| (Insol.)            | 2.54       | 7.15           | '         | 2.01      | 1.92         |                      |               | dilution / = 50      |
|                     | 2.53       | 7.63           |           | 1.94      | ァナ           | 0.23h1               | 100 /11 Ab    | Sh-4 1=2 150 h       |
| adjusted PS         |            |                |           |           |              |                      | , ,           |                      |
| dil.                |            |                |           |           |              |                      |               |                      |
| 14312 - 15RFd       | 1251       |                |           |           |              |                      |               |                      |
| agent Reference I   | nformatio  | n - refer to   | attached  | reagent r | eference i   | information pa       | ige(s).       |                      |
| 000000 ug/g x Insol | uble spike | wt(g) x 52/    | 323.2}/ms | sample w  | t(g) = Insol | luble spike amo      | ount of PbCrC | 4                    |
|                     |            |                |           |           |              |                      |               |                      |
| d analyst check:/   | MP         |                |           | Anayst:   |              | -<br>¶ 4 -}-         |               |                      |
| -                   | à////      |                |           | Date:     | ``           | <del>4 - 4 -)-</del> | > 12          |                      |
|                     | 7/7/1/     | 1              |           |           |              | 1                    | •             |                      |
| Form: GN-067        |            |                |           |           |              |                      |               |                      |

128 of 135
ACCUTEST.
JB14312R LABORATORIES

### 7.3

## MACCOLIEGY.

# HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

a7699db

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 58(1/517/182/175)Thermometer Correction factor: 50/-2/5/0

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

|   |                     |       | lemp in dea C | Temp in dea C   | lemp in ded C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Famo in ded C.             |
|---|---------------------|-------|---------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|   |                     |       | Hot Plate # 1 | Hot Plate # 2 - | Hot Plate # 1 - Hot Plate # 2 - Hot Plate # 14 - Hot Plate # 14 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plate # 15 - Hot Plat | Hot Plate # \(\subset - \) |
|   | Description .       | Time  | ted           | ted             | ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ted                        |
|   | Starting Time       | 16:00 | 49/20         | 42/40           | 36/47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/20                      |
|   | Time 1              | 16:30 | 43/60         | 2/60            | 90/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9/20                       |
|   | Ending Time         | 08:21 | cs/ps         | 62/62           | 20/23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | asta                       |
|   |                     |       |               | -               | ۷.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
|   | Starting Time 17:17 | 12:15 | 9940          | e3/e4           | 27/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | agla                       |
|   | Time 1              | 53521 | asfas         | 07/03           | 23/02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9/02                       |
|   | Ending Time         | (8.15 | agles         | 23/40           | 40/64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.9/40                     |
|   |                     |       |               |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| 1 | Starting Time       | 18:20 | achio         | 43/40           | 49/62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40/60                      |
|   | Time 1              | 05:81 | 40/10         | 43/40           | 63/63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63.63                      |
|   | Ending Time         | (4:30 | ag/20         | 43/40           | 40/63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63/63                      |
| 8 | Ą                   | ) h / | (5)           |                 | (A) 1/20 11-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                          |

Analyst: 2nd Analyst Check:

.

Form: GN074-02 Rev. Date: 8/08/12



GN/GP Batch ID: Gw 71417

### Reagent Information Log - XCRA (soil 3060A/7196)

| Reagent .                                              | Exp. Date | Reagent # or Manufacturer/Lot |
|--------------------------------------------------------|-----------|-------------------------------|
| Calibration Source: Hexavalent Chromium,               | 4/12/2015 | Absolute Grade Lot # 041212   |
| 1000 mg/L Stock                                        | 4/12/2015 | Absolute Grade Est.           |
| Calibration Checks: Hexavalent Chromium,               | 5/04/0047 | Ultra lot # L00439            |
| 1000 mg/L Stock                                        | 5/31/2017 | Ollia lot # E00430            |
| Spiking Solution Source                                | 4/12/2015 | Absolute Grade Lot # 041212   |
| Lead Chromate (Insoluble Hexavalent<br>Chromium Spike) | 7/26/2017 | Sigma Aldrich Lot # BCBG0578V |
| Magnesium Chloride, Anhydrous                          | 7/11/2016 | Alfa Aesar Lot # B17X012      |
| 1N NaOH                                                |           | <u>M</u>                      |
| Digestion Solution                                     | 9/30/2012 | GNE8-33421-XCR/XCRA           |
| Phosphate Buffer Solution                              | 2/14/2013 | 3 GWE8-33273-XCRA             |
| 5.0 M Nitric Acid                                      | 3-3-13    | GNE F- 37425 XCHA             |
| Diphenylcarbazide Solution                             | 10-4-12   | GNR-9-33446 XCR               |
| Sulfuric Acid, 10%                                     | 2-21-13   | GNF-F-33334 XCR               |
| Filter                                                 | NA        | F2 FA19811                    |
| Teflon Chips                                           | NA NA     | 919120                        |

Form: GN087A-21B Rev. Date: 2/18/10



### Hexavalent Chromium pH Adjustment Log

Method: SW846 3060A/7196A

pH adj. start time:

12-04

12-17

pH adjustment Date: \_ GN Batch ID: \_

9-4-2012

|                                           | Sample    |                  | Final    | , , ,    |                                         |                    |
|-------------------------------------------|-----------|------------------|----------|----------|-----------------------------------------|--------------------|
| CI- ID                                    | Weight in | pH after<br>HNO3 | Volume   | pH after |                                         |                    |
| Sample ID                                 | g         |                  | (ml)     | H2SO4    | Comments                                | Spike Info.        |
| Calibration Blank                         | NA        | 7,21             | 00       | 204      | 0                                       |                    |
| 0.010 mg/l standard                       | NA        | 7.24             |          | 100      | LONG ALSOLA                             | 0.10 ml of 10 mg/l |
| 0.050 mg/l standard                       | NA        | 7.44             |          | 1.95     |                                         | 0.50 ml of 10 mg/l |
| 0.100 mg/l standard                       | NA        | 7.92             |          | 1.98     |                                         | 1.00 ml of 10 mg/l |
| 0.300 mg/l standard                       | NA        | 7.53             |          | 2,31     |                                         | 3.00 ml of 10 mg/l |
| 0.500 mg/l standard                       | NA        | 772              |          | - ارد    |                                         | 5.00 ml of 10 mg/l |
| 0.800 mg/l standard                       | NA        | 7,44             |          | 2.02     |                                         | 8.00 ml of 10 mg/l |
| 1.00 mg/l standard                        | NA        | 7-9'5            |          | 1.89     | <b>↓</b>                                | 10.0 ml of 10 mg/l |
|                                           |           |                  |          | ,        |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
| A. C. C. C. C. C. C. C. C. C. C. C. C. C. |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          | , , , , , , , , , , , , , , , , , , , , | ,                  |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
| *****                                     |           |                  |          |          |                                         |                    |
|                                           | · ·       |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          | ·        |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         |                    |
|                                           |           |                  |          |          |                                         | <del> </del>       |
|                                           | I         |                  | <u> </u> | <u> </u> | l                                       |                    |

Reagent Reference Information - refer to attached reagent reference information page(s).

{1000000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

Form: GN068-01 Rev. Date:5/22/06





## HEXAVALENT CHROMIUM STANDARD PREPARATION LOG

Product: メント GN or GP Number: かりり

|              |                                |               |              |         |          | Final Conc.  |            |         |          |
|--------------|--------------------------------|---------------|--------------|---------|----------|--------------|------------|---------|----------|
| Intermediate |                                |               | Stock        |         |          | o            |            |         |          |
| Standard     |                                | Stock         | volume       |         | Final    | Intermediate | Expiration |         |          |
| Description  | Stock used to prepare standard | concentration | used in ml   | Diluent | Volume   | (mg/l)       | Date       | Analyst | Date     |
| 10 ppm       | Absolute Grade Lot # 041215    | 1000 ppm      | 1.0 ml       | IQ      | 100 mls  | 10 mg/l      | 4/12/2015  | 4       | 71-15-6  |
| 100 ppm      |                                | 1000 ppm      | 10 ml        | DI      | 100 mls  | 100 mg/l     |            |         |          |
| 5 ppm        |                                | 1000 ppm      | 1.0 ml       | DI      | 200 mg/l | 5 mg/l       |            |         | <b>.</b> |
| 7.5 ppm      |                                | 1000 ppm      | 1.5 ml       | DI      | 200 mg/l | 7.5 mg/l     |            |         |          |
| 10 ppm       | Ultra lot L00439               | 1000 ppm      | 1.0 ml       | DI      | 100 mg/l | 10 mg/l      | 5/31/2017  | >       | <b>→</b> |
|              |                                |               | Intermediate |         |          |              |            |         |          |
|              |                                | Intermediate  | or Stock     |         |          | Final Conc.  |            |         |          |
| Standard     | Intermediate or Stock used to  | or Stock      | volume       |         | Final    | Of Standard  | Expiration |         |          |
| Description  | prepare standard               | concentration | used in mt   | Diluent | Volume   | (mg/l)       | Date       | Analyst | Date     |
| .010 ppm     | 10.0 ppm abs                   | 10.0 ppm      | 0.1 ppm      | DI      | 100 mfs  | 0.01 mg/l    | 9-5-12     | 7.7     | 1-1-6    |
| .050 ppm     |                                |               | 0.5 ppm      | DI      | ļ        | 0.05 mg/l    |            |         |          |
| .10 ppm      |                                |               | 1.0 ppm      | Ы       |          | 0.10 mg/l    |            |         |          |
| .30 ppm      |                                |               | 3.0 ppm      | DI      |          | 0.30 mg/l    |            |         |          |
| .50 ppm      |                                |               | 5.0 ppm      | П       |          | 0.50 mg/l    |            |         |          |
| .80 ppm      |                                |               | 8.0 ppm      | ם       |          | 0.80 mg/l    | _          |         |          |
| 1.00 ppm     | 9                              | ,             | 10.0 ppm     | DI      |          | 1.0 mg/l     | 1 1        |         | Ž        |
|              |                                |               |              |         |          |              |            |         |          |
|              |                                |               |              |         |          |              |            |         |          |
|              |                                |               |              |         |          |              |            |         |          |
|              |                                |               |              |         |          |              |            |         |          |
|              |                                |               |              |         |          |              |            |         |          |
|              |                                |               |              |         |          |              |            |         |          |
|              |                                |               |              |         |          |              |            |         |          |

Form: GN205-02 Rev. Date:10/16/09





Balance # B - J A

| Analyst   | JAA      |  |  |  |  |  |  |
|-----------|----------|--|--|--|--|--|--|
| Method    | Salfs    |  |  |  |  |  |  |
| Prep Date | 9/5/12   |  |  |  |  |  |  |
| GP#       | 9n 71534 |  |  |  |  |  |  |

Sample Prep Log

|                                       | Sample Prep Log           | ·            |
|---------------------------------------|---------------------------|--------------|
| Sample ID                             | Sample Size               | Final Volume |
| DUP JB14312-15R                       | + lomi DIH20              | negative     |
| JB14312-1512                          | 10.10 Cms                 | J            |
| JB 13013 -1R                          | 10.05 gons                |              |
| JB14201 -1212                         | 10. 20                    |              |
| JB 14519-1512T                        | 180, 15                   |              |
| JB 14036-1RT                          | 10.03                     |              |
| JB 14198-5RT                          | 10.50                     |              |
| JB14367-3RT                           | 10.33                     |              |
| JB14785-1RT                           | 10.49 1                   | <b>√</b>     |
| JB 14655 1R7                          | · 10.53 gms + 10 m1 DIH20 | negative.    |
| JB 13560 - 1RT                        |                           | J            |
| AA (A)                                |                           |              |
| 115                                   |                           | •            |
|                                       |                           |              |
|                                       |                           |              |
| · · · · · · · · · · · · · · · · · · · |                           |              |
|                                       |                           |              |
|                                       | •                         |              |
|                                       |                           |              |
|                                       |                           |              |
|                                       |                           |              |
|                                       |                           | ,            |
|                                       | X //,                     | <u> </u>     |
|                                       | /                         | 4            |
|                                       | ( )                       |              |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_\_



'EST: Ferrous Iron (FE2/7)
AETHOD: ASTM D3872-86

**3DL: 0.20 %** 

F = Weight of Iron in a
Vol. Of Dichomate in mL

| ANALYST: | J | AA |
|----------|---|----|
| DATE:    | 5 | ]2 |

GN BATCH: 9n 715 38
REAGENT ID's: See attached

F=. 0.0061 %Fe2/7 = ml Dichromate x F x 100 sample wt in g x (%sol/100)

|                                                | / lits?                             |
|------------------------------------------------|-------------------------------------|
|                                                | Uplits: VIII)                       |
| OO Summer!                                     | Duplicate 0.95 RPD: 0.0             |
| OC Summary D Original: 0.95                    | Duplicate: St. do REC 96.           |
| Dup. Sample ID: SI Original: 0.95 Amt. Spiked: | PDI: 0, 2 <rdl? 7<="" td=""></rdl?> |
| MS Sample ID:                                  | DDL,                                |
| MB ID and prep date.                           | Result: REC:                        |
| SB ID and prep date: Aliit. Spiked             | Result: REC:                        |
| External ID: Known:                            |                                     |
| CXCCTTACTO.                                    |                                     |

| • |                                             | 0 0           | Casixa                    | <del>&gt;</del>                                  | 0.54            | TITOL             | -30111                | 14                          |                                                   |                   | <u> </u> |        |
|---|---------------------------------------------|---------------|---------------------------|--------------------------------------------------|-----------------|-------------------|-----------------------|-----------------------------|---------------------------------------------------|-------------------|----------|--------|
|   | Spike prep: 0, 25                           | gms_          | (DIOC                     |                                                  |                 |                   |                       | _ <del></del> γ             | Final Result II                                   |                   |          |        |
| 7 |                                             | Sample Weight |                           |                                                  | itrant Start in | Titrant End in ml | Titrant Total<br>(ml) | Result in mg/l              | mg/l                                              | F                 | וסנ      | Units  |
| # | Sample Description                          | ing           | Start Time/En             |                                                  |                 | 0.10              | 0.10                  | 0.12                        | 20.2                                              | ပ .               | a,       | %      |
|   | GN_71538MB_L                                |               | 10:                       | 40                                               | 0.0             | 41.30             | 41.20                 | for St                      | andors                                            | ion               | Only     | 9/0    |
|   | GN_71538 BL                                 | 1             | <del> </del> <del>-</del> |                                                  | 0.0             | 0.65              |                       | 0,93                        | 0.95                                              | $\Lambda_{-1}$    | - 1      | %      |
|   | 1 JB14312-151                               | 7 0 . 2 D     | -                         | -+                                               |                 | 0.65              |                       | 0.95                        | 0.95                                              | $\mathbf{L}^{-1}$ |          | %      |
| 1 | GN 71538 -D.L                               | 0.30          |                           |                                                  | 0.0             |                   | 240-10                | 56.6                        | 56.6                                              |                   |          | %      |
| - | GN 71538 SL                                 | 0.52          | 1                         |                                                  | 0.0             | 1.30              | 1.30                  | 1.59                        | 1,59                                              |                   |          | %      |
| 5 | 2 JB15015-1A                                | 10.52         | 1                         |                                                  | 00              | 1.00              |                       | 1.42                        | 1-4                                               |                   | -        | %      |
| ī | 12 TO 14201-121                             | 210.07        |                           | y .                                              | 0.0             | 0.90              | 0.90                  | 1.27                        | 1.2                                               | 7                 |          | %      |
| 1 | 1, 40 14 519-151                            | AVO JU        | _                         | <del>                                     </del> | 0.0             | 0.65              |                       | 0.87                        | 0.8                                               | 7                 |          | %      |
| Þ | 10-014026-1R                                | 10.01         |                           | 1                                                | 00              |                   | 1,30                  |                             | 1.8                                               | 3                 |          | %      |
| ( | 16 T Q 14 198 - 5 R                         |               |                           |                                                  | 0.0             |                   |                       |                             | 0.4                                               | 7                 |          | %      |
| ١ | 77B14307-3R                                 | TV0-41        |                           | \ <del>-</del>                                   | 6.0             | 0.75              |                       | <del></del>                 | 1. 3                                              |                   |          | %      |
| 2 | L8 TB14785-18                               | J/0.49        |                           | <u> </u>                                         | 0.0             | 0.50              |                       |                             |                                                   |                   | 7        | %<br>% |
| 5 | 39 JB14 655-1                               | RF 0.49       | 14                        | <u>که .</u>                                      | 0.0             | 0.30              | 10.30                 |                             |                                                   |                   |          | %      |
| 9 | 10 JB13560-                                 | IRT           |                           |                                                  |                 |                   | _                     |                             |                                                   |                   |          | %<br>% |
| 5 | ( <del>1</del> )                            |               |                           | ~ -                                              | <del> </del>    | <del></del> -     | ms =                  | 0,25                        | 5 100                                             | J X C             |          | %      |
| - | 12 JB 143 12                                | 15R           |                           | 83.                                              | <u> </u>        |                   | 11/3=                 | 0.5                         |                                                   | .83               |          | %<br>% |
| _ | 13 5315015-                                 | 1B =          | 96.                       | ᆜ_                                               | <del> </del>    |                   |                       |                             | 57.8                                              |                   |          |        |
| - | 14 TR 14 201- 1                             | <u> </u>      | 82.                       | <del></del>                                      |                 |                   |                       | _                           | <del>-                                     </del> |                   |          | %      |
| - | 15 SR 14519-                                | BRT -         | 86                        |                                                  | ļ <u>-</u>      |                   |                       |                             |                                                   |                   |          | %      |
| - | 15 TR 14036                                 | - IRT-        |                           | .7                                               |                 |                   | <del></del> -         |                             | _                                                 |                   |          | %      |
| - | 17 JB 14 198                                | - 5 RT        |                           | <u>0.6</u>                                       |                 |                   |                       | _                           |                                                   |                   |          | %      |
| - | 18 JB 1430                                  | 1- 3 RT       | <del></del>               | <u> 3 - 0</u>                                    | <u> </u>        |                   |                       |                             |                                                   |                   |          | %      |
| - | 19 JB 14 785                                | - IRT         |                           | 7.8                                              |                 |                   |                       |                             |                                                   |                   |          | %      |
| _ | 20 TRINGS                                   | 5 + IRT       | <u>-+-</u> -9             | 55.8                                             | <u> </u>        |                   |                       | err <b>⁄3</b> r; 4- analys: | t error                                           | <del></del>       |          | %      |
| _ | <del>````````````````````````````````</del> | 4 n           |                           |                                                  | ant O trong     | cription error:   | 3-comparter (         |                             |                                                   |                   |          |        |

| 1 reviewer error correction; 2 - transcription error; 3-computer e                                     | PIC 4- analyst citor |
|--------------------------------------------------------------------------------------------------------|----------------------|
| eason codes for data corrections: 1 - reviewer error correction; 2 - transcription error; 3-computer e | //\                  |
| TAA DATE: 9 5 12 OC REVIEW:                                                                            | DATE:                |
| NALYST:DATE:DATE:                                                                                      | )                    |

COMMENTS:

Form: GN-198



### 7.5



### Reagent Information Log Fe2/7

Work Group #\_\_\_\_

| Reagent                           | Reagent # or Manufacturer/Lot          |
|-----------------------------------|----------------------------------------|
| Iron Wire Std                     | Aldrich # MKBH 5978V NA                |
| HCL (1:1)                         | me4-31822- Fez/7 11/12/12              |
| 60% Sulfuric Acid/Phosphoric Acid | Ine6-32705-Fez/7 12/26/A               |
| Potassium Dichromate Solution     | Ine 6-32673 - Fez/7 12/22/13           |
| Diphenyl Amino Indicator          | gne4-31960- Fea/7 10/24/16             |
|                                   |                                        |
|                                   | ************************************** |
|                                   |                                        |
|                                   | <u> </u>                               |
| •                                 | *                                      |
|                                   | <del>-</del>                           |

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN087-01



AECOM

### **Data Validation Report**

| Project:                    | PPG – Garfield Ave Supplemental Remedial Investigation (GARIS)<br>Northern Canal Borings |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| Laboratory:                 | Accutest, Dayton, NJ                                                                     |  |  |  |  |
| Laboratory Job No.:         | JB14404                                                                                  |  |  |  |  |
| Analysis/Method:            | Hexavalent Chromium SW846 3060A/7196A                                                    |  |  |  |  |
| Validation Level:           | Full (Hexavalent Chromium)                                                               |  |  |  |  |
| Site Location/Address:      | PPG Site 114 – Garfield Avenue, Jersey City, NJ                                          |  |  |  |  |
| AECOM Project Number:       | 60213772 – 5.A                                                                           |  |  |  |  |
| Prepared by: Justin Webste  | er/AECOM Completed on: September 7, 2012                                                 |  |  |  |  |
| Reviewed by: Lisa Krowitz/A | AECOM File Name: 2012-09-07 DV Report JB14404-F.docx                                     |  |  |  |  |

### Introduction

The data were reviewed in accordance with the FSP-QAPP and the following NJDEP and/or Region 2 validation Standard Operating Procedure (SOP):

NJDEP Office of Data Quality SOP 5.A.10, Rev 3 (September 2009), SOP for Analytical Data Validation of Hexavalent Chromium - for USEPA SW-846 Method 3060A, USEPA SW-846 Method 7196A

The results of quality control data analyzed with site samples were used to assess the overall reliability of the data. The following qualifiers were used to identify data quality issues:

- U: Indicates the analyte was not detected in the sample above the sample reporting limit.
- J: Indicates the result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.
- UJ: Indicates the analyte was not detected above the reporting limit and the reporting limit was approximate.
- R: The sample result was rejected due to serious deficiencies; the presence or absence of the analyte could not be confirmed.

AECOM 2

### **Sample Information**

The samples listed below were collected by AECOM on August 22, 2012 as part of the Garfield Ave Supplemental Remedial Investigation (GARIS) Northern Canal Boring Sampling at the PPG Site - 114 Jersey City, New Jersey.

| Field ID                         | Laboratory ID | Matrix  | Fraction            |
|----------------------------------|---------------|---------|---------------------|
| NSB-EB20120822 (Equipment Blank) | JB14404-2     | Aqueous | Hexavalent Chromium |
| NSB-D4-20.0-20.5                 | JB14404-3     | Soil    | Hexavalent Chromium |
| NSB-D4-16.5-17.0                 | JB14404-4     | Soil    | Hexavalent Chromium |
| NSB-D4-12.0-12.5                 | JB14404-5     | Soil    | Hexavalent Chromium |
| NSB-D4-10.5-11.0                 | JB14404-6     | Soil    | Hexavalent Chromium |
| NSB-D4-6.0-6.5                   | JB14404-7     | Soil    | Hexavalent Chromium |
| NSB-D3-21.0-21.5                 | JB14404-9     | Soil    | Hexavalent Chromium |
| NSB-D3-15.0-15.5                 | JB14404-10    | Soil    | Hexavalent Chromium |
| NSB-D3-10.8-11.3                 | JB14404-11    | Soil    | Hexavalent Chromium |
| NSB-D3-6.5-7.0                   | JB14404-12    | Soil    | Hexavalent Chromium |
| NSB-D2-16.6-17.1                 | JB14404-13    | Soil    | Hexavalent Chromium |
| NSB-D2-15.0-15.5                 | JB14404-14    | Soil    | Hexavalent Chromium |
| NSB-D2-20.0-20.5                 | JB14404-15    | Soil    | Hexavalent Chromium |

The samples were collected following the procedures detailed in the Remedial Investigation Work Plan – Soil for Non-Residential Chromate Chemical Production Waste Sites 114, 132, 133, 135, 137, 143, and 186, Jersey City, New Jersey and the Field Sampling Plan/Quality Assurance Project Plan for Non-Residential and Residential Chromium Sites Hudson County, New Jersey (December 2011).

### **General Comments**

The data package was complete. Quality control (QC) issues identified during validation are discussed below. Refer to the Soil Target Analyte Summary Hit List for a listing of all detected results, qualified results, and associated qualifications, where applicable.

### **Hexavalent Chromium**

### Matrix Spike Results

Sample NSB-D4-20.0-20.5 (JB14404-3) was selected for the matrix spike (MS) analysis associated with the samples in this SDG and was used for supporting data quality recommendations. The soluble and insoluble MS recoveries (batch GP66904/GN71388) were 95.6% and 106%, respectively; both results met the quality control criteria of 75-125%. The post digestion spike (PDS) recovery was 94.7%, which met the PDS criteria of 85-115%. No data qualification was required on the basis of spike recoveries.

### Percent Moisture

Due to high sample moisture content, greater than 50 percent, the detect result for sample NSB-D3-10.8-11.3 was qualified as estimated (J).

### **Reporting Limits**

Reported results less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL) are approximate values and have been qualified as estimated (J).

AECOM 3

### **Data Quality and Usability**

In general, these data appear to be valid and may be used for decision-making purposes. No data were rejected. Qualified results, if applicable, are discussed in attachments A and B below.

The hexavalent chromium result for sample NSB-D3-10.8-11.3 is usable as an estimated value with an unknown bias based on high moisture content.

In addition, all results reported between the RL and the MDL are usable as estimated values.

### **Attachments**

Attachment A Target Analyte Summary Hitlist(s)

Attachment B Data Validation Report Form

Attachment A

Target Analyte Summary Hitlist(s)

AECOM Page 1 of 4

### Soil Target Analyte Summary Hit List (Hexavalent Chromium)

Site Name PPG –GARIS Northern Canal Borings PPG Site 114, Jersey City, NJ

Sampling Date August 22, 2012

Lab Name/ID Accutest Laboratories, Dayton, NJ

SDG No JB14404

Sample Matrix Soil
Trip Blank ID NA

Field Blank ID NSB-EB20120822

| Field Sample ID  | Lab Sample<br>ID | Analyte               | Method<br>Blank<br>(mg/kg) | Laboratory<br>Sample<br>Result<br>(mg/kg) | Validation<br>Sample<br>Result<br>(mg/kg) | RL<br>(mg/kg) | Quality<br>Assurance<br>Decision | NJDEP<br>Validation<br>Footnote |
|------------------|------------------|-----------------------|----------------------------|-------------------------------------------|-------------------------------------------|---------------|----------------------------------|---------------------------------|
| NSB-D2-16.6-17.1 | JB14404-13       | CHROMIUM (HEXAVALENT) | U                          | 0.27                                      | 0.27                                      | 0.56          | Qualify                          | 31                              |
| NSB-D2-20.0-20.5 | JB14404-15       | CHROMIUM (HEXAVALENT) | U                          | 1.2                                       | 1.2                                       | 0.50          |                                  |                                 |
| NSB-D3-10.8-11.3 | JB14404-11       | CHROMIUM (HEXAVALENT) | U                          | 1.3                                       | 1.3                                       | 0.94          | Qualify                          | 22                              |
| NSB-D3-21.0-21.5 | JB14404-9        | CHROMIUM (HEXAVALENT) | U                          | 0.47                                      | 0.47                                      | 0.46          |                                  |                                 |
| NSB-D3-6.5-7.0   | JB14404-12       | CHROMIUM (HEXAVALENT) | U                          | 0.43                                      | 0.43                                      | 0.62          | Qualify                          | 31                              |
| NSB-D4-10.5-11.0 | JB14404-6        | CHROMIUM (HEXAVALENT) | U                          | 0.57                                      | 0.57                                      | 0.56          |                                  |                                 |
| NSB-D4-12.0-12.5 | JB14404-5        | CHROMIUM (HEXAVALENT) | U                          | 1.1                                       | 1.1                                       | 0.51          |                                  |                                 |
| NSB-D4-16.5-17.0 | JB14404-4        | CHROMIUM (HEXAVALENT) | U                          | 0.64                                      | 0.64                                      | 0.46          |                                  |                                 |
| NSB-D4-20.0-20.5 | JB14404-3        | CHROMIUM (HEXAVALENT) | U                          | 1.1                                       | 1.1                                       | 0.45          |                                  |                                 |

Note: A "U" under Method Blank column indicates a nondetect result.

A "U" under the Laboratory Sample Result and Validation Sample Result columns indicates a nondetect result at the RL.

### NJDEP Laboratory Footnote

- 1. The value reported is less than or equal to 3x the value in the preparation/reagent blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.
- 2. The value reported is greater than three (3) times but less than ten (10) times the value in the preparation/reagent blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to the preparation/reagent blank contamination. The "B" qualifier alerts the end-user to the presence of this analyte in the preparation/reagent blank.

AECOM Page 2 of 4

3. The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the policy of NJDEP-DPFSR to negate the reported value as due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.

- 4. The value reported is greater than three (3) times but less than ten (10) times the value in the trip/field blanks and is considered "real". However, the reported value must be quantitatively qualified "J" due to trip/field blank contamination.
- 5. The concentration reported by the laboratory is incorrectly calculated.
- 6. The laboratory failed to report the presence of the analyte in the sample.
- 7. The reported Hexavalent Chromium value was qualified because the Calibration Check Standard was not within the recovery range (90-110 percent).
- 8. In the Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of <u>+</u> 20 percent for sample results > 4xRL or <u>+</u> RL for sample results < 4xRL. Therefore, the result was qualified.
- 9. This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.
- 10. The reported value was qualified because the PVS recovery was greater than 115 percent.
- 11. The reported value was qualified because the PVS recovery was less than 85 percent.
- 12. The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.
- 13. The reported analyte was qualified because the associated Calibration Blank result was greater than the MDL.
- 14. The laboratory made a transcription error. No hits were found in the raw data.
- 15. This analyte is rejected because the laboratory exceeded the holding time for digestion and analysis.
- 16. The laboratory subtracted the preparation/reagent blank from the sample result. The Reviewer's calculation puts the preparation/reagent blank back into the result.
- 17. The photocopy is unreadable. Therefore, the QA reviewer cannot read the laboratory's reported concentration result.
- 18. The reported value was qualified because the predigestion spike recovery was less than 75 %.
- 19. The reported value was qualified because the predigestion spike recovery was greater than 125 percent.

AECOM Page 3 of 4

20. The non-detected value was qualified (UJ) because the redigestion spike recovery was less than 75 percent. The possibility of a false negative exists.

- 21. The reported result was qualified or rejected because the laboratory did not record the pH value(s) of the sample in a laboratory notebook.
- 22. The reported value was qualified (J/UJ) because the sample moisture content exceeded 50 percent.
- 23. The sample result was rejected because the soluble and insoluble matrix spike recoveries were less than 50%.
- 24. The detected sample result was qualified (J) because the incorrect spike concentration was used.
- 25. The reported sample results were rejected because the predigestion spike recovery was greater than 150 percent.
- 26. The reported sample results were rejected because the redigestion spike recovery was greater than 150 percent.
- 27. The reported value was qualified (J) because the redigestion spike recovery was less than 75 percent.
- 28. The reported value was qualified (J/UJ) because the sample digestion temperature was less than 90°C.
- 29. In the Field Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of ≤ 20% for sample results > 4xRL or + RL for sample results < 4xRL. Therefore, the result was qualified.
- 30. The reported value was qualified as estimated (J/UJ) but the bias is uncertain due to both high and low MS recoveries.
- 31. The reported result was greater than the MDL but less than the RL and qualified (J) as estimated by the laboratory.
- 32. The reported value was qualified because the sample replicate precision criterion of ≤ 20% for method 7199 was exceeded.
- 33. The reported value was qualified (J/UJ) because the laboratory control sample (LCS) recovery was less than 80%.
- 34. The reported value was qualified (J) because the laboratory control sample (LCS) recovery was greater than 120%.
- 35. The reported result was qualified because the matrix spike analysis was not performed at the proper frequency.
- 36. The reported result was qualified because the laboratory duplicate analysis was not performed at the proper frequency.
- 37. The result was qualified because the cooler temperature upon sample receipt exceeded 6°C.
- 38. The reported value was qualified because the redigestion spike recovery was greater than 125 percent.

AECOM Page 4 of 4

39. The reported result was rejected because the laboratory failed to perform the reanalysis due to insufficient sample volume.

40. The reported results was qualified because the laboratory failed to analyze an ending CCB.

**Attachment B** 

**Data Validation Report Form** 

| Client Name: PPG Industries                      | <b>Project Number:</b> 60213772 – 5.A   |
|--------------------------------------------------|-----------------------------------------|
| Site Location: PPG –GARIS Northern Canal Borings | Project Manager: Robert Cataldo         |
| Laboratory: Accutest, Dayton, New Jersey         | Limited or Full Validation (circle one) |
| Laboratory Job No: JB14404                       | Date Checked: 09/07/2012                |
| Validator: Justin Webster                        | Peer: Lisa Krowitz                      |

| ITEM                                                                                               | YES          | NO          | N/A         | COMMENTS                                                   |
|----------------------------------------------------------------------------------------------------|--------------|-------------|-------------|------------------------------------------------------------|
| Sample results included?                                                                           | х            |             |             | 12 soils and 1 field blank                                 |
| Reporting Limits met project requirements?                                                         | х            |             |             |                                                            |
| Field I.D. included?                                                                               | х            |             |             |                                                            |
| Laboratory I.D. included?                                                                          | х            |             |             |                                                            |
| Sample matrix included?                                                                            | х            |             |             |                                                            |
| Sample receipt temperature 2-6°C?                                                                  | х            |             |             | 2.0°C                                                      |
| Signed COCs included?                                                                              | х            |             |             |                                                            |
| Date of sample collection included?                                                                | х            |             |             | 08/24/2012                                                 |
| Date of sample digestion included?                                                                 | х            |             |             | Soil: JB14404 HxCr prepped on 08/30/2012;                  |
| Holding time to digestion met criteria?                                                            | х            |             |             | See below " Holding Times"                                 |
| Soils -30 days from collection to digestion.                                                       |              |             |             |                                                            |
| Date of analysis included?                                                                         | х            |             |             | Soil: JB14404 HxCr analyzed on 08/31/2012.                 |
|                                                                                                    |              |             |             | Aqueous: JB14404 08/22/2012 @ 20:25.                       |
| Holding time to analysis met criteria?                                                             | х            |             |             |                                                            |
| Soils -168 hours from digestion to analysis.                                                       |              |             |             |                                                            |
| Aqueous – 24 hours from collection to analysis.                                                    |              |             |             |                                                            |
| Method reference included?                                                                         | х            |             |             | 3060A/7196A                                                |
| Laboratory Case Narrative included?                                                                | х            |             |             |                                                            |
| Sample Dilutions                                                                                   |              | х           |             |                                                            |
| Field Duplicates ("x "appended to sample ID)                                                       |              | х           |             | See "Field Duplicate" table below for results.             |
| (RPD calculation on separate sheet)                                                                |              |             |             |                                                            |
| Definitions: MDL – Method Detection Limit; %R – Percent Deviation :Corr – Correlation Coefficient. | Recovery; RL | . – Reporti | ng Limit; R | RPD – Relative Percent Difference; RSD – Relative Standard |
|                                                                                                    | Co           | ommen       | ts          |                                                            |
|                                                                                                    |              |             |             |                                                            |
|                                                                                                    |              |             |             |                                                            |

| 1. Blank plus 7 standards (7196A) or blank plus 4 standards (7198). 2. Correlation coefficient of 43 935 (7196A) or 30 989 (7199). 3. Cellibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 included in Lab Package?  2. All analyses meet CC 3. Ves  2. All analyses meet CC 3. Ves  3. Cellibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 included in Lab Package?  2. Correct frequency of once every 10 samples 3. CCS and QCS from independent source and at mid level of calibration curve.  2. Correct frequency of once every 10 samples 3. CCS and QCS from independent source and at mid level of calibration curve.  2. Calibration Blanks  2. Analyzed prior to initial calibration standards and after each CCS(CCS) 2. Absolute value should not exceed MDL  3. Ves  4. Method Blank and Field Blanks included in Lab Package?  4. Method blank analyzed with each preparation batch?  2. Absolute value should not exceed MDL  3. Ves  4. NSB-EB20120822 was nondetect.  4. Ves  4. Ves  4. NSB-EB20120822 was nondetect.  5. NSB-EB20120822 was nondetect.  6. NSB-EB20120822 was nondetect.  7. NSB-EB20120822 was nondetect.  8. NSB-EB20120822 was nondetect.  8. NSB-EB20120822 was nondetect.  8. NSB-EB20120822 was nondetect.  9. NSB-EB20120822 was nondetect.  9. NSB-EB20120822 was nondetect.  9. NSB-EB20120822 was nondetect.  9. NSB-EB20120822 was nondetect.  1. Ves  2. Ves  3. Ves  3. Ves  4. NSB-EB20120822 was nondetect.  9. NSB-EB20120822 was nondetect.  1. Ves  1. Ves  3. Ves  4. NSB-EB20120822 was nondetect.  1. Ves  4. NSB-EB20120822 was nondetect.  1. Ves  4. NSB-EB20120822 was nondetect.  1. Ves  4. Ves  4. NSB-EB20120822 was nondetect.  1. Ves  5. Uses the spike concentration 40 mg/Kg?  2. Ves  4. NSB-EB20120822 was nondetect.  1. Ves  5. Use the spike Data Included in Lab Package?  2. Was the spike concentration 40 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  4. NSB-EB200-20.5 (JB14404-3)  1. Ves, JB14404-3 (90.75KR)  2. Ves, JB14404-3 (90.75KR) | ITEM                                                                                                   | YES | NO | N/A | COMMENTS                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----|----|-----|----------------------------------------------------------------------------------|
| 2. Correlation coefficient of 23.995 (7196A) or 20.999 (7199D). 3. Calibration Check Standard (CCS) for 7196 And Quality Control Sample (QCS) for 7199 Included in Lab Package?  1. %R criteria met? (90 - 110%). 2. Correct frequency of once every 10 samples 3. CCS and CCS from independent source and at mid level of 3. CCS and CCS from independent source and at mid level of 3. CCS and CCS from independent source and at mid level of 3. CCS and CCS from independent source and at mid level of 3. CCS and CCS from independent source and at mid level of 3. CCS and CCS from independent source and at mid level of 3. CCS and CCS from independent source and at mid level of 4. Analyzed prior to initial calibration standards and after each 4. CCSICCS?  2. Absolute value should not exceed MDL 4. Nethod Blank and Field Blanks Included in Lab Package? 4. Method Blank and Field Blanks Included in Lab Package? 5. Absolute value value should not exceed MDL 5. Ves 6. Lab And PM data included in Lab Package? 6. Lab And PM data included in Lab Package? 7. Lab And PM data included in Lab Package? 8. Ves 8. Lab And PM data included in Lab Package? 8. Ves 9. Lab And PM data included in Lab Package? 9. Ves 9. Lab And PM data was included and piloted for all samples? 9. Ves 9. Lab And PM data included in Lab Package? 9. Ves 9. Lab And Ves 9. Ves JB14404-3 (39.84 mg/kg) 9. Ves JB14404-3 (39.84 mg/kg) 9. Ves JB14404-3 (39.84 mg/kg) 9. Ves JB14404-3 (39.84 mg/kg) 9. Ves JB14404-3 (39.84 mg/kg) 9. Ves JB14404-3 (108%R) 9. Ves JB14404-3 (108%R) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB14404-3 (90.87 mg/kg) 9. Ves JB1440 | Initial Calibration Documentation Included in Lab Package?                                             | х   |    |     | Cal source (AQ: Absolute Grade Lot# 011212) and (SO: Absolute Grade lot# 041212) |
| Sample (QCS) for 7199 included in Lab Package?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ol><li>Correlation coefficient of ≥0.995 (7196A) or ≥0.999 (7199).</li></ol>                          | х   |    |     | All analyses meet CC                                                             |
| 2. Correct frequency of once every 10 samples 3. CCS and CSS from independent source and at mid level of Calibration Blanks 1. Analyzed prior to initial calibration standards and after each CSCOCS? 2. Absolute value should not exceed MDL  Method Blank and Field Blanks Included in Lab Package?  1. Method blank analyzed with each preparation batch? 2. Yes  Method blank analyzed with each preparation batch? 2. Absolute value should not exceed MDL  We should not exceed MDL  LE hand pH data included in Lab Package?  Eh and pH data included in Lab Package?  The should blank analyzed with each preparation batch?  Soluble Matrix Spike Data Included in Lab Package?  We should blank analyzed with each preparation batch?  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  We should not exceed MDL  |                                                                                                        | х   |    |     | Check source (AQ: Ultra Scientific lot #L00439) and (SO: Ultra lot #L00439)      |
| 1. Analyzed prior to initial calibration standards and after each CCS/QCS? 2. Absolute value should not exceed MDL x x S. NSB-EB20120822 was nondetect.  1. Method Blank and Field Blanks Included in Lab Package? x NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 1. Yes 2. Yes S. Yes S. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 1. Yes 2. Yes S. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 2. Yes S. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 1. Yes 3. Yes S. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 2. Yes S. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 2. Yes S. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 2. Yes S. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 3. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 3. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 3. NSB-EB20120822 was nondetect.  1. Method blank analyzed with each preparation batch? x 3. NSB-EB20120822 was nondetect.  1. Yes JB14404-3 (39.84 mg/kg) S. NSB-EB20.0-20.5 (JB14404-3)  1. %R criteria met? (75-125%R) x 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3. Yes 3  | Correct frequency of once every 10 samples     CCS and QCS from independent source and at mid level of | х   |    |     | Analyzed every 10 samples                                                        |
| CCS/GCS?  2. Absolute value should not exceed MDL  X  NSB-EB20120822 was nondetect.  1. Method Blank and Field Blanks Included in Lab Package?  X  1. Yes  2. Yes  He hand pH data included in Lab Package?  Eh and pH data included in Lab Package?  X  Soluble Matrix Spike Data Included in Lab Package?  X  Soluble Matrix Spike Data Included in Lab Package?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (39.84 mg/kg)  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (106%R)  2. Was the spike concentration 40 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (106%R)  2. Was the spike concentration 40 to 800 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (106%R)  2. No, JB14404-3 (106%R)  2. No, JB14404-3 (106%R)  3. Yes  Post Digestion Spike  X  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)  3. Was a sample spike oncentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)  3. Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Calibration Blanks                                                                                     | х   |    |     |                                                                                  |
| 1. Method blank analyzed with each preparation batch?  2. Absolute value should not exceed MDL.  x  2. Yes  Eh and pH data Included in Lab Package?  Eh and pH data included in Lab Package?  X  Soluble Matrix Spike Data Included in Lab Package?  X  Soluble Matrix Spike Data Included in Lab Package?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (75-125%R)  2. Was the spike concentration 40 mg/kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Insoluble Matrix Spike Data Included in Lab Package?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (75-125%R)  2. Was the spike concentration 400 to 800 mg/kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X  X  X  X  X  X  X  X  X  X  X  X  X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CCS/QCS?                                                                                               |     |    |     |                                                                                  |
| 2. Absolute value should not exceed MDL.  Eh and pH data Included in Lab Package?  Eh and pH data was included and plotted for all samples?  Soluble Matrix Spike Data Included in Lab Package?  1. %R criteria met? (75-125%R)  2. Was the spike concentration 40 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Insoluble Matrix Spike Data Included in Lab Package?  1. %R criteria met? (75-125%R)  2. Was the spike Data Included in Lab Package?  3. Yes  Insoluble Matrix Spike Data Included in Lab Package?  4. NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (75-125%R)  2. Was the spike concentration 400 to 800 mg/Kg?  3. Yes  Post Digestion Spike  5. NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (85-115%R).  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Yes  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  4. NSB-E4-20.0-20.5 (JB14404-3)  4. Yes, JB14404-3 (40.40 mg/kg)  5. NSB-E4-20.0-20.5 (JB14404-3)  7. Yes, JB14404-3 (40.40 mg/kg)  8. NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Method Blank and Field Blanks Included in Lab Package?                                                 | х   |    |     | NSB-EB20120822 was nondetect.                                                    |
| Eh and pH data Included in Lab Package?  Eh and pH data was included and plotted for all samples?  Soluble Matrix Spike Data Included in Lab Package?  1. %R criteria met? (75-125%R)  2. Was the spike concentration 40 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Insoluble Matrix Spike Data Included in Lab Package?  Insoluble Matrix Spike Data Included in Lab Package?  Insoluble Matrix Spike Data Included in Lab Package?  X NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (75-125%R)  2. Was the spike concentration 400 to 800 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X NSB-E4-20.0-20.5 (JB14404-3 (196%R)  2. No, JB14404-3 (903.81 mg/kg), no impact to data  3. Yes  Post Digestion Spike  X NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (85-115%R).  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  X NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Method blank analyzed with each preparation batch?                                                     | х   |    |     | 1. Yes                                                                           |
| Eh and pH data was included and plotted for all samples?  Soluble Matrix Spike Data Included in Lab Package?  1. %R criteria met? (75-125%R)  2. Was the spike concentration 40 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  1. %R criteria met? (75-125%R)  2. Was the spike Data Included in Lab Package?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 400 to 800 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 400 to 800 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 40 to 800 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  2. NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 the absolute difference with within ± 1. Yes, JB14404-3 the absolute difference with within ± 2. Yes, JB14404-3 the absolute difference with within ± 3. Yes, JB14404-3 the absolute difference with within ± 3. Yes, JB14404-3 the absolute difference with within ± 3. Yes, JB14404-3 the absolute difference with within ± 3. Yes, JB14404-3 the absolute difference with within ± 3. Yes, JB14404-3 the absolute difference with within ± 3. Yes, JB14404-3 the absolute difference with within ± 3. Yes                                                                                                                          | Absolute value should not exceed MDL.                                                                  | x   |    |     | 2. Yes                                                                           |
| Soluble Matrix Spike Data Included in Lab Package?  1. %R criteria met? (75-125%R)  2. Was the spike concentration 40 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Insoluble Matrix Spike Data Included in Lab Package?  1. %R criteria met? (75-125%R)  2. Yes, JB14404-3 (39.84 mg/kg)  3. Yes  Insoluble Matrix Spike Data Included in Lab Package?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (75-125%R)  2. Was the spike concentration 400 to 800 mg/Kg?  3. Yes  Post Digestion Spike  x  NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (85-115%R).  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (94.7%R)  2. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (40.40 mg/kg)  3. Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Eh and pH data Included in Lab Package?                                                                | х   |    |     |                                                                                  |
| 1. %R criteria met? (75-125%R)  2. Was the spike concentration 40 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Insoluble Matrix Spike Data Included in Lab Package?  1. %R criteria met? (75-125%R)  2. Was the spike concentration 400 to 800 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 400 to 800 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. No, JB14404-3 (903.81 mg/kg), no impact to data  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Yes, JB14404-3 (94.7%R)  2. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  2. NSB-E4-20.0-20.5 (JB14404-3)  3. Yes  NSB-E4-20.0-20.5 (JB14404-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Eh and pH data was included and plotted for all samples?                                               | х   |    |     |                                                                                  |
| 2. Was the spike concentration 40 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Insoluble Matrix Spike Data Included in Lab Package?  1. %R criteria met? (75-125%R) 2. Was the spike concentration 400 to 800 mg/Kg? 3. Yes  NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (85-115%R) 2. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Was the spike concentration 400 to 800 mg/Kg?  3. Yes  Post Digestion Spike  2. NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (85-115%R).  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Yes, JB14404-3 (94.7%R)  2. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  2. NSB-E4-20.0-20.5 (JB14404-3)  3. Yes  NSB-E4-20.0-20.5 (JB14404-3)  1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or  x  1. Yes, JB14404-3 the absolute difference with within ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Soluble Matrix Spike Data Included in Lab Package?                                                     | х   |    |     | NSB-E4-20.0-20.5 (JB14404-3)                                                     |
| 2. Was the spike concentration 40 mg/Kg? 3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Insoluble Matrix Spike Data Included in Lab Package?  Insoluble Matrix Spike Data Included in Lab Pac  | 1. %R criteria met? (75-125%R)                                                                         | х   |    |     | 1. Yes, JB14404-3 (95.6%R)                                                       |
| Insoluble Matrix Spike Data Included in Lab Package?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (75-125%R) 2. Was the spike concentration 400 to 800 mg/kg? x  x  x  1. Yes, JB14404-3 (106%R) 2. No, JB14404-3 (903.81 mg/kg), no impact to data 3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Post Digestion Spike  x  NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (85-115%R).  x  x  x  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (94.7%R)  2. Was the spike concentration 40 mg/kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes  Sample Duplicate Data Included in Lab Package?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3  1. Yes, JB14404-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Was the spike concentration 40 mg/Kg?                                                               |     |    |     | 2. Yes, JB14404-3 (39.84 mg/kg)                                                  |
| 1. %R criteria met? (75-125%R) 2. Was the spike concentration 400 to 800 mg/Kg? 3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Post Digestion Spike  1. Yes, JB14404-3 (903.81 mg/kg), no impact to data  3. Yes  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (94.7%R)  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  x  NSB-E4-20.0-20.5 (JB14404-3)  3. Yes  Sample Duplicate Data Included in Lab Package?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or  x  1. Yes, JB14404-3 (106%R)  2. No, JB14404-3 (903.81 mg/kg), no impact to data  3. Yes  NSB-E4-20.0-20.5 (JB14404-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                      |     |    |     | 3. Yes                                                                           |
| 2. Was the spike concentration 400 to 800 mg/Kg?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Post Digestion Spike  x  NSB-E4-20.0-20.5 (JB14404-3)  1. Wes, JB14404-3 (903.81 mg/kg), no impact to data  3. Yes  NSB-E4-20.0-20.5 (JB14404-3)  1. Yes, JB14404-3 (94.7%R)  2. Yes, JB14404-3 (94.7%R)  2. Yes, JB14404-3 (40.40 mg/kg)  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  X  NSB-E4-20.0-20.5 (JB14404-3)  3. Yes  Sample Duplicate Data Included in Lab Package?  X  NSB-E4-20.0-20.5 (JB14404-3)  1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or  X  1. Yes, JB14404-3 the absolute difference with within ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Insoluble Matrix Spike Data Included in Lab Package?                                                   | х   |    |     | NSB-E4-20.0-20.5 (JB14404-3)                                                     |
| Post Digestion Spike  x  NSB-E4-20.0-20.5 (JB14404-3)  1. %R criteria met? (85-115%R).  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  x  NSB-E4-20.0-20.5 (JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or  x  1. Yes, JB14404-3 the absolute difference with within ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        | х   | х  |     |                                                                                  |
| 1. %R criteria met? (85-115%R).  2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  Sample Duplicate Data Included in Lab Package?  1. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  NSB-E4-20.0-20.5 (JB14404-3)  1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or  x  1. Yes, JB14404-3 the absolute difference with within ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                      | х   |    |     | 3. Yes                                                                           |
| 2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?  x  2. Yes, JB14404-3 (40.40 mg/kg)  3. Yes  Sample Duplicate Data Included in Lab Package?  x  NSB-E4-20.0-20.5 (JB14404-3)  1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or  x  1. Yes, JB14404-3 the absolute difference with within ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Post Digestion Spike                                                                                   | х   |    |     | NSB-E4-20.0-20.5 (JB14404-3)                                                     |
| sample concentration?  3. Was a sample spiked at the frequency of 1/batch or 20 samples? x  3. Yes  Sample Duplicate Data Included in Lab Package? x  NSB-E4-20.0-20.5 (JB14404-3)  1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or x  1. Yes, JB14404-3 the absolute difference with within ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. %R criteria met? (85-115%R).                                                                        | х   |    |     | 1. Yes, JB14404-3 (94.7%R)                                                       |
| Sample Duplicate Data Included in Lab Package? x NSB-E4-20.0-20.5 (JB14404-3)  1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or x 1. Yes, JB14404-3 the absolute difference with within ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | x   |    |     | 2. Yes, JB14404-3 (40.40 mg/kg)                                                  |
| 1. RPD criteria met? (RPD < 20%) if both results are ≥4x RL or x 1. Yes, JB14404-3 the absolute difference with within ±                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Was a sample spiked at the frequency of 1/batch or 20 samples?                                         | x   |    |     | 3. Yes                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample Duplicate Data Included in Lab Package?                                                         | х   |    |     | NSB-E4-20.0-20.5 (JB14404-3)                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | х   |    |     |                                                                                  |
| Was a sample spiked at the frequency of 1/batch or 20 samples?  2. Yes  2. Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '                                                                  | x   |    |     | 2. Yes                                                                           |

| ITEM                                                                                                                                                                                                                                                                                                                                                                                 | YES         | NO | N/A | COMMENTS                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|-----|-------------------------------------------------------------------------------------|
| Was a Laboratory Control Sample (LCS) Included in Lab Package?                                                                                                                                                                                                                                                                                                                       | х           |    |     |                                                                                     |
| <ol> <li>%R criteria met? (80-120%R soil, 90-110% aq).</li> <li>Was an LCS analyzed at the frequency of 1/batch or 20 samples?</li> </ol>                                                                                                                                                                                                                                            | x<br>x      |    |     | <ol> <li>Yes, all criteria were met for AQ and SO analyses.</li> <li>Yes</li> </ol> |
| Miscellaneous Items.                                                                                                                                                                                                                                                                                                                                                                 |             |    |     |                                                                                     |
| <ol> <li>For soils by 7196A, was the pH within a range of 7.0-8.0?</li> <li>For soils by 7199, was the pH within a range of 9.0-9.5?</li> <li>For aqueous by 7196A, was the pH with a range of 1.5-2,5?</li> <li>For soils (3060A), was the digestion temperature 90-95°C for at least 60 minutes?</li> <li>For 7199, was each sample injected twice and was the RPD ≤20?</li> </ol> | x<br>x<br>x |    | x   | 1. Yes 2. NA 3. Yes 4. Yes 5. NA                                                    |

AECOM Page 4 of 6

| SDG#: JB14404                       | x - concentration | y - response |                         |                |
|-------------------------------------|-------------------|--------------|-------------------------|----------------|
| Batch: GN71388                      |                   |              |                         |                |
| Cr+6 ICAL - 08/31/2012              | 0                 | 0            |                         |                |
| Soils                               | 0.01              | 0.009        |                         |                |
| (p. 46 of data pkg)                 | 0.05              | 0.044        |                         |                |
|                                     | 0.1               | 0.088        |                         |                |
|                                     | 0.3               | 0.275        |                         |                |
|                                     | 0.5               | 0.44         |                         |                |
|                                     | 0.8               | 0.715        |                         |                |
|                                     | 1                 | 0.898        |                         | (p. 46 of data |
|                                     |                   |              |                         | pkg)           |
| AECOM Calculated Intercept          | -0.0004           | OK           | Reported intercept      | -0.0004        |
| AECOM Slope                         | 0.8956            | OK rounding  | Reported Slope          | 0.8956         |
| AECOM Calculated r                  | 0.99993           | OK           | Reported r              | 0.99993        |
|                                     |                   |              |                         |                |
| LCS calculation                     | GP66904-B1        | pg. 46       |                         |                |
| Background absorbance               | 0                 |              |                         |                |
| Sample absorbance                   | 0.89              |              |                         |                |
| LCS Soluble Instrument Response     | 0.89              |              |                         |                |
| Instrument Concentration (mg/L)     | 0.994             |              |                         |                |
| Sample weight (kg)                  | 0.0025            |              |                         |                |
| Percent solids                      | 1                 |              |                         |                |
| Dilution Factor                     | 1                 |              |                         |                |
| AECOM Calculated LCS Result (mg/Kg) | 39.8              | OK           | Reported Result (mg/Kg) | 39.8           |
|                                     |                   |              |                         |                |
| %R = Found/True*100                 | GP66863-B1        | pg. 35       |                         |                |
| True Value (mg/kg)                  | 40.0              |              |                         |                |
| AECOM Calculated %R                 | 99.5              | OK           | Reported %R             | 99.5           |
| MS calculation (GP66863-S2)         | NSB-D4-20.0-20.5  | pg. 46       |                         |                |
| Background reading                  | 0                 | pg. 40       |                         |                |
| Total absorbance                    | 0.43              |              |                         |                |
| Total absorbance - background       | 0.43              |              |                         |                |
| Instrument Concentration (mg/L)     | 0.481             |              |                         |                |
| Sample weight (kg)                  | 0.00251           |              |                         |                |
| Percent solids                      | 0.888             |              |                         |                |
| Dilution Factor                     | 50                |              |                         |                |
| AECOM Calculated MS Result (mg/Kg)  | 1078              | OK rounding  | Reported Result (mg/Kg) | 1080           |
|                                     |                   | -            |                         | <u>.</u>       |
| %R = Found/True*100                 | NSB-D4-20.0-20.5  | pg. 37       |                         |                |
| True Value (mg/kg)                  | 1020              |              |                         |                |
| Native concentration (mg/Kg)        | 1.1               |              |                         |                |
| %R                                  | 106               | OK           | Reported %R             | 106            |
| D                                   | NOD DA OC COST    |              |                         |                |
| Percent Solids                      | NSB-D4-20.0-20.5  | pg. 38       |                         |                |
| Empty dish weight (g)=              | 25.81             |              |                         |                |
| Wet weight (g)=                     | 35.72             |              |                         |                |
| Dry weight (g)=  AECOM%solids =     | 34.61             | OK           | Reported %solids=       | 88.8           |
| ALCOIVI7050IIU5 =                   | 88.8              | OK           | neported %solids=       | 00.8           |
| Reporting Limit                     | NSB-D4-20.0-20.5  | pgs. 10, 46  |                         |                |
| Low Standard                        | 0.01              | . 5          |                         |                |
| Initial weight (kg)                 | 0.00242           |              |                         |                |
| Final volume (L)                    | 0.1               |              |                         |                |
| Percent solids                      | 0.888             |              |                         |                |
| Dilution Factor                     | 1.00              |              |                         |                |
| Reporting Limit                     | 0.47              | OK rounding  | Reported RL (mg/Kg)=    | 0.45           |
|                                     |                   |              |                         |                |

AECOM Page 5 of 6

### **Sample Calculations**

| NSB-D4-20.0-20.5                |         | pgs. 10, 46 |                         |      |
|---------------------------------|---------|-------------|-------------------------|------|
| Background reading              | 0.001   |             |                         |      |
| Total absorbance                | 0.022   |             |                         |      |
| Total absorbance - background   | 0.021   |             |                         |      |
| Instrument Response (mg/L)      | 0.024   |             |                         |      |
| Sample weight (kg)              | 0.00242 |             |                         |      |
| Final Volume (L)                | 0.1     |             |                         |      |
| Percent solids                  | 0.89    |             |                         |      |
| Dilution Factor                 | 1       |             |                         |      |
| AECOM Calculated Result (mg/Kg) | 1.1     | OK rounding | Reported Result (mg/Kg) | 1.0  |
| NSB-D3-21.0-21.5                |         | pgs. 15, 46 |                         |      |
| Background reading              | 0       | pys. 13, 40 |                         |      |
| Total absorbance                | 0.009   |             |                         |      |
| Total absorbance - background   | 0.009   |             |                         |      |
| Instrument Response (mg/L)      | 0.010   |             |                         |      |
| Sample weight (kg)              | 0.00256 |             |                         |      |
| Final Volume (L)                | 0.1     |             |                         |      |
| Percent solids                  | 0.86    |             |                         |      |
| Dilution Factor                 | 1       |             |                         |      |
| AECOM Calculated Result (mg/Kg) | 0.47    | OK          | Reported Result (mg/Kg) | 0.47 |

AECOM Page 6 of 6

### **Holding Times**

| Sample ID        | Method | Days from<br>Sampling to<br>Prep | Days from Prep<br>to Analysis | Days from<br>Sampling to<br>Analysis | Sampling to<br>Prep Status | Prep to Analysis<br>Status | Sampling to<br>Analysis Status |
|------------------|--------|----------------------------------|-------------------------------|--------------------------------------|----------------------------|----------------------------|--------------------------------|
| NSB-EB20120822   | SW7196 |                                  |                               | 0                                    |                            |                            | OK @1 days                     |
| NSB-D2-15.0-15.5 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D2-16.6-17.1 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D2-20.0-20.5 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D3-10.8-11.3 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D3-15.0-15.5 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D3-21.0-21.5 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D3-6.5-7.0   | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D4-10.5-11.0 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D4-12.0-12.5 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D4-16.5-17.0 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D4-20.0-20.5 | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-D4-6.0-6.5   | SW7196 | 8                                | 1                             | 9                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |

### **Percent Solids**

| Sample ID        | Percent Solids (%) | Status  |
|------------------|--------------------|---------|
| NSB-D2-15.0-15.5 | 59.6               | ok @50% |
| NSB-D2-16.6-17.1 | 71.5               | ok @50% |
| NSB-D2-20.0-20.5 | 80.2               | ok @50% |
| NSB-D3-10.8-11.3 | 42.6               | <50%    |
| NSB-D3-15.0-15.5 | 53.2               | ok @50% |
| NSB-D3-21.0-21.5 | 86.1               | ok @50% |
| NSB-D3-6.5-7.0   | 65                 | ok @50% |
| NSB-D4-10.5-11.0 | 71.6               | ok @50% |
| NSB-D4-12.0-12.5 | 79                 | ok @50% |
| NSB-D4-16.5-17.0 | 87                 | ok @50% |
| NSB-D4-20.0-20.5 | 88.8               | ok @50% |
| NSB-D4-6.0-6.5   | 67.9               | ok @50% |

### Matrix Spikes

| Sample ID        | Compound              | Analysis batch | MSs %<br>Recovery | MSI %<br>Recovery | PDS %R | Adj pH PDS %R | Lower<br>Limit | Upper<br>Limit |
|------------------|-----------------------|----------------|-------------------|-------------------|--------|---------------|----------------|----------------|
| NSB-D4-20.0-20.5 | CHROMIUM (HEXAVALENT) | GN71388        | 95.6              | 106               | 94.7   | NA            | 75             | 125            |



09/06/12



## Technical Report for

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14404

Sampling Date: 08/22/12

### Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 63



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



## **Sections:**

# **Table of Contents**

-1-

| Section 1: Sample Summary                        | 3         |
|--------------------------------------------------|-----------|
| Section 2: Case Narrative/Conformance Summary    | 4         |
| Section 3: Summary of Hits                       | 6         |
| Section 4: Sample Results                        | 8         |
| <b>4.1:</b> JB14404-2: NSB-EB20120822            | 9         |
| <b>4.2:</b> JB14404-3: NSB-D4-20.0-20.5          | 10        |
| <b>4.3:</b> JB14404-4: NSB-D4-16.5-17.0          | 11        |
| <b>4.4:</b> JB14404-5: NSB-D4-12.0-12.5          | 12        |
| <b>4.5:</b> JB14404-6: NSB-D4-10.5-11.0          | 13        |
| <b>4.6:</b> JB14404-7: NSB-D4-6.0-6.5            | 14        |
| <b>4.7:</b> JB14404-9: NSB-D3-21.0-21.5          | 15        |
| <b>4.8:</b> JB14404-10: NSB-D3-15.0-15.5         | 16        |
| <b>4.9:</b> JB14404-11: NSB-D3-10.8-11.3         | 17        |
| <b>4.10:</b> JB14404-12: NSB-D3-6.5-7.0          | 18        |
| <b>4.11:</b> JB14404-13: NSB-D2-16.6-17.1        | 19        |
| <b>4.12:</b> JB14404-14: NSB-D2-15.0-15.5        | 20        |
| <b>4.13:</b> JB14404-15: NSB-D2-20.0-20.5        | 21        |
| Section 5: Misc. Forms                           | 22        |
| <b>5.1:</b> Chain of Custody                     | 23        |
| 5.2: Sample Tracking Chronicle                   | 27        |
| 5.3: Internal Chain of Custody                   | 30        |
| Section 6: General Chemistry - QC Data Summaries |           |
| 6.1: Method Blank and Spike Results Summary      | 35        |
| 6.2: Duplicate Results Summary                   | 36        |
| 6.3: Matrix Spike Results Summary                | 37        |
| 6.4: Percent Solids Raw Data Summary             | 38        |
| Section 7: General Chemistry - Raw Data          | <b>40</b> |
| 7.1: Raw Data GN70910: Chromium, Hexavalent      | 41        |
| 7.2: Raw Data GN71388: Chromium, Hexavalent      | 46        |
| <b>7.3:</b> Raw Data GN71397: pH                 |           |
| 7.4: Raw Data GN71398: Redox Potential Vs H2     |           |
| 7.5: Raw Data GN71442: Redox Potential Vs H2     | 59        |
| <b>7.6:</b> Eh pH Phase Diagram                  | 61        |



## **Sample Summary**

Job No:

JB14404

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code |                 | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|-----------------|---------------------|
| JB14404-2        | 08/22/12          | 15:00 CM | 08/22/12 | AQ            | Equipment Blank | NSB-EB20120822      |
| JB14404-3        | 08/22/12          | 14:07 CM | 08/22/12 | SO            | Soil            | NSB-D4-20.0-20.5    |
| JB14404-4        | 08/22/12          | 13:56 CM | 08/22/12 | SO            | Soil            | NSB-D4-16.5-17.0    |
| JB14404-5        | 08/22/12          | 13:44 CM | 08/22/12 | SO            | Soil            | NSB-D4-12.0-12.5    |
| JB14404-6        | 08/22/12          | 13:41 CM | 08/22/12 | SO            | Soil            | NSB-D4-10.5-11.0    |
| JB14404-7        | 08/22/12          | 13:30 CM | 08/22/12 | SO            | Soil            | NSB-D4-6.0-6.5      |
| JB14404-9        | 08/22/12          | 10:50 CM | 08/22/12 | SO            | Soil            | NSB-D3-21.0-21.5    |
| JB14404-10       | 08/22/12          | 10:40 CM | 08/22/12 | SO            | Soil            | NSB-D3-15.0-15.5    |
| JB14404-11       | 08/22/12          | 10:15 CM | 08/22/12 | SO            | Soil            | NSB-D3-10.8-11.3    |
| JB14404-12       | 08/22/12          | 09:45 CM | 08/22/12 | SO            | Soil            | NSB-D3-6.5-7.0      |
| JB14404-13       | 08/22/12          | 09:12 CM | 08/22/12 | SO            | Soil            | NSB-D2-16.6-17.1    |
| JB14404-14       | 08/22/12          | 09:06 CM | 08/22/12 | SO            | Soil            | NSB-D2-15.0-15.5    |
| JB14404-15       | 08/22/12          | 09:25 CM | 08/22/12 | SO            | Soil            | NSB-D2-20.0-20.5    |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14404

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 9/5/2012 12:50:04 PM

On 08/22/2012, 15 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 2 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14404 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. 13 Samples were active for this report.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Wet Chemistry By Method ASTM D1498-76

Matrix: AO Batch ID: GN71442

Sample(s) JB14404-2DUP were used as the QC samples for Redox Potential Vs H2.

#### Wet Chemistry By Method SM18 2540G

Matrix: SO Batch ID: GN71220

The data for SM18 2540G meets quality control requirements.

Matrix: SO Batch ID: GN71231

The data for SM18 2540G meets quality control requirements.

#### Wet Chemistry By Method SM20 4500H B

Matrix: AQ Batch ID: R115504

- The data for SM20 4500H B meets quality control requirements.
- JB14404-2 for pH: Sample received out of holding time for pH analysis.

#### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP66904

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14404-3MS, JB14404-3DUP were used as the QC samples for Chromium, Hexavalent.
- RPD(s) for Duplicate for Chromium, Hexavalent are outside control limits. RPD acceptable due to low duplicate and sample concentrations.
- GP66904-S1 for Chromium, Hexavalent: Good recovery on soluble XCR matrix spike. Good recovery (94.7%) on the post-spike.
- GP66904-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.

#### Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN70910

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14375-1DUP, JB14375-1MS were used as the QC samples for Chromium, Hexavalent.



### Wet Chemistry By Method SW846 9045C,D

Matrix: SO Batch ID: GN71397

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

<sup>■</sup> Sample(s) JB14404-3DUP were used as the QC samples for pH.

Summary of Hits Job Number: JB14404 Account: AECOM AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Collected: 08/22/12

| Lab Sample ID Client Sample I<br>Analyte            | D Result/<br>Qual   | RL   | MDL  | Units             | Method                                               |
|-----------------------------------------------------|---------------------|------|------|-------------------|------------------------------------------------------|
| JB14404-2 NSB-EB201208                              | 22                  |      |      |                   |                                                      |
| Redox Potential Vs H2 pH <sup>a</sup>               | 313<br>6.05         |      |      | mv<br>su          | ASTM D1498-76<br>SM20 4500H B                        |
| JB14404-3 NSB-D4-20.0-20                            | 0.5                 |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 1.1<br>191<br>8.83  | 0.45 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14404-4 NSB-D4-16.5-1                             | 7.0                 |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.64<br>190<br>8.91 | 0.46 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14404-5 NSB-D4-12.0-12                            | 2.5                 |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 1.1<br>45.4<br>8.54 | 0.51 | 0.15 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14404-6 NSB-D4-10.5-1                             | 1.0                 |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.57<br>151<br>8.82 | 0.56 | 0.16 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14404-7 NSB-D4-6.0-6.5                            | ;                   |      |      |                   |                                                      |
| Redox Potential Vs H2<br>pH                         | 144<br>8.26         |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14404-9 NSB-D3-21.0-2                             | 1.5                 |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.47<br>210<br>8.39 | 0.46 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14404-10 NSB-D3-15.0-1                            | 5.5                 |      |      |                   |                                                      |
| Redox Potential Vs H2<br>pH                         | 15.7<br>8.27        |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |



## **Summary of Hits Job Number:** JB14404

Job Number: JB14404 Account: AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/22/12

| Lab Sample ID Client Sample II<br>Analyte           | O Result/<br>Qual      | RL   | MDL  | Units             | Method                                               |
|-----------------------------------------------------|------------------------|------|------|-------------------|------------------------------------------------------|
| JB14404-11 NSB-D3-10.8-11                           | .3                     |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 1.3<br>37.7<br>7.78    | 0.94 | 0.27 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14404-12 NSB-D3-6.5-7.0                           |                        |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.43 B<br>146<br>7.63  | 0.62 | 0.18 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14404-13 NSB-D2-16.6-17                           | 1                      |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.27 B<br>87.9<br>8.09 | 0.56 | 0.16 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14404-14 NSB-D2-15.0-15                           | .5                     |      |      |                   |                                                      |
| pH                                                  | 7.89                   |      |      | su                | SW846 9045C,D                                        |
| JB14404-15 NSB-D2-20.0-20                           | .5                     |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 1.2<br>164<br>8.20     | 0.50 | 0.15 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |

<sup>(</sup>a) Sample received out of holding time for pH analysis.





| Sample Results     |  |  |
|--------------------|--|--|
| Report of Analysis |  |  |



## **Report of Analysis**

Client Sample ID: NSB-EB20120822

Lab Sample ID:JB14404-2Date Sampled:08/22/12Matrix:AQ - Equipment BlankDate Received:08/22/12Percent Solids:n/a

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result   | RL    | MDL    | Units | DF | Analyzed By Method             |
|-----------------------|----------|-------|--------|-------|----|--------------------------------|
| Chromium, Hexavalent  | 0.0014 U | 0.010 | 0.0014 | mg/l  | 1  | 08/22/12 20:25 MM SW846 7196A  |
| Redox Potential Vs H2 | 313      |       |        | mv    | 1  | 09/01/12 SA ASTM D1498-76      |
| pH <sup>a</sup>       | 6.05     |       |        | su    | 1  | 08/22/12 18:15 AS SM20 4500H B |

(a) Sample received out of holding time for pH analysis.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



## 4

## **Report of Analysis**

Client Sample ID: NSB-D4-20.0-20.5

 Lab Sample ID:
 JB14404-3
 Date Sampled:
 08/22/12

 Matrix:
 SO - Soil
 Date Received:
 08/22/12

 Percent Solids:
 88.8

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By M        | lethod           |
|-----------------------|--------|------|------|-------|----|----------------------|------------------|
| Chromium, Hexavalent  | 1.1    | 0.45 | 0.13 | mg/kg | 1  | 08/31/12 12:40 RI SV | W846 3060A/7196A |
| Redox Potential Vs H2 | 191    |      |      | mv    | 1  | 08/31/12 SA AS       | STM D1498-76M    |
| Solids, Percent       | 88.8   |      |      | %     | 1  | 08/29/12 11:45 RO SN | M18 2540G        |
| pН                    | 8.83   |      |      | su    | 1  | 08/31/12 14:08 SA SV | W846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-D4-16.5-17.0

 Lab Sample ID:
 JB14404-4
 Date Sampled:
 08/22/12

 Matrix:
 SO - Soil
 Date Received:
 08/22/12

 Percent Solids:
 87.0

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 0.64   | 0.46 | 0.13 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 190    |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 87     |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 8.91   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-D4-12.0-12.5

 Lab Sample ID:
 JB14404-5
 Date Sampled:
 08/22/12

 Matrix:
 SO - Soil
 Date Received:
 08/22/12

 Percent Solids:
 79.0

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 1.1    | 0.51 | 0.15 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 45.4   |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 79     |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 8.54   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-D4-10.5-11.0

 Lab Sample ID:
 JB14404-6
 Date Sampled:
 08/22/12

 Matrix:
 SO - Soil
 Date Received:
 08/22/12

 Percent Solids:
 71.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 0.57   | 0.56 | 0.16 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 151    |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 71.6   |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 8.82   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-D4-6.0-6.5

Lab Sample ID: JB14404-7 Matrix: SO - Soil **Date Sampled:** 08/22/12 **Date Received:** 08/22/12 **Percent Solids:** 67.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 0.17 U | 0.59 | 0.17 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 144    |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 67.9   |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 8.26   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-D3-21.0-21.5

 Lab Sample ID:
 JB14404-9
 Date Sampled:
 08/22/12

 Matrix:
 SO - Soil
 Date Received:
 08/22/12

 Percent Solids:
 86.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 0.47   | 0.46 | 0.14 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 210    |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 86.1   |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 8.39   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-D3-15.0-15.5

 Lab Sample ID:
 JB14404-10
 Date Sampled:
 08/22/12

 Matrix:
 SO - Soil
 Date Received:
 08/22/12

 Percent Solids:
 53.2

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 0.22 U | 0.75 | 0.22 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 15.7   |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 53.2   |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 8.27   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### 4

## **Report of Analysis**

Client Sample ID: NSB-D3-10.8-11.3

 Lab Sample ID:
 JB14404-11
 Date Sampled:
 08/22/12

 Matrix:
 SO - Soil
 Date Received:
 08/22/12

 Percent Solids:
 42.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 1.3    | 0.94 | 0.27 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 37.7   |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 42.6   |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 7.78   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-D3-6.5-7.0 Lab Sample ID: JB14404-12 **Date Sampled:** 08/22/12 Matrix: SO - Soil **Date Received:** 08/22/12 **Percent Solids:** 65.0

PPG Northern Canal Borings, Jersey City, NJ **Project:** 

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 0.43 B | 0.62 | 0.18 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 146    |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 65     |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| рH                    | 7.63   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-D2-16.6-17.1

Lab Sample ID: JB14404-13 **Date Sampled:** 08/22/12 Matrix: SO - Soil **Date Received:** 08/22/12 **Percent Solids:** 71.5

PPG Northern Canal Borings, Jersey City, NJ **Project:** 

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 0.27 B | 0.56 | 0.16 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 87.9   |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 71.5   |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| рH                    | 8.09   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



Client Sample ID: NSB-D2-15.0-15.5

JB14404-14

SO - Soil

Page 1 of 1

## **Report of Analysis**

**Date Sampled:** 08/22/12

**Date Received:** 08/22/12 **Percent Solids:** 59.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

Lab Sample ID:

Matrix:

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 0.20 U | 0.67 | 0.20 | mg/kg | 1  | 08/31/12 13:28 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | -7.5   |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 59.6   |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 7.89   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



Ė

## **Report of Analysis**

Client Sample ID: NSB-D2-20.0-20.5 Lab Sample ID: JB14404-15

 Lab Sample ID:
 JB14404-15
 Date Sampled:
 08/22/12

 Matrix:
 SO - Soil
 Date Received:
 08/22/12

 Percent Solids:
 80.2

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By       | Method            |
|-----------------------|--------|------|------|-------|----|-------------------|-------------------|
| Chromium, Hexavalent  | 1.2    | 0.50 | 0.15 | mg/kg | 1  | 08/31/12 13:30 RI | SW846 3060A/7196A |
| Redox Potential Vs H2 | 164    |      |      | mv    | 1  | 08/31/12 SA       | ASTM D1498-76M    |
| Solids, Percent       | 80.2   |      |      | %     | 1  | 08/29/12 11:45 RO | SM18 2540G        |
| pН                    | 8.20   |      |      | su    | 1  | 08/31/12 14:08 SA | SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



.



Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



(β. 50 CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-22\_RI\_ACCUTEST\_COC

Sk: GARIS- Northern Canal Borings
Total # of Samples: 15 
 Lab Information:

 Lab:
 ACCUTEST

 Address:
 2235 Route 130 , Dayton NJ 08810
 Project Information: JB14404 Other Information: TAT see Spec. Instructions Rush Site ID #: PPG Garfield Ave Project #: 60213772.5.A City Jersey City State, Zip NJ PM Name: Chris Martell Phone/Fax: 732-564-3633 Lab PM: Matt Cordova PO #: 40256ACM
Send EDD to: NULABOATA@aecom.com
CC Hardcopy to Erin Farrell, AECOM, Piscataway, NJ Phone/Fax: 732-329-0200/ PM email: Christopher.Martell@aecom.com C=COMP CONTAINERS SAMPLE DATE MATRIX CODE GARA-HexChron \* (1) GARA-pH-ORP Comment Field Sample No. /Identification G=GRAB å SCB-EB20120822 G 08/22/2012 15:05 2 WQ Preserved: None Х Х 6.0 NSB-EB20120822 WQ G 08/22/2012 15:00 2 Preserved: None Х NSB-D4-20.0-20.5 so G 08/22/2012 14:07 Х Х NSB-D4-16.5-17.0 - 4 G 1 so 08/22/2012 13:56 Х Х MEYL WC54 NSB-D4-12 0-12 5 - 5 G 1 EX65 Х Х NSB-D4-10.5-11.0 so G 08/22/2012 13:41 Х Χ NSB-D4-6.0-6.5 - 7 G 08/22/2012 13:30 Х Х 8 SCB-18-3.0-3.5 Q so G 08/22/2012 11:38 1 Х Х NSB-D3-21.0-21.5 9 so G 08/22/2012 10:50 Х Х 10 NSB-D3-15.0-15.5 G 08/22/2012 10:40 10 so Χ Х NSB-D3-10.8-11.3 - 11 so 08/22/2012 10:15 Х Х Additional Comments/Special Instructions: SHED BY / AFFILIATION DATE TIME ACCEPTED BY / AFFILIATION Standard TAT Mality Acan Style Follows Acoutet 8/24/12 1535 Y/N Øn Y/N (Q/N YIKD Y/N Y/N Y/N Trip Blank? Shipper: DATE/TIME: \* pt out of hold species Tracking # Custody Seal(s): 1 Cooler 1 20° GP.

> JB14404: Chain of Custody Page 1 of 4

Page:



|                   |                               |                   |                                         |              |               |                         | I_ACCUTE:                        |                |                |                   | T-           | sk:           | CAPIC       | North       | rn Canal B | oringo          |                |             |
|-------------------|-------------------------------|-------------------|-----------------------------------------|--------------|---------------|-------------------------|----------------------------------|----------------|----------------|-------------------|--------------|---------------|-------------|-------------|------------|-----------------|----------------|-------------|
| 1                 |                               |                   |                                         | ine Unan-of- | oustody is a  |                         | f. All relevant fields must be   | completed and  | acourate.      |                   | 1            |               | of Sam      | ples: 15    | m Canal B  | orings          | -0.11          | 11/211      |
| Lab Info          | ACCUTEST                      | Project Info      |                                         |              |               | Other Info              |                                  |                |                |                   | $\perp$      |               |             |             |            |                 | JB14           | 404         |
|                   | 3: 2235 Route 130 , Dayton NJ | Project #:        | PPG Garfield Ave<br>60213772.5.A        | 3            |               |                         | ce to: Lisa Kro                  |                |                |                   | _            | TAT           |             | Spec. Insti |            | Rush            |                |             |
| 1                 | 08810                         | Site              | 70 Carteret Aven                        |              |               | Address:<br>Citv/State. | 250 Apollo Driv<br>Chelmsford, N |                | To: " To:      |                   | -            |               | F= Field    | Filtered,   | H= Hold    |                 |                |             |
| 1                 |                               | Address:          | 70 Carteret Aven                        | ue           |               | City/State.             | Cheimstord, N                    | 1A 01824       | Phone #: 197   | 8-905-2278        | Lab Notes    |               |             |             |            |                 |                |             |
| Lab PM:           | Matt Cordova                  | City Jersey       | City State, Zip                         | NJ           | 07304         | PO #:                   | 40256ACM                         |                |                |                   | <b>  출</b>   |               |             |             |            |                 |                |             |
| Phone/F<br>PM ema | ax: 732-329-0200/             | PM Name:          | Chris Martell                           |              |               | Send EDD                | to: NJLABDAT                     | A@aecom.       | com            |                   |              |               | Т           | T           | г          |                 |                | T           |
| rivi ema          | 81, 1                         | Phone/Fax:        | 732-564-3633                            |              |               | CC Hardco               | py to Erin Fa                    | rrell, AEC     | OM, Piscataway | y, NJ             | — ŧ          |               |             |             |            |                 |                |             |
|                   |                               | PM Email:         | Christopher.Ma                          | rtell@aeco   | m.com         |                         |                                  |                |                |                   | Preservative |               |             |             |            |                 |                |             |
| TEM #             | Field Sample                  | o No. //dentifica | ition                                   | MATRIX CODE  | G=GRAB C=COMP |                         | SAMPLE DATE                      | #OF CONTAINERS |                | Comment           | Analysis     | GARA-HexChrom | GARA-pH-ORP |             |            |                 |                |             |
| 12                | NSB-D3-6.5-7.0                | - 12              |                                         | so           | G             | 08/2                    | 2/2012 09:45                     | 1              |                |                   |              | Х             | x           |             |            |                 |                |             |
| 13                | NSB-D2-16.6-17.1              | - 13              |                                         | so           | G             | 08/22                   | 2/2012 09:12                     | 1              |                |                   |              | Х             | х           |             |            |                 |                |             |
| 14                | NSB-D2-15.0-15.5              | - 14              | *                                       | so           | G             | 08/22                   | 2/2012 09:06                     | 1              |                |                   |              | Х             | х           |             |            |                 |                |             |
| 15                | NSB-D2-20.0-20.5              | (7                | ,                                       | so           | G             | 08/22                   | 2/2012 09:25                     | 3              |                | 2 Jars for MS/MSO |              | Х             | x           |             |            |                 |                |             |
|                   |                               |                   | *************************************** |              |               |                         |                                  |                |                |                   |              |               |             |             |            |                 |                |             |
|                   |                               |                   |                                         |              |               |                         |                                  |                |                |                   |              |               |             |             |            |                 |                |             |
|                   |                               |                   |                                         |              |               |                         |                                  |                |                |                   |              |               |             |             |            |                 |                |             |
| _                 |                               |                   |                                         |              |               |                         | ***                              | ļ              |                |                   |              |               |             |             |            |                 |                |             |
| _                 |                               |                   |                                         |              |               |                         |                                  |                |                |                   |              |               |             |             |            |                 |                |             |
|                   |                               |                   | *************************************** | ļ            |               |                         |                                  |                |                |                   |              |               |             |             |            |                 |                |             |
| Addition          | ial Comments/Special Insti    | uotiona.          |                                         | DELLA        |               | V-101-1-101-1-1         |                                  |                |                |                   |              |               |             |             |            |                 |                |             |
| Standar           | d TAT                         | uosiOli5;         |                                         |              |               | Y/AFFILIATI<br>A/O2/A   |                                  | EMME           | ACCEPTED BY    |                   | 12.7         |               | DATE        | TIME        | Sample     |                 | onditions      |             |
|                   |                               |                   |                                         | 1 Par        | 2.5           | 215                     | ELOM 8/21/1                      | 926            |                | offens Accorte    |              |               | 153         | 1825        |            | Y/N<br>Y/N      | Y/N<br>Y/N     | Y/N<br>Y/N  |
|                   |                               |                   |                                         |              |               | V                       | 10000                            |                | 2.00           | 1/100.10          |              |               | coque.      | 100         |            | Y/N<br>Y/N      | Y/N<br>Y/N     | Y/N<br>Y/N  |
|                   |                               |                   |                                         | NESCHENIE    |               |                         |                                  |                |                |                   |              |               |             |             |            | Y/N             | Y/N            | Y/N         |
|                   |                               |                   |                                         |              |               |                         |                                  |                |                |                   |              |               |             |             |            | çe;             | 5:             |             |
| 1                 |                               |                   |                                         | ļ            | Shippe        | r:                      | 1                                |                | ****           | DATE/TIME:        |              |               |             |             | J0 u       | l š             | ntac           | ak<br>ak    |
|                   |                               |                   |                                         |              | Tracking      | #:                      |                                  |                |                | Custody Seal(s):  |              |               |             | - Famous    | Temp in 0C | Samples on Ice? | Sample intact? | Trip Blank? |

2.06 GA

JB14404: Chain of Custody Page 2 of 4





### **Accutest Laboratories Sample Receipt Summary**

ACCUTEST:

| Accutest Job Number: JB14                                                     | 404 Clie               | ent:                  | Project:                                                             |              |              |                                        |
|-------------------------------------------------------------------------------|------------------------|-----------------------|----------------------------------------------------------------------|--------------|--------------|----------------------------------------|
| Date / Time Received: 8/22/                                                   | 2012                   | Delivery Method:      | Airbill #'s:                                                         |              |              |                                        |
| Cooler Temps (Initial/Adjuste                                                 | d): #1: (2/2); 0       |                       |                                                                      |              |              |                                        |
| Ol Oitu                                                                       | N                      | W N                   | Louis lateratic Decimands                                            | v            | N            |                                        |
|                                                                               | <u>or N</u><br>☐ 3. CO | Y or N  C Present:  ✓ | Sample Integrity - Documentation                                     |              | or N         |                                        |
| <ol> <li>Custody Seals Present: ✓</li> <li>Custody Seals Intact: ✓</li> </ol> | _                      | Pates/Time OK 🗸       | Sample labels present on bottles:                                    | <b>✓</b>     |              |                                        |
|                                                                               | _                      |                       | Container labeling complete:     Sample container label / COC agree: | <b>∨</b>     | П            |                                        |
| Cooler Temperature                                                            | Y or N                 |                       | 3. Sample container laber / COC agree.                               | <b>V</b>     |              |                                        |
| Temp criteria achieved:     Temp criteria achieved:                           | ✓ □                    |                       | Sample Integrity - Condition                                         |              | or N         |                                        |
| Cooler temp verification:     Cooler media:                                   | Ice (Bag)              |                       | Sample recvd within HT:                                              | ✓            |              |                                        |
| 4. No. Coolers:                                                               | 1                      |                       | 2. All containers accounted for:                                     | $\checkmark$ |              |                                        |
| _                                                                             |                        | <del></del>           | 3. Condition of sample:                                              | Ir           | ntact        |                                        |
| Quality Control Preservation                                                  |                        | <u>\/A</u>            | Sample Integrity - Instructions                                      | <u>Y</u>     | or N         | N/A                                    |
| Trip Blank present / cooler:                                                  |                        | <b>▽</b>              | Analysis requested is clear:                                         | <b>✓</b>     |              |                                        |
| 2. Trip Blank listed on COC:                                                  |                        | ✓                     | 2. Bottles received for unspecified tests                            |              | $\checkmark$ |                                        |
| <ol><li>Samples preserved properly:</li></ol>                                 |                        |                       | 3. Sufficient volume recvd for analysis:                             | $\checkmark$ |              | _                                      |
| <ol><li>VOCs headspace free:</li></ol>                                        |                        | ✓                     | Compositing instructions clear:                                      |              |              | ✓                                      |
|                                                                               |                        |                       | 5. Filtering instructions clear:                                     |              |              | ✓                                      |
| Accutest Laboratories                                                         |                        | 225 115               | S Highway 130                                                        |              |              | Davinn New Jersey                      |
| Accutest Laboratories<br>V:732.329.0200                                       |                        |                       | 6 Highway 130<br>2.329.3499                                          |              |              | Dayton, New Jersey<br>www/accutest.com |

JB14404: Chain of Custody

Page 3 of 4



| ō           |
|-------------|
| Ō           |
| <u>_</u>    |
| O           |
| Φ           |
| Ď           |
| $\subseteq$ |
| a           |
| ے           |
| ပ           |
| 0           |
| ᅙ           |
| ゔ           |
|             |

JB14404\_8/23/2012

| Requested Date: | 8/23/2012                                   | Received Date: | 8/22/2012 |
|-----------------|---------------------------------------------|----------------|-----------|
| Account Name:   | AECOM, INC.                                 | Due Date:      | 9/5/2012  |
| Project         | PPG Northern Canal Borings, Jersey City, NJ | Deliverable:   | FULT1     |
| CSR:            | MC                                          | TAT (Days):    | 14        |
|                 |                                             |                |           |

Change: Please cancel all analysis

Sample #: JB14404-1,8

> JB14404: Chain of Custody Page 4 of 4

Above Changes Per:

**Date:** 8/23/2012

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

# **Internal Sample Tracking Chronicle**

AECOM, INC.

JB14404 Job No:

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number       | Method                                                             | Analyzed                                                           | Ву       | Prepped     | By      | Test Codes                 |
|------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------|-------------|---------|----------------------------|
| JB14404-2<br>NSB-EB201 | Collected: 22-AUG-12<br>120822                                     | 15:00 By: CM                                                       | Receiv   | ved: 22-AUG | 1-12 By | r: MPC                     |
| JB14404-2              | SM20 4500H B<br>SW846 7196A<br>ASTM D1498-76                       | 22-AUG-12 18:15<br>22-AUG-12 20:25<br>01-SEP-12                    |          |             |         | PH<br>XCR<br>EH            |
| JB14404-3<br>NSB-D4-20 | Collected: 22-AUG-12<br>.0-20.5                                    | 14:07 By: CM                                                       | Receiv   | ved: 22-AUG | -12 By  | r: MPC                     |
| JB14404-3<br>JB14404-3 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 12:40<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-4<br>NSB-D4-16 | Collected: 22-AUG-12 5.5-17.0                                      | 13:56 By: CM                                                       | Receiv   | ved: 22-AUG | 1-12 By | 7: MPC                     |
| JB14404-4<br>JB14404-4 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-5<br>NSB-D4-12 | Collected: 22-AUG-12<br>.0-12.5                                    | 13:44 By: CM                                                       | Receiv   | ved: 22-AUG | 4-12 By | 7: MPC                     |
| JB14404-5<br>JB14404-5 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-6<br>NSB-D4-10 | Collected: 22-AUG-12                                               | 13:41 By: CM                                                       | Recei    | ved: 22-AUG | -12 By  | r: MPC                     |
| JB14404-6<br>JB14404-6 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |

Job No:

JB14404

### AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву       | Prepped     | Ву      | Test Codes                 |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------|-------------|---------|----------------------------|
| JB14404-7<br>NSB-D4-6.   | Collected: 22-AUG-12<br>0-6.5                                      | 13:30 By: CM                                                       | Receiv   | ved: 22-AUC | 6-12 By | r: MPC                     |
| JB14404-7<br>JB14404-7   | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-9<br>NSB-D3-21   | Collected: 22-AUG-12 .0-21.5                                       | 10:50 By: CM                                                       | Receiv   | ved: 22-AUC | G-12 By | v: MPC                     |
| JB14404-9<br>JB14404-9   | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-10<br>NSB-D3-15  | Collected: 22-AUG-12<br>.0-15.5                                    | 10:40 By: CM                                                       | Receiv   | ved: 22-AUC | 6-12 By | r: MPC                     |
| JB14404-10<br>JB14404-10 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-11<br>NSB-D3-10  | Collected: 22-AUG-12<br>.8-11.3                                    | 10:15 By: CM                                                       | Receiv   | ved: 22-AUC | 6-12 By | r: MPC                     |
| JB14404-11<br>JB14404-11 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-12<br>NSB-D3-6.  | Collected: 22-AUG-12<br>5-7.0                                      | 09:45 By: CM                                                       | Receiv   | ved: 22-AUC | 6-12 By | r: MPC                     |
| JB14404-12<br>JB14404-12 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | 2 MD    | SOL104<br>EH<br>XCRA<br>PH |

**Internal Sample Tracking Chronicle** 

# **Internal Sample Tracking Chronicle**

AECOM, INC.

JB14404 Job No:

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву       | Prepped     | Ву      | Test Codes                 |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------|-------------|---------|----------------------------|
| JB14404-13<br>NSB-D2-16  | Collected: 22-AUG-12                                               | 09:12 By: CM                                                       | Receiv   | ved: 22-AUG | -12 By  | 7: MPC                     |
| JB14404-13<br>JB14404-13 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | ! MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-14<br>NSB-D2-15  | Collected: 22-AUG-12 .0-15.5                                       | 09:06 By: CM                                                       | Receiv   | ved: 22-AUG | i-12 By | 7: MPC                     |
| JB14404-14<br>JB14404-14 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:28<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | ! MD    | SOL104<br>EH<br>XCRA<br>PH |
| JB14404-15<br>NSB-D2-20  | Collected: 22-AUG-12                                               | 09:25 By: CM                                                       | Receiv   | ved: 22-AUG | i-12 By | 7: MPC                     |
| JB14404-15<br>JB14404-15 | SM18 2540G<br>ASTM D1498-76M<br>SW846 3060A/7196A<br>SW846 9045C,D | 29-AUG-12 11:45<br>31-AUG-12<br>31-AUG-12 13:30<br>31-AUG-12 14:08 | SA<br>RI | 30-AUG-12   | ! MD    | SOL104<br>EH<br>XCRA<br>PH |

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| B14404-2.1   Secured Storage   Mehmet Temizsu   Megan Melkowitz   O8/22/12 20:03   Retrieve from Storage   B14404-2.1   Megan Melkowitz   Secured Storage   O8/22/12 20:06   Custody Transfer   Secured Storage   O8/22/12 23:36   Return to Storage   D8/404-2.2   Secured Storage   Brian Racin   O9/01/12 09:06   Retrieve from Storage   Return to Storage   D9/01/12 09:09   Custody Transfer   Custody B14404-2.2   Sanjay Advani   Secured Storage   O9/01/12 16:45   Return to Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   Retrieve from Storage   D9/01/12 08:27   D9/01   | Sample. Bottle | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------|----------------------|----------------|-----------------------|
| JB14404-2.1   Mehmet Temizsu   Megan Melkowitz   O8/22/12 20:06   Custody Transfer   JB14404-2.1   Megan Melkowitz   Secured Storage   O8/22/12 23:36   Return to Storage   JB14404-2.2   Brian Racin   Sanjay Advani   O9/01/12 09:09   Custody Transfer   JB14404-2.2   Sanjay Advani   Secured Storage   O9/01/12 16:45   Return to Storage   JB14404-3.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Retrieve from Storage   JB14404-3.1   Todd Shoemaker   Secured Staging Area   O8/29/12 08:27   Retrieve from Storage   JB14404-3.1   Secured Staging Area   O8/29/12 08:27   Retrieve from Storage   JB14404-3.1   Secured Storage   Adam Scott   O8/30/12 15:12   Retrieve from Storage   JB14404-3.1   Secured Storage   Adam Scott   O8/30/12 15:12   Retrieve from Storage   JB14404-3.1   Secured Storage   Adam Scott   O8/30/12 15:14   Custody Transfer   JB14404-3.1   Adam Scott   Matt Del Ciello   O8/30/12 15:14   Custody Transfer   JB14404-3.1   Secured Storage   Sanjay Advani   O8/31/12 08:43   Retrieve from Storage   JB14404-3.1   Sanjay Advani   Secured Storage   O8/31/12 16:34   Return to Storage   JB14404-4.1   Secured Storage   Sanjay Advani   O8/31/12 08:43   Return to Storage   JB14404-4.1   Secured Storage   Secured Staging Area   O8/29/12 08:27   Return to Storage   JB14404-4.1   Secured Storage   Secured Storage   O8/29/12 08:27   Return to Storage   JB14404-4.1   Secured Storage   Adam Scott   O8/30/12 15:14   Return to Storage   JB14404-4.1   Secured Storage   Adam Scott   O8/30/12 15:14   Return to Storage   JB14404-4.1   Secured Storage   Adam Scott   O8/30/12 15:14   Return to Storage   JB14404-4.1   Secured Storage   Adam Scott   O8/30/12 15:14   Return to Storage   JB14404-4.1   Secured Storage   Secured Storage   O8/30/12 15:14   Return to Storage   JB14404-4.1   Secured Storage   Secured Storage   O8/30/12 15:14   Return to Storage   JB14404-4.1   Secured Storage   Secured Storage   O8/30/12 18:02   Return to Storage   JB14404-4.1   Secured Storage   Secured Storage   O8/30/12 18:02   Return to Storag   | Number         | FROM                 | 10                   | Date/Time      | Reason                |
| JB14404-2.1   Megan Melkowitz   Secured Storage   D8/22/12 23:36   Return to Storage   JB14404-2.2   Brian Racin   Sanjay Advani   O9/01/12 09:09   Custody Transfer   JB14404-2.2   Sanjay Advani   Secured Storage   O9/01/12 16:45   Return to Storage   JB14404-3.1   Secured Storage   Todd Shoemaker   Secured Staging Area   O8/29/12 08:27   Retrieve from Storage   JB14404-3.1   Secured Staging Area   Secured Staging Area   O8/29/12 08:27   Retrieve from Storage   JB14404-3.1   Secured Staging Area   O8/29/12 08:57   Retrieve from Storage   JB14404-3.1   Secured Storage   Adam Scott   O8/30/12 15:12   Retrieve from Storage   JB14404-3.1   Secured Storage   Adam Scott   O8/30/12 15:12   Retrieve from Storage   JB14404-3.1   Adam Scott   Matt Del Ciello   O8/30/12 15:12   Retrieve from Storage   JB14404-3.1   Secured Storage   Sanjay Advani   O8/30/12 15:12   Retrieve from Storage   JB14404-3.1   Secured Storage   Sanjay Advani   O8/30/12 15:12   Retrieve from Storage   JB14404-3.1   Secured Storage   Sanjay Advani   O8/30/12 15:12   Retrieve from Storage   JB14404-4.1   Secured Storage   Sanjay Advani   O8/30/12 15:14   Return to Storage   JB14404-4.1   Secured Storage   Todd Shoemaker   O8/29/12 08:27   Retrieve from Storage   JB14404-4.1   Secured Storage   Adam Scott   O8/29/12 08:27   Retrieve from Storage   JB14404-4.1   Secured Storage   Adam Scott   O8/30/12 15:14   Custody Transfer   JB14404-4.1   Secured Storage   Adam Scott   O8/30/12 15:14   Custody Transfer   JB14404-4.1   Secured Storage   Adam Scott   O8/30/12 15:14   Custody Transfer   JB14404-4.1   Secured Storage   Sanjay Advani   O8/30/12 15:14   Custody Transfer   JB14404-4.1   Secured Storage   Sanjay Advani   O8/30/12 15:14   Custody Transfer   JB14404-4.1   Secured Storage   Sanjay Advani   O8/30/12 15:14   Custody Transfer   JB14404-4.1   Secured Storage   Sanjay Advani   O8/30/12 15:14   Custody Transfer   JB14404-5.1   Secured Storage   Sanjay Advani   O8/30/12 15:14   Custody Transfer   JB14404-5.1   Secured Storage   Sanjay Advani   O8/   | JB14404-2.1    | Secured Storage      | Mehmet Temizsu       | 08/22/12 20:03 | Retrieve from Storage |
| B14404-2.2   Secured Storage   Brian Racin   09/01/12 09:06   Retrieve from Storage   B14404-2.2   Brian Racin   Sanjay Advani   09/01/12 09:09   Custody Transfer   B14404-2.2   Sanjay Advani   Secured Storage   09/01/12 16:45   Return to Storage   B14404-3.1   Secured Storage   Todd Shoemaker   Secured Staging Area   08/29/12 08:27   Retrieve from Storage   B14404-3.1   Secured Staging Area   Robert OConnor   08/29/12 08:27   Return to Storage   B14404-3.1   Secured Storage   Adam Scott   08/30/12 15:12   Retrieve from Storage   Matt Del Ciello   08/30/12 15:12   Retrieve from Storage   Robert OConnor   Secured Storage   08/29/12 11:18   Return to Storage   Sanjay Advani   O8/30/12 15:12   Retrieve from Storage   Robert OConnor   Secured Storage   O8/30/12 15:12   Retrieve from Storage   Robert OConnor   Secured Storage   O8/30/12 15:14   Custody Transfer   University   D8/30/12 18:02   Return to Storage   D8/30/12 16:34   Return to Storage   D8/30/12 15:12   Retrieve from Storage   D8/30/12 15:12   Retrieve from Storage   D8/30/12 15:12   Retrieve from Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D8/30/12 15:14   Return to Storage   D   | JB14404-2.1    | Mehmet Temizsu       | Megan Melkowitz      | 08/22/12 20:06 | Custody Transfer      |
| JB14404-2.2         Brian Racin         Sanjay Advani         O9/01/12 09:09         Custody Transfer           JB14404-2.2         Sanjay Advani         Secured Storage         09/01/12 16:45         Return to Storage           JB14404-3.1         Secured Storage         Todd Shoemaker         08/29/12 08:27         Retrieve from Storage           JB14404-3.1         Secured Staging Area         Robert OConnor         08/29/12 08:57         Returieve from Storage           JB14404-3.1         Robert OConnor         Secured Storage         08/29/12 11:18         Return to Storage           JB14404-3.1         Secured Storage         Adam Scott         08/30/12 15:12         Retrieve from Storage           JB14404-3.1         Matt Del Ciello         Secured Storage         80/30/12 18:02         Return to Storage           JB14404-3.1         Matt Del Ciello         Secured Storage         80/30/12 18:02         Return to Storage           JB14404-3.1         Secured Storage         Sanjay Advani         08/31/12 08:43         Retrieve from Storage           JB14404-4.1         Secured Storage         Todd Shoemaker         08/29/12 08:27         Return to Storage           JB14404-4.1         Robert OConnor         Secured Storage         08/29/12 08:27         Return to Storage           JB14404-4.1         Ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JB14404-2.1    | Megan Melkowitz      | Secured Storage      | 08/22/12 23:36 | Return to Storage     |
| JB14404-3.1   Secured Storage   Todd Shoemaker   Secured Staging Area   Secured Storage   Adam Scott   Secured Storage   Secured Staging Area   Secured Staging Area   Secured Staging Area   Secured Storage   Secu   | JB14404-2.2    | Secured Storage      | Brian Racin          |                |                       |
| B14404-3.1   Secured Storage   Todd Shoemaker   Secured Staging Area   Robert OConnor   Secured Storage      | JB14404-2.2    | Brian Racin          | Sanjay Advani        | 09/01/12 09:09 | Custody Transfer      |
| JB14404-3.1 Todd Shoemaker Secured Staging Area Robert OConnor 08/29/12 08:27 Return to Storage JB14404-3.1 Secured Storage Adam Scott 08/39/12 11:18 Return to Storage JB14404-3.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-3.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-3.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-3.1 Matt Del Ciello Secured Storage 08/31/12 08:43 Return to Storage JB14404-3.1 Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-3.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Robert OConnor Secured Storage 08/39/12 11:18 Return to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Adam Scott 08/30/12 18:02 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 18:02 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 18:02 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from St | JB14404-2.2    | Sanjay Advani        | Secured Storage      | 09/01/12 16:45 | Return to Storage     |
| JB14404-3.1   Secured Staging Area   Robert OConnor   Secured Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   Storage   St   | JB14404-3.1    | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14404-3.1 Robert OConnor Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-3.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-3.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-3.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-3.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-3.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Matt Del Ciello 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/30/12 16:34 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Secured Storage 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Sanjay Advani 08/30/12 15:14 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/30/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay A | JB14404-3.1    |                      | Secured Staging Area |                |                       |
| JB14404-3.1 Secured Storage Matt Del Ciello 08/30/12 15:12 Retrieve from Storage JB14404-3.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-3.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-3.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-3.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-4.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secur | JB14404-3.1    | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14404-3.1 Matt Del Ciello Secured Storage 08/30/12 15:14 Custody Transfer JB14404-3.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-3.1 Sanjay Advani Secured Storage 08/31/12 08:43 Retrieve from Storage JB14404-3.1 Sanjay Advani Secured Storage 08/31/12 16:34 Retrieve from Storage JB14404-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14404-4.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 15:14 Custody Transfer JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Se | JB14404-3.1    | Robert OConnor       | Secured Storage      | 08/29/12 11:18 | Return to Storage     |
| JB14404-3.1 Matt Del Ciello Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-3.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Robert OConnor Secured Storage 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storag | JB14404-3.1    | Secured Storage      | Adam Scott           | 08/30/12 15:12 | Retrieve from Storage |
| JB14404-3.1 Secured Storage Sanjay Advani Secured Storage 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Todd Shoemaker Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Robert OConnor Secured Storage 08/29/12 08:57 Retrieve from Storage JB14404-4.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Adam Scott Matt Del Ciello 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404 | JB14404-3.1    | Adam Scott           | Matt Del Ciello      | 08/30/12 15:14 | Custody Transfer      |
| JB14404-3.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage  JB14404-4.1 Secured Storage Secured Staging Area 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14404-4.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-4.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage                                                                                                                                                                                                                                                                                                                                                                   | JB14404-3.1    | Matt Del Ciello      | Secured Storage      | 08/30/12 18:02 | Return to Storage     |
| JB14404-4.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Todd Shoemaker Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-4.1 Robert OConnor Secured Storage 08/29/12 11:18 Retrurn to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Adam Scott Matt Del Ciello 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 08:57 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Retrurn to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:47 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Stor | JB14404-3.1    | Secured Storage      | Sanjay Advani        | 08/31/12 08:43 | Retrieve from Storage |
| JB14404-4.1 Todd Shoemaker Secured Staging Area Robert OConnor 08/29/12 08:27 Return to Storage JB14404-4.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/30/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage O8/39/12 08:27 Retrieve from Storage JB14404-5.1 Secured Storage O | JB14404-3.1    | Sanjay Advani        | Secured Storage      | 08/31/12 16:34 | Return to Storage     |
| JB14404-4.1Secured Staging AreaRobert OConnor08/29/12 08:57Retrieve from StorageJB14404-4.1Robert OConnorSecured Storage08/29/12 11:18Return to StorageJB14404-4.1Secured StorageAdam Scott08/30/12 15:12Retrieve from StorageJB14404-4.1Adam ScottMatt Del Ciello08/30/12 15:14Custody TransferJB14404-4.1Matt Del CielloSecured Storage08/30/12 18:02Return to StorageJB14404-4.1Secured StorageSanjay Advani08/31/12 08:43Retrieve from StorageJB14404-5.1Sanjay AdvaniSecured Storage08/31/12 16:34Return to StorageJB14404-5.1Secured StorageTodd Shoemaker08/29/12 08:27Retrieve from StorageJB14404-5.1Secured Staging AreaRobert OConnor08/29/12 08:27Retrieve from StorageJB14404-5.1Robert OConnorSecured Storage08/29/12 08:57Retrieve from StorageJB14404-5.1Robert OConnorSecured Storage08/29/12 11:18Return to StorageJB14404-5.1Adam ScottMatt Del Ciello08/30/12 15:12Retrieve from StorageJB14404-5.1Matt Del CielloSecured Storage08/30/12 15:14Custody TransferJB14404-5.1Secured StorageSanjay Advani08/31/12 08:43Return to StorageJB14404-5.1Secured StorageSanjay Advani08/31/12 08:43Retrieve from StorageJB14404-5.1Secured StorageSanjay Advani08/31/12 16:34Reture from StorageJB1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JB14404-4.1    | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14404-4.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 08:57 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 15:14 Custody Transfer JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34  | JB14404-4.1    | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14404-4.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-4.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 08:57 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/30/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-6.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14404-4.1    | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14404-4.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-4.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JB14404-4.1    | Robert OConnor       | Secured Storage      | 08/29/12 11:18 | Return to Storage     |
| JB14404-4.1 Matt Del Ciello Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Todd Shoemaker Secured Staging Area Robert OConnor 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/30/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Retrieve from Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JB14404-4.1    | Secured Storage      | Adam Scott           | 08/30/12 15:12 | Retrieve from Storage |
| JB14404-4.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage  JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JB14404-4.1    |                      | Matt Del Ciello      | 08/30/12 15:14 | Custody Transfer      |
| JB14404-4.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage  JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JB14404-4.1    | Matt Del Ciello      | Secured Storage      | 08/30/12 18:02 | Return to Storage     |
| JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage JB14404-5.1 Todd Shoemaker Secured Staging Area 08/29/12 08:27 Return to Storage JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JB14404-4.1    | Secured Storage      | Sanjay Advani        | 08/31/12 08:43 | Retrieve from Storage |
| JB14404-5.1 Todd Shoemaker Secured Staging Area Robert OConnor 08/29/12 08:27 Return to Storage Robert OConnor 08/29/12 08:57 Retrieve from Storage Robert OConnor 08/29/12 11:18 Return to Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JB14404-4.1    | Sanjay Advani        | Secured Storage      | 08/31/12 16:34 | Return to Storage     |
| JB14404-5.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-5.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JB14404-5.1    | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14404-5.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage  JB14404-6.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JB14404-5.1    | Todd Shoemaker       | Secured Staging Area |                |                       |
| JB14404-5.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage JB14404-5.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer JB14404-5.1 Matt Del Ciello Secured Storage 08/30/12 18:02 Return to Storage JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-6.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JB14404-5.1    | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14404-5.1Adam ScottMatt Del Ciello08/30/12 15:14Custody TransferJB14404-5.1Matt Del CielloSecured Storage08/30/12 18:02Return to StorageJB14404-5.1Secured StorageSanjay Advani08/31/12 08:43Retrieve from StorageJB14404-5.1Sanjay AdvaniSecured Storage08/31/12 16:34Return to StorageJB14404-6.1Secured StorageTodd Shoemaker08/29/12 08:27Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JB14404-5.1    | Robert OConnor       | Secured Storage      | 08/29/12 11:18 | Return to Storage     |
| JB14404-5.1Matt Del CielloSecured Storage08/30/12 18:02Return to StorageJB14404-5.1Secured StorageSanjay Advani08/31/12 08:43Retrieve from StorageJB14404-5.1Sanjay AdvaniSecured Storage08/31/12 16:34Return to StorageJB14404-6.1Secured StorageTodd Shoemaker08/29/12 08:27Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JB14404-5.1    | Secured Storage      | Adam Scott           | 08/30/12 15:12 | Retrieve from Storage |
| JB14404-5.1 Secured Storage Sanjay Advani 08/31/12 08:43 Retrieve from Storage JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage JB14404-6.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JB14404-5.1    | Adam Scott           | Matt Del Ciello      | 08/30/12 15:14 | Custody Transfer      |
| JB14404-5.1 Sanjay Advani Secured Storage 08/31/12 16:34 Return to Storage  JB14404-6.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JB14404-5.1    | Matt Del Ciello      | Secured Storage      | 08/30/12 18:02 | Return to Storage     |
| JB14404-6.1 Secured Storage Todd Shoemaker 08/29/12 08:27 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14404-5.1    | Secured Storage      | Sanjay Advani        | 08/31/12 08:43 | Retrieve from Storage |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JB14404-5.1    | Sanjay Advani        | Secured Storage      | 08/31/12 16:34 | Return to Storage     |
| IR14404 6.1 Todd Shoemaker Secured Steering Area 09/20/12 09:27 Deturn to Steering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JB14404-6.1    |                      |                      |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14404-6.1    | Todd Shoemaker       | Secured Staging Area |                |                       |
| JB14404-6.1 Secured Staging Area Robert OConnor 08/29/12 08:57 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JB14404-6.1    |                      |                      |                |                       |
| JB14404-6.1 Robert OConnor Secured Storage 08/29/12 11:18 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JB14404-6.1    |                      |                      |                |                       |
| JB14404-6.1 Secured Storage Adam Scott 08/30/12 15:12 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | JB14404-6.1    | Secured Storage      | Adam Scott           | 08/30/12 15:12 | Retrieve from Storage |
| JB14404-6.1 Adam Scott Matt Del Ciello 08/30/12 15:14 Custody Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JB14404-6.1    | Adam Scott           | Matt Del Ciello      | 08/30/12 15:14 | Custody Transfer      |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample. Bottle               | Transfer                               | Transfer             | D . (TT)       |                       |
|------------------------------|----------------------------------------|----------------------|----------------|-----------------------|
| Number                       | FROM                                   | ТО                   | Date/Time      | Reason                |
| JB14404-6.1                  | Matt Del Ciello                        | Secured Storage      | 08/30/12 18:02 | Return to Storage     |
| JB14404-6.1                  | Secured Storage                        | Sanjay Advani        |                | Retrieve from Storage |
| JB14404-6.1                  | Sanjay Advani                          | Secured Storage      |                | Return to Storage     |
| JB14404-7.1                  | Secured Storage                        | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14404-7.1                  | Todd Shoemaker                         | Secured Staging Area |                | Return to Storage     |
| JB14404-7.1                  | Secured Staging Area                   | Robert OConnor       |                | Retrieve from Storage |
| JB14404-7.1                  | Robert OConnor                         | Secured Storage      |                | Return to Storage     |
| JB14404-7.1                  | Secured Storage                        | Adam Scott           |                | Retrieve from Storage |
| JB14404-7.1                  | Adam Scott                             | Matt Del Ciello      |                | Custody Transfer      |
| JB14404-7.1                  | Matt Del Ciello                        | Secured Storage      |                | Return to Storage     |
| JB14404-7.1                  | Secured Storage                        | Sanjay Advani        |                | Retrieve from Storage |
| JB14404-7.1                  | Sanjay Advani                          | Secured Storage      |                | Return to Storage     |
| JB14404-9.1                  | Secured Storage                        | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14404-9.1                  | Todd Shoemaker                         | Secured Staging Area |                | Return to Storage     |
| JB14404-9.1                  | Secured Staging Area                   | Robert OConnor       |                | Retrieve from Storage |
| JB14404-9.1                  | Robert OConnor                         | Secured Storage      |                | Return to Storage     |
| JB14404-9.1                  | Secured Storage                        | Adam Scott           |                | Retrieve from Storage |
| JB14404-9.1                  | Adam Scott                             | Matt Del Ciello      |                | Custody Transfer      |
| JB14404-9.1                  | Matt Del Ciello                        | Secured Storage      |                | Return to Storage     |
| JB14404-9.1                  | Secured Storage                        | Sanjay Advani        |                | Retrieve from Storage |
| JB14404-9.1                  | Sanjay Advani                          | Secured Storage      |                | Return to Storage     |
| JB14404-10.1                 | Secured Storage                        | Todd Shoemaker       | 08/20/12 08:27 | Retrieve from Storage |
| JB14404-10.1<br>JB14404-10.1 | Todd Shoemaker                         | Secured Staging Area |                | Return to Storage     |
| JB14404-10.1<br>JB14404-10.1 |                                        | Robert OConnor       |                | _                     |
|                              | Secured Staging Area<br>Robert OConnor |                      |                | Retrieve from Storage |
| JB14404-10.1                 |                                        | Secured Storage      |                | Return to Storage     |
| JB14404-10.1                 | Secured Storage                        | Adam Scott           |                | Retrieve from Storage |
| JB14404-10.1                 | Adam Scott                             | Matt Del Ciello      |                | Custody Transfer      |
| JB14404-10.1                 | Matt Del Ciello                        | Secured Storage      |                | Return to Storage     |
| JB14404-10.1                 | Secured Storage                        | Sanjay Advani        |                | Retrieve from Storage |
| JB14404-10.1                 | Sanjay Advani                          | Secured Storage      | 08/31/12 16:34 | Return to Storage     |
| JB14404-11.1                 | Secured Storage                        | Todd Shoemaker       |                | Retrieve from Storage |
| JB14404-11.1                 | Todd Shoemaker                         | Secured Staging Area |                | Return to Storage     |
| JB14404-11.1                 | Secured Staging Area                   | Robert OConnor       |                | Retrieve from Storage |
| JB14404-11.1                 | Robert OConnor                         | Secured Storage      |                | Return to Storage     |
| JB14404-11.1                 | Secured Storage                        | Adam Scott           |                | Retrieve from Storage |
| JB14404-11.1                 | Adam Scott                             | Matt Del Ciello      |                | Custody Transfer      |
| JB14404-11.1                 | Matt Del Ciello                        | Secured Storage      |                | Return to Storage     |
| JB14404-11.1                 | Secured Storage                        | Sanjay Advani        |                | Retrieve from Storage |
| JB14404-11.1                 | Sanjay Advani                          | Secured Storage      | 08/31/12 16:34 | Return to Storage     |
|                              |                                        |                      |                |                       |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number                                      | Transfer<br>FROM                                                            | Transfer<br>TO                                                             | Date/Time                                                            | Reason                                         |
|--------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------|
| JB14404-12.1                                                 | Secured Storage                                                             | Todd Shoemaker                                                             | 08/29/12 08:27                                                       | Retrieve from Storage                          |
| JB14404-12.1<br>JB14404-12.1                                 | Todd Shoemaker                                                              | Secured Staging Area                                                       |                                                                      | Return to Storage                              |
| JB14404-12.1<br>JB14404-12.1                                 | Secured Staging Area                                                        | Robert OConnor                                                             |                                                                      | Retrieve from Storage                          |
| JB14404-12.1<br>JB14404-12.1                                 | Robert OConnor                                                              | Secured Storage                                                            |                                                                      | Return to Storage                              |
| JB14404-12.1<br>JB14404-12.1                                 | Secured Storage                                                             | Adam Scott                                                                 |                                                                      | Retrieve from Storage                          |
| JB14404-12.1<br>JB14404-12.1                                 | Adam Scott                                                                  | Matt Del Ciello                                                            |                                                                      | Custody Transfer                               |
| JB14404-12.1<br>JB14404-12.1                                 | Matt Del Ciello                                                             | Secured Storage                                                            |                                                                      | Return to Storage                              |
| JB14404-12.1<br>JB14404-12.1                                 | Secured Storage                                                             | Sanjay Advani                                                              |                                                                      | Retrieve from Storage                          |
| JB14404-12.1<br>JB14404-12.1                                 | Sanjay Advani                                                               | Secured Storage                                                            |                                                                      | Return to Storage                              |
| JD14404-12.1                                                 | Sanjay Advani                                                               | Secured Storage                                                            | 06/31/12 10.34                                                       | Keturii to Storage                             |
| JB14404-13.1                                                 | Secured Storage                                                             | Todd Shoemaker                                                             | 08/29/12 08:27                                                       | Retrieve from Storage                          |
| JB14404-13.1                                                 | Todd Shoemaker                                                              | Secured Staging Area                                                       | 08/29/12 08:27                                                       | Return to Storage                              |
| JB14404-13.1                                                 | Secured Staging Area                                                        | Robert OConnor                                                             | 08/29/12 08:57                                                       | Retrieve from Storage                          |
| JB14404-13.1                                                 | Robert OConnor                                                              | Secured Storage                                                            | 08/29/12 11:18                                                       | Return to Storage                              |
| JB14404-13.1                                                 | Secured Storage                                                             | Adam Scott                                                                 | 08/30/12 15:12                                                       | Retrieve from Storage                          |
| JB14404-13.1                                                 | Adam Scott                                                                  | Matt Del Ciello                                                            | 08/30/12 15:14                                                       | Custody Transfer                               |
| JB14404-13.1                                                 | Matt Del Ciello                                                             | Secured Storage                                                            | 08/30/12 18:02                                                       | Return to Storage                              |
| JB14404-13.1                                                 | Secured Storage                                                             | Sanjay Advani                                                              | 08/31/12 08:43                                                       | Retrieve from Storage                          |
| JB14404-13.1                                                 | Sanjay Advani                                                               | Secured Storage                                                            | 08/31/12 16:34                                                       | Return to Storage                              |
| JB14404-14.1                                                 | Secured Storage                                                             | Todd Shoemaker                                                             | 08/29/12 08:27                                                       | Retrieve from Storage                          |
| JB14404-14.1                                                 | Todd Shoemaker                                                              | Secured Staging Area                                                       |                                                                      | Return to Storage                              |
| JB14404-14.1                                                 | Secured Staging Area                                                        | Robert OConnor                                                             |                                                                      | Retrieve from Storage                          |
| JB14404-14.1                                                 | Robert OConnor                                                              | Secured Storage                                                            |                                                                      | Return to Storage                              |
| JB14404-14.1                                                 | Secured Storage                                                             | Adam Scott                                                                 |                                                                      | Retrieve from Storage                          |
| JB14404-14.1                                                 | Adam Scott                                                                  | Matt Del Ciello                                                            |                                                                      | Custody Transfer                               |
| JB14404-14.1                                                 | Matt Del Ciello                                                             | Secured Storage                                                            |                                                                      | Return to Storage                              |
| JB14404-14.1                                                 | Secured Storage                                                             | Sanjay Advani                                                              |                                                                      | Retrieve from Storage                          |
| JB14404-14.1                                                 | Sanjay Advani                                                               | Secured Storage                                                            |                                                                      | Return to Storage                              |
| JB14404-15.1                                                 | Secured Storage                                                             | Todd Shoemaker                                                             | 08/20/12 08:27                                                       | Retrieve from Storage                          |
| JB14404-15.1<br>JB14404-15.1                                 | Todd Shoemaker                                                              | Secured Staging Area                                                       |                                                                      | Return to Storage                              |
| JB14404-15.1<br>JB14404-15.1                                 | Secured Staging Area                                                        | Robert OConnor                                                             |                                                                      | Retrieve from Storage                          |
| JB14404-15.1<br>JB14404-15.1                                 | Robert OConnor                                                              | Secured Storage                                                            |                                                                      | Return to Storage                              |
| JB14404-15.1<br>JB14404-15.1                                 | Secured Storage                                                             | Sanjay Advani                                                              |                                                                      | Retrieve from Storage                          |
|                                                              | _                                                                           |                                                                            |                                                                      |                                                |
| JB14404-15.1                                                 | Sanjay Advani                                                               | Secured Storage                                                            | 08/31/12 10:34                                                       | Return to Storage                              |
| JB14404-15.2                                                 | Secured Storage                                                             | Todd Shoemaker                                                             | 08/29/12 08:27                                                       | Retrieve from Storage                          |
| JB14404-15.2                                                 | Todd Shoemaker                                                              | Secured Staging Area                                                       | 08/29/12 08:27                                                       | Return to Storage                              |
| JB14404-15.2                                                 | Secured Staging Area                                                        | Robert OConnor                                                             | 08/29/12 08:57                                                       | Retrieve from Storage                          |
| JB14404-15.2                                                 | Robert OConnor                                                              | Secured Storage                                                            | 08/29/12 11:18                                                       | Return to Storage                              |
| JB14404-15.2                                                 | Secured Storage                                                             | Sanjay Advani                                                              | 08/31/12 08:43                                                       | Retrieve from Storage                          |
| JB14404-15.2                                                 | Sanjay Advani                                                               | Secured Storage                                                            | 08/31/12 16:34                                                       | Return to Storage                              |
| JB14404-15.2<br>JB14404-15.2<br>JB14404-15.2<br>JB14404-15.2 | Todd Shoemaker<br>Secured Staging Area<br>Robert OConnor<br>Secured Storage | Secured Staging Area<br>Robert OConnor<br>Secured Storage<br>Sanjay Advani | 08/29/12 08:27<br>08/29/12 08:57<br>08/29/12 11:18<br>08/31/12 08:43 | Return to<br>Retrieve<br>Return to<br>Retrieve |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14404-15.3            | Secured Storage      | Todd Shoemaker       | 08/29/12 08:27 | Retrieve from Storage |
| JB14404-15.3            | Todd Shoemaker       | Secured Staging Area | 08/29/12 08:27 | Return to Storage     |
| JB14404-15.3            | Secured Staging Area | Robert OConnor       | 08/29/12 08:57 | Retrieve from Storage |
| JB14404-15.3            | Robert OConnor       | Secured Storage      | 08/29/12 11:18 | Return to Storage     |
| JB14404-15.3            | Secured Storage      | Adam Scott           | 08/30/12 15:12 | Retrieve from Storage |
| JB14404-15.3            | Adam Scott           | Matt Del Ciello      | 08/30/12 15:14 | Custody Transfer      |
| JB14404-15.3            | Matt Del Ciello      | Secured Storage      | 08/30/12 18:02 | Return to Storage     |
| JB14404-15.3            | Secured Storage      | Sanjay Advani        | 08/31/12 08:43 | Retrieve from Storage |
| JB14404-15.3            | Sanjay Advani        | Secured Storage      | 08/31/12 16:34 | Return to Storage     |





# General Chemistry

# QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary

### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14404 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                              | Batch ID                                      | RL    | MB<br>Result | Units                  | Spike<br>Amount      | BSP<br>Result       | BSP<br>%Recov         | QC<br>Limits                  |
|----------------------------------------------------------------------|-----------------------------------------------|-------|--------------|------------------------|----------------------|---------------------|-----------------------|-------------------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent<br>Chromium, Hexavalent | GN70910<br>GP66904/GN71388<br>GP66904/GN71388 | 0.010 | 0.0          | mg/l<br>mg/kg<br>mg/kg | .15<br>40<br>1055.45 | 0.15<br>39.8<br>963 | 100.0<br>99.5<br>91.2 | 90-110%<br>80-120%<br>80-120% |

Associated Samples: Batch GN70910: JB14404-2

Batch GP66904: JB14404-3, JB14404-4, JB14404-5, JB14404-6, JB14404-7, JB14404-9, JB14404-10, JB14404-11, JB14404-12,

JB14404-13, JB14404-14, JB14404-15

(\*) Outside of QC limits



6.2

# DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14404 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte               | Batch ID        | QC<br>Sample | Units | Original<br>Result | DUP<br>Result | RPD     | QC<br>Limits |
|-----------------------|-----------------|--------------|-------|--------------------|---------------|---------|--------------|
| Chromium, Hexavalent  | GN70910         | JB14375-1    | mg/l  | 0.0078             | 0.0078        | 0.0     | 0-20%        |
| Chromium, Hexavalent  | GP66904/GN71388 | JB14404-3    | mg/kg | 1.1                | 0.72          | 41.8(a) | 0-20%        |
| Redox Potential Vs H2 | GN71398         | JB14404-3    | mv    | 191                | 198           | 3.6     | 0-10%        |
| Redox Potential Vs H2 | GN71442         | JB14404-2    | mv    | 313                | 305           | 2.6     | 0-10%        |
| рН                    | GN71397         | JB14404-3    | su    | 8.83               | 8.79          | 0.5     | 0-5%         |

Associated Samples:

Batch GN70910: JB14404-2

Batch GN71398: JB14404-3, JB14404-4, JB14404-5, JB14404-6, JB14404-7, JB14404-9, JB14404-10, JB14404-11, JB14404-12, JB14404-13, JB14404-14, JB14404-15

Batch GN71442: JB14404-2

(\*) Outside of QC limits

(a) RPD acceptable due to low duplicate and sample concentrations.



### GENERAL CHEMISTRY

### Login Number: JB14404 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

MATRIX SPIKE RESULTS SUMMARY

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec     | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|----------|--------------|
| Chromium, Hexavalent | GN70910         | JB14375-1    | mg/l  | 0.0078             | .15             | 0.15         | 94.8     | 85-115%      |
| Chromium, Hexavalent | GP66904/GN71388 | JB14404-3    | mg/kg | 1.1                | 1020            | 1080         | 106.0(a) | 75-125%      |
| Chromium, Hexavalent | GP66904/GN71388 | JB14404-3    | mg/kg | 1.1                | 44.9            | 44.0         | 95.6(b)  | 75-125%      |

Associated Samples:

Batch GN70910: JB14404-2

Batch GP66904: JB14404-3, JB14404-4, JB14404-5, JB14404-6, JB14404-7, JB14404-9, JB14404-10, JB14404-11, JB14404-12, JB14404-13, JB14404-14, JB14404-15

- (\*) Outside of QC limits
  (N) Matrix Spike Rec. outside of QC limits
- (a) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.
- (b) Good recovery on soluble XCR matrix spike. Good recovery (94.7%) on the post-spike.



# Percent Solids Raw Data Summary Job Number: JB14404

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14404-3<br>ClientID: NSB-D4-20.0-20.5                   | Analyzed:                       | 29-AUG-12 by RO  | Method: | SM18 2540G |
|-------------------------------------------------------------------|---------------------------------|------------------|---------|------------|
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 35.72<br>25.81<br>34.61<br>88.8 | g<br>g<br>g<br>% |         |            |
| <b>Sample:</b> JB14404-4 <b>ClientID:</b> NSB-D4-16.5-17.0        | Analyzed:                       | 29-AUG-12 by RO  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 34.66<br>26.99<br>33.66<br>87   | g<br>g<br>g<br>% |         |            |
| <b>Sample:</b> JB14404-5 <b>ClientID:</b> NSB-D4-12.0-12.5        | Analyzed:                       | 29-AUG-12 by RO  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 35.89<br>28.03<br>34.24         | g<br>g<br>g<br>% |         |            |
| Sample: JB14404-6<br>ClientID: NSB-D4-10.5-11.0                   | Analyzed:                       | 29-AUG-12 by RO  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 32.98<br>26.16<br>31.04<br>71.6 | g<br>g<br>g<br>% |         |            |
| Sample: JB14404-7<br>ClientID: NSB-D4-6.0-6.5                     | Analyzed:                       | 29-AUG-12 by RO  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 27.14<br>18.48<br>24.36<br>67.9 | g<br>g<br>g<br>% |         |            |
| <b>Sample:</b> JB14404-9 <b>ClientID:</b> NSB-D3-21.0-21.5        | Analyzed:                       | 29-AUG-12 by RO  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 34.64<br>27.31<br>33.62<br>86.1 | g<br>g<br>g<br>g |         |            |



# Percent Solids Raw Data Summary Job Number: JB14404

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14404-10<br>ClientID: NSB-D3-15.0-15.5                  | Analyzed:                       | 29-AUG-12 by R   | O Metho | <b>d:</b> SM18 2540G |
|-------------------------------------------------------------------|---------------------------------|------------------|---------|----------------------|
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 29.1<br>22.67<br>26.09<br>53.2  | g<br>g<br>g<br>g |         |                      |
| <b>Sample:</b> JB14404-11 <b>ClientID:</b> NSB-D3-10.8-11.3       | Analyzed:                       | 29-AUG-12 by R   | O Metho | od: SM18 2540G       |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 32.49<br>25.59<br>28.53<br>42.6 | g<br>g<br>g<br>g |         |                      |
| Sample: JB14404-12<br>ClientID: NSB-D3-6.5-7.0                    | Analyzed:                       | 29-AUG-12 by R   | O Metho | od: SM18 2540G       |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 33.15<br>24.59<br>30.15         | g<br>g<br>g<br>% |         |                      |
| Sample: JB14404-13<br>ClientID: NSB-D2-16.6-17.1                  | Analyzed:                       | 29-AUG-12 by R   | O Metho | od: SM18 2540G       |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 31.06<br>24.57<br>29.21<br>71.5 | g<br>g<br>g<br>% |         |                      |
| Sample: JB14404-14<br>ClientID: NSB-D2-15.0-15.5                  | Analyzed:                       | 29-AUG-12 by R   | O Metho | od: SM18 2540G       |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 35.84<br>29.25<br>33.18<br>59.6 | g<br>g<br>g<br>% |         |                      |
| <b>Sample:</b> JB14404-15 <b>ClientID:</b> NSB-D2-20.0-20.5       | Analyzed:                       | 29-AUG-12 by R   | O Metho | d: SM18 2540G        |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 33.37<br>26.55<br>32.02<br>80.2 | g<br>g<br>g<br>% |         |                      |





| General Chemistry |
|-------------------|
| Raw Data          |
|                   |



# Hexavalent Chromium

| Bottle<br>ID | Dear and March and a first of        | Sample<br>Absorbance                    | BKGRD<br>Abs   | Analyzed<br>Times                           | Y Values Corr<br>Sample<br>Absorbance | X Values<br>Conc(mg/l) | Final Vol.<br>(ml)                | Sam Vol.<br>(ml)      | Dilution       | Final Conc.       | Units         | MDL.   | RDL   |
|--------------|--------------------------------------|-----------------------------------------|----------------|---------------------------------------------|---------------------------------------|------------------------|-----------------------------------|-----------------------|----------------|-------------------|---------------|--------|-------|
|              | Test Title:<br>GN Batch:<br>Analyst: | XCr<br>GN70910<br>MM                    |                |                                             | 1                                     |                        |                                   | Method:               | SW846 71       | 96A               |               |        |       |
|              | Prep Date:<br>Analysis Date:         | NA<br>8/22/2012                         |                |                                             |                                       | Note: Use              | 4 for CLF                         | list poi              | nter, 1 for    | reg. List pointe  | er.           |        |       |
|              | Instrument ID:                       | Н                                       |                |                                             |                                       |                        |                                   |                       |                | Corr. Coef:       | 0.99991       |        |       |
|              | Cal. Blk.                            | 0.000                                   | NA             | 20:11                                       | 0.000                                 | 0.0000                 |                                   |                       |                |                   | 0.0054        |        |       |
|              | STD1<br>STD2                         | 0.010<br>0.045                          | NA<br>NA       | NA<br>NA                                    | 0.010<br>0.045                        | 0.0100                 |                                   |                       |                | Slope:            | 0.8851        |        |       |
|              | STD3                                 | 0.043                                   | NA NA          | NA NA                                       | 0.045                                 | 0.1000                 |                                   |                       |                | Y intercept:      | 0.0011        |        |       |
|              | STD4                                 | 0.268                                   | NA             | NA                                          | 0.268                                 | 0.3000                 |                                   |                       |                |                   |               |        |       |
|              | STD5                                 | 0.442                                   | NA             | NA                                          | 0.442                                 | 0.5000                 |                                   |                       |                |                   |               |        |       |
|              | STD6<br>STD7                         | 0.719                                   | NA<br>NA       | NA<br>PO-47                                 | 0.719                                 | 0.8000<br>1.0000       | 1 ——                              | Sam. Vol.             | Ditakina       | Final Cana        | Unite         | MDL    | RDL   |
|              | CCV                                  | 0.879<br>0.441                          | NA<br>NA       | 20:13                                       | 0.879<br>0.441                        | 0.4970                 | (ml)<br>NA                        | (ml)<br>NA            | Dilution<br>NA | Final Conc.<br>NA | Units<br>mg/l | 0.001  | 0.010 |
|              | CCB                                  | 0.000                                   | NA NA          | 20:20                                       | 0.000                                 | -0.0013                | NA NA                             | NA NA                 | NA NA          | NA NA             | mg/l          | 0.0013 | 0.010 |
|              | GN70910-MB†                          | 0.000                                   | 0.000          | 20:25                                       | 0.000                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              | GN70910-B1                           | 0.135                                   | 0.000          | 20:25                                       | 0.135                                 | 0.1512                 | 50.0                              | 50.0                  | 1              | 0.151             | mg/l          | 0.0014 | 0.010 |
|              | GN70910-\$1                          | 0.141                                   | 0.007          | 20:25                                       | 0.134                                 | 0.1501                 | 50.0                              | 50.0                  | 1              | 0.150             | mg/l          | 0.0014 | 0.010 |
| 26           | GN70910-D1<br>JB14375-1              | 0.015<br>0.015                          | 0.007<br>0.007 | 20:25<br>20:25                              | 0.008                                 | 0.0078<br>0.0078       | 50.0<br>50.0                      | 50.0<br>50.0          | 1              | 0.008             | mg/l          | 0.0014 | 0.010 |
| 1            | JB14375-1<br>JB14404-1               | 0.000                                   | 0.007          | 20:25                                       | 0.008                                 | -0.0078                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l<br>mg/l  | 0.0014 | 0.010 |
| 1            | JB14404-2                            | 0.000                                   | 0.000          | 20:25                                       | 0.000                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/i          | 0.0014 | 0.010 |
|              | 001                                  |                                         | ***            |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              | CCV                                  | 0.437                                   | NA<br>NA       | 20:25                                       | 0.437<br>0.000                        | -0.0013                | NA<br>NA                          | NA<br>NA              | NA<br>NA       | NA<br>NA          | mg/l          | 0.0013 | 0.010 |
|              | CCB                                  | 0.000                                   | INA            | 20.25                                       | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l<br>mg/l  | 0.0013 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              | (6) NOT NEW                          | des and                                 | TWO PE         | u G.O.                                      | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      | , , , , , , , , , , , , , , , , , , , , | A. C           |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         | 7 4            | .,                                          | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE<br>FALSE                        | -0.0013<br>-0.0013     | 50.0<br>50.0                      | 50.0<br>50.0          | 1              | -0.001<br>-0.001  | mg/l<br>mg/l  | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              | ccv                                  |                                         | NA             | M                                           |                                       | #VALUE!                | NA                                | NA                    | NA             | NA                | mg/l          | 0.0013 | 0.010 |
|              | CCB                                  |                                         | NA             | 25-80 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                       | #VALUE!                | NA                                | NA                    | NA             | NA .              | mg/l          | 0.0013 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE<br>FALSE                        | -0.0013<br>-0.0013     | 50.0<br>50.0                      | 50.0<br>50.0          | 1 1            | -0.001<br>-0.001  | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l<br>mg/l  | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                | ļ <u>.</u>                                  | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      | -                                       |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE<br>FALSE                        | -0.0013<br>-0.0013     | 50.0<br>50.0                      | 50.0<br>50.0          | 1 1            | -0.001<br>-0.001  | mg/l<br>mg/l  | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE \                               | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              | ccv                                  |                                         | NA             | Min .                                       |                                       | #VALUE!                | NA NA                             | NA NA                 | NA             | NA NA             | mg/l          | 0.0013 | 0.010 |
|              | ССВ                                  |                                         | NA             | effa),                                      |                                       | WVALUE!                | NΑ                                | NA                    | NA             | NA                | mg/l          | 0.0013 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.8013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | <b>#</b> 0.0                      | 50.0                  | 1 1:           | /-0.001           | mg/l          | 0.0014 | 0.010 |
|              |                                      | <del> </del>                            |                |                                             | FALSE<br>FALSE                        | -0.0013 \<br>-0.0013   | <b>/ \$</b> 0.0<br><b>Y 5</b> 0.0 | 50.0<br><b>A</b> 50.0 | 1)             | -0.001            | mg/i<br>mg/l  | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.g                              | 50.0                  | 11/            | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.6                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | \1             | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         | ļ              | -                                           | FALSE<br>FALSE                        | -0.0013<br>-0.0013     | 50.0<br>50.0                      | 50.0                  | 1 1            | -0.001<br>-0.001  | mg/l          | 0.0014 | 0.010 |
|              | ccv                                  |                                         | NA NA          | <b> </b>                                    | FALSE                                 | #VALUE!                | 50.0<br>NA                        | 50.0<br>NA            | NA NA          | -0.001<br>NA      | mg/l<br>mg/l  | 0.0014 | 0.010 |
|              | CCB                                  |                                         | NA NA          |                                             |                                       | #VALUE!                | NA NA                             | NA NA                 | NA NA          | NA NA             | mg/l          | 0.0013 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                |                                             | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      |                                         |                | <b></b>                                     | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1 1            | -0.001            | mg/l          | 0.0014 | 0.010 |
|              |                                      | ļ                                       |                | 1                                           | FALSE                                 | -0.0013                | 50.0                              | 50.0                  | 1              | -0.001            | mg/l          | 0.0014 | 0.010 |





| Test: Hexavalent Chromium                   | MDL = 0.0013 r<br>RDL = 0.010 mg                             | ng/l GNBatch  | 10: 6N 1010         |   |
|---------------------------------------------|--------------------------------------------------------------|---------------|---------------------|---|
| Product: XCr<br>Method: SW846 7196A         | RDL = 0.010 mg                                               | yn Date       | yeryse-             |   |
| Digestion Batch QC Summary                  | Units = mg/l                                                 |               |                     |   |
| •                                           | on has Brown In                                              | W/V BDI O     | (1) SRDIJIM         |   |
| Method Blank ID: 6N7010MB Date: 2           | Result: 4                                                    | 10L RUL. U.S  | 0 0 0 0 1 0 1 7 50  | • |
| Spike Blank ID: 4NOBO-B Date:               | Result: V                                                    | 2/ Sbike: 1/2 | 5 %Rec.: 1(10), 1/2 |   |
| Duplicate ID: <u>[ANTO][0-D]</u> Samp. Resu |                                                              |               |                     |   |
| MS ID: 6 NO S Samp. Result:                 |                                                              |               |                     |   |
| Diluted Sample ID: Samp                     |                                                              |               |                     |   |
| pH adj. PS ID:Samp. Resu                    | lt: MS Res                                                   | sult: Spi     | ke: %Rec:           |   |
| Analysis Batch QC Summary Uni               | s = mg/l                                                     |               |                     |   |
| CCV: 8/2/202 Result: 407 T                  | /: <u>./3</u> ) %Rec.:_                                      | 99.490        |                     |   |
|                                             | /: <del></del>                                               | 98.490        |                     |   |
| CCV: Result: T                              | /: %Rec.:_                                                   |               |                     |   |
| CCV : Result: T                             | /: %Rec.:_                                                   |               |                     |   |
| CCV : Result: T                             |                                                              |               |                     |   |
| CCV : Result: T                             | /: %Rec.:_                                                   |               | *                   |   |
| CCB: 80200 Result: 4MD RE                   | or ∧ AA <rdl:< td=""><td>1 Ma</td><td></td><td></td></rdl:<> | 1 Ma          |                     |   |
| CCB: Result: 4 RI                           |                                                              | <u>#</u>      |                     |   |
|                                             | )L: <rdl:< th=""><th></th><th></th><th></th></rdl:<>         |               |                     |   |
|                                             | DL: <rdl:< th=""><th></th><th></th><th></th></rdl:<>         |               |                     |   |
|                                             | )L: <rdl:< th=""><th></th><th></th><th></th></rdl:<>         |               |                     |   |
|                                             | DL: <rdl:< td=""><td></td><td></td><td></td></rdl:<>         |               |                     |   |
|                                             |                                                              |               |                     |   |
| Reagent Reference Numbers:                  |                                                              |               |                     |   |
| 1.01                                        | allande                                                      |               |                     |   |
| 1800                                        | ***************************************                      |               |                     |   |
|                                             |                                                              |               |                     |   |
| Initial Calibration Source:                 |                                                              |               |                     |   |
| Centinuing Calibration Source:              |                                                              |               |                     |   |
| _                                           |                                                              |               |                     |   |
| Analyst: Date: Opple                        | 02                                                           |               |                     |   |
| Comments:                                   |                                                              |               |                     |   |

Fem: GN076-01 R.v. Date: 1/10/11





## Hexavalent Chromium pH Adjustment Log Method: SW846 7196A

pH Adjust. Date: 2 pH adj. start time: GN Batch ID: pH adj. end time:

|              | Initial<br>Sample<br>Volume | Final<br>Volume | pH after | bkg pH<br>after |          | ·                                      |
|--------------|-----------------------------|-----------------|----------|-----------------|----------|----------------------------------------|
| Sample ID    | (ml)                        | (ml)            | H2SO4    | H2SO4           |          | Comments                               |
| ccv          | 45                          | 9               |          |                 | SML      | 5pm WMa                                |
| ccv          |                             |                 |          |                 |          | •                                      |
| ccv          |                             |                 |          |                 |          |                                        |
| ccv          |                             |                 |          |                 |          |                                        |
| ССВ          | 45                          | 50              |          | —.              |          |                                        |
| ССВ          |                             |                 |          |                 |          |                                        |
| ССВ          |                             |                 |          |                 |          |                                        |
| ССВ          |                             |                 |          |                 |          |                                        |
| MSJB4375-1   | 45                          | 50              | 198      | 1,00            | IML      | 75 ppn/10sutl                          |
| DUP +        |                             |                 | 1.97     | 173             |          | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  |
| SB BI        |                             |                 | 199      | 182             | \ML      | 75 ppm Marlul                          |
| PB MB1       |                             |                 | 186      | 1.74            |          | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |
| 1. JB14375-1 |                             |                 | 184      | 179             |          |                                        |
| 2.JB144(X-1  |                             |                 | 192      | 1.81            |          |                                        |
| 3. 2         | 4                           | 4               | 194      | 1.84            |          |                                        |
| 4.           |                             |                 |          |                 |          |                                        |
| 5.           |                             |                 |          |                 |          |                                        |
| 6.           |                             |                 |          |                 |          |                                        |
| 7.           |                             |                 |          |                 |          |                                        |
| 8.           |                             |                 |          |                 |          |                                        |
| 9.           |                             |                 |          |                 |          |                                        |
| 10.          |                             |                 |          |                 |          |                                        |
| 11.          |                             |                 |          |                 |          |                                        |
| 12.          |                             |                 |          |                 |          |                                        |
| 13.          |                             |                 |          |                 |          |                                        |
| 14.          |                             |                 |          |                 |          |                                        |
| 15.          |                             |                 |          |                 |          |                                        |
| 16.          |                             |                 |          |                 |          |                                        |
| 17.          |                             |                 |          |                 |          |                                        |
| 18.          |                             |                 |          |                 |          |                                        |
| 19.          |                             |                 |          |                 | <u> </u> |                                        |
| 20.          |                             |                 |          |                 |          |                                        |
| PS           |                             |                 |          |                 |          |                                        |
| DIL          |                             |                 |          |                 |          |                                        |
| DIL          |                             |                 |          |                 |          |                                        |

| Analyst Date | e: PXXXX QC Reviewer: | Date: |
|--------------|-----------------------|-------|

Form: GN077-01





# Hexavalent Chromium pH Adjustment Log

Method: SW846 7196A

pH adj. start time: nH adi\_end time:

20:01 20:05

pH Adjust. Date: 872 GN Batch ID: 61

| oH adj. end time:  |               | 70.02                                            |                                       | GN Batt  | on io. entro |                               |
|--------------------|---------------|--------------------------------------------------|---------------------------------------|----------|--------------|-------------------------------|
|                    | Initial       | Final                                            |                                       |          |              |                               |
|                    | Sample        | Final                                            | n∐ offor                              |          |              |                               |
|                    | Volume        | Volume<br>(ml)                                   | pH after<br>H2SO4                     | Comments |              | Spike Info.                   |
| Sample ID          | (ml)          | (IIII)<br>(IIII)                                 | 12304                                 | Comments |              | Ориссина                      |
| alibration Blank   | 45            | <u> </u>                                         |                                       | / X      | maull        | 0.10 ml of 5 mg/l to 50 ml FV |
| .010 mg/l standard |               | <u> </u>                                         | 192                                   | 5 ppm 19 | IMMEN        | 0.50 ml of 5 mg/l to 50 mL FV |
| .050 mg/l standard |               |                                                  | 184                                   | * -      |              |                               |
| .100 mg/l standard |               |                                                  | 176                                   | <u> </u> |              | 1.00 ml of 5 mg/l to 50 mL FV |
| .300 mg/l standard |               |                                                  | 1.98                                  |          |              | 3.00 ml of 5 mg/l to 50 mL FV |
| .500 mg/l standard |               |                                                  | 1.73                                  |          | <del> </del> | 5.00 ml of 5 mg/l to 50 mL FV |
| .800 mg/l standard |               |                                                  | 196                                   |          |              | 8.00 ml of 5 mg/l to 50 mL FV |
| .00 mg/l standard  | 4             | 4                                                | 1.84                                  | 4        |              | 10.0 ml of 5 mg/l to 50 mL FV |
| 2.00 mg/l standard |               |                                                  |                                       |          |              | 20.0 ml of 5 mg/l to 50 mL FV |
| .oo mg/r otoniaara |               | 5                                                |                                       |          |              |                               |
|                    | <u> </u>      |                                                  |                                       |          | .,           |                               |
|                    |               | ······································           |                                       |          |              |                               |
|                    |               | <u> </u>                                         |                                       |          |              |                               |
| ·                  |               | <u> </u>                                         | ļ                                     |          |              |                               |
|                    |               | ļ <u></u>                                        |                                       |          | ~            |                               |
|                    |               |                                                  | <u> </u>                              |          |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    |               |                                                  | · · · · · · · · · · · · · · · · · · · |          |              |                               |
|                    | _ <del></del> | <del>                                     </del> |                                       |          |              |                               |
|                    |               | <del> </del>                                     |                                       |          |              |                               |
|                    |               | <u> </u>                                         |                                       |          |              |                               |
|                    |               | <del> </del>                                     | <del> </del>                          |          |              |                               |
|                    |               | <u> </u>                                         |                                       |          |              |                               |
|                    |               |                                                  | <u> </u>                              |          |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    |               |                                                  |                                       | 1        |              |                               |
|                    |               |                                                  |                                       |          |              |                               |
|                    | <u> </u>      |                                                  |                                       |          |              |                               |
|                    | <del></del>   |                                                  |                                       |          |              |                               |
|                    |               |                                                  | 1                                     |          |              |                               |

Form: GN078-01 Rev. Date: 1/10/11





# Reagent Information Log - XCR - water - 7196A

| Reagent                                                  | Exp. Date    | Reagent # or Manufacturer/Lot |
|----------------------------------------------------------|--------------|-------------------------------|
| Calibration Source: Hexavalent Chromium, 1000 mg/L Stock | 1/12/2015    | Absolute Grade Lot# 011212    |
| Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock | 5/31/2017    | Ultra Scientific Lot# L00439  |
| External Check                                           | NA           | NA .                          |
| Spiking Solution Source                                  | 1/12/2015    | Absolute Grade Lot# 011212    |
| Diphenyl carbazide Solution                              | apipas       | 6NE8-33389-XCY                |
| Sulfuric Acid, 10%                                       | 2/2/pas      | 9N+8-33384-XW                 |
|                                                          | <u></u>      |                               |
|                                                          |              |                               |
|                                                          | <del> </del> |                               |
| · · · · · · · · · · · · · · · · · · ·                    |              |                               |

Form: GN087A-23 Rev. Date: 10/3/05



| Sample#                                                                 | Absorbance                                           | BKGRD          | Analysis       | Y Values Corr<br>Sample<br>Absorbance | X Values<br>Conc(mg/l) | Final Vol.     | (g)              | Dilution              | Final Conc.                    | Units          | MDL            |              |
|-------------------------------------------------------------------------|------------------------------------------------------|----------------|----------------|---------------------------------------|------------------------|----------------|------------------|-----------------------|--------------------------------|----------------|----------------|--------------|
| Test Title: GN Batch: Analyst: Prep Date: Analysis Date: Instrument ID: | XCRA<br>GN71388<br>RI<br>8/30/2012<br>8/31/2012<br>D |                |                |                                       | Note: All              | results b      |                  |                       | 060A, 7196A<br>wet weight basi |                |                |              |
| Cal. Blk.                                                               | 0.000                                                | NA             | 9:21           | 0.000                                 | 0.0000                 | ]              |                  |                       | Corr. Coef:                    | 0.99993        |                |              |
| STD 1                                                                   | 0.009                                                | NA             | NA             | 0.009                                 | 0.0100                 | ]              |                  |                       | Slope:                         | 0.8956         |                |              |
| STD 2<br>STD 3                                                          | 0.044                                                | NA<br>NA       | NA<br>NA       | 0.044<br>0.088                        | 0.0500<br>0.1000       | }              |                  |                       | Y intercept;                   | -0.0004        |                |              |
| STD 4                                                                   | 0.275                                                | NA             | NA NA          | 0.275                                 | 0.3000                 | 1              |                  |                       | 1 intercept                    | -0.0004        |                |              |
| STD 5                                                                   | 0.440                                                | NA             | NA             | 0.440                                 | 0.5000                 |                |                  |                       |                                |                |                |              |
| STD 6                                                                   | 0.715                                                | NA<br>NA       | NA<br>O.O.F    | 0.715                                 | 0.8000                 | 1              | Sam. Wt.         | B. (1 41              | <b>5</b> 11. <b>6</b>          | 11             | MOI            | -            |
| STD 7<br>CCV                                                            | 0.898<br>0.431                                       | NA<br>NA       | 9:25<br>12:32  | 0.898<br>0.431                        | 1.0000<br>0.4816       | (ml)<br>NA     | (g)<br>NA        | <u>Dilution</u><br>NA | Final Conc.<br>NA              | Units<br>mg/l  | MDL<br>0.003   | RE           |
| ССВ                                                                     | 0,000                                                | NA.            | 12:32          | 0.000                                 | 0.0004                 | NA NA          | NA NA            | NA NA                 | NA NA                          | mg/l           | 0.003          | 0.0          |
| GP66904-MB1                                                             | 0.000                                                | 0.000          | 12:40          | 0.000                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
| GP66904-B1                                                              | 0.890                                                | 0.000          | 12:40          | 0.890                                 | 0.9941                 | 100.0          | 2.5000           | 1                     | 39.766                         | mg/kg          | 0.117          | 0.4          |
| GP66904-S1<br>GP66904-D1                                                | 0.879<br>0.016                                       | 0.002          | 12:40<br>12:40 | 0.877<br>0.014                        | 0.9796<br>0.0160       | 100.0          | 2.5100<br>2.5100 | 1                     | 39.029<br>0.639                | mg/kg          | 0.117          | 0.3          |
| JB14404-3                                                               | 0.016                                                | 0.002          | 12:40          | 0.014                                 | 0.0160                 | 100.0          | 2.4200           | 1                     | 0.639                          | mg/kg<br>mg/kg | 0.117          | 0.3          |
| JB14404-3PSCONF                                                         | 0.425                                                | 0.000          | 12:40          | 0.425                                 | 0.4749                 | 100.0          | 2.4200           | 2                     | 39.251                         | mg/kg          | 0.242          | 0.8          |
| GP66904-B2                                                              | >3                                                   | OVR            |                | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
| GP66904-S2                                                              | >3                                                   | OVR            |                | FALSE                                 | 0.0004                 | 100,0          | 2.5100           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.3          |
| GP66904-B2<br>GP66904-S2                                                | 0.431<br>0.430                                       | 0.000          | 12:40<br>12:40 | 0.431<br>0.430                        | 0.4816<br>0.4805       | 100.0          | 2.5000<br>2.5100 | 50<br>50              | 963.280<br>957.218             | mg/kg          | 5.860<br>5.837 | 19.9         |
| CCV                                                                     | 0.431                                                | 0.000<br>NA    | 12:40          | 0.431                                 | 0.4805                 | - NA           | 2.5100<br>NA     | NA                    | 937.216<br>NA                  | mg/kg<br>mg/l  | 0.003          | 0.0          |
| CCB                                                                     | 0.000                                                | NA             | 12:40          | 0.000                                 | 0.0004                 | NA             | NA               | NA                    | NA                             | mg/l           | 0.003          | 0.0          |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          |                  | 1                     | #DIV/0!                        | mg/kg          | #DIV/0!        | #DI\         |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          |                  | 1                     | #DIV/0!                        | mg/kg          | #DIV/0!        | #DI\         |
|                                                                         |                                                      |                |                | FALSE<br>FALSE                        | 0.0004                 | 100.0          |                  | 1                     | #DIV/0!                        | mg/kg<br>mg/kg | #DIV/0!        | #DI\<br>#DI\ |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          |                  | 1                     | #DIV/0!                        | mg/kg          | #DIV/0!        | #DI\         |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          |                  | 1                     | #DIV/0!                        | mg/kg          | #DIV/0!        | #DI\         |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          |                  | 1                     | #DIV/0!                        | mg/kg          | #DIV/01        | #DI\         |
|                                                                         |                                                      |                |                | FALSE<br>FALSE                        | 0.0004                 | 100.0          |                  | 1                     | #DIV/0!                        | mg/kg<br>mg/kg | #DIV/0!        | #D!\<br>#D!\ |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          |                  | 1                     | #DIV/0!                        | mg/kg          | #DIV/0!        | #DI\         |
| ccv                                                                     | 0.425                                                | NA             | 13:14          | 0.425                                 | 0.4749                 | NA             | NA               | NA                    | NA                             | mg/l           | 0.003          | 0.0          |
| CCB                                                                     | 0.000                                                | NA             | 13,14          | 0.000                                 | 0.0004                 | NA             | NA               | NA                    | NA NA                          | mg/l           | 0.003          | 0.0          |
| JB14404-4<br>JB14404-5                                                  | 0.012<br>0.079                                       | 0.000          | 13:28<br>13:28 | 0.012<br>0.019                        | 0.0138<br>0.0216       | 100.0<br>100.0 | 2.4800<br>2.5400 | 1                     | 0.556<br>0.851                 | mg/kg          | 0.118          | 0.4          |
| JB14404-6                                                               | 0.009                                                | 0.000          | 13:28          | 0.019                                 | 0.0216                 | 100.0          | 2.5500           | 1                     | 0.410                          | mg/kg<br>mg/kg | 0.115          | 0.3          |
| JB14404-7                                                               | 0.005                                                | 0.006          | 13:28          | 0.000                                 | 0.0004                 | 100.0          | 2.5600           | 1                     | 0.016                          | mg/kg          | 0,114          | 0.3          |
| JB14404-9                                                               | 0.009                                                | 0.000          | 13:28          | 0.009                                 | 0.0104                 | 100.0          | 2.5600           | 11                    | 0.408                          | mg/kg          | 0.114          | 0.3          |
| JB14404-10                                                              | 0.103                                                | 0.105          | 13:28          | 0.000                                 | 0.0004                 | 100.0          | 2.5200           | 1                     | 0.016                          | mg/kg          | 0.116          | 0.3          |
| JB14404-11<br>JB14404-12                                                | 0.039                                                | 0.027<br>0.006 | 13:28<br>13:28 | 0.012<br>0.006                        | 0.0138                 | 100.0          | 2.4300<br>2.5200 | 1                     | 0.568                          | mg/kg<br>mg/kg | 0.121          | 0.4          |
| JB14404-13                                                              | 0.126                                                | 0.122          | 13:28          | 0.004                                 | 0.0049                 | 100.0          | 2.5600           | 1                     | 0.190                          | mg/kg          | 0.114          | 0.3          |
| JB14404-14                                                              | 0.215                                                | 0.269          | 13:28          | 0.000                                 | 0.0004                 | 100.0          | 2.5200           | 1                     | 0.016                          | mg/kg          | 0.116          | 0.3          |
| CCV                                                                     | 0.425                                                | NA             | 13.28          | 0.425                                 | 0.4749                 | NA             | NA               | NA                    | NA                             | mg/l           | 0.003          | 0.0          |
| CCB<br>JB14404-15                                                       | 0.000                                                | NA<br>0.029    | 13:28          | 0.000<br>0.021                        | 0.0004 /               | NA<br>100.0    | NA<br>2.4700     | NA<br>1               | NA<br>0.965                    | mg/l<br>mg/kg  | 0.003          | 0.0          |
| 0017707-10                                                              | J.,UJU                                               | 0.025          | 10.00          | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.965                          | mg/kg<br>mg/kg | 0.119          | 0.4          |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
|                                                                         |                                                      |                | <b> </b>       | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 11                    | 0.016                          | mg/kg          | 0.117          | 0.4          |
|                                                                         |                                                      |                |                | FALSE<br>FALSE                        | 0.0004                 | 100.0<br>100.0 | 2.5000<br>2.5000 | 1                     | 0.016                          | mg/kg<br>mg/kg | 0.117          | 0.4          |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
| 201                                                                     | g                                                    | *              | . 765 +        | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
| CCV                                                                     | 0.425                                                | NA<br>NA       | 13:30<br>13:30 | 0,425<br>0.000                        | 0.4749                 | NA<br>NA       | NA<br>NA         | NA<br>NA              | NA<br>NA                       | mg/l<br>mg/l   | 0.003          | 0.0          |
| 005                                                                     | 0.000                                                | NA.            | 13,00          | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1 1                   | 0.016                          | mg/l<br>mg/kg  | 0.003          | 0.4          |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
|                                                                         |                                                      |                |                | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |
|                                                                         |                                                      |                | 1              | FALSE                                 | 0.0004                 | 100.0          | 2.5000           | 1                     | 0.016                          | mg/kg          | 0.117          | 0.4          |



# ACCUTEST LABS DAYTON, NJ

# 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

| NOTE: Alwa | ays dilute post | NOTE: Always dilute post-spike first, then take a 45 ml aliquot of the diluted post-spike and add the spike amount. | n take a 45 n | nl aliquot of t | the diluted  | post-spike ar | nd add the sp | pike amount.                           |             |            |                       |                                 |
|------------|-----------------|---------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--------------|---------------|---------------|----------------------------------------|-------------|------------|-----------------------|---------------------------------|
|            |                 |                                                                                                                     |               |                 |              |               |               |                                        |             |            |                       |                                 |
|            |                 |                                                                                                                     |               |                 |              |               |               |                                        | Actual ml   |            |                       |                                 |
|            |                 |                                                                                                                     |               |                 |              |               |               | Suggested                              | of 100      |            |                       |                                 |
|            | PS Aliquot      |                                                                                                                     |               | Amount in       |              |               |               | ml of 100                              | ppm to      | Est. Read- | Est. Read- Calculated |                                 |
|            | Weight in g     |                                                                                                                     |               | ml to add       |              | Suggested     | Actual        | ppm to spike                           | spike on    | back on    | Spike                 |                                 |
|            | Digested in     | Weight in 45 Results in of 100 ppm                                                                                  | Results in    | of 100 ppm      | Dilution     | Dilution to   | Difution to   | Dilution to on dilution of dilution of | dilution of | curve in   | Amount in             | Use calculated or               |
| Sample ID  | 100 ml          | lm                                                                                                                  | mg/kg.        | solution        | needed       | nse           | pe nsed       | sample.                                | sample.     | l/gm       | mg/kg                 | default spike?                  |
| JB14404-3  | 2.42            | 1.089                                                                                                               | 0.985         | 0.436           | no           | 1             | 2             | 0.218                                  | 0.22        | 0.501      | 40.404                | Hault (40 mg/kg) spike          |
|            |                 | 0                                                                                                                   |               | 0.000           | OU           | 0             |               | i0/AIG#                                |             | #DIV/0i    | #DIV/0!               | #DIV/0! sfault (40 mg/kg) spike |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE! #VALUE!  | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE! #VALUE!  | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE! #VALUE!  | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE! #VALUE!  | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE!  #VALUE! | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE!  #VALUE! | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE!  #VALUE! | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE!  #VALUE! | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |
|            |                 | #VALUE!                                                                                                             |               | #VALUE!         | UE! #VALUE!  | #VALUE!       |               | #VALUE!                                |             | #VALUE!    | #VALUE!               | calculated spike                |

# 3060A/7196A INSOLUBLE SP!KE

| NO          | Amount    | Spiked | 1055.446 | 903.811 | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
|-------------|-----------|--------|----------|---------|---------|---------|---------|---------|---------|---------|---------|
| CALCULATION | Weight of | Sample | 2.5      | 2.51    |         |         |         |         |         |         |         |
| J           | Weight of | PbCr04 | 0.0164   | 0.0141  |         |         |         |         |         |         |         |

| Amo       | Spik   | 1055.  | 803    | T∀Λ# | ¬∀Λ# | T∀Λ# | T∀Λ# | T∀Λ# | T∀Λ# | ¬∀Λ# |
|-----------|--------|--------|--------|------|------|------|------|------|------|------|
| Weight of | Sample | 2.5    | 2.51   |      |      |      |      |      |      |      |
| Weight of | PbCr04 | 0.0164 | 0.0141 |      |      |      |      |      |      |      |

| Test: Hexavalent Chromiur | m |
|---------------------------|---|
|---------------------------|---|

Product: XCr

MDL = 0.117 mg/kgRDL = 0.40 mg/kg GNBatch ID: GJ 7(3FF Date: A-3(-20(2)

Method: SW846 3060A/7196A

| Digestion Batch QC            | Summary     | Un                 | Inits = mg/kg                                                 |
|-------------------------------|-------------|--------------------|---------------------------------------------------------------|
| Method Blank ID: <u>ዓኮ6</u> ይ | 104-111 D   | ate: <u>}3 - 2</u> | 2 Result: < RDL: D.40 < RDL: YH                               |
| Sol. Spike Blank ID:          | 81          | _ Date:            | Result: 39.77 Spike: 40.00 %Rec.: 99.42                       |
| Insol, Spike Blank ID:        |             |                    | Result: 967.28 Spike: 055.47%Rec.: 91.27                      |
| Duplicate ID:                 | <u> </u>    | np. Result:0.0     | 4P5 Dup. Result: 0.639 %RPD: 42-61                            |
| Sol. MS ID:                   | ال Samp.    | Result:            | Spike: <u>39, 63</u> Spike: <u>39, 64</u> %Rec: <u>95, 45</u> |
| ,                             |             |                    | MS Lesult: 957.>> Spike: 9-3. 1 % Rec: 105. 60                |
|                               |             | 1                  | PS Result: 39.25 Spike: 40.42 %Rec: 94.7(                     |
| , ,                           |             | •                  | It: Dil. Result: %RPD:                                        |
| •                             |             |                    | MS Result: Spike: %Rec:                                       |
| p                             |             |                    |                                                               |
| Analysis Batch QC Sur         | nmary       | Units = :ng        | g/l                                                           |
| <b>.</b>                      | •           | 1                  | 01.2.                                                         |
| <del></del> -                 |             |                    | 00 %Rec.: 9637                                                |
| CCV:                          |             |                    | 00%Rest:                                                      |
|                               |             | 1                  | 0055εεε <u>- 44-4F</u>                                        |
|                               |             |                    | 00%Rec:                                                       |
| CCV:                          | Result:     |                    | 00%Rept.:                                                     |
| CCV :                         |             |                    | 00%Rec.:                                                      |
| CCV :                         | Result:     | TV: _0.50          | 00%Red:                                                       |
| CCV :                         |             |                    | 00%Rec.:                                                      |
| ccv :                         | Result:     | TV: _0.50          | 00%Rec.:                                                      |
| CCB: \$-31-201                | ∟ Result: ≺ | RDL:_C)1           | 010 <rul: <b="">\\  \</rul:>                                  |
| CCB:                          | Result:     | RDL:_01            | 010 <rd::< th=""></rd::<>                                     |
| CCB:                          | Result:     |                    | 010 <riz::< th=""></riz::<>                                   |
| CCB:                          | Result:     |                    | 010 <rdl:< th=""></rdl:<>                                     |
| CCB:                          | Result:     | RD <b>L:</b> _0.01 | 010 <rdi :<="" th=""></rdi>                                   |
| CCB:                          | Result:     |                    | 110 <rdi:< th=""></rdi:<>                                     |
| CCB:                          |             |                    | 010 <rdl:< th=""></rdl:<>                                     |
| CCB:                          | Result:     | RDL:_0.01          | 010 <rdl:< th=""></rdl:<>                                     |
| ССВ:                          | Result:     | RDL:_0 01          | )10 <rd!:< th=""></rd!:<>                                     |
|                               |             |                    |                                                               |

| Reagent Reference Information - refer to att           | thed reage it reference information page(s). |
|--------------------------------------------------------|----------------------------------------------|
|                                                        | = 320.2 g/n.ol                               |
| {1000000 ug/g x Insoluble spike wt(g) $\times$ 52/323. | /ms na riple vd(g) = Insoluble spike amount  |

| Analyst:_ | 72 | Date: <u> </u> |  |
|-----------|----|----------------|--|
|           | ,  | •              |  |

Comments:

Form: GN066-01

Ray Data: 4/25/11



## Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

|                     |           |            |               |                  |                                         | pH Meter ID:  |                    | 1148                 |
|---------------------|-----------|------------|---------------|------------------|-----------------------------------------|---------------|--------------------|----------------------|
|                     |           | 1 0        | <b>.</b>      | ,                | 3                                       | Digestion Dat | e: <i>8/3//</i> 1: | <u> </u>             |
| adj. start time:    |           | 12209      | 2247          | 1222             | 13-03                                   | pH adj. Date: | <u> </u>           | 31-20/2              |
| adj. end time:      |           | 12-15      | 12-54         | Jast             | (32°F                                   | GN Batch ID:  | 9/413              | 188                  |
|                     | Sample    |            | Final         |                  | bkg pH                                  |               |                    |                      |
|                     | Weight in |            | Volume        | pH after         | after                                   | Spike         | Spike              | Digestate            |
| nple ID             | g         | HNO3       | (ml)          | H2SO4            | H2SO4                                   | Amounts       | Solution           | Description/Comments |
|                     |           | 7.54       | 00            | سللحر            |                                         | 5.0 ML        | يمال موم ن         |                      |
|                     |           | 7.72       |               | 1,99             | ĺ                                       |               |                    |                      |
|                     |           |            |               | ( ) ( )          |                                         | 4             | 4                  |                      |
|                     |           |            |               |                  |                                         |               |                    |                      |
|                     |           | 7.76       | (00           | 1.95             |                                         |               | ·                  |                      |
|                     |           | 7-9-       |               | <b>3</b> ′, 02   | _                                       |               |                    |                      |
|                     |           |            |               |                  |                                         |               |                    |                      |
|                     |           |            |               |                  |                                         |               |                    |                      |
| SOI) 7814404-3      | 2.51      | 732        | (00           | 2,04             | 71 62                                   | 1.0 LL        | 100 pont           | <b>L</b> s           |
| Insol.)             | 200       | 724        |               | 2,06             | OUR                                     | 0.0141        | PLEA               |                      |
| Ţ                   | 7.51      | 461        |               | عدال             | 1.47                                    |               |                    |                      |
| Sol)                | 2.50      | 7,78       |               | 2.0(             | 1,99                                    | 1.0 mc        | (00 pp- A)         | l-S                  |
| nsol)               | 2.50      | 4,54       |               | ンル               | ove                                     | 0.016         | PLCQ               |                      |
|                     | 2.50      | 4.76       |               | 1.95             | 1.90                                    |               |                    |                      |
| 314404-3            | २.५२      | 7.5%       |               | 2.03             | 1.92                                    |               |                    | den                  |
| 1 -4                | 2.48      | 4,36       |               | 1,99             | L.Fr.                                   | "             |                    | r (ear               |
| -5                  | 2.54      | 4.50       |               | 2/14             | 1.94                                    |               |                    | anter                |
| -6                  | 2.55      | 7.23       |               | 20-95            | 1.88                                    |               |                    | clear                |
| -7                  | 2.56      | 4.61       |               | 1.99             | 1000                                    |               |                    | clear                |
| - 9                 | 2.56      | 788        |               | 2.10             | 1.99                                    |               |                    | clear                |
| -10                 | 2.52      | 7.85       |               | 2,03             | 1.92                                    | ·             |                    | deen                 |
| -4                  | 2.43      | 7.60       |               | 1.95             | 1.97                                    |               |                    | Viella               |
| - 13                | 5.53      | 7.49       |               | 1.99             | 1.87                                    |               |                    | ILLIE                |
| -12                 | 756       | 7.49       |               | 24               | 1.97                                    |               |                    | ante                 |
| - (4                | 2.57      | 7.39       |               | 200              | 1.95                                    |               |                    | Sleck-Reca           |
| - 15                | 2.47      | 4.61       |               | 199              | 2003                                    |               |                    | anka                 |
| *                   | ,         | 1          |               |                  |                                         |               |                    |                      |
|                     |           |            |               |                  |                                         |               |                    |                      |
|                     |           |            |               |                  |                                         |               |                    |                      |
|                     |           |            |               | . *              | •                                       |               |                    |                      |
|                     |           |            | *             | *                |                                         |               |                    |                      |
| :                   |           |            |               |                  |                                         |               |                    |                      |
|                     |           | İ          |               |                  | *************************************** |               |                    |                      |
|                     |           |            |               |                  |                                         |               |                    |                      |
| isol)               | 2.50      | 7.54       | (00           | 1.53             | 1.9 3                                   |               |                    | dilution / 250       |
| nsol.)              | 2.51      | 7.24       | 1             | 2.14             | (1)                                     |               |                    | dilution / = 5       |
|                     | 2.42      | 7.55       | $\mathcal{J}$ | 2.15             | 1.94                                    | 0,2211        | Lospin A           | south 1== 1500.      |
| justed PS           |           |            |               |                  | <b>*</b>                                |               | 44                 |                      |
|                     |           |            |               |                  |                                         |               |                    |                      |
| 314404-3            | 7-4       |            |               |                  |                                         |               |                    |                      |
| gent Reference Inf  |           | - refer to | attached i    | reagent re       | ference in                              | formation pag | ge(s).             |                      |
| 0000 ug/g x Insolub |           |            |               |                  |                                         |               |                    | 4                    |
| //                  |           | ,,, ,      |               | 1                |                                         | <u> </u>      |                    |                      |
| analyst check:      | m Kd      | 8/21/1     | V '           | Anayst:          | $\sqrt{\mathcal{D}}$                    | `KV           |                    |                      |
| ( 7                 | 1/2       | 1.1        | · ·           | Anayst:<br>Date: | 8/3/12                                  | 8-            | 3(->~\v            |                      |
| \ \ /               | //        | •          |               |                  | t t                                     |               |                    |                      |





GN/GP Batch ID: 6P6600

62 713AA

# Reagent Information Log - XCRA (soil 3060A/7196)

| Exp. Date    | Reagent # or Manufacturer/Lot                                                                                                                                                                                                              |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| omium,       | At 1 to Occide Let # 044242                                                                                                                                                                                                                |
|              | Absolute Grade Lot # 041212                                                                                                                                                                                                                |
| omium,       | Ultra lot # L00439                                                                                                                                                                                                                         |
| 5/31/2017    | Old a lot # Edd ad                                                                                                                                                                                                                         |
| 4/12/2015    | Absolute Grade Lot # 041212                                                                                                                                                                                                                |
| nt 7/26/2017 | Sigma Aldrich Lot # BCBG0578V                                                                                                                                                                                                              |
| 7/11/2016    | Alfa Aesar Lot # B17X012                                                                                                                                                                                                                   |
| NM           | NX                                                                                                                                                                                                                                         |
| 2/30/12      | GME8-33421 - XCR/XCRA                                                                                                                                                                                                                      |
| 2/14/13      | 6NE8-33773-XCZA                                                                                                                                                                                                                            |
| 7-7-13       | GNEP-334254C3                                                                                                                                                                                                                              |
| 9-22/2       | 6,12-8-33349 XCR                                                                                                                                                                                                                           |
| 2-21-13      | GNEP-33349 XCR                                                                                                                                                                                                                             |
|              | FREA14811                                                                                                                                                                                                                                  |
| NA NA        | 919120                                                                                                                                                                                                                                     |
|              | omium, $\frac{4/12/2015}{5/31/2017}$ $\frac{4/12/2015}{11}$ $\frac{4/12/2015}{7/26/2017}$ $\frac{7/11/2016}{7/3.5/12}$ $\frac{3/11/2016}{3/3.5/12}$ $\frac{3/11/2016}{3/3.5/12}$ $\frac{3/11/2016}{3/3.5/12}$ $\frac{3/11/2016}{3/3.5/12}$ |

Form: GN087A-21B Rev. Date: 2/18/10



626690y

HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 381/341/184/175

Thermometer Correction factor:

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

|               |               |       | Temp. In deg. C                     | Temp. in deg. C                    | Temp, in deg. C                                                                                     | Temp. in deg. C                       |
|---------------|---------------|-------|-------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------|
| Digestion     |               |       | Hot Plate # (<br>Uncorrected/Correc | Hot Plate # 2 - Uncorrected/Correc | Hot Plate # Hot Plate # Hot Plate # Hot Plate # Hot Plate # Uncorrected/Correc   Uncorrected/Correc | Hot Plate # 4 -<br>Uncorrected/Correc |
| Batch ID      | Description   | Time  | ted                                 | ted                                | ted                                                                                                 | pej                                   |
| 6266103       | Starting Time | 50:81 | 02/63                               | 62/60                              | र४८४                                                                                                | 20/40                                 |
| 6P66405       | Time 1        | 52:3) | 63/40                               | 00/05                              | 40/43                                                                                               | 39/60                                 |
|               | Ending Time   | (4:95 | hopo                                | 142/60                             | 40/02                                                                                               | 40/40                                 |
|               |               |       | •                                   |                                    |                                                                                                     |                                       |
|               | Starting Time | 01:51 | agro                                | 9/20                               | <i>63/63</i>                                                                                        | 29/50                                 |
|               | Time 1        | 02(3) | 49/50                               | 43/40                              | 40/42                                                                                               | 20/20                                 |
|               | Ending Time   | 30:00 | 40/40                               | 4)/40                              | 50/03                                                                                               | colaco                                |
|               |               |       |                                     | •                                  |                                                                                                     |                                       |
|               | Starting Time | 30:15 | 43/40                               | 9760                               | 40/42                                                                                               | 40/20                                 |
|               | Time 1        | 30:45 | 40/40                               | 43/40                              | 40/42                                                                                               | 40/40                                 |
| $\rightarrow$ | Ending Time   | 21:15 | 40/40                               | 43/40                              | 40/62                                                                                               | 49/40                                 |

Analyst: 2nd Analyst Check:

Rev. Date: 8/08/12 Form: GN074-02

# Hexavalent Chromium pH Adjustment Log

'Method: SW846 3060A/7196A

| рΗ  | adj. | start time: |
|-----|------|-------------|
| pH: | adj. | end time:   |

pH adjustment Date: チョノール GN Batch ID: <del>GW77365</del> G

|                     |                  |      | · .      |          |            |                                       |                    |
|---------------------|------------------|------|----------|----------|------------|---------------------------------------|--------------------|
| ***                 | Sample           |      | Final    |          |            |                                       |                    |
|                     | Weight in        |      | Volume   | pH after |            |                                       | 1                  |
| Sample ID           | g                | HNO3 | (ml)     | H2SO4    | Comments   |                                       | Spike Info.        |
| Calibration Blank   | NA               | 4.57 | 100      | 2.11     | 0          |                                       |                    |
| 0.010 mg/l standard | NA               | 7.72 |          | 2,04     | 10 pph     | Alsolut-                              | 0.10 ml of 10 mg/l |
| 0.050 mg/l standard | NA               | 7.36 |          | 2,05     | ,          |                                       | 0.50 ml of 10 mg/l |
| 0.100 mg/l standard | NA               | 7.92 |          | 1.99     |            |                                       | 1.00 ml of 10 mg/l |
| 0.300 mg/l standard | NA               | 4.46 |          | 2,03     |            |                                       | 3.00 ml of 10 mg/l |
| 0.500 mg/l standard | NA               | 7.96 |          | 210      |            |                                       | 5.00 ml of 10 mg/l |
| 0.800 mg/l standard | NA               | 7.34 |          | 2.04     |            |                                       | 8.00 ml of 10 mg/l |
| 1.00 mg/l standard  | NA               | 7.34 | <b>V</b> | 1,90     | lacksquare | · .                                   | 10.0 ml of 10 mg/l |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       | ·                  |
|                     |                  |      |          |          |            |                                       | -                  |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          | , ,        |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          | -          |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
| ***                 |                  |      |          |          |            |                                       | . 114.0            |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            | · · · · · · · · · · · · · · · · · · · |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       |                    |
|                     |                  |      |          |          |            |                                       | -                  |
|                     |                  |      |          |          |            |                                       |                    |
|                     | <u>لـــــــل</u> | i    |          |          |            |                                       |                    |

Reagent Reference Information - refer to attached reagent reference information page(s).

{1000000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

Form: GN068-01 Rev. Date: 5/22/06





# HEXAVALENT CHROMIUM STANDARD PREPARATION LOG

. Gr 7 (3 AB GN or GP Number: - GALTIZAGE

|             |              |              | Date                           | 21-12-0                     |          |          |          | 7                |              |              |                               | Date             | 2-11-12      |           |           |           |           |           | 7            |  |  |  |
|-------------|--------------|--------------|--------------------------------|-----------------------------|----------|----------|----------|------------------|--------------|--------------|-------------------------------|------------------|--------------|-----------|-----------|-----------|-----------|-----------|--------------|--|--|--|
|             |              |              | Analyst                        | ž                           | -        |          |          |                  |              |              |                               | Analyst          | 47           |           |           |           |           |           |              |  |  |  |
|             |              | Expiration   | Date                           | 4/12/2015                   |          |          |          | 5/31/2017        |              |              | Expiration                    | Date             | 9-1-12       | _         |           |           |           |           | >            |  |  |  |
| Final Conc. | oţ           | Intermediate | (l/gm)                         | 10 mg/l                     | 100 mg/l | 5 mg/l   | 7.5 mg/l | 10 mg/l          |              | Final Conc.  | Of Standard                   | (mg/l)           | 0.01 mg/l    | 0.05 mg/l | 0.10 mg/l | 0.30 mg/l | 0.50 mg/l | 0.80 mg/l | 1.0 mg/l     |  |  |  |
|             |              | Final        | Volume                         | 100 mls                     | 100 mls  | 200 mg/l | 200 mg/l | 100 mg/l         |              |              | Final                         | Volume           | 100 mls      |           |           |           |           |           | -            |  |  |  |
|             |              |              | Diluent                        | DI                          | DI       | IO       | I        | IO               |              |              |                               | Diluent          | ΙG           | DI        | DI        | DI        | DI        | ο         | Ю            |  |  |  |
|             | Stock        | volume       | used in ml                     | 1.0 ml                      | 10 ml    | 1.0 ml   | 1.5 ml   | 1.0 ml           | Intermediate | or Stock     | volume                        | used in ml       | 0.1 ppm      | 0.5 ppm   | 1.0 ppm   | 3.0 ppm   | 5.0 ppm   | 8.0 ppm   | 10.0 ppm     |  |  |  |
|             |              | Stock        | concentration                  | 1000 ppm                    | 1000 ppm | 1000 ppm | 1000 ppm | 1000 ppm         |              | Intermediate | or Stock                      | concentration    | 10.0 ppm     |           |           |           |           |           | <del>)</del> |  |  |  |
|             |              |              | Stock used to prepare standard | Absolute Grade Lot # 041215 |          |          |          | Ultra lot L00439 |              |              | Intermediate or Stock used to | prepare standard | 10.0 ppm abs |           |           |           | •         |           |              |  |  |  |
|             | Intermediate | Standard     | Description                    | 10 ppm                      | 100 ppm  | 5 ppm    | 7.5 ppm  | 10 ppm           |              |              | Standard                      | Description      | .010 ppm     | .050 ppm  | .10 ppm   | .30 ppm   | .50 ppm   | .80 ppm   | 1.00 ppm     |  |  |  |

Form: GN205-02 Rev. Date:10/16/09





Test pH/ Corrosivity Method: SW846 9040B or SW846 9045C

Product: (PH, C)ORR Analyst: GN Batch ID: <del>`SA</del>NJAYA GN71397

Thermometer ID: 6539
Correction Factor: 0

Analysis Date: 8/31/2012 pH Meter ID: 50

QC Summary

Duplicate ID: GN71397-D1 Dup Result: 8.79

Sample ID: JB14404-3 % RPD: 0.45%

| Sample ID        | for soilds | Corrected Temp in<br>Deg C.                      | Result | Corrosivity | Read time |
|------------------|------------|--------------------------------------------------|--------|-------------|-----------|
| Buffer Check: 4  | 1          | 25                                               | 3.95   | T           | 12:59     |
| Buffer Check: 7  |            | 25                                               | 6.96   |             |           |
| Buffer Check: 10 |            | 25                                               | 9.96   |             |           |
| GN71397-D1       |            | 25                                               | 8.79   |             |           |
| JB14404-10       |            | 25                                               | 8.27   |             |           |
| JB14404-11       |            | 25                                               | 7.78   |             |           |
| JB14404-12       |            | 25                                               | 7.63   |             |           |
| JB14404-13       |            | 25                                               | 8.09   |             |           |
| JB14404-14       |            | 25                                               | 7.89   |             |           |
| JB14404-15       |            | 25                                               | 8.20   |             |           |
| JB14404-3        |            | 25                                               | 8.83   |             |           |
| JB14404-4        |            | 25                                               | 8.91   |             |           |
| JB14404-5        | '          | 25                                               | 8.54   |             |           |
| Buffer Check: 4  |            | 25                                               | 3.98   |             |           |
| Buffer Check: 10 |            | 25                                               | 9.98   |             |           |
| JB14404-6        |            | 25                                               | 8.82   |             |           |
| JB14404-7        |            | 25                                               | 8.26   |             |           |
| JB14404-9        |            | 25                                               | 8.39   |             |           |
| JB14445-12       |            | 25                                               | 7.85   |             |           |
| JB14445-2        |            | 25                                               | 6.11   |             |           |
| JB14445-37       |            | 25                                               | 8.88   |             |           |
| JB14445-4        |            | 25                                               | 7.32   |             |           |
| JB14445-5        |            | 25                                               | 7.47   |             |           |
| JB14446-3        |            | 25                                               | 5.51   |             |           |
|                  |            | † · · · · · · · · · · · · · · · · · · ·          |        |             |           |
| Buffer Check: 7  |            | 25                                               | 7.01   |             | · · · ·   |
| Buffer Check: 10 |            | 25                                               | 10.03  |             | 14:08     |
|                  |            |                                                  |        | ·           |           |
|                  |            |                                                  |        |             |           |
|                  |            |                                                  |        |             |           |
| •                |            | <u> </u>                                         |        |             |           |
|                  |            |                                                  |        |             |           |
|                  |            |                                                  |        |             |           |
|                  |            | T                                                |        |             |           |
|                  |            | _                                                |        |             |           |
|                  |            |                                                  |        | 1           | 1         |
|                  |            | 1                                                |        |             |           |
| Buffer Check:    |            | <del>                                     </del> |        |             | 1         |
| Buffer Check:    |            |                                                  |        | 1           |           |

Comments:

Validated By: \_\_\_\_\_

Nancy Cole Document Control #: AGN-PH CORR-AQ-01 /alidated Date: 8/7/2012



| 10d E | HPH |  |
|-------|-----|--|

Method F-H/VH

Prep Date 8/3/12

GP# (-N 7/397-PH)

Balance # 38

QC Reports:

Sample Prep Log

|             | Sample Prep L           |                  |
|-------------|-------------------------|------------------|
| Sample ID   | Sample Size             | Final Volume     |
| 3014404-3   | 50.48                   | added son L DAMe |
| -3hp        | 50.70                   |                  |
|             | 50.86                   |                  |
| -5          | 50.0                    |                  |
| -6          | 5022                    |                  |
| _7          | 50.9%                   |                  |
| -9          | 5082                    |                  |
| -10         | 50.02                   |                  |
| -1          | SO.7                    |                  |
| Sp 14404-12 | Son                     |                  |
| -i3         | 50.35                   |                  |
| -14         | 508                     |                  |
| -18         | Sos                     | $\sqrt{}$        |
| 35B14445-2  | 303                     | added 30mb DHRO  |
| -4          | SO.7x                   | added SONLDAK    |
| -5          | 50.7%                   |                  |
| -12         | 5082                    |                  |
| -37         | \$7.55                  |                  |
| 3B14446-3   | 30.85                   | added 30m LPTIRO |
|             |                         |                  |
|             | epidentha Anna SEA Anna |                  |
|             |                         |                  |
|             |                         |                  |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_



| d |   | Г |  |
|---|---|---|--|
|   | ١ | 3 |  |
|   |   |   |  |

### Reagent

| pH 2 Buffer Solution   | FICHER LOT#115910 EXP 11/30/13   |
|------------------------|----------------------------------|
| pH 4 Buffer Solution   | BDH LOT#2110255 EXP 9/30/13      |
| pH 7 Buffer Solution   | RICCA LOT#2111388 EXP 10/30/13   |
| pH 10 Buffer Solution  | FISCHER LOT#105427 EXP 09/30/12  |
| pH 13 Buffer Solution  | AQUA SOL. LOT#1080516 EXP 08/30/ |
| PIT TO BUILD CONDITION | <u> </u>                         |
|                        |                                  |

Form: GN087-01 Rev. Date:8/30/2012





Test: Redox Potential
Matrix: Aqueous ○
Matrix: Solid ●

Test Code: REDOX
Method: ASTM D1498-76
Method: ASTM D1498-76 Mod.

 Analyst:
 SANJAYA

 Date:
 08/31/12

 GN Batch ID:
 GN71398

 Temp (Deg C):
 25

**Quality Control Summary** Sample ID: GN71398-D1 % RPD: 3.65% 191 198.1 Results: Dup: Ferrous-Ferric True: 675 623.9 % Rec 92.43% Found % Rec 102.10% pH 4 Quinhydrone True: 462 471.7 Found pH 4 Quinhydrone True: 462 441.6 95.58% Found % Rec 94.70% pH 4 Quinhydrone True: 462 Found 437.5 % Rec % Rec 99.05% pH 7 Quinhydrone True: 285 282.3 Found pH 7 Quinhydrone True: 285 Found 259.5 % Rec 91.05% pH 7 Quinhydrone True: 285 Found 264.9 % Rec 92.95%

| Sample #:      |            | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv vs. Hydrogen electrode) *** |
|----------------|------------|-----------------------------|---------------------------------------------------|
| Ferrous-Ferric | Solution   | 448.6                       | 623.9                                             |
| pH 4 Quinhydr  | one        | 296                         | 471.7                                             |
| pH 7 Quinhydr  | one        | 106.8                       | 282.3                                             |
| Dup            | GN71398-D1 | 22.6                        | 198.1                                             |
| 1.             | JB14404-10 | -159.8                      | 15.7                                              |
| 2.             | JB14404-11 | -137.8                      | 37.7                                              |
| 3.             | JB14404-12 | -28.9                       | 146.4                                             |
| 4.             | JB14404-13 | <del>-</del> 87.7           | 87.9                                              |
| 5. <u> </u>    | JB14404-14 | -183.1                      | -7.5                                              |
| 6.             | JB14404-15 | <del>-11.1</del>            | 164.4                                             |
| 7.             | JB14404-3  | 15.6                        | 191                                               |
| 8.             | JB14404-4  | 14.9                        | 190.2                                             |
| 9.             | JB14404-5  | -130.1                      | 45.4                                              |
| pH 4 Quinhydr  | one        | 266.2                       | 441.6                                             |
| pH 7 Quinhydr  | one        | 84.1                        | 259.5                                             |
| 10.            | JB14404-6  | -24.9                       | 150.5                                             |
| 11.            | JB14404-7  | <del>-31.1</del>            | 144.3                                             |
| 12. <u> </u>   | JB14404-9  | 34.4                        | 209.6                                             |
| 13.            |            |                             |                                                   |
| 14.            |            |                             |                                                   |
| 15.            |            |                             |                                                   |
| 10             |            |                             |                                                   |
| 17             |            |                             |                                                   |
| 18.            |            |                             |                                                   |
| 19.            |            |                             |                                                   |
| pH 4 Quinhydr  | one        | 262.2                       | 437.5                                             |
| pH 7 Quinhydr  |            | 89.5                        | 264.9                                             |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers: Redox Standard: GNE-31456-ORP Exp:9/15/12 |                |             |       |
|------------------------------------------------------------|----------------|-------------|-------|
| Comments:                                                  |                |             |       |
| Analyst: S.A                                               | Date: 08/31/12 | OC Reviewer | Date: |

F/N GN141.DOC

Rev. Date: 3/27/2007





Balance # 38

| Analyst S         |
|-------------------|
| Method EHPH       |
| Prep Date 8/3/1/2 |
| GP# GN 7/397-PH   |
| GW 71398-et       |

Sample Prep Log

|                 | Sample Flep Lo | 9               |
|-----------------|----------------|-----------------|
| Sample ID       | Sample Size    | Final Volume    |
| 31314404-3      | 50.4v *        | added Soul DAMe |
| -3hp            | 50.76          |                 |
| -L <sub>1</sub> | 50.80          |                 |
| -5              | 500            |                 |
| -6              | 5029-          |                 |
| <b>-7</b>       | 309            |                 |
| -9              | 5082           |                 |
| -10             | SON            |                 |
| -11             | \$0.7          |                 |
| 5614404-12      | 5028           |                 |
| -13             | 50.35          |                 |
| 14              | 508            |                 |
| -(5             | 508            | V               |
| BB14445-2       | 303            | ended 30ahpHro  |
| -4              | SO.76          | added Soul DHRU |
| 7 -5            | 50.7%          |                 |
| -12-            | 5082           |                 |
| -37             | \$0.55         |                 |
| 313 14446-3     | 30.82          | added 30m MARO  |
|                 | 0              |                 |
|                 |                |                 |
|                 |                |                 |
|                 |                |                 |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_\_





| Test: Redox Potential | Test Code: REDOX           | Analyst:      | SANJAYA  |  |
|-----------------------|----------------------------|---------------|----------|--|
| Matrix: Aqueous       | Method: ASTM D1498-76      | Date:         | 09/01/12 |  |
| Matrix: Solid         | Method: ASTM D1498-76 Mod. | GN Batch ID:  | GN71442  |  |
|                       |                            | Temp (Deg C): | 25       |  |

| Quality Control | Summary       |          |       |       |       |        |        |
|-----------------|---------------|----------|-------|-------|-------|--------|--------|
| Sample ID:      | GN71442-D1    | Results: | 313.2 | Dup:  | 304.8 | % RPD: | 2.72%  |
| Ferrous-Ferric  | True: 675     | _        |       | Found | 653   | % Rec  | 96.74% |
| pH 4 Quinhydro  | one True: 462 |          |       | Found | 453   | % Rec  | 98.05% |
| pH 4 Quinhydro  | one True: 462 |          |       | Found | 448   | % Rec  | 96.97% |
| pH 4 Quinhydro  | one True: 462 |          |       | Found |       | % Rec  |        |
| pH 7 Quinhydro  | one True: 285 |          |       | Found | 263.7 | % Rec  | 92.53% |
| pH 7 Quinhydro  | one True: 285 |          |       | Found | 273.7 | % Rec  | 96.04% |
| pH 7 Quinhydro  | one True: 285 |          |       | Found |       | % Rec  |        |

| Sample #:                | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv<br>vs. Hydrogen electrode) |
|--------------------------|-----------------------------|--------------------------------------------------|
| Ferrous-Ferric Solution  | 477.6                       | 653                                              |
| pH 4 Quinhydrone         | 277.6                       | 453                                              |
| pH 7 Quinhydrone         | 88.2                        | 263.7                                            |
| Dup GN71442-D1           | 129.5                       | 304.8                                            |
| 1. JB14375-1             | 107.1                       | 282.6                                            |
| 2. JB14404-2             | 137.8                       | 313.2                                            |
| 3.                       |                             |                                                  |
| 4.                       |                             |                                                  |
| 5.                       |                             |                                                  |
| 6.                       |                             |                                                  |
| 7.                       |                             |                                                  |
| 8.                       |                             |                                                  |
| 9.                       |                             |                                                  |
| pH 4 Quinhydrone         | 272.6                       | 448                                              |
| pH 7 Quinh <u>ydrone</u> | 98.2                        | 273.7                                            |
| 10.                      |                             | <u> </u>                                         |
| 11.                      |                             |                                                  |
| 12.                      |                             |                                                  |
| 13.                      |                             |                                                  |
| 1 <del>4</del>           |                             |                                                  |
| 15                       |                             |                                                  |
| 16                       |                             |                                                  |
| 17. <u> </u>             |                             |                                                  |
| 18                       |                             |                                                  |
| 19.                      |                             | ·····                                            |
| pH 4 Quinhydrone         |                             |                                                  |
| pH 7 Quinhydrone         |                             |                                                  |

\*\*\* Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers: | Redox Standard: GNE-314 | 456-ORP Exp:9/15/12 | . 7 |       |
|------------------|-------------------------|---------------------|-----|-------|
| Comments:        |                         |                     | 111 |       |
| Analyst: S.A.    | Date: <u>09/01/12</u>   | QC Reviewer:        |     | Date: |

F/N GN141.DOC Rev. Date: 3/27/2007





|            | 20           |  |
|------------|--------------|--|
| Balance #_ | <i>'58</i> 5 |  |

| Analyst | S.A         |
|---------|-------------|
| Method  | EH          |
| Prep Da | ite 9/11/12 |
| GP#     | GN 71442_eH |

Sample Prep Log

| Sample ID  | Sample Size                                | Final Volume                                                                                                   |
|------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| JB 14404-2 | 60nL                                       |                                                                                                                |
| -2AD       | 60×L                                       |                                                                                                                |
| -5B14375-1 | 60n2                                       |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            | -                                                                                                              |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            | - Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-Al-A |                                                                                                                |
|            |                                            |                                                                                                                |
| <u> </u>   |                                            |                                                                                                                |
|            |                                            |                                                                                                                |
|            |                                            | VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VALUE VA |
|            |                                            | <u> </u>                                                                                                       |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_\_





|                   | Hd   | eH (MV) |
|-------------------|------|---------|
| Phase Change Line | 0    | 1027.7  |
|                   | 14   | -105.6  |
|                   |      |         |
| Sample Number     | Hd   | eH (mv) |
| JB14404-11        | 7.78 | 37.7    |
| JB14404-12        | 7.63 | 146     |
| JB14404-13        | 8.09 | 87.9    |
| JB14404-14        | 7.89 | -7.5    |
| JB14404-15        | 8.2  | 164     |
| JB14404-2         | 6.05 | 313     |
| JB14404-3         | 8.83 | 191     |
| JB14404-4         | 8.91 | 190     |
| JB14404-5         | 8.54 | 45.4    |

--- JB14404-12

-+-- JB14404-11

Eh pH Phase Diagram
Phase Diagram based on the HCrO<sub>4</sub>/Cr(OH)<sub>3</sub> ratio
Below phase change line indicates reducing environment.
Above phase change line indicates oxidizing environment

JB14404-13

→ JB14404-15

→ JB14404-2

<del>---</del> JB14404-3

→ JB14404-5

--- JB14404-4

→ JB14404-6

-\*- JB14404-14

|        |     |               |            |            |            |            | /          |           |           |           |           | <i>\</i>  |          |      |  |  | +  | *           |     |     |   |
|--------|-----|---------------|------------|------------|------------|------------|------------|-----------|-----------|-----------|-----------|-----------|----------|------|--|--|----|-------------|-----|-----|---|
| 700    | ) L | 069           | 900        |            |            |            |            |           |           | toə       | jə e      | oue       | h (stere | ר רפ |  |  | 20 | <b>&gt;</b> | -20 | 100 | 2 |
| -105.6 | Ī   | eH (mv)       | 37.7       | 146        | 87.9       | -7.5       | 164        | 313       | 191       | 190       | 45.4      | 151       |          |      |  |  |    |             |     |     |   |
| 14     |     | рН            | 7.78       | 7.63       | 8.09       | 7.89       | 8.2        | 6.05      | 8.83      | 8.91      | 8.54      | 8.82      |          |      |  |  |    |             |     |     |   |
|        |     | Sample Number | JB14404-11 | JB14404-12 | JB14404-13 | JB14404-14 | JB14404-15 | JB14404-2 | JB14404-3 | JB14404-4 | JB14404-5 | JB14404-6 |          |      |  |  |    |             |     |     |   |

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

■Phase Change

Line

4

13

12

7

9

0

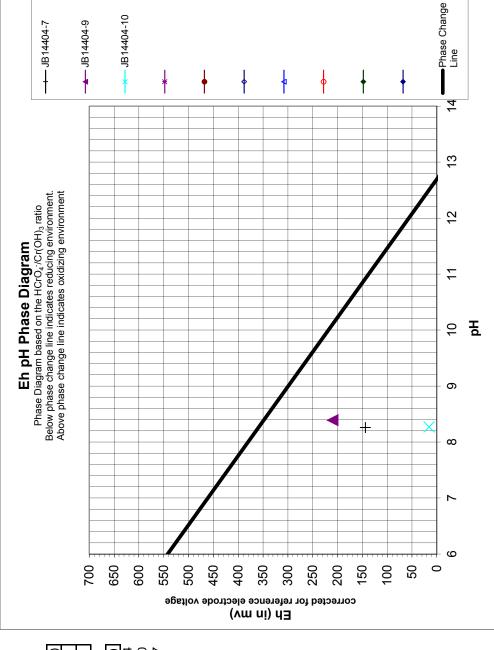
ω

/

9

2

4


က

H

Reference for graph: SW846 method 3060A



|                   | hd   | eH (MV) |
|-------------------|------|---------|
| Phase Change Line | 0    | 1027.7  |
|                   | 14   | -105.6  |
|                   |      |         |
| Sample Number     | Hd   | eH (mv) |
| JB14404-7         | 8.26 | 144     |
| JB14404-9         | 8.39 | 210     |
| JB14404-10        | 8.27 | 15.7    |



Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A





Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A

AECOM

978-905-2100 tel 978-905-2101 fax

# **Data Validation Report**

| Project:                    | PPG – Garfield Ave Supplemental Remedial Investigation (GARIS)<br>Northern Canal Borings |  |  |  |  |
|-----------------------------|------------------------------------------------------------------------------------------|--|--|--|--|
| Laboratory:                 | Accutest, Dayton, NJ                                                                     |  |  |  |  |
| Laboratory Job No.:         | JB14656                                                                                  |  |  |  |  |
| Analysis/Method:            | Hexavalent Chromium SW846 3060A/7196A                                                    |  |  |  |  |
| Validation Level:           | Full (Hexavalent Chromium)                                                               |  |  |  |  |
| Site Location/Address:      | PPG Site 114 – Garfield Avenue, Jersey City, NJ                                          |  |  |  |  |
| AECOM Project Number:       | 60213772 – 5.A                                                                           |  |  |  |  |
| Prepared by: Justin Webste  | er/AECOM Completed on: September 5, 2012                                                 |  |  |  |  |
| Reviewed by: Lisa Krowitz/A | File Name: 2012-09-05 DV Report JB14656-F.docx                                           |  |  |  |  |

#### Introduction

The data were reviewed in accordance with the FSP-QAPP and the following NJDEP and/or Region 2 validation Standard Operating Procedure (SOP):

NJDEP Office of Data Quality SOP 5.A.10, Rev 3 (September 2009), SOP for Analytical Data Validation of Hexavalent Chromium - for USEPA SW-846 Method 3060A, USEPA SW-846 Method 7196A

The results of quality control data analyzed with site samples were used to assess the overall reliability of the data. The following qualifiers were used to identify data quality issues:

- U: Indicates the analyte was not detected in the sample above the sample reporting limit.
- J: Indicates the result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.
- UJ: Indicates the analyte was not detected above the reporting limit and the reporting limit was approximate.
- R: The sample result was rejected due to serious deficiencies; the presence or absence of the analyte could not be confirmed.

AECOM 2

#### **Sample Information**

The samples listed below were collected by AECOM on August 24, 2012 as part of the Garfield Ave Supplemental Remedial Investigation (GARIS) Northern Canal Boring Sampling at the PPG Site - 114 Jersey City, New Jersey.

| Field ID                                               | Laboratory ID | Matrix  | Fraction            |
|--------------------------------------------------------|---------------|---------|---------------------|
| NSB-E4-4.0-4.5                                         | JB14656-1     | Soil    | Hexavalent Chromium |
| NSB-E4-1.0-1.5                                         | JB14656-2     | Soil    | Hexavalent Chromium |
| NSB-E3-20.0-20.5                                       | JB14656-3     | Soil    | Hexavalent Chromium |
| NSB-E3-16.0-16.5                                       | JB14656-4     | Soil    | Hexavalent Chromium |
| NSB-E3-10.0-10.5                                       | JB14656-5     | Soil    | Hexavalent Chromium |
| NSB-E3-5.5-6.0                                         | JB14656-6     | Soil    | Hexavalent Chromium |
| NSB-E2-21.0-21.5                                       | JB14656-7     | Soil    | Hexavalent Chromium |
| NSB-E2-16.0-16.5                                       | JB14656-8     | Soil    | Hexavalent Chromium |
| NSB-E2-12.5-13.0                                       | JB14656-9     | Soil    | Hexavalent Chromium |
| NSB-E3-4.0-4.5                                         | JB14656-10    | Soil    | Hexavalent Chromium |
| NSB-E1-0.5-1.0                                         | JB14656-11    | Soil    | Hexavalent Chromium |
| NSB-E1-20.0-20.5                                       | JB14656-12    | Soil    | Hexavalent Chromium |
| NSB-E1-16.0-16.5                                       | JB14656-13    | Soil    | Hexavalent Chromium |
| NSB-E1-12.5-13.0                                       | JB14656-14    | Soil    | Hexavalent Chromium |
| NSB-E1-10.0-10.5                                       | JB14656-15    | Soil    | Hexavalent Chromium |
| NSB-E2-4.0-4.5                                         | JB14656-16    | Soil    | Hexavalent Chromium |
| NSB-E2-1.0-1.5X<br>(Field Duplicate of NSB-E1-1.0-1.5) | JB14656-17    | Soil    | Hexavalent Chromium |
| NSB-E2-1.0-1.5                                         | JB14656-18    | Soil    | Hexavalent Chromium |
| NSB-E1-4.0-4.5                                         | JB14656-19    | Soil    | Hexavalent Chromium |
| NSB-EB20120824 (Equipment Blank)                       | JB14656-20    | Aqueous | Hexavalent Chromium |
| NSB-E1-2.0-2.5                                         | JB14656-21    | Soil    | Hexavalent Chromium |

Note: Sample NSB-E3-0.5-1.0 was received at the laboratory with the incorrect depth of 0.5-1.5. The laboratory was contacted and COC was corrected. See Attachment C for the revised COC.

The samples were collected following the procedures detailed in the Remedial Investigation Work Plan – Soil for Non-Residential Chromate Chemical Production Waste Sites 114, 132, 133, 135, 137, 143, and 186, Jersey City, New Jersey and the Field Sampling Plan/Quality Assurance Project Plan for Non-Residential and Residential Chromium Sites Hudson County, New Jersey (December 2011).

#### **General Comments**

The data package was complete. Quality control (QC) issues identified during validation are discussed below. Refer to the Soil Target Analyte Summary Hit List for a listing of all detected results, qualified results, and associated qualifications, where applicable.

#### **Hexavalent Chromium**

#### Matrix Spike Results

Sample NSB-E1-20.0-20.5 (JB14656-12) was selected for the matrix spike (MS) analysis associated with the samples in this SDG and was used for supporting data quality recommendations. The soluble and insoluble MS recoveries (batch GP66863/GN71343) were 89.1% and 81.4%, respectively; both results met the quality control criteria of 75-125%. The post digestion spike (PDS) recovery was 84.2% and after pH adjustment 101%, which met the PDS criteria of 85-115%. No data qualification was required on the basis of spike recoveries.

AECOM 3

#### Field Duplicate Precision

Sample NSB-E2-1.0-1.5X was the field duplicate of sample NSB-E2-1.0-1.5. The absolute difference criteria of ±RL for sample results less than or equal to four times the reporting limit was exceeded. Due to poor laboratory precision, all soil hexavalent chromium samples in this SDG were qualified as estimated (J/UJ) with the potential for bias in an unknown direction.

#### Reporting Limits

Reported results less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL) are approximate values and have been qualified as estimated (J).

#### **Data Quality and Usability**

In general, these data appear to be valid and may be used for decision-making purposes. No data were rejected. Qualified results, if applicable, are discussed in attachments A and B below.

All soil samples from this SDG are usable as estimated values with potential bias in an unknown direction due to poor laboratory duplicate precision.

In addition, all results reported between the RL and the MDL are usable as estimated values.

#### **Attachments**

Attachment A Target Analyte Summary Hitlist(s)

Attachment B Data Validation Report Form

Attachment C Supplemental Data

Attachment A

Target Analyte Summary Hitlist(s)

AECOM Page 1 of 4

### Soil Target Analyte Summary Hit List (Hexavalent Chromium)

Site Name PPG –GARIS Northern Canal Borings at PPG Site 114, Jersey City, NJ

Sampling Date August 24, 2012

Lab Name/ID Accutest Laboratories, Dayton, NJ

**SDG No** JB14656

Sample Matrix Soil
Trip Blank ID NA

Field Blank ID NSB-EB20120824

| Field Sample ID  | Lab Sample<br>ID | Analyte               | Method<br>Blank<br>(mg/kg) | Laboratory<br>Sample<br>Result<br>(mg/kg) | Validation<br>Sample<br>Result<br>(mg/kg) | RL<br>(mg/kg) | Quality<br>Assurance<br>Decision | NJDEP<br>Validation<br>Footnote |
|------------------|------------------|-----------------------|----------------------------|-------------------------------------------|-------------------------------------------|---------------|----------------------------------|---------------------------------|
| NSB-E1-10.0-10.5 | JB14656-15       | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.44          | Qualify                          | 29                              |
| NSB-E1-12.5-13.0 | JB14656-14       | CHROMIUM (HEXAVALENT) | U                          | 0.17                                      | 0.17                                      | 0.47          | Qualify                          | 29, 31                          |
| NSB-E1-16.0-16.5 | JB14656-13       | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.46          | Qualify                          | 29                              |
| NSB-E1-2.0-2.5   | JB14656-21       | CHROMIUM (HEXAVALENT) | U                          | 1.3                                       | 1.3                                       | 0.47          | Qualify                          | 29                              |
| NSB-E1-20.0-20.5 | JB14656-12       | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.46          | Qualify                          | 29                              |
| NSB-E1-4.0-4.5   | JB14656-19       | CHROMIUM (HEXAVALENT) | U                          | 9.2                                       | 9.2                                       | 0.49          | Qualify                          | 29                              |
| NSB-E2-1.0-1.5   | JB14656-18       | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.47          | Qualify                          | 29                              |
| NSB-E2-1.0-1.5X  | JB14656-17       | CHROMIUM (HEXAVALENT) | U                          | 4.6                                       | 4.6                                       | 0.47          | Qualify                          | 29                              |
| NSB-E2-12.5-13.0 | JB14656-9        | CHROMIUM (HEXAVALENT) | U                          | 0.46                                      | 0.46                                      | 0.58          | Qualify                          | 29, 31                          |
| NSB-E2-16.0-16.5 | JB14656-8        | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.45          | Qualify                          | 29                              |
| NSB-E2-21.0-21.5 | JB14656-7        | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.45          | Qualify                          | 29                              |
| NSB-E2-4.0-4.5   | JB14656-16       | CHROMIUM (HEXAVALENT) | U                          | 4.8                                       | 4.8                                       | 0.61          | Qualify                          | 29                              |
| NSB-E3-0.5-1.0   | JB14656-11       | CHROMIUM (HEXAVALENT) | U                          | 1.2                                       | 1.2                                       | 0.46          | Qualify                          | 29                              |
| NSB-E3-10.0-10.5 | JB14656-5        | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.66          | Qualify                          | 29                              |
| NSB-E3-16.0-16.5 | JB14656-4        | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.47          | Qualify                          | 29                              |
| NSB-E3-20.0-20.5 | JB14656-3        | CHROMIUM (HEXAVALENT) | U                          | 2.6                                       | 2.6                                       | 0.45          | Qualify                          | 29                              |
| NSB-E3-4.0-4.5   | JB14656-10       | CHROMIUM (HEXAVALENT) | U                          | 0.92                                      | 0.92                                      | 0.46          | Qualify                          | 29                              |
| NSB-E3-5.5-6.0   | JB14656-6        | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.60          | Qualify                          | 29                              |
| NSB-E4-1.0-1.5   | JB14656-2        | CHROMIUM (HEXAVALENT) | U                          | 1.3                                       | 1.3                                       | 0.45          | Qualify                          | 29                              |
| NSB-E4-4.0-4.5   | JB14656-1        | CHROMIUM (HEXAVALENT) | U                          | 1.1                                       | 1.1                                       | 0.44          | Qualify                          | 29                              |

Note: A "U" under Method Blank column indicates a nondetect result.

A "U" under the Laboratory Sample Result and Validation Sample Result columns indicates a nondetect result at the RL.

#### NJDEP Laboratory Footnote

AECOM Page 2 of 4

The value reported is less than or equal to 3x the value in the preparation/reagent blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.

- 2. The value reported is greater than three (3) times but less than ten (10) times the value in the preparation/reagent blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to the preparation/reagent blank contamination. The "B" qualifier alerts the end-user to the presence of this analyte in the preparation/reagent blank.
- 3. The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the policy of NJDEP-DPFSR to negate the reported value as due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.
- 4. The value reported is greater than three (3) times but less than ten (10) times the value in the trip/field blanks and is considered "real". However, the reported value must be quantitatively qualified "J" due to trip/field blank contamination.
- 5. The concentration reported by the laboratory is incorrectly calculated.
- 6. The laboratory failed to report the presence of the analyte in the sample.
- 7. The reported Hexavalent Chromium value was qualified because the Calibration Check Standard was not within the recovery range (90-110 percent).
- 8. In the Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of <u>+</u> 20 percent for sample results > 4xRL or <u>+</u> RL for sample results < 4xRL. Therefore, the result was qualified.
- 9. This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.
- 10. The reported value was qualified because the PVS recovery was greater than 115 percent.
- 11. The reported value was qualified because the PVS recovery was less than 85 percent.
- 12. The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.
- 13. The reported analyte was qualified because the associated Calibration Blank result was greater than the MDL.
- 14. The laboratory made a transcription error. No hits were found in the raw data.
- 15. This analyte is rejected because the laboratory exceeded the holding time for digestion and analysis.

AECOM Page 3 of 4

16. The laboratory subtracted the preparation/reagent blank from the sample result. The Reviewer's calculation puts the preparation/reagent blank back into the result.

- 17. The photocopy is unreadable. Therefore, the QA reviewer cannot read the laboratory's reported concentration result.
- 18. The reported value was qualified because the predigestion spike recovery was less than 75 %.
- 19. The reported value was qualified because the predigestion spike recovery was greater than 125 percent.
- The non-detected value was qualified (UJ) because the redigestion spike recovery was less than 75 percent. The possibility of a false negative
  exists.
- 21. The reported result was qualified or rejected because the laboratory did not record the pH value(s) of the sample in a laboratory notebook.
- 22. The reported value was qualified (J/UJ) because the sample moisture content exceeded 50 percent.
- 23. The sample result was rejected because the soluble and insoluble matrix spike recoveries were less than 50%.
- 24. The detected sample result was qualified (J) because the incorrect spike concentration was used.
- 25. The reported sample results were rejected because the predigestion spike recovery was greater than 150 percent.
- 26. The reported sample results were rejected because the redigestion spike recovery was greater than 150 percent.
- 27. The reported value was qualified (J) because the redigestion spike recovery was less than 75 percent.
- 28. The reported value was qualified (J/UJ) because the sample digestion temperature was less than 90°C.
- 29. In the Field Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of ≤ 20% for sample results > 4xRL or + RL for sample results < 4xRL. Therefore, the result was qualified.
- 30. The reported value was qualified as estimated (J/UJ) but the bias is uncertain due to both high and low MS recoveries.
- 31. The reported result was greater than the MDL but less than the RL and qualified (J) as estimated by the laboratory.
- 32. The reported value was qualified because the sample replicate precision criterion of ≤ 20% for method 7199 was exceeded.
- 33. The reported value was qualified (J/UJ) because the laboratory control sample (LCS) recovery was less than 80%.

AECOM Page 4 of 4

- 34. The reported value was qualified (J) because the laboratory control sample (LCS) recovery was greater than 120%.
- 35. The reported result was qualified because the matrix spike analysis was not performed at the proper frequency.
- 36. The reported result was qualified because the laboratory duplicate analysis was not performed at the proper frequency.
- 37. The result was qualified because the cooler temperature upon sample receipt exceeded 6°C.
- 38. The reported value was qualified because the redigestion spike recovery was greater than 125 percent.

**Attachment B** 

**Data Validation Report Form** 

| Client Name: PPG Industries                      | <b>Project Number:</b> 60213772 – 5.A   |  |
|--------------------------------------------------|-----------------------------------------|--|
| Site Location: PPG –GARIS Northern Canal Borings | Project Manager: Robert Cataldo         |  |
| Laboratory: Accutest, Dayton, New Jersey         | Limited or Full Validation (circle one) |  |
| Laboratory Job No: JB14656                       | Date Checked: 09/05/2012                |  |
| Validator: Justin Webster                        | Peer: Lisa Krowitz                      |  |

| ITEM                                            | YES | NO | N/A | COMMENTS                                       |
|-------------------------------------------------|-----|----|-----|------------------------------------------------|
| Sample results included?                        | х   |    |     | 20 soils and 1 field blank                     |
| Reporting Limits met project requirements?      | х   |    |     |                                                |
| Field I.D. included?                            | х   |    |     |                                                |
| Laboratory I.D. included?                       | x   |    |     |                                                |
| Sample matrix included?                         | х   |    |     |                                                |
| Sample receipt temperature 2-6°C?               | х   |    |     | 3.0°C                                          |
| Signed COCs included?                           | х   |    |     |                                                |
| Date of sample collection included?             | х   |    |     | 08/24/2012                                     |
| Date of sample digestion included?              | х   |    |     | Soil: JB14656 HxCr prepped on 08/29/2012;      |
| Holding time to digestion met criteria?         | х   |    |     | See below " Holding Times"                     |
| Soils -30 days from collection to digestion.    |     |    |     |                                                |
| Date of analysis included?                      | x   |    |     | Soil: JB14656 HxCr analyzed on 08/30/2012.     |
|                                                 |     |    |     | Aqueous: JB14656 08/24/2012 @ 21:14.           |
| Holding time to analysis met criteria?          | x   |    |     |                                                |
| Soils -168 hours from digestion to analysis.    |     |    |     |                                                |
| Aqueous – 24 hours from collection to analysis. |     |    |     |                                                |
| Method reference included?                      | х   |    |     | 3060A/7196A                                    |
| Laboratory Case Narrative included?             | х   |    |     |                                                |
| Sample Dilutions                                |     | х  |     |                                                |
| Field Duplicates ("x "appended to sample ID)    | х   |    |     | See "Field Duplicate" table below for results. |
| (RPD calculation on separate sheet)             |     |    |     |                                                |

Definitions: MDL – Method Detection Limit; %R – Percent Recovery; RL – Reporting Limit; RPD – Relative Percent Difference; RSD – Relative Standard Deviation: Corr – Correlation Coefficient.

#### **Comments**

Field Duplicate: NSB-E2-1.0-1.5 and NSB-E2-1.0-1.5x. The absolute difference criteria of ±RL for sample results less than or equal to four times the RL was exceeded, thus estimate in all soil samples (J/UJ).

| ITEM                                                                                                                                                                                                                  | YES         | NO | N/A | COMMENTS                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|-----|-------------------------------------------------------------------------------------|
| Initial Calibration Documentation Included in Lab Package?                                                                                                                                                            | х           |    |     | Cal source (AQ: Absolute Grade Lot# 031912) and (SO: Absolute Grade lot# 041212)    |
| <ol> <li>Blank plus 7 standards (7196A) or blank plus 4 standards (7199).</li> <li>Correlation coefficient of ≥0.995 (7196A) or ≥0.999 (7199).</li> <li>Calibrate daily or each time instrument is set up.</li> </ol> | x<br>x<br>x |    |     | Yes for all analyses     All analyses meet CC     Yes                               |
| Calibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 Included in Lab Package?                                                                                                         | х           |    |     | Check source (AQ: Ultra Scientific lot # L00439) and (SO: Ultra lot # L00439)       |
| %R criteria met? (90 - 110%).     Correct frequency of once every 10 samples     CCS and QCS from independent source and at mid level of calibration curve.                                                           | x<br>x<br>x |    |     | Yes     Analyzed every 10 samples     Yes                                           |
| Calibration Blanks                                                                                                                                                                                                    | х           |    |     |                                                                                     |
| Analyzed prior to initial calibration standards and after each CCS/QCS?     Absolute value should not exceed MDL                                                                                                      | x<br>x      |    |     | 1. Yes<br>2. Yes                                                                    |
| Method Blank and Field Blanks Included in Lab Package?                                                                                                                                                                | х           |    |     | NSB-EB20120824 was nondetect.                                                       |
| Method blank analyzed with each preparation batch?                                                                                                                                                                    | х           |    |     | 1. Yes                                                                              |
| 2. Absolute value should not exceed MDL.                                                                                                                                                                              | х           |    |     | 2. Yes                                                                              |
| Eh and pH data Included in Lab Package?                                                                                                                                                                               | х           |    |     |                                                                                     |
| Eh and pH data was included and plotted for all samples?                                                                                                                                                              | х           |    |     |                                                                                     |
| Soluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                    | х           |    |     | NSB-E1-20.0-20.5 (JB14656-12)                                                       |
| 1. %R criteria met? (75-125%R)                                                                                                                                                                                        | х           |    |     | 1. Yes, JB14656-12 (89.1%R)                                                         |
| 2. Was the spike concentration 40 mg/Kg?                                                                                                                                                                              | x           |    |     | 2. Yes, JB14656-12 (39.84 mg/kg)                                                    |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                     | x           |    |     | 3. Yes                                                                              |
| Insoluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                  | х           |    |     | NSB-E1-20.0-20.5 (JB14656-12)                                                       |
| NR criteria met? (75-125%R)     Was the spike concentration 400 to 800 mg/Kg?                                                                                                                                         | х           | х  |     | Yes, JB14656-12 (81.4%R)     No, JB14656-12 (1049.56 mg/kg), no impact to data      |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                     | x           |    |     | 3. Yes                                                                              |
| Post Digestion Spike                                                                                                                                                                                                  | х           |    |     | NSB-E1-20.0-20.5 (JB14656-12)                                                       |
| 1. %R criteria met? (85-115%R).                                                                                                                                                                                       | х           |    |     | 1. Yes, JB14656-12 (84.2%R) and pH adjusted (101%R)                                 |
| 2. Was the spike concentration 40 mg/Kg (soluble) or twice the sample concentration?                                                                                                                                  |             |    |     | <ol> <li>Yes, JB14656-12 (40.04 mg/kg) and pH adjusted (41.09 mg/kg).</li> </ol>    |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                     |             |    |     | 3. Yes                                                                              |
| Sample Duplicate Data Included in Lab Package?                                                                                                                                                                        | х           |    |     | NSB-E1-20.0-20.5 (JB14656-12)                                                       |
| <ol> <li>RPD criteria met? (RPD &lt; 20%) if both results are ≥4x RL or<br/>control limit of ±RL if both results are &lt;4x RL.</li> </ol>                                                                            | х           |    |     | Yes, JB14656-12 the absolute difference with within ± RL for sample results <4x RL. |
| Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                        | х           |    |     | 2. Yes                                                                              |

| ITEM                                                                                                                                                                                                                                                                                                                                                                                 | YES         | NO | N/A | COMMENTS                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|-----|-------------------------------------------------------------------------------------|
| Was a Laboratory Control Sample (LCS) Included in Lab Package?                                                                                                                                                                                                                                                                                                                       | х           |    |     |                                                                                     |
| <ol> <li>%R criteria met? (80-120%R soil, 90-110% aq).</li> <li>Was an LCS analyzed at the frequency of 1/batch or 20 samples?</li> </ol>                                                                                                                                                                                                                                            | x<br>x      |    |     | <ol> <li>Yes, all criteria were met for AQ and SO analyses.</li> <li>Yes</li> </ol> |
| Miscellaneous Items.                                                                                                                                                                                                                                                                                                                                                                 |             |    |     |                                                                                     |
| <ol> <li>For soils by 7196A, was the pH within a range of 7.0-8.0?</li> <li>For soils by 7199, was the pH within a range of 9.0-9.5?</li> <li>For aqueous by 7196A, was the pH with a range of 1.5-2,5?</li> <li>For soils (3060A), was the digestion temperature 90-95°C for at least 60 minutes?</li> <li>For 7199, was each sample injected twice and was the RPD ≤20?</li> </ol> | x<br>x<br>x |    | x   | 1. Yes 2. NA 3. Yes 4. Yes 5. NA                                                    |

AECOM Page 4 of 7

|                                     |                   |              | _                       |                        |
|-------------------------------------|-------------------|--------------|-------------------------|------------------------|
| SDG#: JB14656                       | x - concentration | y - response |                         |                        |
| Batch: GN71343                      |                   |              |                         |                        |
| Cr+6 ICAL - 08/30/2012              | 0                 | 0            |                         |                        |
| Soils                               | 0.01              | 0.011        |                         |                        |
| (p. 77 of data pkg)                 | 0.05              | 0.045        |                         |                        |
|                                     | 0.1               | 0.094        |                         |                        |
|                                     | 0.3               | 0.273        |                         |                        |
|                                     | 0.5               | 0.45         |                         |                        |
|                                     | 0.8               | 0.742        |                         |                        |
|                                     | 1                 | 0.894        | _                       | ( 77 ( ) .             |
|                                     |                   |              |                         | (p. 77 of data<br>pkg) |
| AECOM Calculated Intercept          | 0.0017            | OK           | Reported intercept      | 0.0017                 |
| AECOM Slope                         | 0.9041            | OK rounding  | Reported Slope          | 0.9042                 |
| AECOM Calculated r                  | 0.99973           | OK           | Reported r              | 0.99973                |
|                                     |                   |              | •                       |                        |
| LCS calculation                     | GP66863-B1        | pg. 77       |                         |                        |
| Background absorbance               | 0                 |              |                         |                        |
| Sample absorbance                   | 0.818             |              |                         |                        |
| LCS Soluble Instrument Response     | 0.818             |              |                         |                        |
| Instrument Concentration (mg/L)     | 0.903             |              |                         |                        |
| Sample weight (kg)                  | 0.0025            |              |                         |                        |
| Percent solids                      | 1                 |              |                         |                        |
| Dilution Factor                     | 1                 |              |                         |                        |
| AECOM Calculated LCS Result (mg/Kg) | 36.1              | OK           | Reported Result (mg/Kg) | 36.1                   |
| , ,                                 |                   |              |                         |                        |
| %R = Found/True*100                 | GP66863-B1        | pg. 51       |                         |                        |
| True Value (mg/kg)                  | 40.0              |              |                         |                        |
| AECOM Calculated %R                 | 90.3              | OK           | Reported %R             | 90.3                   |
| MO aslaulatian (ODCCCC 04)          | NOD 54 00 0 00 5  | <b></b>      |                         |                        |
| MS calculation (GP66863-S1)         | NSB-E1-20.0-20.5  | pg. 77       |                         |                        |
| Background reading                  | 0.006             |              |                         |                        |
| Total absorbance                    | 0.813             |              |                         |                        |
| Total absorbance - background       | 0.807             |              |                         |                        |
| Instrument Concentration (mg/L)     | 0.891             |              |                         |                        |
| Sample weight (kg)                  | 0.00251           |              |                         |                        |
| Percent solids                      | 0.874             |              |                         |                        |
| Dilution Factor                     | 1                 | 014          | D ( 1D ( ( (K)          | 40.0                   |
| AECOM Calculated MS Result (mg/Kg)  | 40.6              | OK           | Reported Result (mg/Kg) | 40.6                   |
| %R = Found/True*100                 | NSB-E1-20.0-20.5  | pg. 53       |                         |                        |
| True Value (mg/kg)                  | 45.6              | pg. 00       |                         |                        |
| Native concentration (mg/Kg)        | 0                 |              |                         |                        |
| %R                                  | 89.0              | OK rounding  | Reported %R             | 89.1                   |
|                                     |                   |              |                         | 5511                   |
| Percent Solids                      | NSB-E1-20.0-20.5  | pg. 55       |                         |                        |
| Empty dish weight (g)=              | 18.64             |              |                         |                        |
| Wet weight (g)=                     | 25.00             |              |                         |                        |
| Dry weight (g)=                     | 24.2              |              |                         |                        |
| AECOM%solids =                      | 87.4              | OK           | Reported %solids=       | 87.4                   |
|                                     |                   |              |                         |                        |
| Reporting Limit                     | NSB-E1-20.0-20.5  | pgs. 23, 77  |                         |                        |
| Low Standard                        | 0.01              |              |                         |                        |
| Initial weight (kg)                 | 0.00255           |              |                         |                        |
| Final volume (L)                    | 0.1               |              |                         |                        |
| Percent solids                      | 0.874             |              |                         |                        |
| Dilution Factor                     | 1.00              |              |                         |                        |
| Reporting Limit                     | 0.45              | OK rounding  | Reported RL (mg/Kg)=    | 0.46                   |

AECOM Page 5 of 7

### **Sample Calculations**

| NSB-E1-20.0-20.5                |         | pgs. 23, 77 |                         |        |
|---------------------------------|---------|-------------|-------------------------|--------|
| Background reading              | 0       |             |                         |        |
| Total absorbance                | 0.003   |             |                         |        |
| Total absorbance - background   | 0.003   |             |                         |        |
| Instrument Response (mg/L)      | 0.001   |             |                         |        |
| Sample weight (kg)              | 0.00255 |             |                         |        |
| Final Volume (L)                | 0.1     |             |                         |        |
| Percent solids                  | 0.87    |             |                         |        |
| Dilution Factor                 | 1       |             |                         |        |
| AECOM Calculated Result (mg/Kg) | 0.06    | OK ND <0.46 | Reported Result (mg/Kg) | 0.46 U |
|                                 |         |             |                         |        |
| NSB-E1-4.0-4.5                  |         | pgs. 30, 78 |                         |        |
| Background reading              | 0.036   |             |                         |        |
| Total absorbance                | 0.211   |             |                         |        |
| Total absorbance - background   | 0.175   |             |                         |        |
| Instrument Response (mg/L)      | 0.192   |             |                         |        |
| Sample weight (kg)              | 0.00257 |             |                         |        |
| Final Volume (L)                | 0.1     |             |                         |        |
| Percent solids                  | 0.81    |             |                         |        |
| Dilution Factor                 | 1       |             |                         |        |
| AECOM Calculated Result (mg/Kg) | 9.2     | OK          | Reported Result (mg/Kg) | 9.2    |

AECOM Page 6 of 7

## **Holding Times**

| Sample ID        | Method | Days from<br>Sampling to<br>Prep | Days from Prep<br>to Analysis | Days from<br>Sampling to<br>Analysis | Sampling to<br>Prep Status | Prep to Analysis<br>Status | Sampling to<br>Analysis Status |
|------------------|--------|----------------------------------|-------------------------------|--------------------------------------|----------------------------|----------------------------|--------------------------------|
| NSB-EB20120824   | SW7196 | _                                |                               | 0                                    |                            |                            | OK @1 days                     |
| NSB-E1-10.0-10.5 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E1-12.5-13.0 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E1-16.0-16.5 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E1-2.0-2.5   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E1-20.0-20.5 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E1-4.0-4.5   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E2-1.0-1.5   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E2-1.0-1.5X  | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E2-12.5-13.0 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E2-16.0-16.5 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E2-21.0-21.5 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E2-4.0-4.5   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E3-0.5-1.0   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E3-10.0-10.5 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E3-16.0-16.5 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E3-20.0-20.5 | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E3-4.0-4.5   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E3-5.5-6.0   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E4-1.0-1.5   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |
| NSB-E4-4.0-4.5   | SW7196 | 5                                | 1                             | 6                                    | OK @30 days                | OK @7 days                 | OK @37 days                    |

### **Percent Solids**

| Sample ID        | Percent Solids (%) | Status  |  |
|------------------|--------------------|---------|--|
| NSB-E1-10.0-10.5 | 90.4               | ok @50% |  |
| NSB-E1-12.5-13.0 | 84.7               | ok @50% |  |
| NSB-E1-16.0-16.5 | 87.3               | ok @50% |  |
| NSB-E1-2.0-2.5   | 85.9               | ok @50% |  |
| NSB-E1-20.0-20.5 | 87.4               | ok @50% |  |
| NSB-E1-4.0-4.5   | 81.1               | ok @50% |  |
| NSB-E2-1.0-1.5   | 84.4               | ok @50% |  |
| NSB-E2-1.0-1.5X  | 85.1               | ok @50% |  |
| NSB-E2-12.5-13.0 | 69                 | ok @50% |  |
| NSB-E2-16.0-16.5 | 88.5               | ok @50% |  |
| NSB-E2-21.0-21.5 | 88.1               | ok @50% |  |
| NSB-E2-4.0-4.5   | 65.7               | ok @50% |  |
| NSB-E3-0.5-1.0   | 86.5               | ok @50% |  |
| NSB-E3-10.0-10.5 | 60.5               | ok @50% |  |

AECOM Page 7 of 7

| NSB-E3-16.0-16.5 | 85.9 | ok @50% |
|------------------|------|---------|
| NSB-E3-20.0-20.5 | 89.7 | ok @50% |
| NSB-E3-4.0-4.5   | 87.5 | ok @50% |
| NSB-E3-5.5-6.0   | 67   | ok @50% |
| NSB-E4-1.0-1.5   | 89.5 | ok @50% |
| NSB-E4-4.0-4.5   | 91.7 | ok @50% |

**Matrix Spikes** 

| Sample ID        | Compound              | Analysis batch | MSs %<br>Recovery | MSI %<br>Recovery | PDS %R | Adj pH PDS %R | Lower<br>Limit | Upper<br>Limit |
|------------------|-----------------------|----------------|-------------------|-------------------|--------|---------------|----------------|----------------|
| NSB-E1-20.0-20.5 | CHROMIUM (HEXAVALENT) | GN71343        | 89.1              | 81.4              | 84.2   | 101           | 75             | 125            |

**Field Duplicate** 

| Sample ID      | Duplicate ID        | Compound                 | Sample<br>Result | Sample<br>Lab<br>Qualifier | Duplicate<br>Result | Dup Lab<br>Qualifier | QL   | Units | RPD   | Action                      |
|----------------|---------------------|--------------------------|------------------|----------------------------|---------------------|----------------------|------|-------|-------|-----------------------------|
| NSB-E2-1.0-1.5 | NSB-E2-1.0-<br>1.5X | CHROMIUM<br>(HEXAVALENT) | 0.47             | U                          | 4.6                 |                      | 0.47 | mg/kg | 162.9 | ±RL if<br>result <<br>4xRL. |

**Attachment C** 

**Supplemental Data** 



# CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-24\_RI\_ACCUTEST\_COC\_NSB

**Page:** 1 **of** 2

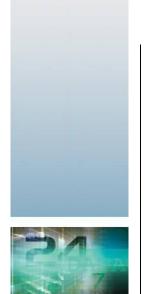
| ah Info             | ormation:    |                     | Project Info    | ormation:       | The Chain-of | -Custody is a | Other Info    |             |             | npleted and a                                | ccurate.        |                  | Та           | sk:<br>Total # | GARIS<br>of Samp | Northe     | rn Car   | nal Bor    | ings            |                |             |
|---------------------|--------------|---------------------|-----------------|-----------------|--------------|---------------|---------------|-------------|-------------|----------------------------------------------|-----------------|------------------|--------------|----------------|------------------|------------|----------|------------|-----------------|----------------|-------------|
| _ab iiiic<br>_ab:   | ACCUTE       | ST                  |                 | PPG Garfield Av | /e           |               | Send Invoi    |             | Lisa Krowi  | tz                                           |                 |                  | +            | TAT            | see              | Spec. Inst | ructions |            | Rush            |                |             |
|                     |              | te 130 , Dayton NJ  | Project #:      | 60213772.5.A    |              |               | Address:      |             | pollo Drive | <u>.                                    </u> |                 |                  |              | _              | F= Field F       |            |          |            | tuon            |                |             |
|                     | 08810        |                     | Site            | 70 Carteret Ave | nue          |               | City/State.   |             | nsford, MA  | 01824                                        | Phone #: 978-   | -905-2278        | es           |                |                  | ,          |          |            |                 |                |             |
|                     |              |                     | Address:        |                 |              |               | '             |             | ,           |                                              |                 |                  | Lab Note     |                |                  |            |          |            |                 |                |             |
|                     | Matt Cor     |                     | City Jersey     | City State, Z   | ip NJ        | 07304         | PO #:         | 40256       | ACM         |                                              | l l             |                  | Lab          |                |                  |            |          |            |                 |                |             |
| hone/F              | ax: 732-329- | -0200/              | PM Name:        | Chris Martell   |              |               | Send EDD      |             | NJLABDATA   | @aecom.c                                     | om              |                  |              |                |                  |            |          |            |                 |                |             |
| M ema               | il:          | 1                   | Phone/Fax:      | 732-564-3633    |              |               | CC Hardco     | py to       | Erin Farre  | ell, AEC                                     | DM, Piscataway, | NJ               | vati         |                |                  |            |          |            |                 |                |             |
|                     |              |                     | PM Email:       | Christopher.Ma  | artell@aeco  | m.com         |               |             |             |                                              |                 |                  | Preservative |                |                  |            |          |            |                 |                |             |
| ITEM#               |              | Field Sample        | No. /Identifica | ntion           | MATRIX CODE  | G=GRAB C=COMP |               | SAMPLE DATE |             | #OF CONTAINERS                               |                 | Comment          | Analysis     | GARA-HexChrom  | GARA-pH-ORP      |            |          |            |                 |                |             |
|                     | NSB-E4-4.0   | 0-4.5               |                 |                 | so           | G             | 08/2          | 4/2012 1    | 15:15       | 1                                            |                 |                  |              | Х              | Х                |            |          |            |                 |                |             |
| 2                   | NSB-E4-1.0   | 0-1.5               |                 |                 | so           | G             | 08/2          | 4/2012 1    | 15:10       | 1                                            |                 |                  | -            | X              | Х                |            |          |            |                 |                |             |
|                     |              |                     |                 |                 |              |               |               |             |             |                                              |                 |                  | -            |                |                  |            |          |            |                 |                |             |
| 3                   | NSB-E3-20    | J.U-20.5            |                 |                 | SO           | G             | 08/2          | 4/2012 1    |             | 1                                            |                 |                  | _            | X              | X                |            |          |            |                 |                |             |
| 4                   | NSB-E3-16    | 3.0-16.5            |                 |                 | SO           | G             | 08/2          | 4/2012 1    | 14:50       | 1                                            |                 |                  |              | X              | Х                |            |          |            |                 |                |             |
| 5                   | NSB-E3-10    | ).0-10.5            |                 |                 | SO           | G             | 08/2          | 4/2012 1    | 14:30       | 1                                            |                 |                  |              | Х              | Х                |            |          |            |                 |                |             |
| 6                   | NSB-E3-5.    | 5-6.0               |                 |                 | so           | G             | 08/2          | 4/2012 1    | 14:21       | 1                                            |                 |                  |              | X              | Х                |            |          |            |                 |                |             |
| 7                   | NSB-E3-21    | .0-21.5             |                 |                 | so           | G             | 08/2          | 4/2012 1    | 14:05       | 1                                            |                 |                  |              | Х              | Х                |            |          |            |                 |                |             |
| 8                   | NSB-E2-16    | 5.0-16.5            |                 |                 | so           | G             | 08/2          | 4/2012 1    | 13:50       | 1                                            |                 |                  |              | Х              | Х                |            |          |            |                 |                |             |
| 9                   | NSB-E2-12    | 2.5-13.0            |                 |                 | SO           | G             | 08/2          | 4/2012 1    | 13:40       | 1                                            |                 |                  |              | Х              | Х                |            |          |            |                 |                |             |
| 10                  | NSB-E3-4.0   | 0-4.5               |                 |                 | so           | G             | 08/2          | 4/2012 1    | 13:15       | 1                                            |                 |                  |              | Х              | Х                |            |          |            |                 |                |             |
| 11                  | NSB-E3-0.    | 5-1.0               |                 |                 | so           | G             | 08/2          | 4/2012 1    | 13:10       | 1                                            |                 |                  | 1            | X              | Х                |            |          |            |                 |                |             |
|                     | - L Cc       | anta/Onacial Issue  | .atiama:        |                 | DELINA       | HICHER        | BY / AFFILIAT | ION         | DATE        | TIME                                         | ACCEPTED BY     | AFFILIATION      |              |                | DATE             | TIME       |          | ome!s 5    | 20001=4-0       | onditions      | <u> </u>    |
| ladıtıoı<br>Standar |              | ents/Special Instru | ictions:        |                 | RELINQ       | UISHED        | DT/AFFILIAT   | ION         | DATE        | TIME                                         | ACCEPTED BY /   | AFFILIATION      |              |                | DATE             | TIME       | 5        | атріе і    | Y / N           | Y / N          | V/N         |
| .u.iudi             | w 171        |                     |                 |                 |              |               |               |             | 1           |                                              |                 |                  |              |                |                  |            | -        |            | Y/N<br>Y/N      | Y/N<br>Y/N     | Y/N<br>Y/N  |
|                     |              |                     |                 |                 |              |               |               |             |             | †                                            |                 |                  |              |                |                  |            |          |            | Y/N             | Y/N<br>Y/N     | Y/N         |
|                     |              |                     |                 |                 |              |               |               |             |             |                                              |                 |                  |              |                |                  |            |          |            | Y/N             | Y/N            | Y/N         |
|                     |              |                     |                 |                 |              |               |               |             |             |                                              |                 |                  |              |                |                  |            |          | ()         | ce?             | ot?            | ^.          |
|                     |              |                     |                 |                 |              | Shipp         | er:           |             |             |                                              |                 | DATE/TIME:       |              |                |                  |            |          | in 00      | o '             | intac          | ank         |
|                     |              |                     |                 |                 |              | Trackin       | g #:          |             |             |                                              |                 | Custody Seal(s): |              |                |                  |            |          | Temp in 0C | Samples on Ice? | Sample intact? | Trip Blank? |



# **CHAIN-OF-CUSTODY / Analytical Request Document**

2012-08-24\_RI\_ACCUTEST\_COC\_NSB

Page:


2 **of** 

2

Task: **GARIS- Northern Canal Borings** The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate. Total # of Samples: 21 Lab Information: **Project Information:** Other Information: see Spec. Instructions ACCUTEST PPG Garfield Ave Site ID #: Send Invoice to: Lisa Krowitz Rush Address: 2235 Route 130, Dayton NJ 60213772.5.A Notes: F= Field Filtered, H= Hold Project #: Address: 250 Apollo Drive 08810 Site 70 Carteret Avenue City/State. Chelmsford, MA 01824 Phone #: 978-905-2278 Lab Notes Address: Lab PM: Matt Cordova City Jersey City State, Zip NJ 07304 PO #: 40256ACM Phone/Fax: 732-329-0200/ PM Name: Chris Martell Send EDD to: NJLABDATA@aecom.com Erin Farrell, AECOM, Piscataway, NJ PM email: Phone/Fax: 732-564-3633 CC Hardcopy to PM Email: Christopher.Martell@aecom.com C=COMP CONTAINERS SAMPLE DATE MATRIX CODE GARA-HexChrom GARA-pH-ORP Comment G=GRAB Field Sample No. /Identification Analysis #0F NSB-E1-20.0-20.5 08/24/2012 11:50 Χ 12 SO G Χ 13 NSB-E1-16.0-16.5 SO G 08/24/2012 11:35 Χ NSB-E1-12.5-13.0 G 08/24/2012 11:20 Χ SO NSB-E1-10.0-10.5 SO G 08/24/2012 11:15 Χ Χ 15 NSB-E2-4.0-4.5 SO G 08/24/2012 11:05 Χ Χ NSB-E2-1.0-1.5X 08/24/2012 10:12 Χ Χ SO G NSB-E2-1.0-1.5 08/24/2012 10:10 Χ Χ SO G NSB-EB20120824 08/24/2012 15:30 Χ 19 WQ G 2 Preserved: None Χ 1 JAR FOR MS/MSD Χ 20 NSB-E1-2.0-2.5 SO 08/24/2012 09:35 G 2 NSB-E1-4.0-4.5 SO G 08/24/2012 09:50 Χ



08/31/12



# Technical Report for

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14656

Sampling Date: 08/24/12

### Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 89



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



### -1-

**Table of Contents** 

| Section 1: Sample Summary                        | 4          |
|--------------------------------------------------|------------|
| Section 2: Case Narrative/Conformance Summary    | 6          |
| Section 3: Summary of Hits                       | 8          |
| Section 4: Sample Results                        |            |
| <b>4.1:</b> JB14656-1: NSB-E4-4.0-4.5            | 12         |
| <b>4.2:</b> JB14656-2: NSB-E4-1.0-1.5            |            |
| <b>4.3:</b> JB14656-3: NSB-E3-20.0-20.5          | 14         |
| <b>4.4:</b> JB14656-4: NSB-E3-16.0-16.5          | 15         |
| <b>4.5:</b> JB14656-5: NSB-E3-10.0-10.5          | 16         |
| <b>4.6:</b> JB14656-6: NSB-E3-5.5-6.0            | 17         |
| <b>4.7:</b> JB14656-7: NSB-E2-21.0-21.5          | 18         |
| <b>4.8:</b> JB14656-8: NSB-E2-16.0-16.5          | 19         |
| <b>4.9:</b> JB14656-9: NSB-E2-12.5-13.0          | 20         |
| <b>4.10:</b> JB14656-10: NSB-E3-4.0-4.5          | 21         |
| <b>4.11:</b> JB14656-11: NSB-E3-0.5-1.0          | 22         |
| <b>4.12:</b> JB14656-12: NSB-E1-20.0-20.5        | 23         |
| <b>4.13:</b> JB14656-13: NSB-E1-16.0-16.5        | 24         |
| <b>4.14:</b> JB14656-14: NSB-E1-12.5-13.0        | 25         |
| <b>4.15:</b> JB14656-15: NSB-E1-10.0-10.5        | 26         |
| <b>4.16:</b> JB14656-16: NSB-E2-4.0-4.5          | 27         |
| <b>4.17:</b> JB14656-17: NSB-E2-1.0-1.5X         | 28         |
| <b>4.18:</b> JB14656-18: NSB-E2-1.0-1.5          | 29         |
| <b>4.19:</b> JB14656-19: NSB-E1-4.0-4.5          | 30         |
| <b>4.20:</b> JB14656-20: NSB-EB20120824          | 31         |
| <b>4.21:</b> JB14656-21: NSB-E1-2.0-2.5          | 32         |
| Section 5: Misc. Forms                           | 33         |
| 5.1: Chain of Custody                            | 34         |
| 5.2: Sample Tracking Chronicle                   | 40         |
| 5.3: Internal Chain of Custody                   | 45         |
| Section 6: General Chemistry - QC Data Summaries | <b>5</b> 0 |
| 6.1: Method Blank and Spike Results Summary      | 51         |
| 6.2: Duplicate Results Summary                   |            |
| 6.3: Matrix Spike Results Summary                | 53         |
| 6.4: Percent Solids Raw Data Summary             | 54         |
| Section 7: General Chemistry - Raw Data          | 58         |
| 7.1: Raw Data GN71049: Chromium, Hexavalent      |            |
| 7.2: Raw Data GN71230: Redox Potential Vs H2     | 65         |
| <b>7.3:</b> Raw Data GN71237: pH                 | 67         |
| 7.4: Raw Data GN71238: Redox Potential Vs H2     | 70         |
| <b>7.5:</b> Raw Data GN71252: pH                 |            |
| 7.6: Raw Data GN71253: Redox Potential Vs H2     | 75         |
| 7.7: Raw Data GN71343: Chromium, Hexavalent      | 77         |



## **Sections:**

| [ab] | le | of | <b>Contents</b> |
|------|----|----|-----------------|
|      |    |    | 0 0 0 0 7       |

-2-

| 7.8: | Eh 1 | pH Phase | Diagram 8    | 87       |
|------|------|----------|--------------|----------|
|      |      | P        | 2 10/51 0111 | <i>-</i> |









# **Sample Summary**

Job No:

JB14656

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code |      | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|------|---------------------|
| JB14656-1        | 08/24/12          | 15:15 CM | 08/24/12 | SO            | Soil | NSB-E4-4.0-4.5      |
| JB14656-2        | 08/24/12          | 15:10 CM | 08/24/12 | SO            | Soil | NSB-E4-1.0-1.5      |
| JB14656-3        | 08/24/12          | 15:00 CM | 08/24/12 | SO            | Soil | NSB-E3-20.0-20.5    |
| JB14656-4        | 08/24/12          | 14:50 CM | 08/24/12 | SO            | Soil | NSB-E3-16.0-16.5    |
| JB14656-5        | 08/24/12          | 14:30 CM | 08/24/12 | SO            | Soil | NSB-E3-10.0-10.5    |
| JB14656-6        | 08/24/12          | 14:21 CM | 08/24/12 | SO            | Soil | NSB-E3-5.5-6.0      |
| JB14656-7        | 08/24/12          | 14:05 CM | 08/24/12 | SO            | Soil | NSB-E2-21.0-21.5    |
| JB14656-8        | 08/24/12          | 13:50 CM | 08/24/12 | SO            | Soil | NSB-E2-16.0-16.5    |
| JB14656-9        | 08/24/12          | 13:40 CM | 08/24/12 | SO            | Soil | NSB-E2-12.5-13.0    |
| JB14656-10       | 08/24/12          | 13:15 CM | 08/24/12 | SO            | Soil | NSB-E3-4.0-4.5      |
| JB14656-11       | 08/24/12          | 13:10 CM | 08/24/12 | SO            | Soil | NSB-E3-0.5-1.0      |
| JB14656-12       | 08/24/12          | 11:50 CM | 08/24/12 | SO            | Soil | NSB-E1-20.0-20.5    |
| JB14656-13       | 08/24/12          | 11:35 CM | 08/24/12 | SO            | Soil | NSB-E1-16.0-16.5    |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





# Sample Summary (continued)

Job No:

JB14656

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code | <del></del>     | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|-----------------|---------------------|
| JB14656-14       | 08/24/12          | 11:20 CM | 08/24/12 | SO            | Soil            | NSB-E1-12.5-13.0    |
| JB14656-15       | 08/24/12          | 11:15 CM | 08/24/12 | SO            | Soil            | NSB-E1-10.0-10.5    |
| JB14656-16       | 08/24/12          | 11:05 CM | 08/24/12 | SO            | Soil            | NSB-E2-4.0-4.5      |
| JB14656-17       | 08/24/12          | 10:12 CM | 08/24/12 | SO            | Soil            | NSB-E2-1.0-1.5X     |
| JB14656-18       | 08/24/12          | 10:10 CM | 08/24/12 | SO            | Soil            | NSB-E2-1.0-1.5      |
| JB14656-19       | 08/24/12          | 09:50 CM | 08/24/12 | SO            | Soil            | NSB-E1-4.0-4.5      |
| JB14656-20       | 08/24/12          | 15:30 CM | 08/24/12 | AQ            | Equipment Blank | NSB-EB20120824      |
| JB14656-21       | 08/24/12          | 09:35 CM | 08/24/12 | SO            | Soil            | NSB-E1-2.0-2.5      |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14656

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 8/31/2012 12:33:15 P

On 08/24/2012, 21 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 3 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14656 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Wet Chemistry By Method ASTM D1498-76

Matrix: AQ Batch ID: GN71230

Sample(s) JB14656-20DUP were used as the QC samples for Redox Potential Vs H2.

#### Wet Chemistry By Method ASTM D1498-76M

Matrix: SO Batch ID: GN71238

Sample(s) JB14656-1DUP were used as the QC samples for Redox Potential Vs H2.

Matrix: SO Batch ID: GN71253

Sample(s) JB14656-14DUP were used as the QC samples for Redox Potential Vs H2.

#### Wet Chemistry By Method SM18 2540G

Matrix: SO Batch ID: GN71133

The data for SM18 2540G meets quality control requirements.

#### Wet Chemistry By Method SM20 4500H B

Matrix: AQ Batch ID: R115502

- The data for SM20 4500H B meets quality control requirements.
- JB14656-20 for pH: Sample received out of holding time for pH analysis.

#### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP66863

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14656-12DUP, JB14656-12MS were used as the QC samples for Chromium, Hexavalent.
- GP66863-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.
- GP66863-S1 for Chromium, Hexavalent: Good recovery on soluble XCR matrix spike. Low recovery (84.2%) on the post-spike. Good recovery on pH adjusted post spike (101%). Good agreement between the sample and 1:5 dilution.

#### Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN71049

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14205-45DUP, JB14205-45MS were used as the QC samples for Chromium, Hexavalent.

#### Wet Chemistry By Method SW846 9045C,D

Matrix: SO Batch ID: GN71237

Sample(s) JB14656-1DUP were used as the QC samples for pH.

Matrix: SO Batch ID: GN71252

■ Sample(s) JB14656-14DUP were used as the QC samples for pH.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

# **Summary of Hits Job Number:** JB14656

Account: AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Collected: 08/24/12

| Lab Sample ID Client Sample ID Analyte              | Result/<br>Qual    | RL   | MDL  | Units             | Method                                               |
|-----------------------------------------------------|--------------------|------|------|-------------------|------------------------------------------------------|
| JB14656-1 NSB-E4-4.0-4.5                            |                    |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 1.1<br>678<br>7.79 | 0.44 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-2 NSB-E4-1.0-1.5                            |                    |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 1.3<br>388<br>8.08 | 0.45 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-3 NSB-E3-20.0-20.                           | 5                  |      |      |                   |                                                      |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 2.6<br>316<br>9.34 | 0.45 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-4 NSB-E3-16.0-16.                           | 5                  |      |      |                   |                                                      |
| Redox Potential Vs H2<br>pH                         | 304<br>9.11        |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14656-5 NSB-E3-10.0-10.                           | 5                  |      |      |                   |                                                      |
| Redox Potential Vs H2<br>pH                         | 56.0<br>7.92       |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14656-6 NSB-E3-5.5-6.0                            |                    |      |      |                   |                                                      |
| Redox Potential Vs H2<br>pH                         | 242<br>7.84        |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14656-7 NSB-E2-21.0-21.                           | 5                  |      |      |                   |                                                      |
| Redox Potential Vs H2<br>pH                         | 216<br>8.50        |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14656-8 NSB-E2-16.0-16.                           | 5                  |      |      |                   |                                                      |
| Redox Potential Vs H2<br>pH                         | 219<br>8.53        |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |



**Summary of Hits Job Number:** JB14656

Account: AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/24/12

| Lab Sample ID<br>Analyte                | Client Sample ID | Result/<br>Qual        | RL   | MDL  | Units             | Method                                               |
|-----------------------------------------|------------------|------------------------|------|------|-------------------|------------------------------------------------------|
| JB14656-9                               | NSB-E2-12.5-13.0 |                        |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential pH    |                  | 0.46 B<br>73.5<br>7.91 | 0.58 | 0.17 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-10                              | NSB-E3-4.0-4.5   |                        |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential<br>pH |                  | 0.92<br>429<br>8.11    | 0.46 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-11                              | NSB-E3-0.5-1.0   |                        |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential pH    |                  | 1.2<br>422<br>8.21     | 0.46 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-12                              | NSB-E1-20.0-20.5 |                        |      |      |                   |                                                      |
| Redox Potential pH                      | Vs H2            | 376<br>8.24            |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14656-13                              | NSB-E1-16.0-16.5 |                        |      |      |                   |                                                      |
| Redox Potential pH                      | Vs H2            | 365<br>8.06            |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14656-14                              | NSB-E1-12.5-13.0 |                        |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential pH    |                  | 0.17 B<br>214<br>7.69  | 0.47 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-15                              | NSB-E1-10.0-10.5 |                        |      |      |                   |                                                      |
| Redox Potential pH                      | Vs H2            | 159<br>7.41            |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14656-16                              | NSB-E2-4.0-4.5   |                        |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential<br>pH |                  | 4.8<br>292<br>7.45     | 0.61 | 0.18 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |



# **Summary of Hits Job Number:** JB14656

Job Number: JB14656 Account: AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/24/12

| Lab Sample ID<br>Analyte                  | Client Sample ID | Result/<br>Qual    | RL   | MDL  | Units             | Method                                               |
|-------------------------------------------|------------------|--------------------|------|------|-------------------|------------------------------------------------------|
| JB14656-17                                | NSB-E2-1.0-1.5X  |                    |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 4.6<br>298<br>8.17 | 0.47 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-18                                | NSB-E2-1.0-1.5   |                    |      |      |                   |                                                      |
| Redox Potential V                         | Vs H2            | 305<br>8.10        |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14656-19                                | NSB-E1-4.0-4.5   |                    |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 9.2<br>309<br>7.94 | 0.49 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14656-20                                | NSB-EB20120824   |                    |      |      |                   |                                                      |
| Redox Potential V                         | Vs H2            | 372<br>6.54        |      |      | mv<br>su          | ASTM D1498-76<br>SM20 4500H B                        |
| JB14656-21                                | NSB-E1-2.0-2.5   |                    |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 1.3<br>305<br>8.29 | 0.47 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |

<sup>(</sup>a) Sample received out of holding time for pH analysis.





| Sample Results     |  |  |
|--------------------|--|--|
| Report of Analysis |  |  |



# 4

# **Report of Analysis**

Client Sample ID: NSB-E4-4.0-4.5

 Lab Sample ID:
 JB14656-1
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 91.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 1.1    | 0.44 | 0.13 | mg/kg | 1  | 08/30/12 12:00 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 678    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 91.7   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 7.79   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-E4-1.0-1.5
Lab Sample ID: JB14656-2
Matrix: SO - Soil

Date Sampled: 08/24/12 Date Received: 08/24/12 Percent Solids: 89.5

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 1.3    | 0.45 | 0.13 | mg/kg | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 388    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 89.5   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 8.08   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-E3-20.0-20.5

 Lab Sample ID:
 JB14656-3
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 89.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 2.6    | 0.45 | 0.13 | mg/kg | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 316    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 89.7   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 9.34   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-E3-16.0-16.5

 Lab Sample ID:
 JB14656-4
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 85.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.14 U | 0.47 | 0.14 | mg/kg | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 304    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 85.9   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 9.11   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-E3-10.0-10.5

 Lab Sample ID:
 JB14656-5
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 60.5

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.19 U | 0.66 | 0.19 | mg/kg | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 56.0   |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 60.5   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 7.92   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



#### 4

### **Report of Analysis**

Client Sample ID: NSB-E3-5.5-6.0 Lab Sample ID: JB14656-6 Matrix: SO - Soil

**Date Sampled:** 08/24/12 **Date Received:** 08/24/12 **Percent Solids:** 67.0

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.17 U | 0.60 | 0.17 | mg/kg | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 242    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 67     |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 7.84   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### 4

### **Report of Analysis**

Client Sample ID: NSB-E2-21.0-21.5

 Lab Sample ID:
 JB14656-7
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 88.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.13 U | 0.45 | 0.13 | mg/kg | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 216    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 88.1   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 8.50   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



#### 4

### **Report of Analysis**

Client Sample ID: NSB-E2-16.0-16.5

 Lab Sample ID:
 JB14656-8
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 88.5

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.13 U | 0.45 | 0.13 | mg/kg | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 219    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 88.5   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 8.53   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### 4

### **Report of Analysis**

Client Sample ID: NSB-E2-12.5-13.0

 Lab Sample ID:
 JB14656-9
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 69.0

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.46 B | 0.58 | 0.17 | mg/kg | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 73.5   |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 69     |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 7.91   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

 Client Sample ID:
 NSB-E3-4.0-4.5

 Lab Sample ID:
 JB14656-10
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 87.5

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                                       | Result       | RL   | MDL  | Units       | DF | Analyzed By Method                                                 |
|-----------------------------------------------|--------------|------|------|-------------|----|--------------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 0.92<br>429  | 0.46 | 0.13 | mg/kg<br>mv | 1  | 08/30/12 13:26 JOO SW846 3060A/7196A<br>08/29/12 SA ASTM D1498-76M |
| Solids, Percent pH                            | 87.5<br>8.11 |      |      | %<br>su     | 1  | 08/27/12 22:00 MH SM18 2540G<br>08/29/12 12:02 SA SW846 9045C,D    |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



JB14656

4

### **Report of Analysis**

Client Sample ID: NSB-E3-0.5-1.0 Lab Sample ID: JB14656-11 Matrix: SO - Soil

**Date Sampled:** 08/24/12 **Date Received:** 08/24/12 **Percent Solids:** 86.5

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 1.2    | 0.46 | 0.14 | mg/kg | 1  | 08/30/12 16:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 422    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 86.5   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 8.21   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-E1-20.0-20.5

 Lab Sample ID:
 JB14656-12
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 87.4

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed      | By Method                |
|-----------------------|--------|------|------|-------|----|---------------|--------------------------|
| Chromium, Hexavalent  | 0.13 U | 0.46 | 0.13 | mg/kg | 1  | 08/30/12 12:0 | 00 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 376    |      |      | mv    | 1  | 08/29/12      | SA ASTM D1498-76M        |
| Solids, Percent       | 87.4   |      |      | %     | 1  | 08/27/12 22:0 | 00 MH SM18 2540G         |
| pН                    | 8.24   |      |      | su    | 1  | 08/29/12 12:0 | 02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



# 4

### **Report of Analysis**

Client Sample ID: NSB-E1-16.0-16.5

 Lab Sample ID:
 JB14656-13
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 87.3

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.13 U | 0.46 | 0.13 | mg/kg | 1  | 08/30/12 16:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 365    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 87.3   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 8.06   |      |      | su    | 1  | 08/29/12 12:02 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



# 4

### **Report of Analysis**

Client Sample ID: NSB-E1-12.5-13.0

 Lab Sample ID:
 JB14656-14
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 84.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.17 B | 0.47 | 0.14 | mg/kg | 1  | 08/30/12 16:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 214    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 84.7   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 7.69   |      |      | su    | 1  | 08/29/12 13:49 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-E1-10.0-10.5

 Lab Sample ID:
 JB14656-15
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 90.4

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method         | i          |
|-----------------------|--------|------|------|-------|----|----------------------------|------------|
| Chromium, Hexavalent  | 0.13 U | 0.44 | 0.13 | mg/kg | 1  | 08/30/12 16:26 JOO SW846 3 | 060A/7196A |
| Redox Potential Vs H2 | 159    |      |      | mv    | 1  | 08/29/12 SA ASTM D         | 1498-76M   |
| Solids, Percent       | 90.4   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 254 | 40G        |
| pН                    | 7.41   |      |      | su    | 1  | 08/29/12 13:49 SA SW846 9  | 045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



### 4

### **Report of Analysis**

Client Sample ID: NSB-E2-4.0-4.5
Lab Sample ID: JB14656-16
Matrix: SO - Soil

**Date Sampled:** 08/24/12 **Date Received:** 08/24/12 **Percent Solids:** 65.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 4.8    | 0.61 | 0.18 | mg/kg | 1  | 08/30/12 16:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 292    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 65.7   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 7.45   |      |      | su    | 1  | 08/29/12 13:49 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Page 1 of 1

Client Sample ID: NSB-E2-1.0-1.5X

 Lab Sample ID:
 JB14656-17
 Date Sampled:
 08/24/12

 Matrix:
 SO - Soil
 Date Received:
 08/24/12

 Percent Solids:
 85.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                                                          | Result             | RL   | MDL  | Units            | DF          | Analyzed By Method                                                                                 |
|------------------------------------------------------------------|--------------------|------|------|------------------|-------------|----------------------------------------------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>Solids, Percent | 4.6<br>298<br>85.1 | 0.47 | 0.14 | mg/kg<br>mv<br>% | 1<br>1<br>1 | 08/30/12 16:26 JOO SW846 3060A/7196A<br>08/29/12 SA ASTM D1498-76M<br>08/27/12 22:00 MH SM18 2540G |
| pH                                                               | 8.17               |      |      | su               | 1           | 08/29/12 13:49 SA SW846 9045C,D                                                                    |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-E2-1.0-1.5 Lab Sample ID: JB14656-18 Matrix: SO - Soil

**Date Sampled:** 08/24/12 **Date Received:** 08/24/12 **Percent Solids:** 84.4

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 0.14 U | 0.47 | 0.14 | mg/kg | 1  | 08/30/12 16:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 305    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 84.4   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| pН                    | 8.10   |      |      | su    | 1  | 08/29/12 13:49 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Page 1 of 1

Client Sample ID: NSB-E1-4.0-4.5 Lab Sample ID: JB14656-19

SO - Soil

**Date Sampled:** 08/24/12 **Date Received:** 08/24/12 **Percent Solids:** 81.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

Matrix:

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed      | By Method               |
|-----------------------|--------|------|------|-------|----|---------------|-------------------------|
| Chromium, Hexavalent  | 9.2    | 0.49 | 0.14 | mg/kg | 1  | 08/30/12 16:2 | 6 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 309    |      |      | mv    | 1  | 08/29/12      | SA ASTM D1498-76M       |
| Solids, Percent       | 81.1   |      |      | %     | 1  | 08/27/12 22:0 | 0 MH SM18 2540G         |
| pН                    | 7.94   |      |      | su    | 1  | 08/29/12 13:4 | 9 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL



### **Report of Analysis**

Client Sample ID: NSB-EB20120824

Lab Sample ID:JB14656-20Date Sampled:08/24/12Matrix:AQ - Equipment BlankDate Received:08/24/12Percent Solids:n/a

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result   | RL    | MDL    | Units | DF | Analyzed By Method             |
|-----------------------|----------|-------|--------|-------|----|--------------------------------|
| Chromium, Hexavalent  | 0.0014 U | 0.010 | 0.0014 | mg/l  | 1  | 08/24/12 21:14 MM SW846 7196A  |
| Redox Potential Vs H2 | 372      |       |        | mv    | 1  | 08/29/12 SA ASTM D1498-76      |
| pH <sup>a</sup>       | 6.54     |       |        | su    | 1  | 08/24/12 19:57 AS SM20 4500H B |

(a) Sample received out of holding time for pH analysis.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



### 4

### **Report of Analysis**

Client Sample ID: NSB-E1-2.0-2.5
Lab Sample ID: JB14656-21
Matrix: SO - Soil

**Date Sampled:** 08/24/12 **Date Received:** 08/24/12 **Percent Solids:** 85.9

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                   |
|-----------------------|--------|------|------|-------|----|--------------------------------------|
| Chromium, Hexavalent  | 1.3    | 0.47 | 0.14 | mg/kg | 1  | 08/30/12 16:26 JOO SW846 3060A/7196A |
| Redox Potential Vs H2 | 305    |      |      | mv    | 1  | 08/29/12 SA ASTM D1498-76M           |
| Solids, Percent       | 85.9   |      |      | %     | 1  | 08/27/12 22:00 MH SM18 2540G         |
| рH                    | 8.29   |      |      | su    | 1  | 08/29/12 13:49 SA SW846 9045C,D      |

RL = Reporting Limit U = Indicates a result < MDL





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



| ddress:               |                                       |                     |                  |                           |                                                          |                |             |            | inpleted and a |                           |          | sk:                    |               | - Northe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |            |         |                |             |
|-----------------------|---------------------------------------|---------------------|------------------|---------------------------|----------------------------------------------------------|----------------|-------------|------------|----------------|---------------------------|----------|------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------|---------|----------------|-------------|
| ddress:               |                                       | Project Info        | ormation:        |                           |                                                          | Other Infor    |             |            |                |                           | Г        |                        | of Sam        | ples: 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · · | Domigo     |         | B146           | 1.          |
| ddress:               | ACCUTEST                              | Site ID #:          | PPG Garfield Ave | 9                         | Send Invoice to: Lisa Krowitz                            |                |             |            | ╀              | TAT                       | Teac     | Spec. Inst.            | nuctions      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 17140      | 20      |                |             |
|                       | 2235 Route 130 , Dayton N<br>08810    | 1                   | 60213772.5.A     | Address: 250 Apollo Drive |                                                          |                |             |            |                |                           |          |                        |               | Filtered ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | Rush       |         |                |             |
| ľ                     | 00010                                 | Site<br>Address:    | 70 Carteret Aven | ue                        | e City/State. Chelmsford, MA 01824 Phone #: 978-905-2278 |                |             |            |                |                           | se       | rotes.                 | i – i ietu    | Tittered ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n- noiu                               |            |         |                |             |
| ab PM:                | Matt Cordova                          | City Jersey         | City State, Zip  | n NII                     | 07304                                                    | DO #           | 400504      | 011        |                |                           | D NG     |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| hone/Fax              | X: 732-329-0200/                      | PM Name:            | Chris Martell    | J NJ                      | 07304                                                    | Send EDD I     | 40256A      | JLABDATA(  | ® necess of    | 200                       | Tab      |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                     |            |         |                |             |
| M email:              |                                       | Phone/Fax:          | 732-564-3633     |                           |                                                          | CC Hardcop     | py to       | Erin Farre | ell, AEC       | OM, Piscataway, NJ        | rvative  |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | - 1        |         |                |             |
|                       |                                       | PM Email:           | Christopher.Mai  | rtell@aecc                | om.com                                                   |                |             |            |                |                           | reserv   |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| ITEM 0                | Field Sam                             | ple No. /Identifica | ition            | MATRIX CODE               | G=GRAB C=COMP                                            |                | SAMPLE DATE |            | #0F CONTAINERS | Comment                   | Analysis | GARA-pH-ORP            | GARA-HexChrom |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| 1 NS                  | 6B-E4-4.0-4.5                         | - (                 |                  | so                        | G                                                        | 08/24          | /2012 15    | i:15       | 1              |                           | ì        | Х                      | X             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| 2 NS                  | 6B-E4-1.0-1.5                         | - 2                 |                  | so                        | G                                                        | 08/24          | /2012 15    | :10        | 1              |                           |          | Х                      | ×             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| 3 NS                  | SB-E3-20.0-20.5                       | ~ 3                 |                  | so                        | G                                                        | 08/24          | /2012 15    | :00        | 1              |                           |          | Х                      | Х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| 4 NS                  | SB-E3-16.0-16.5                       | - 4                 |                  | so                        | G                                                        | 08/24          | /2012 14    | :50        | 1              | ME41 WC28                 |          | Х                      | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                | <br>        |
| 5 NS                  | B-E3- <del>10-10.6</del><br>10-0-10.5 | - 5                 |                  | so                        | G                                                        | 08/24          | /2012 14    | :30        | 1              | UKS                       |          | Х                      | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1          |         |                |             |
| <b>6</b> NS           | B-E3-5.5-6.0                          | - 6                 |                  | so                        | G                                                        | 08/24          | /2012 14:   | :21        | 1              |                           |          | Χ                      | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| 7 NS                  | B-E2-21.0-21.5                        |                     |                  | so                        | G                                                        | 08/24/         | /2012 14:   | :05        | 1              |                           |          | Х                      | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| 8 NS                  | B-E2-16.0-16.5                        | - 8                 |                  | so                        | G                                                        | 08/24/         | /2012 13:   | :50        | 1              |                           |          | Х                      | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
| 9 NS                  | B-E2-12.5-13.0                        | - 9                 |                  | so                        | G                                                        | 08/24/         | /2012 13:   | :40        | 1              |                           |          | Х                      | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            | 7       |                |             |
| 10 NS                 | B-E3-4.0-4.5                          | - 6                 |                  | so                        | G                                                        | 08/24/         | /2012 13:   | :15        | 1              |                           |          | Χ                      | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |            |         |                |             |
|                       | B-E3-0.5-1.0                          | - 11                |                  | so                        | G                                                        | 08/24/         | /2012 13:   | :10        | 1              |                           |          | Х                      | х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | $\exists$  |         |                |             |
| lditional<br>andard 1 | Comments/Special In                   | structions:         |                  | RELINQU                   | JISHED B                                                 | Y / AFFILIATIC |             | DATE       | TIME           | ACCEPTED BY / AFFILIATION |          | 02 H0                  | DATE          | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sampl                                 | e Receipt  | Conditi |                |             |
| iliuaru i             | IAI                                   |                     |                  | 60                        | _                                                        | L ]/           |             | 2/24/2     | 1630           | 12V/1                     | 2        | 10                     | 30            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Y/N        |         | 7N T           | Υ/          |
|                       |                                       |                     |                  | P 1                       | <del>-</del>                                             |                |             | Jula       | 193            | Melalin Mailet            |          | 8/                     | 24/12         | 1930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | (Y) N      | (       | )/ N           | Y           |
|                       |                                       |                     |                  |                           | •                                                        |                |             |            |                |                           |          | -                      |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Y/N        |         | 7 N            | Υ/          |
|                       |                                       |                     |                  |                           |                                                          |                |             |            |                |                           |          |                        | NO. SERVICE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Y/N        | _       | /N             | Υ/          |
|                       |                                       |                     |                  |                           | Shipper                                                  | r. T           |             |            | 1/             | DATE/TIME:                |          | AND THE REAL PROPERTY. |               | Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Comment of the Commen | 8                                     | loe?       |         | lad?           | Ş           |
|                       |                                       |                     |                  |                           | Tracking                                                 | #:             | A CHARLES   | -1         | 10             | Custody Seal(s):          |          |                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp in                               | Samples on |         | Sample intact? | Trip Blank? |
| A                     |                                       |                     |                  | 10                        |                                                          | IER            |             |            |                |                           |          |                        | 0 /           | C.P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       | ΐ          |         | <i>س</i>       |             |

JB14656: Chain of Custody Page 1 of 6



# CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-23\_RI\_ACCUTEST\_COC\_NSB

| Page: | _ |    |  |
|-------|---|----|--|
| rage. | 2 | of |  |

| c        |                                        |                          | ī                  | The Chain-of-                               | Custody is a  | LEGAL DOCUMENT. All relevant fields must be or | impleted and                                           | accurate.                    | Ta                                  | sk:                                |               |                                             | rn Cana | l Boring      |                                       |                |             |  |
|----------|----------------------------------------|--------------------------|--------------------|---------------------------------------------|---------------|------------------------------------------------|--------------------------------------------------------|------------------------------|-------------------------------------|------------------------------------|---------------|---------------------------------------------|---------|---------------|---------------------------------------|----------------|-------------|--|
|          | ormation:                              | Project Inform           | nation:            |                                             |               | Other Information:                             | Other Information:                                     |                              |                                     |                                    |               | Total # of Samples: 21 \( \text{JB} \) 4656 |         |               |                                       |                |             |  |
| Lab:     | ACCUTEST                               |                          | PG Garfield Ave    |                                             |               | Send Invoice to: Lisa Krow                     | itz                                                    |                              | TAT   see Spec. Instructions   Rush |                                    |               |                                             |         |               |                                       |                |             |  |
| Address  | 3: 2235 Route 130 , Dayton NJ<br>08810 |                          | 0213772.5.A        |                                             |               | Address: 250 Apollo Drive                      |                                                        |                              |                                     | Notes: F= Field Filtered , H= Hold |               |                                             |         |               |                                       |                |             |  |
|          |                                        | Address:                 | 0 Carteret Avenue  |                                             |               | City/State. Chelmsford, M/                     | City/State. Chelmsford, MA 01824 Phone #: 978-905-2278 |                              |                                     |                                    |               | ,                                           |         |               |                                       | -              |             |  |
|          | Matt Cordova<br>ax:  732-329-0200/     | City Jersey Ci           |                    | NJ                                          | 07304         | PO #: 40256ACM                                 |                                                        |                              | Lab Note                            |                                    |               |                                             |         |               |                                       |                |             |  |
| PM ema   | ail.                                   | PM Name:<br>Phone/Fax: 7 | Chris Martell      |                                             |               | Send EDD to: NULABDATA                         | @aecom.                                                | om                           |                                     |                                    |               | T                                           |         | Г             | T                                     | T              | Т           |  |
|          |                                        |                          |                    |                                             |               | CC Hardcopy to Erin Farr                       | ell, AEC                                               | OM, Piscataway, NJ           | - J #                               |                                    |               |                                             |         |               |                                       |                |             |  |
|          |                                        | PM Email:                | Christopher.Martel | l@aeco                                      | m.com         |                                                |                                                        |                              | Preservative                        |                                    |               |                                             |         |               |                                       |                |             |  |
| (TEM #   | Field Sample I                         | No. /Identificatio       | on                 | MATRIX CODE                                 | G=GRAB C=COMP | SAMPLE DATE                                    | #OF CONTAINERS                                         | Comment                      | Analysis                            | GARA-pH-ORP                        | GARA-HexChrom |                                             |         |               |                                       |                |             |  |
| 12       | NSB-E1-20.0-20.5                       | - 12                     |                    | so                                          | G             | 08/24/2012 11:50                               | 1                                                      |                              | -                                   | Х                                  | X             |                                             |         |               |                                       |                |             |  |
| 13       | NSB-E1-16.0-16.5                       | - 13                     |                    | so                                          | G             | 08/24/2012 11:35                               | 1                                                      |                              |                                     | Х                                  | х             |                                             |         |               |                                       |                |             |  |
| 14       | NSB-E1-12.5-13.0                       | - 14                     |                    | so                                          | G             | 08/24/2012 11:20                               | 1                                                      |                              |                                     | Х                                  | х             |                                             |         |               |                                       |                |             |  |
| 15       | NSB-E1-10.0-10.5                       | - 15                     |                    | so                                          | G             | 08/24/2012 11:15                               | 1                                                      |                              |                                     | Х                                  | х             |                                             |         |               |                                       |                |             |  |
| 16       | NSB-E2-4.0-4.5                         | - (1/o                   |                    | so                                          | G             | 08/24/2012 11:05                               | 1                                                      |                              |                                     | х                                  | х             |                                             |         |               |                                       |                |             |  |
| 17       | NSB-E2-1.0-1.5X                        | - 11                     |                    | so                                          | G             | 08/24/2012 10:12                               | 1                                                      |                              |                                     | х                                  | х             |                                             |         |               |                                       |                |             |  |
| -        | NSB-E2-1.0-1.5                         | - 18                     |                    | so                                          | G             | 08/24/2012 10:10                               | 1                                                      |                              |                                     | х                                  | ×             |                                             |         |               |                                       |                |             |  |
|          | VSB-E1-4.0-4.5                         | - (9                     |                    | so                                          | G             | 08/24/2012 09:50                               | 1                                                      |                              |                                     | Х                                  | х             |                                             |         | Ju            |                                       |                |             |  |
| -        | NSB-EB20120824                         | 20                       |                    | WQ                                          | G             | 08/24/2012 15:30                               | 2                                                      | Preserved: None              |                                     | Х                                  | Х             | 4                                           | (B) W   | cali          |                                       |                |             |  |
| 21       | NSB-E1-2.0-2.5                         | - 4                      |                    | so                                          | G             | 08/24/2012 09:35                               | 2                                                      | 1 jar for ms/msd             |                                     | Х                                  | Х             |                                             |         |               |                                       |                |             |  |
|          |                                        |                          |                    |                                             |               |                                                |                                                        |                              |                                     |                                    |               |                                             |         |               | l                                     | '              |             |  |
| Addition | al Comments/Special Instru             | ctions:                  | 5                  | RELINQU                                     | SHEDE         | BY / AFFILIATION DATE                          | STIME.                                                 | ACCEPTED BY / AFFILIATION    |                                     | STREET HEAVE                       | DATE          |                                             |         |               | L                                     |                |             |  |
| Standar  | d TAT                                  |                          |                    | 15                                          | In (          | 1 Day 12                                       |                                                        |                              |                                     | 63                                 |               | TIME                                        | Sam     |               | ipt Condi                             |                |             |  |
|          | 4) / .                                 | ^                        | 1, 6               | Pil                                         | Re            | 2 8/24/121                                     | 930                                                    | Morris Accordent             |                                     |                                    | 4/12          | 1320                                        |         | - Y           |                                       | Y/N            | Y/N         |  |
| )r       | p# = 6.5                               | 4 (A) 2                  | 129/12 F           |                                             |               | 4 011111                                       | -                                                      |                              |                                     |                                    | 10            | 1,750                                       |         |               |                                       | Y/N<br>Y/N     | Y/N<br>Y/N  |  |
| //       | 1 10                                   | , 0                      | - !                | 1000 S. S. S. S. S. S. S. S. S. S. S. S. S. |               |                                                |                                                        |                              |                                     |                                    |               |                                             |         |               |                                       | Y/N            | Y/N         |  |
|          |                                        |                          | P                  |                                             | Chris         |                                                | _                                                      |                              |                                     |                                    |               |                                             |         | 5             |                                       |                |             |  |
|          |                                        |                          |                    |                                             | Shippe        | 720                                            | 4                                                      | DATE/TIME:  Custody Seal(s): |                                     |                                    |               |                                             | Temp    | of ac salome? | i i i i i i i i i i i i i i i i i i i | Sample intact? | Trip Blank? |  |
|          |                                        |                          |                    |                                             |               |                                                |                                                        |                              | 2 /                                 | 96                                 |               |                                             |         |               | <u>i</u>                              | Sar            |             |  |
|          |                                        |                          |                    |                                             |               |                                                |                                                        | G-1- 3                       | ے, ر                                |                                    |               |                                             |         |               |                                       |                |             |  |

JB14656: Chain of Custody Page 2 of 6





# **Accutest Laboratories Sample Receipt Summary**

| 2,0011,71                               |              |            |           |                 |          |                                          |          |          |                                    |  |
|-----------------------------------------|--------------|------------|-----------|-----------------|----------|------------------------------------------|----------|----------|------------------------------------|--|
| Accutest Job Number:                    | B14656       |            | Client:   | -               |          | Project:                                 |          |          |                                    |  |
| Date / Time Received:                   | 3/24/2012    | 2          |           | Delivery Method | :        | Airbill #'s:                             |          |          |                                    |  |
| Cooler Temps (Initial/Adju              | ısted):      | #1: (3/3); | 0         |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
| Cooler Security                         | Y or         | N          |           | <u>Y o</u>      | r N      | Sample Integrity - Documentation         | <u>Y</u> | or N     |                                    |  |
| 1. Custody Seals Present:               | <b>✓</b>     |            | 3. COC Pi | resent:         |          | Sample labels present on bottles:        | <b>~</b> |          |                                    |  |
| 2. Custody Seals Intact:                | $\checkmark$ | ☐ 4. §     | Smpl Date | s/Time OK       |          | Container labeling complete:             | <u> </u> |          |                                    |  |
| Cooler Temperature                      | γ            | or N       |           |                 |          | Sample container label / COC agree:      | <b>✓</b> |          |                                    |  |
| Temp criteria achieved:                 | V            |            | •         |                 |          | Sample Integrity - Condition             | Υ_       | or N     |                                    |  |
| 2. Cooler temp verification:            |              |            |           |                 |          | 1. Sample recvd within HT:               | <b>V</b> |          |                                    |  |
| 3. Cooler media:                        |              | Ice (Bag)  |           |                 |          | All containers accounted for:            | <u></u>  |          |                                    |  |
| 4. No. Coolers:                         |              | 1          |           |                 |          | 3. Condition of sample:                  | _        | Intact   |                                    |  |
| Quality Control Preserva                | tion \       | Y or N     | N/A       |                 |          | Sample Integrity - Instructions          | Y        | or N     | N/A                                |  |
| 1. Trip Blank present / cooler          | r: [         |            | <b>✓</b>  |                 |          | Analysis requested is clear:             | <u> </u> |          |                                    |  |
| 2. Trip Blank listed on COC:            |              |            | <b>✓</b>  |                 |          | Bottles received for unspecified tests   |          | <b>V</b> |                                    |  |
| 3. Samples preserved proper             | rly: 🔽       | 1 🗆        |           |                 |          | 3. Sufficient volume recvd for analysis: | ✓        |          |                                    |  |
| 4. VOCs headspace free:                 |              |            | <b>✓</b>  |                 |          | 4. Compositing instructions clear:       |          |          | $\checkmark$                       |  |
|                                         |              |            |           |                 |          | 5. Filtering instructions clear:         |          |          | <b>✓</b>                           |  |
| Comments                                |              |            |           |                 |          | •                                        |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
|                                         |              |            |           |                 |          |                                          |          |          |                                    |  |
| Accutest Laboratories                   |              |            |           |                 | 2225 110 | Highway 120                              |          |          | Douton Nov. I                      |  |
| Accutest Laboratories<br>V:732.329.0200 |              |            |           |                 | F: 732   | Highway 130<br>.329.3499                 |          |          | Dayton, New Jer<br>www/accutest.co |  |

JB14656: Chain of Custody

Page 3 of 6



| Received Date:  | Due Date:     | Deliverable:                                | TAT (Days): |
|-----------------|---------------|---------------------------------------------|-------------|
| 8/27/2012       | AECOM, INC.   | PPG Northern Canal Borings, Jersey City, NJ | MC          |
| Requested Date: | Account Name: | Project                                     | CSR:        |

Change: revise to 1 week TAT due 8/31

Sample #: JB14656-All

8/24/2012 9/7/2012

FULT1

Above Changes Per:

Lisa Krowitz

**Date:** 8/27/2012

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

JB14656: Chain of Custody Page 4 of 6

# CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-24\_RI\_ACCUTEST\_COC\_NSB

| Page: JB1465 EEVIS | d |
|--------------------|---|
|--------------------|---|

|                 |                                      |                                         |                                         |                                         | The Chain-c | f-Custody is a | LEGAL DOCUMENT     | . All referent                                             |                  | mpleted and    |               |                                         | Tas          | sk:                             | GARIS           | S- North  | ern Cana       | l Borin     | qs       |          |              |
|-----------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-------------|----------------|--------------------|------------------------------------------------------------|------------------|----------------|---------------|-----------------------------------------|--------------|---------------------------------|-----------------|-----------|----------------|-------------|----------|----------|--------------|
| Lab In          | ab Information: Project Information: |                                         |                                         |                                         |             |                | Other Information: |                                                            |                  |                |               |                                         | Г            | Total # of Samples: 20          |                 |           |                |             |          |          |              |
| Lab:            | ACCUTEST                             |                                         | Site ID #:                              | PPG Garfield                            | Ave         |                | Send Invoice       |                                                            |                  | itz            |               |                                         |              | TAT see Spec. Instructions Rush |                 |           |                |             |          |          |              |
| Addres          | s: 2235 Route 130 , Day<br>08810     | ton NJ                                  | Project #:                              | 60213772.5.                             | 4           |                | Address:           | Address: 250 Apollo Drive                                  |                  |                |               |                                         | 100          |                                 |                 |           | H= Hold        | Rus         | SIL      |          |              |
|                 | 00010                                |                                         | Site<br>Address:                        | 70 Carteret A                           | venue       |                | City/State.        | City/State. Chelmsford, MA 01824   Phone #:   978-905-2278 |                  |                |               |                                         | otes         |                                 |                 | · mered , | TI-TION        |             |          |          | ******       |
|                 | 1: Matt Cordova                      |                                         | City Jersey                             | City State                              | , Zip NJ    | 07304          | PO #:              | 40256                                                      | ACM              |                |               |                                         | Lab          |                                 |                 |           |                |             |          |          |              |
| Phone/<br>PM em | Fax: 732-329-0200/                   |                                         | PM Name:                                | Chris Marte                             | 1           |                | Send EDD t         | Send EDD to: NJLABDATA@secom.com                           |                  |                |               |                                         |              |                                 | Т               | T         | T              | Γ           | T        |          |              |
| PM em           | ali:                                 |                                         | Phone/Fax:                              | 732-564-363                             | 3           |                | CC Hardco          | y to                                                       | Erin Farr        | ell, AEC       | OM, Piscatawa | y, NJ                                   | 1            |                                 |                 |           |                |             | 1        |          |              |
|                 |                                      |                                         | PM Email:                               | Christopher                             | Martell@aec | om.com         |                    |                                                            |                  |                |               |                                         | Preservative |                                 |                 |           |                |             |          |          |              |
| ITEM#           | Field                                | Sample N                                | o. /Identifica                          | tion                                    | MATRIX CODE | G=GRAB C=COMP  |                    | SAMPLE DATE                                                |                  | #OF CONTAINERS |               | Comment                                 | Analysis     | GARA-HexChrom                   | GARA-pH-ORP     |           |                |             |          |          |              |
| 1               | NSB-E4-4.0-4.5                       |                                         |                                         |                                         | so          | G              | 08/24              | /2012 1                                                    | 15:15            | 1              |               |                                         | 9            | X                               | X               |           |                |             |          |          |              |
| 2               | NSB-E4-1.0-1.5                       |                                         |                                         |                                         | so          | G              | 08/24              | /2012 1                                                    | 5:10             | 1              |               |                                         |              | Х                               | x               |           |                |             |          |          | <b>†</b>     |
| 3               | NSB-E3-20.0-20.5                     |                                         |                                         |                                         | so          | G              | 08/24              | /2012 1                                                    | 5:00             | 1              |               |                                         |              | X                               | X               |           |                |             |          | I        |              |
| 4               | NSB-E3-16,0-16,5                     |                                         | *************************************** |                                         | so          | G              | 08/24              | 2012 1                                                     | 4:50             | 1              |               | ·····                                   |              | X                               | x               |           |                |             |          |          | <del> </del> |
| 5               | NSB-E3-10.0-10.5                     | *************************************** |                                         |                                         | so          | G              | 08/24/             | 2012 1                                                     | 4:30             | 1              |               |                                         |              | X                               | x               |           |                |             | <u> </u> |          | <del> </del> |
| 6               | NSB-E3-5.5-6.0                       |                                         | *************************************** |                                         | so          | G              | 08/24/             | 2012 1                                                     | 4:21             | 1              |               |                                         |              | X                               | Х               |           |                |             |          | -        |              |
| 7               | NSB-E3-21.0-21.5                     |                                         |                                         |                                         | so          | G              | 08/24/             | 2012 1                                                     | 4:05             | 1              |               |                                         |              | X                               | X               |           |                |             |          | <u> </u> |              |
| 8               | NSB-E2-16.0-16.5                     |                                         |                                         | *************************************** | so          | G              | 08/24/             | 2012 1                                                     | 3:50             | 1              |               | *************************************** |              | X                               | X               |           |                |             |          | ļ        |              |
| 9               | NSB-E2-12.5-13.0                     | ~~~~                                    |                                         |                                         | so          | G              | 08/24/             | 2012 1                                                     | 3:40             | 1              |               | <del></del>                             | -            |                                 | X               |           |                |             |          | ļ        |              |
| 10              | NSB-E3-4.0-4.5                       |                                         |                                         |                                         | so          | G              |                    | 2012 1                                                     |                  | 1              |               |                                         |              |                                 |                 |           |                |             |          |          |              |
| 11              | NSB-E3-0.5-1.0                       |                                         |                                         | *************************************** | so          | G              |                    | 2012 1:                                                    |                  |                |               | *************************************** |              |                                 | X               |           |                |             |          |          |              |
| Additio         | nal Comments/Speci                   | al Instruct                             | tions:                                  |                                         |             |                | Y / AFFILIATIO     |                                                            | DATE             | 1<br>TIME      | ACCEPTED BY   | / AFFILIATION                           |              | Х                               | X               | TIME      | Samr           | le Rece     | ipt Cond | itions   |              |
| Standar         | d TAT                                |                                         |                                         |                                         |             |                |                    |                                                            |                  |                |               |                                         |              |                                 |                 |           |                | Y           |          | Y/N      | Y/N          |
|                 |                                      |                                         |                                         |                                         |             |                |                    |                                                            |                  |                |               |                                         |              |                                 |                 |           |                | Y           |          | Y/N      | Y/N          |
|                 |                                      |                                         |                                         |                                         |             |                |                    |                                                            |                  |                |               |                                         |              |                                 |                 |           |                | Y.          |          | Y/N      | Y/N          |
|                 |                                      |                                         |                                         |                                         | HARM        |                |                    |                                                            |                  |                | 2000000000000 |                                         |              |                                 |                 |           |                |             | / N      | Y/N      | Y/N          |
|                 |                                      |                                         |                                         |                                         |             | Shippe         | r.                 |                                                            |                  |                |               | DATE/TIME:                              |              |                                 |                 |           | Ö              | 1 2         | 3        | act?     | 0            |
|                 | Shipper                              |                                         |                                         |                                         |             |                |                    |                                                            | Custody Seal(s): |                |               |                                         |              | Temp in 0C                      | Conlar or local | 5         | Sample intact? | Trip Blank? |          |          |              |

JB14656: Chain of Custody

Page 5 of 6



# CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-24\_RI\_ACCUTEST\_COC\_NSB

| Page:          | JB14656<br>RÉVISED |
|----------------|--------------------|
| rthern Canal I | Borings            |

|         | The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate. |                 |                  |                   | Tasi        | c:            | GARIS       | - Northe         | rn Cana        | Boring                | 5            |               | 0           |            |          |                                       |                                                   |   |  |
|---------|-----------------------------------------------------------------------------------------------|-----------------|------------------|-------------------|-------------|---------------|-------------|------------------|----------------|-----------------------|--------------|---------------|-------------|------------|----------|---------------------------------------|---------------------------------------------------|---|--|
| Lab In  | formation:                                                                                    |                 | Project Info     | rmation:          |             |               | Other Infor | mation:          |                | 1                     | ٦            | otal#         | of Sam      | ples: 20   |          |                                       |                                                   |   |  |
| Lab:    | ACCUTE                                                                                        |                 | Site ID #:       | PPG Garfield Ave  |             |               |             | e to: Lisa Krowi | tz             |                       | <del> </del> | TAT           | see         | Spec. Inst | ructions | Rus                                   | h T                                               |   |  |
| Addre   | 08810                                                                                         | 130 , Dayton NJ |                  | 60213772.5.A      |             |               | Address:    | 250 Apollo Drive |                |                       | SS N         |               |             | Filtered , |          | - Kus                                 | <del>"                                     </del> |   |  |
|         | 00010                                                                                         |                 | Site<br>Address; | 70 Carteret Avenu | е           |               | City/State. | Chelmsford, MA   | 01824          | Phone #: 978-905-2278 |              |               |             |            |          |                                       |                                                   |   |  |
| I ah Pi | 1: Matt Cord                                                                                  | lova            | City Jersey      | City State, Zip   | NI I        | 07304         | DO #        | 40256ACM         |                |                       | Lab Notes    |               |             |            |          |                                       |                                                   |   |  |
|         | Fax: 732-329-0                                                                                |                 | PM Name:         | City State, Zip   | NJ          | 0/304         | Send EDD t  |                  |                |                       | 5            |               |             |            |          | · · · · · · · · · · · · · · · · · · · |                                                   |   |  |
| PM en   | ail:                                                                                          |                 |                  | 732-564-3633      |             |               | CC Hardcor  |                  | all AFC        | OM, Piscataway, NJ    | t)           |               |             |            | l        | 1                                     |                                                   | 1 |  |
|         |                                                                                               |                 | PM Email:        | Christopher.Marte | ell@aeco    | m.com         |             |                  |                |                       | Preservative |               |             |            |          |                                       |                                                   |   |  |
| TEMN    |                                                                                               | Field Sample N  | lo. /Identifica  | tion              | MATRIX CODE | G=GRAB C=COMP |             | SAMPLE DATE      | #OF CONTAINERS | Comment               | Analysis     | GARA-HexChrom | GARA-pH-ORP |            |          |                                       |                                                   |   |  |
| 12      | NSB-E1-20,0                                                                                   | 0-20.5          |                  |                   | so          | G             | 08/24       | /2012 11:50      | 1              |                       |              | х             | Х           |            |          |                                       |                                                   |   |  |
| 13      | NSB-E1-16.0                                                                                   | D-16.5          |                  |                   | so          | G             | 08/24       | 2012 11:35       | 1              |                       |              | х             | Х           |            |          |                                       |                                                   |   |  |
| 14      | NSB-E1-12.                                                                                    | 5-13.0          |                  |                   | so          | G             | 08/24       | 2012 11:20       | 1              |                       |              | х             | Х           |            |          |                                       |                                                   |   |  |
| 15      | NSB-E1-10.0                                                                                   | 0-10.5          |                  |                   | so          | G             | 08/24/      | 2012 11:15       | 1              |                       |              | х             | Х           |            |          |                                       |                                                   |   |  |
| 16      | NSB-E2-4.0-                                                                                   | 4,5             |                  |                   | so          | G             | 08/24/      | 2012 11:05       | 1              |                       |              | х             | Х           |            |          |                                       |                                                   |   |  |
| 17      | NSB-E2-1.0-                                                                                   | 1.5X            |                  |                   | so          | G             | 08/24/      | 2012 10:12       | 1              |                       |              | х             | Х           |            |          |                                       |                                                   |   |  |
| 18      | NSB-E2-1.0-                                                                                   | 1.5             |                  |                   | so          | G             | 08/24/      | 2012 10:10       | 1              |                       |              | х             | Х           |            |          |                                       |                                                   |   |  |
| 19      | NSB-EB2012                                                                                    | 20824           |                  |                   | WQ          | G             | 08/24/      | 2012 15:30       | 2              | Preserved: None       |              | х             | х           |            |          |                                       |                                                   |   |  |
| 20      | NSB-E1-2.0-                                                                                   | 2.5             |                  |                   | so          | G             | 08/24/      | 2012 09:35       | 2              | 1 JAR FOR MS/MSD      |              | х             | х           |            |          |                                       |                                                   |   |  |
|         |                                                                                               |                 |                  |                   |             |               |             |                  |                |                       |              |               |             |            |          |                                       |                                                   |   |  |
|         |                                                                                               |                 |                  |                   |             |               |             |                  |                |                       |              | 1             |             |            |          |                                       |                                                   |   |  |

JB14656: Chain of Custody

Page 6 of 6



# **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14656

| Sample<br>Number                    | Method                                                                                     | Analyzed                                                           | Ву                          | Prepped                   | Ву     | Test Codes                 |  |
|-------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|---------------------------|--------|----------------------------|--|
| JB14656-1<br>NSB-E4-4.0             | Collected: 24-AUG-12                                                                       | 15:15 By: CM                                                       | Received: 24-AUG-12 By: MPC |                           |        |                            |  |
| JB14656-1<br>JB14656-1<br>JB14656-1 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A<br>Collected: 24-AUG-12 |                                                                    | SA<br>SA<br>JOO             | 29-AUG-12<br>ved: 24-AUG- |        | SOL104<br>EH<br>PH<br>XCRA |  |
| NSB-E4-1.0                          |                                                                                            | 13.10 By. CW                                                       | Recei                       | /cu. 24-A00               | -12 Dy | . IVII C                   |  |
| JB14656-2<br>JB14656-2              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A                         | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12                 | MP     | SOL104<br>EH<br>PH<br>XCRA |  |
| JB14656-3<br>NSB-E3-20              | Collected: 24-AUG-12<br>.0-20.5                                                            | 15:00 By: CM                                                       | Receiv                      | ved: 24-AUG               | -12 By | r: MPC                     |  |
| JB14656-3<br>JB14656-3              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A                         | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12                 | MP     | SOL104<br>EH<br>PH<br>XCRA |  |
| JB14656-4<br>NSB-E3-16              | Collected: 24-AUG-12<br>.0-16.5                                                            | 14:50 By: CM                                                       | Received: 24-AUG-12 By: MPC |                           |        |                            |  |
| JB14656-4<br>JB14656-4              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A                         | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12                 | MP     | SOL104<br>EH<br>PH<br>XCRA |  |
| JB14656-5<br>NSB-E3-10              | Collected: 24-AUG-12<br>.0-10.5                                                            | 14:30 By: CM                                                       | Recei                       | ved: 24-AUG-              | -12 By | r: MPC                     |  |
| JB14656-5<br>JB14656-5              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A                         | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12                 | MP     | SOL104<br>EH<br>PH<br>XCRA |  |

Job No:

JB14656

# **Internal Sample Tracking Chronicle**

AECOM, INC.

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву                          | Prepped     | Ву                          | Test Codes                 |  |  |  |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|-------------|-----------------------------|----------------------------|--|--|--|
|                          | JB14656-6 Collected: 24-AUG-12 14:21 By: CM<br>NSB-E3-5.5-6.0      |                                                                    |                             |             | Received: 24-AUG-12 By: MPC |                            |  |  |  |
| JB14656-6<br>JB14656-6   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12   | 2 MP                        | SOL104<br>EH<br>PH<br>XCRA |  |  |  |
| JB14656-7<br>NSB-E2-21   | Collected: 24-AUG-12<br>.0-21.5                                    | 14:05 By: CM                                                       | Receiv                      | ved: 24-AUG | 1-12 By                     | r: MPC                     |  |  |  |
| JB14656-7<br>JB14656-7   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12   | 2 MP                        | SOL104<br>EH<br>PH<br>XCRA |  |  |  |
| JB14656-8<br>NSB-E2-16   | Collected: 24-AUG-12<br>.0-16.5                                    | 13:50 By: CM                                                       | Receiv                      | ved: 24-AUG | -12 By                      | r: MPC                     |  |  |  |
| JB14656-8<br>JB14656-8   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12   | 2 MP                        | SOL104<br>EH<br>PH<br>XCRA |  |  |  |
| JB14656-9<br>NSB-E2-12   | Collected: 24-AUG-12 .5-13.0                                       | 13:40 By: CM                                                       | Received: 24-AUG-12 By: MPC |             |                             |                            |  |  |  |
| JB14656-9<br>JB14656-9   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12   | 2 MP                        | SOL104<br>EH<br>PH<br>XCRA |  |  |  |
| JB14656-10<br>NSB-E3-4.0 | Collected: 24-AUG-12                                               | 13:15 By: CM                                                       | Receiv                      | ved: 24-AUG | -12 By                      | r: MPC                     |  |  |  |
| JB14656-10<br>JB14656-10 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 13:26 | SA<br>SA                    | 29-AUG-12   | 2 MP                        | SOL104<br>EH<br>PH<br>XCRA |  |  |  |

# **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14656

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву       | Prepped     | Ву     | Test Codes                 |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------|-------------|--------|----------------------------|
| JB14656-11<br>NSB-E3-0.5 | Collected: 24-AUG-12                                               | 13:10 By: CM                                                       | Receiv   | ved: 24-AUG | -12 By | r: MPC                     |
| JB14656-11<br>JB14656-11 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 16:26 | SA<br>SA | 29-AUG-12   | МР     | SOL104<br>EH<br>PH<br>XCRA |
| JB14656-12<br>NSB-E1-20  | Collected: 24-AUG-12 0-20.5                                        | 11:50 By: CM                                                       | Receiv   | ved: 24-AUG | -12 By | r: MPC                     |
| JB14656-12<br>JB14656-12 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 12:00 | SA<br>SA | 29-AUG-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14656-13<br>NSB-E1-16  | Collected: 24-AUG-12 0-16.5                                        | 11:35 By: CM                                                       | Receiv   | ed: 24-AUG  | -12 By | r: MPC                     |
| JB14656-13<br>JB14656-13 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 12:02<br>30-AUG-12 16:26 | SA<br>SA | 29-AUG-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14656-14<br>NSB-E1-12  | Collected: 24-AUG-12 5-13.0                                        | 11:20 By: CM                                                       | Receiv   | ved: 24-AUG | -12 By | 7: MPC                     |
| JB14656-14<br>JB14656-14 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 13:49<br>30-AUG-12 16:26 | SA<br>SA | 29-AUG-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |
| JB14656-15<br>NSB-E1-10  | Collected: 24-AUG-12 0-10.5                                        | 11:15 By: CM                                                       | Receiv   | ved: 24-AUG | -12 By | r: MPC                     |
| JB14656-15<br>JB14656-15 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 13:49<br>30-AUG-12 16:26 | SA<br>SA | 29-AUG-12   | MP     | SOL104<br>EH<br>PH<br>XCRA |

# JB14656

Job No:

# **Internal Sample Tracking Chronicle**

AECOM, INC.

| Sample<br>Number         | Method                                                              | Analyzed                                                           | Ву                          | Prepped     | Ву      | Test Codes                 |  |
|--------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------|-------------|---------|----------------------------|--|
| JB14656-16<br>NSB-E2-4.0 | Collected: 24-AUG-12                                                | 11:05 By: CM                                                       | Received: 24-AUG-12 By: MPC |             |         |                            |  |
| JB14656-16<br>JB14656-16 | SM18 2540G<br>SASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 13:49<br>30-AUG-12 16:26 | SA<br>SA                    | 29-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |  |
| JB14656-17<br>NSB-E2-1.0 | Collected: 24-AUG-12<br>0-1.5X                                      | 10:12 By: CM                                                       | Receiv                      | ved: 24-AUG | 5-12 By | /: MPC                     |  |
| JB14656-17<br>JB14656-17 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A  | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 13:49<br>30-AUG-12 16:26 | SA<br>SA                    | 29-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |  |
| JB14656-18<br>NSB-E2-1.0 | Collected: 24-AUG-12                                                | 10:10 By: CM                                                       | Receiv                      | ved: 24-AUG | 3-12 By | 7: MPC                     |  |
| JB14656-18<br>JB14656-18 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A  | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 13:49<br>30-AUG-12 16:26 | SA<br>SA                    | 29-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |  |
| JB14656-19<br>NSB-E1-4.0 | Collected: 24-AUG-12                                                | 09:50 By: CM                                                       | Receiv                      | ved: 24-AUG | 3-12 By | 7: MPC                     |  |
| JB14656-19<br>JB14656-19 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A  | 27-AUG-12 22:00<br>29-AUG-12<br>29-AUG-12 13:49<br>30-AUG-12 16:26 | SA<br>SA                    | 29-AUG-12   | 2 MP    | SOL104<br>EH<br>PH<br>XCRA |  |
| JB14656-20<br>NSB-EB201  | Collected: 24-AUG-12<br>120824                                      | 15:30 By: CM                                                       | Receiv                      | ved: 24-AUG | 5-12 By | v: MPC                     |  |
| JB14656-20               | SM20 4500H B<br>SW846 7196A<br>ASTM D1498-76                        | 24-AUG-12 19:57<br>24-AUG-12 21:14<br>29-AUG-12                    |                             |             |         | PH<br>XCR<br>EH            |  |

# **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14656

| Sample<br>Number Method                      | Analyzed            | Ву    | Prepped     | Ву     | Test Codes |  |
|----------------------------------------------|---------------------|-------|-------------|--------|------------|--|
| JB14656-21 Collected: 24-A<br>NSB-E1-2.0-2.5 | AUG-12 09:35 By: CM | Recei | ived: 24-AU | G-12 B | y: MPC     |  |

| JB14656-21 SM18 2540G           | 27-AUG-12 22:00 | MH  |              | SOL104 |
|---------------------------------|-----------------|-----|--------------|--------|
| JB14656-21 ASTM D1498-76M       | 29-AUG-12       | SA  |              | EH     |
| JD14030-21 ASTM D1490-70M       | 29-AUU-12       | SA  |              | EH     |
| JB14656-21 SW846 9045C,D        | 29-AUG-12 13:49 | SA  |              | PH     |
| ID14656 21 CW046 2060 A /7106 A | 20 AUG 12 16:26 | 100 | 20 AUG 12 MD | VCDA   |
| JB14656-21 SW846 3060A/7196A    | 30-AUG-12 16:26 | 100 | 29-AUG-12 MP | XCRA   |

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| 1 (diliber              | 110.11               |                      | Dutter Time    | 11045011              |
| JB14656-1.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14656-1.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-1.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-1.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14656-1.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14656-1.1             | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-1.1             | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-1.1             | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-2.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-2.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14656-2.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-2.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14656-2.1             | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-2.1             | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-2.1             | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-2.1             | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-3.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-3.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-3.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-3.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-3.1             | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-3.1             | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-3.1             | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-3.1             | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-4.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-4.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-4.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-4.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-4.1             | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-4.1             | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-4.1             | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-4.1             | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-5.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-5.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-5.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14656-5.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-5.1             | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-5.1             | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-5.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14656-5.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
|                         |                      |                      |                |                       |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample. Bottle<br>Number   | Transfer<br>FROM             | Transfer<br>TO       | Date/Time      | Reason                                     |
|----------------------------|------------------------------|----------------------|----------------|--------------------------------------------|
| rumber                     | TROM                         |                      | Date/Time      | Reason                                     |
| ID14656 6 1                | g 1 g                        | D W 1.1              | 00/27/12 12 50 | <b>D</b>                                   |
| JB14656-6.1                | Secured Storage              | Dave Hunkele         |                | Retrieve from Storage                      |
| JB14656-6.1                | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-6.1                | Secured Staging Area         | Minhaj Hashmi        |                | Retrieve from Storage                      |
| JB14656-6.1                | Minhaj Hashmi                | Secured Storage      |                | Return to Storage                          |
| JB14656-6.1                | Secured Storage              | Dave Hunkele         |                | Retrieve from Storage                      |
| JB14656-6.1                | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-6.1                | Secured Staging Area         | Mayur Patel          |                | Retrieve from Storage                      |
| JB14656-6.1                | Mayur Patel                  | Secured Storage      | 08/29/12 10:39 | Return to Storage                          |
| JB14656-7.1                | Secured Storage              | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage                      |
| JB14656-7.1                | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-7.1                | Secured Staging Area         | Minhaj Hashmi        |                | Retrieve from Storage                      |
| JB14656-7.1                | Minhaj Hashmi                | Secured Storage      |                | Return to Storage                          |
| JB14656-7.1                | Secured Storage              | Dave Hunkele         |                | Retrieve from Storage                      |
| JB14656-7.1                | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-7.1                | Secured Staging Area         | Mayur Patel          |                | Retrieve from Storage                      |
| JB14656-7.1                | Mayur Patel                  | Secured Storage      | 08/29/12 10:39 | Return to Storage                          |
| ID14656 0 1                | Commad Storage               | Dave Hunkele         | 09/27/12 12.50 | Datriava from Storage                      |
| JB14656-8.1<br>JB14656-8.1 | Secured Storage Dave Hunkele | Secured Staging Area |                | Retrieve from Storage<br>Return to Storage |
| JB14656-8.1                | Secured Staging Area         | Minhaj Hashmi        |                | Retrieve from Storage                      |
| JB14656-8.1                | Minhaj Hashmi                | Secured Storage      |                | Return to Storage                          |
| JB14656-8.1                | Secured Storage              | Dave Hunkele         |                | Retrieve from Storage                      |
| JB14656-8.1                | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-8.1                | Secured Staging Area         | Mayur Patel          |                | Retrieve from Storage                      |
| JB14656-8.1                | Mayur Patel                  | Secured Storage      |                | Return to Storage                          |
| JD14030-6.1                | Mayur rater                  | Secured Storage      | 06/29/12 10.39 | Return to Storage                          |
| JB14656-9.1                | Secured Storage              | Dave Hunkele         |                | Retrieve from Storage                      |
| JB14656-9.1                | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-9.1                | Secured Staging Area         | Minhaj Hashmi        |                | Retrieve from Storage                      |
| JB14656-9.1                | Minhaj Hashmi                | Secured Storage      |                | Return to Storage                          |
| JB14656-9.1                | Secured Storage              | Dave Hunkele         |                | Retrieve from Storage                      |
| JB14656-9.1                | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-9.1                | Secured Staging Area         | Mayur Patel          |                | Retrieve from Storage                      |
| JB14656-9.1                | Mayur Patel                  | Secured Storage      | 08/29/12 10:39 | Return to Storage                          |
| JB14656-10.1               | Secured Storage              | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage                      |
| JB14656-10.1               | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-10.1               | Secured Staging Area         | Minhaj Hashmi        |                | Retrieve from Storage                      |
| JB14656-10.1               | Minhaj Hashmi                | Secured Storage      |                | Return to Storage                          |
| JB14656-10.1               | Secured Storage              | Dave Hunkele         |                | Retrieve from Storage                      |
| JB14656-10.1               | Dave Hunkele                 | Secured Staging Area |                | Return to Storage                          |
| JB14656-10.1               | Secured Staging Area         | Mayur Patel          |                | Retrieve from Storage                      |
|                            |                              | •                    |                | Č                                          |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample. Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|--------------------------|----------------------|----------------------|----------------|-----------------------|
|                          |                      |                      |                |                       |
| JB14656-10.1             | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-11.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14656-11.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-11.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14656-11.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-11.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14656-11.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14656-11.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14656-11.1             | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-12.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-12.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-12.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-12.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-12.1             | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-12.1             | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-12.1             | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-12.1             | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-13.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-13.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14656-13.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14656-13.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14656-13.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14656-13.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14656-13.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14656-13.1             | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14656-14.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-14.1             | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-14.1             | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-14.1             | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-14.1             | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-14.1             | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-14.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14656-14.1             | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-15.1             | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-15.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14656-15.1             | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14656-15.1             | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14656-15.1             | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-15.1             | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
|                          |                      |                      |                |                       |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| JB14656-15.1            | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-15.1            | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14656-16.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-16.1            | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14656-16.1            | Secured Staging Area | Minhaj Hashmi        |                | Retrieve from Storage |
| JB14656-16.1            | Minhaj Hashmi        | Secured Storage      |                | Return to Storage     |
| JB14656-16.1            | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14656-16.1            | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-16.1            | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-16.1            | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-17.1            | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14656-17.1            | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14656-17.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-17.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-17.1            | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-17.1            | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-17.1            | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-17.1            | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-18.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-18.1            | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-18.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-18.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-18.1            | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-18.1            | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-18.1            | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-18.1            | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-19.1            | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-19.1            | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-19.1            | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-19.1            | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-19.1            | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14656-19.1            | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14656-19.1            | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14656-19.1            | Mayur Patel          | Secured Storage      |                | Return to Storage     |
| JB14656-20.1            | Secured Storage      | Mehmet Temizsu       | 08/24/12 20:41 | Retrieve from Storage |
| JB14656-20.1            | Mehmet Temizsu       | Megan Melkowitz      |                | Custody Transfer      |
| JB14656-20.1            | Megan Melkowitz      | Secured Storage      |                | Return to Storage     |
| JB14656-20.2            | Secured Storage      | Dave Hunkele         | 08/29/12 06:09 | Retrieve from Storage |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle | Transfer             | Transfer             |                |                       |
|---------------|----------------------|----------------------|----------------|-----------------------|
| Number        | FROM                 | ТО                   | Date/Time      | Reason                |
| JB14656-20.2  | Dave Hunkele         | Secured Staging Area | 08/29/12 06:09 | Return to Storage     |
| JB14656-20.2  | Secured Staging Area | Sanjay Advani        | 08/29/12 08:36 | Retrieve from Storage |
| JB14656-20.2  | Sanjay Advani        | Mayur Patel          | 08/29/12 10:08 | Custody Transfer      |
| JB14656-20.2  | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |
| JB14656-21.1  | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-21.1  | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-21.1  | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-21.1  | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-21.1  | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-21.1  | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-21.1  | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-21.1  | Mayur Patel          | Sanjay Advani        | 08/29/12 10:43 | Custody Transfer      |
| JB14656-21.1  | Sanjay Advani        | Secured Storage      | 08/29/12 17:01 | Return to Storage     |
| JB14656-21.2  | Secured Storage      | Dave Hunkele         | 08/27/12 13:59 | Retrieve from Storage |
| JB14656-21.2  | Dave Hunkele         | Secured Staging Area | 08/27/12 13:59 | Return to Storage     |
| JB14656-21.2  | Secured Staging Area | Minhaj Hashmi        | 08/27/12 15:08 | Retrieve from Storage |
| JB14656-21.2  | Minhaj Hashmi        | Secured Storage      | 08/27/12 22:07 | Return to Storage     |
| JB14656-21.2  | Secured Storage      | Dave Hunkele         | 08/29/12 06:07 | Retrieve from Storage |
| JB14656-21.2  | Dave Hunkele         | Secured Staging Area | 08/29/12 06:07 | Return to Storage     |
| JB14656-21.2  | Secured Staging Area | Mayur Patel          | 08/29/12 08:10 | Retrieve from Storage |
| JB14656-21.2  | Mayur Patel          | Secured Storage      | 08/29/12 10:39 | Return to Storage     |





# General Chemistry

QC Data Summaries

#### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary



#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14656 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                              | Batch ID                                      | RL            | MB<br>Result | Units                  | Spike<br>Amount     | BSP<br>Result       | BSP<br>%Recov         | QC<br>Limits                  |
|----------------------------------------------------------------------|-----------------------------------------------|---------------|--------------|------------------------|---------------------|---------------------|-----------------------|-------------------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent<br>Chromium, Hexavalent | GN71049<br>GP66863/GN71343<br>GP66863/GN71343 | 0.010<br>0.40 | 0.0          | mg/l<br>mg/kg<br>mg/kg | .15<br>40<br>843.07 | 0.15<br>36.1<br>759 | 100.0<br>90.3<br>90.1 | 90-110%<br>80-120%<br>80-120% |

Associated Samples:

Batch GN71049: JB14656-20

Batch GP66863: JB14656-1, JB14656-2, JB14656-3, JB14656-4, JB14656-5, JB14656-6, JB14656-7, JB14656-8, JB14656-9, JB14656-10, JB14656-11, JB14656-12, JB14656-13, JB14656-14, JB14656-15, JB14656-16, JB14656-17, JB14656-18, JB14656-19, JB14656-21 (\*) Outside of QC limits

# DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

# Login Number: JB14656 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte               | Batch ID        | QC<br>Sample | Units | Original<br>Result | DUP<br>Result | RPD | QC<br>Limits |
|-----------------------|-----------------|--------------|-------|--------------------|---------------|-----|--------------|
| Chromium, Hexavalent  | GN71049         | JB14205-45   | mg/l  | 0.0020             | 0.0020        | 0.0 | 0-20%        |
| Chromium, Hexavalent  | GP66863/GN71343 | JB14656-12   | mg/kg | 0.13 U             | 0.0           | 0.0 | 0-20%        |
| Redox Potential Vs H2 | GN71230         | JB14656-20   | mv    | 372                | 370           | 0.5 | 0-10%        |
| Redox Potential Vs H2 | GN71238         | JB14656-1    | mv    | 678                | 677           | 0.1 | 0-13%        |
| Redox Potential Vs H2 | GN71253         | JB14656-14   | mv    | 214                | 195           | 9.3 | 0-13%        |
| pH                    | GN71237         | JB14656-1    | su    | 7.79               | 7.79          | 0.0 | 0-5%         |
| pH                    | GN71252         | JB14656-14   | su    | 7.69               | 7.67          | 0.3 | 0-5%         |

Associated Samples:

Batch GN71049: JB14656-20 Batch GN71230: JB14656-20

Batch GN71237: JB14656-1, JB14656-2, JB14656-3, JB14656-4, JB14656-5, JB14656-6, JB14656-7, JB14656-8, JB14656-9, JB14656-10, JB14656-11, JB14656-12, JB14656-13

Batch GN71238: JB14656-1, JB14656-2, JB14656-3, JB14656-4, JB14656-5, JB14656-6, JB14656-7, JB14656-8, JB14656-9, JB14656-10, JB14656-11, JB14656-12, JB14656-13

Batch GN71252: JB14656-14, JB14656-15, JB14656-16, JB14656-17, JB14656-18, JB14656-19, JB14656-21 Batch GN71253: JB14656-14, JB14656-15, JB14656-16, JB14656-17, JB14656-18, JB14656-19, JB14656-21

Batch GP66863: JB14656-1, JB14656-2, JB14656-3, JB14656-4, JB14656-5, JB14656-6, JB14656-7, JB14656-8, JB14656-9, JB14656-10, JB14656-11, JB14656-12, JB14656-13, JB14656-14, JB14656-15, JB14656-16, JB14656-17, JB14656-18, JB14656-19, JB14656-21 (\*) Outside of QC limits



## MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14656
Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec    | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|---------|--------------|
| Chromium, Hexavalent | GN71049         | JB14205-45   | mg/l  | 0.0020             | .15             | 0.15         | 98.7    | 85-115%      |
| Chromium, Hexavalent | GP66863/GN71343 | JB14656-12   | mg/kg | 0.13 U             | 45.6            | 40.6         | 89.1(a) | 75-125%      |
| Chromium, Hexavalent | GP66863/GN71343 | JB14656-12   | mg/kg | 0.13 U             | 1200            | 977          | 81.4(b) | 75-125%      |

## Associated Samples:

Batch GN71049: JB14656-20

Batch GP66863: JB14656-1, JB14656-2, JB14656-3, JB14656-4, JB14656-5, JB14656-6, JB14656-7, JB14656-8, JB14656-9, JB14656-10, JB14656-11, JB14656-12, JB14656-13, JB14656-14, JB14656-15, JB14656-16, JB14656-17, JB14656-18, JB14656-19, JB14656-21

- (\*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Good recovery on soluble XCR matrix spike. Low recovery (84.2%) on the post-spike. Good recovery on pH adjusted post spike (101%). Good agreement between the sample and 1:5 dilution.
- (b) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



## Percent Solids Raw Data Summary Job Number: JB14656

ENSRNJ AECOM, INC. Account:

|                                                            |           |                 |           | ~~~~~~     |
|------------------------------------------------------------|-----------|-----------------|-----------|------------|
| <b>Sample:</b> JB14656-1 <b>ClientID:</b> NSB-E4-4.0-4.5   | Analyzed: | 27-AUG-12 by MI | H Method: | SM18 2540G |
| Wet Weight (Total)                                         | 35.69     | g               |           |            |
| Tare Weight                                                | 29.42     | g               |           |            |
| Dry Weight (Total)                                         | 35.17     | g               |           |            |
| Solids, Percent                                            | 91.7      | %               |           |            |
| <b>Sample:</b> JB14656-2 <b>ClientID:</b> NSB-E4-1.0-1.5   | Analyzed: | 27-AUG-12 by MI | H Method: | SM18 2540G |
| Wet Weight (Total)                                         | 31.23     | g               |           |            |
| Tare Weight                                                | 25.61     | g               |           |            |
| Dry Weight (Total)                                         | 30.64     | g               |           |            |
| Solids, Percent                                            | 89.5      | %               |           |            |
| <b>Sample:</b> JB14656-3 <b>ClientID:</b> NSB-E3-20.0-20.5 | Analyzed: | 27-AUG-12 by MI | H Method: | SM18 2540G |
| Wet Weight (Total)                                         | 34.8      | g               |           |            |
| Tare Weight                                                | 28.88     | g               |           |            |
| Dry Weight (Total)                                         | 34.19     | g               |           |            |
| Solids, Percent                                            | 89.7      | %               |           |            |
| <b>Sample:</b> JB14656-4 <b>ClientID:</b> NSB-E3-16.0-16.5 | Analyzed: | 27-AUG-12 by MI | H Method: | SM18 2540G |
| Wet Weight (Total)                                         | 32.08     | g               |           |            |
| Tare Weight                                                | 25.56     | g               |           |            |
| Dry Weight (Total)                                         | 31.16     | g               |           |            |
| Solids, Percent                                            | 85.9      | %               |           |            |
| Sample: JB14656-5<br>ClientID: NSB-E3-10.0-10.5            | Analyzed: | 27-AUG-12 by MI | H Method: | SM18 2540G |
| Wet Weight (Total)                                         | 29.37     | g               |           |            |
| Tare Weight                                                | 23.52     | g               |           |            |
| Dry Weight (Total)                                         | 27.06     | g               |           |            |
| Solids, Percent                                            | 60.5      | %               |           |            |
| Sample: JB14656-6<br>ClientID: NSB-E3-5.5-6.0              | Analyzed: | 27-AUG-12 by MF | H Method: | SM18 2540G |
| Wet Weight (Total)                                         | 31.58     | g               |           |            |
| Tare Weight                                                | 26.01     | g               |           |            |
| Dry Weight (Total)                                         | 29.74     | g               |           |            |
| Solids, Percent                                            | 67        | %               |           |            |



## Percent Solids Raw Data Summary Job Number: JB14656

ENSRNJ AECOM, INC. **Account:** 

| G 1 TD116565                                               |                | AVIG 404 AVI | 3.5.0.3 | G) \$10 Q\$10 G |
|------------------------------------------------------------|----------------|--------------|---------|-----------------|
| <b>Sample:</b> JB14656-7 <b>ClientID:</b> NSB-E2-21.0-21.5 | Analyzed: 27-  | AUG-12 by MH | Method: | SM18 2540G      |
| Wet Weight (Total)                                         | 31.43          | g            |         |                 |
| Tare Weight                                                | 24.78          | g            |         |                 |
| Dry Weight (Total)                                         | 30.64          | g            |         |                 |
| Solids, Percent                                            | 88.1           | %            |         |                 |
| <b>Sample:</b> JB14656-8 <b>ClientID:</b> NSB-E2-16.0-16.5 | Analyzed: 27-A | AUG-12 by MH | Method: | SM18 2540G      |
| Wet Weight (Total)                                         | 27.54          | g            |         |                 |
| Tare Weight                                                | 19.52          | g            |         |                 |
| Dry Weight (Total)                                         | 26.62          | g            |         |                 |
| Solids, Percent                                            | 88.5           | %            |         |                 |
| <b>Sample:</b> JB14656-9 <b>ClientID:</b> NSB-E2-12.5-13.0 | Analyzed: 27-A | AUG-12 by MH | Method: | SM18 2540G      |
| Wet Weight (Total)                                         | 31.89          | g            |         |                 |
| Tare Weight                                                | 23.34          | g            |         |                 |
| Dry Weight (Total)                                         | 29.24          | g            |         |                 |
| Solids, Percent                                            | 69             | %            |         |                 |
| <b>Sample:</b> JB14656-10 <b>ClientID:</b> NSB-E3-4.0-4.5  | Analyzed: 27-A | AUG-12 by MH | Method: | SM18 2540G      |
| Wet Weight (Total)                                         | 25.35          | g            |         |                 |
| Tare Weight                                                | 19.17          | g            |         |                 |
| Dry Weight (Total)                                         | 24.58          | g            |         |                 |
| Solids, Percent                                            | 87.5           | %            |         |                 |
| Sample: JB14656-11<br>ClientID: NSB-E3-0.5-1.0             | Analyzed: 27-A | AUG-12 by MH | Method: | SM18 2540G      |
| Wet Weight (Total)                                         | 26.83          | g            |         |                 |
| Tare Weight                                                | 21.5           | g            |         |                 |
| Dry Weight (Total)                                         | 26.11          | g            |         |                 |
| Solids, Percent                                            | 86.5           | %            |         |                 |
| Sample: JB14656-12<br>ClientID: NSB-E1-20.0-20.5           | Analyzed: 27-  | AUG-12 by MH | Method: | SM18 2540G      |
| Wet Weight (Total)                                         | 25             | g            |         |                 |
| Tare Weight                                                | 18.64          | g            |         |                 |
| Dry Weight (Total)                                         | 24.2           | g            |         |                 |
| Solids, Percent                                            | 87.4           | %            |         |                 |



## Percent Solids Raw Data Summary Job Number: JB14656

ENSRNJ AECOM, INC. Account:

| Sample: JB14656-13<br>ClientID: NSB-E1-16.0-16.5                  | Analyzed:                       | 27-AUG-12 by M   | H Method: | SM18 2540G |
|-------------------------------------------------------------------|---------------------------------|------------------|-----------|------------|
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 33.83<br>26.05<br>32.84<br>87.3 | g<br>g<br>g<br>% |           |            |
| <b>Sample:</b> JB14656-14 <b>ClientID:</b> NSB-E1-12.5-13.0       | Analyzed:                       | 27-AUG-12 by M   | H Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 34.02<br>26.43<br>32.86<br>84.7 | g<br>g<br>g<br>% |           |            |
| Sample: JB14656-15<br>ClientID: NSB-E1-10.0-10.5                  | Analyzed:                       | 27-AUG-12 by M   | H Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 32.97<br>27.13<br>32.41<br>90.4 | g<br>g<br>g<br>% |           |            |
| Sample: JB14656-16<br>ClientID: NSB-E2-4.0-4.5                    | Analyzed:                       | 27-AUG-12 by M   | H Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 34.21<br>27.1<br>31.77<br>65.7  | g<br>g<br>g<br>% |           |            |
| Sample: JB14656-17<br>ClientID: NSB-E2-1.0-1.5X                   | Analyzed:                       | 27-AUG-12 by M   | H Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 30.93<br>24.97<br>30.04<br>85.1 | g<br>g<br>g<br>% |           |            |
| <b>Sample:</b> JB14656-18 <b>ClientID:</b> NSB-E2-1.0-1.5         | Analyzed:                       | 27-AUG-12 by M   | H Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 28.26<br>22.35<br>27.34<br>84.4 | g<br>g<br>g<br>% |           |            |



Page 4 of 4

## Percent Solids Raw Data Summary Job Number: JB14656

ENSRNJ AECOM, INC. **Account:** 

| Sample: JB14656-19<br>ClientID: NSB-E1-4.0-4.5                    | Analyzed:                       | 27-AUG-12 by MH  | <b>Method:</b> SM18 2540G |
|-------------------------------------------------------------------|---------------------------------|------------------|---------------------------|
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 28.69<br>22.28<br>27.48<br>81.1 | g<br>g<br>g<br>% |                           |
| Sample: JB14656-21<br>ClientID: NSB-E1-2.0-2.5                    | Analyzed:                       | 27-AUG-12 by MH  | <b>Method:</b> SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent | 25.57<br>17.89<br>24.49<br>85.9 | g<br>g<br>g<br>% |                           |





| General Ch | emistry |  |  |
|------------|---------|--|--|
|            |         |  |  |
|            |         |  |  |
| Raw Data   |         |  |  |



## Hexavalent Chromium

|              |                                  |                      |                                       |                                       | Y Values Corr        |                        |                    |               |                                                  |                  |              |                   | ii.             |
|--------------|----------------------------------|----------------------|---------------------------------------|---------------------------------------|----------------------|------------------------|--------------------|---------------|--------------------------------------------------|------------------|--------------|-------------------|-----------------|
| Bottle<br>ID | Sample #                         | Sample<br>Absorbance | BKGRD<br>Abs                          | Analyzed<br>Times                     | Sample<br>Absorbance | X Values<br>Conc(mg/l) | Final Vol.<br>(ml) | Sam Vol.      | Dilution                                         | Final Conc.      | Units        | MDL               | RDL             |
|              | Test Title:                      | XCr                  |                                       |                                       | 1                    |                        | , ,                |               | SW846 71                                         | 96A              |              | V 820, 118 92 1 5 | COMMITTED AND A |
|              | GN Batch:                        | GN71049              |                                       |                                       |                      |                        |                    |               |                                                  |                  |              |                   |                 |
|              | Analyst:                         | MM                   |                                       |                                       |                      |                        |                    |               |                                                  |                  |              |                   |                 |
|              | Prep Date:                       | NA<br>0/24/2042      |                                       |                                       |                      | Note: Use              | 4 for CLF          | list pol      | nter, 1 for                                      | reg. List pointe | er.          |                   |                 |
|              | Analysis Date:<br>Instrument ID: | 8/24/2012<br>H       |                                       |                                       |                      |                        |                    |               |                                                  |                  |              |                   |                 |
|              | motrament ib.                    |                      |                                       |                                       |                      |                        |                    |               |                                                  | Corr. Coef:      | 0.99986      |                   |                 |
|              | Cal. Blk.                        | 0.000                | NA                                    | 11:10                                 | 0.000                | 0.0000                 | 1                  |               |                                                  |                  | *            |                   |                 |
|              | STD1                             | 0.008                | NA                                    | NA                                    | 0.008                | 0.0100                 |                    |               |                                                  | Slope:           | 0.8863       |                   |                 |
|              | STD2                             | 0.044                | NA                                    | NA                                    | 0.044                | 0.0500                 |                    |               |                                                  |                  |              |                   |                 |
|              | STD3                             | 0.088                | NA                                    | NA                                    | 0.088                | 0.1000                 |                    |               |                                                  | Y intercept:     | -0.0008      |                   |                 |
|              | STD4<br>STD5                     | 0,265<br>0,445       | NA<br>NA                              | NA<br>NA                              | 0.265<br>0.445       | 0.3000                 |                    |               |                                                  |                  |              |                   |                 |
|              | STD6                             | 0.696                | NA<br>NA                              | NA<br>NA                              | 0.696                | 0.8000                 | Final Vol          | Sam. Vol.     |                                                  |                  |              |                   |                 |
|              | STD7                             | 0.894                | NA.                                   | 11:05                                 | 0.894                | 1.0000                 | (ml)               | (ml)          | Dilution                                         | Final Conc.      | Units        | MDL               | RDL             |
|              | ccv                              | 0.443                | NA                                    | 20:59                                 | 0.443                | 0.5007                 | NA                 | NA            | NA                                               | NA               | mg/l         | 0.001             | 0.010           |
|              | ССВ                              | 0.000                | NA                                    | 20:59                                 | 0.000                | 0.0009                 | NA                 | NA            | NA                                               | NA               | mg/l         | 0.0013            | 0.010           |
|              | GN71049-MB1                      | 0.000                | 0.000                                 | 21:06                                 | 0.000                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              | GN71049-B1                       | 0.132                | 0.000                                 | 21:06                                 | 0.132                | 0.1498                 | 50.0               | 50.0          | 1                                                | 0.150            | mg/l         | 0.0014            | 0.010           |
|              | GN71049-S1<br>GN71049-D1         | 0.133                | 0.000                                 | 21:06<br>21:06                        | 0.133<br>0.001       | 0.1509                 | 50.0<br>50.0       | 50.0<br>50.0  | 1 1                                              | 0.151            | mg/l         | 0.0014            | 0.010           |
| 4            | JB14205-41                       | 0.092                | 0.064                                 | 21:06                                 | 0.001                | 0.0020                 | 50.0               | 50.0          | 1                                                | 0.002            | mg/l<br>mg/l | 0.0014            | 0.010           |
| 5            | JB14205-43                       | 0.020                | 0.010                                 | 21:06                                 | 0.010                | 0.0323                 | 50.0               | 50.0          | 1                                                | 0.032            | mg/l         | 0.0014            | 0.010           |
| 5            | JB14205-44                       | 0.013                | 0.001                                 | 21:06                                 | 0.012                | 0.0144                 | 50.0               | 50.0          | 1                                                | 0.014            | mg/l         | 0.0014            | 0.010           |
| 5            | JB14205-45                       | 0.001                | 0.000                                 | 21:06                                 | 0.001                | 0.0020                 | 50.0               | 50.0          | 1                                                | 0.002            | mg/l         | 0.0014            | 0.010           |
| 5            | JB14205-46                       | 0.013                | 0.006                                 | 21:06                                 | 0.007                | 0.0088                 | 50.0               | 50.0          | 1                                                | 0.009            | mg/l         | 0.0014            | 0.010           |
| 5            | JB14205-47                       | 0.000                | 0.000                                 | 21:06                                 | 0.000                | 0.0009                 | 50.0               | 50.0          | 1 1                                              | 0.001            | mg/l         | 0.0014            | 0.010           |
|              | CCV                              | 0.438                | NA<br>NA                              | 21:06<br>21:06                        | 0.438<br>0.000       | 0.4951                 | NA<br>NA           | NA<br>NA      | NA<br>NA                                         | NA<br>NA         | mg/l         | 0.0013            | 0.010           |
| 5            | JB14205-48                       | 0.000                | 0.000                                 | 21:14                                 | 0.000                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l<br>mg/l | 0.0013            | 0.010           |
| 5            | JB14205-49                       | 0.010                | 0.002                                 | 21:14                                 | 0.008                | 0.0099                 | 50.0               | 50.0          | 1                                                | 0.010            | mg/l         | 0.0014            | 0.010           |
| 5            | JB14205-50                       | 0.018                | 0.005                                 | 21:14                                 | 0.013                | 0.0155                 | 50.0               | 50.0          | 1                                                | 0.016            | mg/t         | 0.0014            | 0.010           |
| 5            | JB14205-51                       | 0.001                | 0.000                                 | 21:14                                 | 0.001                | 0.0020                 | 50.0               | 50.0          | 1                                                | 0.002            | mg/l         | 0.0014            | 0.010           |
| 12           | JB14655-1                        | 0.286                | 0.286                                 | 21:14                                 | 0.000                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
| 1            | -JB14646-20                      | 0.000                | 0.000                                 | 21:14                                 | 0.000                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              | GN71049-S2<br>GN71049-D2         | 0.392                | 0.286<br>0.286                        | 21:14<br>21:14                        | 0.106<br>0.000       | 0.1205<br>0.0009       | 50.0<br>50.0       | 50.0<br>50.0  | 1                                                | 0.120            | mg/l         | 0.0014            | 0.010           |
|              | JB14655-1DILCONF                 | T                    | 0.047                                 | 21:14                                 | 0.001                | 0.0009                 | 50.0               | 50.0          | 5                                                | 0.010            | mg/l<br>mg/l | 0.0070            | 0.050           |
| JВ           | 14655-1PHADJPSCC                 |                      | 0.291                                 | 21:14                                 | 0.142                | 0.1611                 | 50.0               | 50.0          | 1                                                | 0.161            | mg/l         | 0.0014            | 0.010           |
|              | CCV                              | 0.431                | NA                                    | 21:14                                 | 0.431                | 0.4872                 | NA                 | NA            | NA                                               | NA               | mg/l         | 0.0013            | 0.010           |
|              | ССВ                              | 0.000                | NA                                    | 21:14                                 | 0.000                | 0.0009                 | NA                 | NA            | NA                                               | NA               | mg/l         | 0.0013            | 0.010           |
|              | /                                |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 11                                               | 0.001            | mg/l         | 0.0014            | 0.010           |
|              | JB14654-20                       |                      |                                       |                                       | FALSE<br>FALSE       | 0.0009                 | 50.0<br>50.0       | 50.0<br>50.0  | 1 1                                              | 0.001            | mg/l         | 0.0014            | 0.010           |
|              | -13/10-4 PC                      |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l<br>mg/l | 0.0014            | 0.010           |
|              | ay 5-27.                         | 12                   |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              | l                                |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      | · · · · · · · · · · · · · · · · · · · |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      |                                       | <del> </del>                          | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              | ccv                              |                      | NA                                    |                                       | FALSE                | 0.0009<br>#VALUEI      | 50.0<br>NA         | 50.0<br>NA    | 1<br>NA                                          | 0.001<br>NA      | mg/l<br>mg/l | 0.0014            | 0.010           |
|              | CCB                              |                      | NA NA                                 |                                       |                      | #VALUE!                | NA<br>NA           | NA<br>NA      | NA<br>NA                                         | NA NA            | mg/l         | 0.0013            | 0.010           |
|              |                                  |                      |                                       | · · · · · · · · · · · · · · · · · · · | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0,0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/i         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE<br>FALSE       | 0.0009                 | 50.0<br>50.0       | 50.0<br>50.0  | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l<br>mg/l | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/i         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 500                | <b>\$</b> 0.0 | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | /90.0         | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |
|              | ccv                              |                      | NA                                    |                                       |                      | #VALUE!                | NA \               | / NA          | NA                                               | NANA             | mg/l         | 0.0013            | 0.010           |
|              | ССВ                              | -                    | NA                                    |                                       | ENICE                | #VALUE!                | NA<br>FO.O.        | NA<br>EQ.     | ,,,,,,                                           | NA<br>0.004      | mg/l         | 0.0013            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE<br>FALSE       | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l<br>mg/l | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | <del>                                     </del> | 0.001            | mg/l<br>mg/l | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1 1                                              | 0.001            | mg/l         | 0.0014            | 0.010           |
|              |                                  |                      |                                       |                                       | FALSE                | 0.0009                 | 50.0               | 50.0          | 1                                                | 0.001            | mg/l         | 0.0014            | 0.010           |



| Test: Hexavalent Chromium Product: XCr Method: SW846 7196A                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MDL = 0.0013 mg/l<br>RDL = 0.010 mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GNBatch ID: GNTLO49<br>Date: <u>GP4700</u> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Digestion Batch QC Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Units = mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |
| Method Blank ID: GN 1000 Date: 8040 Spike Blank ID: GN 1040 B Date: Duplicate ID: GN 1040 Samp. Result: MS ID: GN 1040 Samp. Result:                                                                                                                                                                                                                                                                                                                                                                                | Result: .\5002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Spike: , \5                                |
| Analysis Batch QC Summary Units =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |
| CCV:       Result:       415       TV:         CCV:       Result:       460       TV:         CCV:       Result:       TV:         CCV:       Result:       TV:         CCV:       Result:       TV:         CCV:       Result:       TV:         CCB:       Result:       RDL:         CCB:       Result:       RDL: | %Rec.: 07 44<br>%Rec.: %Rec.: b>&amp;</b><br><u>&amp;</u><br>-<br>-     |
| Reagent Reference Numbers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
| Nel 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | thaollod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |
| /802                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
| Initial Calibration Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |
| Analyst Date: Date: Comments:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SC CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |

Fem: GN076-01 R.w. Date: 1/10/11





| Test: Hexavalent Chromium           |           |                 | L = 0.0013 mg/l                | GNBatch ID:                            |
|-------------------------------------|-----------|-----------------|--------------------------------|----------------------------------------|
| Product: XCr<br>Method: SW846 7196/ | Δ         | KDI             | _ = 0.010 mg/l                 | Date: 804000                           |
| Digestion Batch QC S                |           | Unit            | :s = mg/l                      |                                        |
| *                                   |           |                 | _                              |                                        |
|                                     |           |                 |                                | _RDL: <rdl:< th=""></rdl:<>            |
| Spike Blank ID:                     |           | Date:           | Result:                        | _ Spike: %Rec.:                        |
| ·                                   |           |                 |                                | :                                      |
| MS 10: GNT1049-S                    | 2_Samp. I | Result: <u></u> | S Result: <u>120</u>           | _ Spike: <u>-\15</u> %Rec: <u>\80%</u> |
| Diluted Sample ID: JBH              | 1551      | Samp. Result:_  | <u></u> 601 Dil. Re            | esult: <u>0\0</u> %RPD: <u>\(03\</u>   |
|                                     |           |                 |                                | 101 Spike: 15 %Rec: 107.7%             |
| Analysis Batch QC Sum               | mary      | Units = mg/l    |                                | -                                      |
| ccv:                                | Result:   | TV:             | %Rec.:                         |                                        |
| CCV:                                | _         |                 |                                |                                        |
| CCV :                               |           |                 |                                |                                        |
| CCV :                               |           |                 |                                |                                        |
| CCV :                               |           |                 |                                |                                        |
| CCV:                                |           |                 |                                |                                        |
| CCB:                                | Result:   | RDL:            | <rdl:< td=""><td></td></rdl:<> |                                        |
| CCB:                                |           | RDL:            |                                |                                        |
| CCB:                                |           |                 |                                |                                        |
| CCB:                                |           |                 |                                |                                        |
| CCB:                                |           |                 |                                |                                        |
| CCB:                                |           | RDL:            |                                |                                        |
|                                     |           |                 |                                |                                        |
| Reagent Reference N                 | umbers:   |                 |                                |                                        |
| •                                   |           |                 |                                |                                        |
|                                     |           |                 |                                |                                        |
|                                     |           |                 |                                |                                        |
|                                     |           |                 |                                |                                        |
| Initial Calibration Sou             |           |                 |                                |                                        |
| Continuing Calibratio               | n Source  | •               |                                |                                        |
| Analyst:                            | Date      | : 8/24/2012     | ·                              |                                        |
| Comments:                           |           |                 |                                |                                        |

F em: GN076-01 R.w. Date: 1/10/11





## Hexavalent Chromium pH Adjustment Log Method: SW846 7196A

| Methor: 2440        | 40 / 130A |                   |
|---------------------|-----------|-------------------|
| pH adj. start time: | 20:44     | <br>pH Adjust. Da |
| pH adj. end time:   | 20:51     | GN Batch ID:      |

|                      | Initial          | 1               | 1        | 1               | 1         | 1                                       |
|----------------------|------------------|-----------------|----------|-----------------|-----------|-----------------------------------------|
|                      | Sample<br>Volume | Final<br>Volume | pH after | bkg pH<br>after |           |                                         |
| Sample ID            | (ml)             | (ml)            | H2SO4    | H2SO4           |           | Comments                                |
| ccv                  | 45               | \$0             | 1.83     |                 | 19ML      | Span With                               |
| ccv                  |                  |                 |          |                 |           |                                         |
| ccv                  |                  |                 |          |                 |           |                                         |
| ccv                  | 1.               |                 |          |                 |           |                                         |
| ССВ                  | 45               | 50              | 179      |                 |           |                                         |
| ССВ                  |                  |                 |          |                 | ļ         |                                         |
| ССВ                  |                  |                 |          |                 |           |                                         |
| CCB                  |                  |                 |          |                 |           | - d - d - d - d - d - d - d - d - d - d |
| MSJB14205-45         | 45               | 50              | 1.98     | 193             | IML       | 75 ppm Mossell                          |
| DNb 4                |                  |                 | 187      | 176             |           |                                         |
| SBK1                 |                  |                 | 199      | 174             | IML       | 7 Sporm Mossell                         |
| PB M/B)              |                  |                 | 193      | 1.81            |           | <b>V</b> .                              |
| 1JBK4265-41          |                  |                 | 195      | 1.99            |           |                                         |
| 243                  |                  |                 | 1.85     | 179             |           |                                         |
| 344                  |                  |                 | 180      | 1.11            |           |                                         |
| 4. 45                |                  |                 | 1.8A     | 1.70            |           |                                         |
| 540                  |                  |                 | 195      | 1.85            |           |                                         |
| 6. 4                 |                  |                 | 197      | 187             |           |                                         |
| 748                  |                  |                 | 191      | 1.99            |           |                                         |
| 850                  |                  |                 | 190      | 191             |           |                                         |
| 949                  |                  |                 | 1.80     | 111             |           |                                         |
| 1051                 |                  |                 | 1.92     | 1.80            |           |                                         |
| 11.UB/4655-1         |                  | 4               | 194      | 193             |           |                                         |
| 12.UBIA10570-20      | 4                | <u> </u>        | 143      | 1.75            |           |                                         |
| 13.                  | A !              | <u> </u>        | 100      | 1-70            | 1.44.1    | ~7.6 - a V00(1) 1 1 1                   |
| 14JB14655-1          | 45               | \$0             | 1.87     | 179             | IML       | 75 ppm tosull                           |
| 15.                  | +                | 4               | 18A      |                 |           |                                         |
| 16.                  |                  |                 |          |                 |           |                                         |
| 17.                  |                  |                 |          |                 |           |                                         |
| 18.                  |                  |                 |          |                 |           |                                         |
| 19.                  |                  |                 |          |                 |           |                                         |
| 20.<br>PSJBY4tV555-1 | 45               | SD              | 13       | 195             | ON A-B ON | all han -to - Made                      |
| DIF 4                | 4                | 4               | 1.89     | 193             | VIL 10 AV | VI IN 175 gam Morluil                   |
| DIL 4                | 4                | -4              | 1:79.1   | V 10            |           | 13 mm C-11                              |
|                      | ļ                |                 |          |                 | <u> </u>  |                                         |

| Reagent Information:                         | 11/200                    |       |
|----------------------------------------------|---------------------------|-------|
|                                              | mska                      |       |
| Analyst:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Date: OVA 21MQC Reviewer: | Date: |
|                                              | <u> </u>                  |       |

Form: GN077-01 Rev Date:1/10/11



Hexavalent Chromium pH Adjustment Log Method: SW846 7196A (NJDEP mod)

pH adj. start time: pH adj. end time:

10:57

pH Adjust. Date:

| pH adj. end time:   |                  | 11:03                                            | <del></del> .                           | pH Adjust. Date: 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 124/12.                       |
|---------------------|------------------|--------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
|                     | Initial          | T                                                |                                         | GN Batch ID: 4NTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 941                           |
| 1                   | Sample<br>Volume | Final                                            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Sample ID           | (ml)             | Volume<br>(ml)                                   | pH after                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| Calibration Blank   | 45               | 50                                               | H2SO4                                   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spike Info.                   |
| 6.010 mg/l standard | 120              | 2-1                                              | 1-91                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 0.050 mg/l standard |                  | <del></del>                                      | 1.85                                    | 5 ppm ABSolute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10 ml of 5 m - 0.1          |
| 0.100 mg/l standard |                  | <del>-  </del>  -                                | 1.96                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10 ml of 5 mg/l to 50 ml FV |
| 0.300 mg/l standard | <del>-   -</del> |                                                  | 1.80                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.50 ml of 5 mg/l to 50 mL FV |
| 0.500 mg/l standard |                  | <del>-  </del>                                   | .88                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.00 ml of 5 mg/l to 50 mL FV |
| 0.800 mg/l standard |                  | -                                                | 194                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00 ml of 5 mg/l to 50 mL FV |
| 1.00 mg/l standard  |                  |                                                  | 98                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.00 ml of 5 mg/l to 50 mL FV |
| 2.00 mg/l standard  | -1               | 7-1                                              | . 86                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.00 ml of 5 mg/l to 50 mL FV |
| 3 - 1 - 1 - 1       | ···              |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.0 ml of 5 mg/l to 50 mL FV |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20.0 ml of 5 mg/l to 50 mL FV |
|                     |                  |                                                  |                                         | Application of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t |                               |
|                     | <u> </u>         |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| 7,61                | <del></del>      | raise                                            | Z \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  | 310.                                             |                                         | A CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  | .                                       | 46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |
|                     | <u> </u>         |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  |                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  | -                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  | \$100 E                                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  | 1                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  | -                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  | +                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  |                                                  |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  | 1                                                | <del></del>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  | <del>                                     </del> | <del></del>                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     |                  | <del>                                     </del> | <del> </del>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| ent Information:    |                  | 500                                              | - Cart                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
|                     | <del></del> _    | <u> </u>                                         | atta                                    | und                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               |
| ( Ni                | <del></del>      | -                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |
| t: / Mush           | Date:_ Q         | 2 /24/12                                         |                                         | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |

orm: GN078-01 'av Detailariania



## Reagent Information Log - XCR - water - 7196A

| Reagent                                                  | Exp. Date                              | Reagent # or Manufacturer/Lot                            |
|----------------------------------------------------------|----------------------------------------|----------------------------------------------------------|
| Calibration Source: Hexavalent Chromium, 1000 mg/L Stock | 3/19/2015                              | Absolute Grade Lot # 031912                              |
| Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock | 5/31/2017                              | Ultra lot # L00439                                       |
| External Check                                           | 5/31/2017                              | Ultra lot # L00439                                       |
| Spiking Solution Source                                  | 4/12/2015                              | Absolute Grade Lot # 041212                              |
| Diphenyl carbazide Solution                              | 9/13/2012                              | GNE7-33249-XCR                                           |
| Sulfuric Acid, 10%                                       | 2/4/2013                               | GNE8-33134XCR                                            |
| · · · · · · · · · · · · · · · · · · ·                    | ·                                      | PROPERTY BANDANIA AND AND AND AND AND AND AND AND AND AN |
|                                                          | ************************************** |                                                          |
|                                                          |                                        |                                                          |
|                                                          |                                        |                                                          |

Form: GN087A-23 Rev. Date: 10/3/05





| Test: Redox Pote | ential  |
|------------------|---------|
| Matrix: Aqueous  | $\circ$ |

Matrix: Solid  **Test Code: REDOX** Method: ASTM D1498-76 Method: ASTM D1498-76 Mod.

Analyst: SANJAYA Date: 08/29/12 GN71230 GN Batch ID:

| Temp (Deg C): | 25 |
|---------------|----|
|               |    |

| Quality Control Summary    |          |       |       |       |        |        |
|----------------------------|----------|-------|-------|-------|--------|--------|
| Sample ID: GN71230-D1      | Results: | 372.3 | Dup:  | 370.3 | % RPD: | 0.54%  |
| Ferrous-Ferric True: 675   | _        |       | Found | 653.4 | % Rec  | 96.80% |
| pH 4 Quinhydrone True: 462 |          |       | Found | 458.7 | % Rec  | 99.29% |
| pH 4 Quinhydrone True: 462 |          |       | Found | 447.7 | % Rec  | 96.90% |
| pH 4 Quinhydrone True: 462 |          |       | Found |       | % Rec  |        |
| pH 7 Quinhydrone True: 285 |          |       | Found | 259.1 | % Rec  | 90.91% |
| pH 7 Quinhydrone True: 285 |          |       | Found | 260.2 | % Rec  | 91.30% |
| pH 7 Quinhydrone True: 285 |          |       | Found |       | % Rec  |        |

| Sample #:               | mv vs. Ag/AgCl<br>Electrode           | Corrected results (mv<br>vs. Hydrogen electrode) |  |
|-------------------------|---------------------------------------|--------------------------------------------------|--|
| Ferrous-Ferric Solution | 478.1                                 | 653.4                                            |  |
| pH 4 Quinhydrone        | 283.3                                 | 458.7                                            |  |
| pH 7 Quinhydrone        | 83.7                                  | 259.1                                            |  |
| Dup GN71230-D1          | 194.9                                 | 370.3                                            |  |
| 1. JB14656-20           | 197                                   | 372.3                                            |  |
| 2.                      |                                       |                                                  |  |
| 3.                      |                                       |                                                  |  |
| 4.                      |                                       |                                                  |  |
| 5.                      |                                       |                                                  |  |
| 6.                      |                                       |                                                  |  |
| 7                       |                                       |                                                  |  |
| 8.                      |                                       |                                                  |  |
| 9.                      |                                       |                                                  |  |
| pH 4 Quinhydrone        | 272.3                                 | 447.7                                            |  |
| pH 7 Quinhydrone        | 84.8                                  | 260.2                                            |  |
| 10.                     | ·                                     |                                                  |  |
| 11.                     |                                       |                                                  |  |
| 12.                     |                                       |                                                  |  |
| 13.                     |                                       |                                                  |  |
| 14.                     |                                       |                                                  |  |
| 15                      | · · · · · · · · · · · · · · · · · · · |                                                  |  |
| 16.                     |                                       |                                                  |  |
| 17.                     |                                       |                                                  |  |
| 18.                     |                                       |                                                  |  |
| 19.                     |                                       |                                                  |  |
| pH 4 Quinhydrone        |                                       |                                                  |  |
| pH 7 Quinhydrone        |                                       |                                                  |  |

| *** Note: Results \ | /s Ag/AgCl electrode are | e converted to corrected re | esults automatically at the inst | trument by changing to the | e relative mv scale. | This conversion |
|---------------------|--------------------------|-----------------------------|----------------------------------|----------------------------|----------------------|-----------------|
| is done by adding a | bout 200 mV to the Ag/   | 'AgCl reading.              |                                  |                            |                      |                 |

| is done by adding about 200 my i | to the Agragor reading. |                     |       |       |
|----------------------------------|-------------------------|---------------------|-------|-------|
| Reagent Numbers:                 | Redox Standard: GNE-31  | 456-ORP Exp:9/15/12 |       |       |
| •                                |                         | •                   | 3. () |       |
| Comments:                        |                         |                     | 11.10 |       |
|                                  |                         |                     |       |       |
|                                  |                         |                     |       |       |
| Analyst: S.A.                    | Date: 08/29/12          | QC Reviewer:        |       | Date: |
| F/N GN141.DOC                    |                         | <del></del>         |       |       |

Rev. Date: 3/27/2007



| N71230 |  |
|--------|--|
|        |  |

| *   |     |     |
|-----|-----|-----|
|     | •   |     |
| ACC | JTE | ST. |

| D 1#      | 38 |
|-----------|----|
| Balance # | •  |

| Analyst S.A.      |
|-------------------|
| Method EH         |
| Prep Date 8/29/12 |
| GP# GN7/230_RH    |

Sample Prep Log

| Sample ID                               | Sample Size | Final Volume |
|-----------------------------------------|-------------|--------------|
| Sample ID  36 14656-20 -20Ap            | York 40rl   |              |
| -2-0Pup                                 | 40~         |              |
| 20 4                                    |             |              |
|                                         |             |              |
| ,                                       |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
| MAMPET.                                 |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
| *************************************** |             | ·            |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |
|                                         |             |              |

| Form: | GN1   | 66-02  |
|-------|-------|--------|
| Rev I | )ate: | 8/5/05 |

| OC Boulow |           |  |  |
|-----------|-----------|--|--|
|           | QC Review |  |  |



Test: pH, Corrosivity Method: SW846 9040B or SW846 9045C

Product: PH, CORR
Analyst: SANJAYA
tch ID: GN71237

Thermometer ID: 6539
Correction Factor: 0

Analyst: GN Batch ID: Analysis Date: 8/29/2012 50

pH Meter ID:

QC Summary Sample ID: JB14656-1 Duplicate ID: GN71237-D1 Dup Result: % RPD: 0.00% 7.79

|                                                                                                                                                                                          | 0.451                    | Uncorrected/                |           |                                       |              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------|-----------|---------------------------------------|--------------|
| Buffer Check: 4 Buffer Check: 7 Buffer Check: 7 Buffer Check: 10 GN71237-D1 JB14656-1 JB14656-10 JB14656-12 JB14656-12 JB14656-2 JB14656-3 JB14656-3 JB14656-4 JB14656-5 Buffer Check: 4 | ./Vol. used<br>or soilds | Corrected Temp in<br>Deg C. | Result    | Corrosivity                           | Read time    |
| Buffer Check: 7 Buffer Check: 10 GN71237-D1 JB14656-1 JB14656-10 JB14656-12 JB14656-12 JB14656-13 JB14656-2 JB14656-3 JB14656-3 JB14656-4 JB14656-5 Buffer Check: 4                      | Ji SUllus                | 25                          | 4.01      | T                                     | 11:24        |
| Buffer Check: 10 GN71237-D1 JB14656-1 JB14656-10 JB14656-11 JB14656-12 JB14656-13 JB14656-2 JB14656-3 JB14656-3 JB14656-4 JB14656-5 Buffer Check: 4                                      |                          | 25                          | 7.04      |                                       | 11.27        |
| GN71237-D1  JB14656-1  JB14656-10  JB14656-11  JB14656-12  JB14656-13  JB14656-2  JB14656-3  JB14656-4  JB14656-4  JB14656-5  Buffer Check: 4                                            |                          | 25                          | 10.02     |                                       |              |
| JB14656-1  JB14656-10  JB14656-11  JB14656-12  JB14656-13  JB14656-2  JB14656-3  JB14656-4  JB14656-4  JB14656-5  Buffer Check: 4                                                        |                          | 25                          | 7.79      |                                       |              |
| JB14656-10  JB14656-11  JB14656-12  JB14656-13  JB14656-2  JB14656-3  JB14656-4  JB14656-5  Buffer Check: 4                                                                              |                          | 25                          | 7.79      |                                       |              |
| JB14656-11 JB14656-12 JB14656-13 JB14656-2 JB14656-3 JB14656-4 JB14656-5 Buffer Check: 4                                                                                                 |                          | 25                          | 8.11      | · · · · · · · · · · · · · · · · · · · | ·            |
| JB14656-12 JB14656-13 JB14656-2 JB14656-3 JB14656-4 JB14656-5 Buffer Check: 4                                                                                                            |                          | 25                          | 8.21      |                                       |              |
| JB14656-13<br>JB14656-2<br>JB14656-3<br>JB14656-4<br>JB14656-5<br>Buffer Check: 4                                                                                                        |                          | 25                          | 8.24      |                                       |              |
| JB14656-2<br>JB14656-3<br>JB14656-4<br>JB14656-5<br>Buffer Check: 4                                                                                                                      |                          | 25                          | 8.06      |                                       |              |
| JB14656-3<br>JB14656-4<br>JB14656-5<br>Buffer Check: 4                                                                                                                                   |                          | 25                          | 8.08      |                                       |              |
| JB14656-4<br>JB14656-5<br>Buffer Check: 4                                                                                                                                                |                          | 25                          | 9.34      |                                       | <u> </u>     |
| JB14656-5<br>Buffer Check: 4                                                                                                                                                             |                          | 25                          | 9.11      |                                       |              |
| Buffer Check: 4                                                                                                                                                                          |                          | 25                          | 7.92      |                                       |              |
|                                                                                                                                                                                          |                          | 25                          | 4.03      | - <del> </del>                        |              |
| Duilei Cileck. IV                                                                                                                                                                        |                          | 25                          | 10.01     |                                       | <del> </del> |
| JB14656-6                                                                                                                                                                                |                          | 25                          | 7.84      |                                       |              |
| JB14656-7                                                                                                                                                                                |                          | 25                          | 8.50      |                                       |              |
| JB14656-8                                                                                                                                                                                |                          | 25                          | 8.53      |                                       |              |
| JB14656-9                                                                                                                                                                                |                          | 25                          | 7.91      |                                       |              |
|                                                                                                                                                                                          |                          |                             |           |                                       |              |
|                                                                                                                                                                                          |                          |                             |           |                                       |              |
|                                                                                                                                                                                          |                          |                             |           |                                       |              |
|                                                                                                                                                                                          |                          |                             | -         |                                       |              |
| Buffer Check: 7                                                                                                                                                                          |                          | 25                          | 7.02      |                                       |              |
| Buffer Check: 10                                                                                                                                                                         |                          | 25                          | 10.03     |                                       | 12:02        |
|                                                                                                                                                                                          |                          |                             |           |                                       |              |
|                                                                                                                                                                                          |                          |                             |           |                                       |              |
|                                                                                                                                                                                          | 100.140                  |                             |           |                                       |              |
|                                                                                                                                                                                          |                          |                             |           |                                       |              |
|                                                                                                                                                                                          |                          |                             |           |                                       |              |
|                                                                                                                                                                                          |                          |                             |           |                                       |              |
| Buffer Check:                                                                                                                                                                            |                          | 1                           |           | 1                                     |              |
| Buffer Check:                                                                                                                                                                            |                          | 1                           | N /       |                                       |              |
|                                                                                                                                                                                          |                          |                             | ٧/        |                                       | l            |
| Comments:                                                                                                                                                                                |                          |                             | $\bigvee$ |                                       |              |
|                                                                                                                                                                                          |                          | /                           |           |                                       |              |
| Validated By:                                                                                                                                                                            |                          |                             | A A       |                                       |              |
| Document Control #:                                                                                                                                                                      |                          |                             |           | Validated Date                        | 8/7/201      |

£ 14 los

Prep Date \$ 29/12

GP# GN 71237-PH

ON 71238

Balance #\_\_\_\_

Sample Prep Log

| Sample ID | Sample Size                                         | Final Volume      |
|-----------|-----------------------------------------------------|-------------------|
| 3B14652-1 | 5035                                                | added SON L PAIRS |
| -12p      | 505-                                                |                   |
| -2        | 50.62                                               |                   |
| -7        | 5022                                                |                   |
| -8        | \$0.73                                              |                   |
| .9        |                                                     |                   |
| -14       | S0(z                                                |                   |
| JD14656-1 | 50.0                                                |                   |
| -2        | 50.45                                               |                   |
| -3        | <u>503</u> ~                                        |                   |
| 4         | 50.65                                               |                   |
| -5        | SD [g                                               |                   |
| -6        | 50 4s                                               |                   |
|           | <u> 50.75°</u>                                      |                   |
| -8        | <u>SD 25</u>                                        |                   |
| -9        | <u> 50. % ·                                    </u> |                   |
| -10       | <u> 50 g</u>                                        |                   |
| -11       |                                                     |                   |
| <u> </u>  | 90.4                                                |                   |
| -13       | <u> 50 2g</u>                                       |                   |
| 7014656-1 | 90.0g                                               |                   |
|           |                                                     |                   |
|           |                                                     |                   |

| Form | : GN | 1 | 66-02  |
|------|------|---|--------|
| Rev. | Date | : | 8/5/05 |

QC Review\_\_\_\_



Reagent Information Log
Test Name: pH\_\_\_\_\_

## Reagent

| pH 2 Buffer Solution  | FICHER LOT#115910 EXP 11/30/13  |
|-----------------------|---------------------------------|
| pH 4 Buffer Solution  | BDH LOT#2110255 EXP 9/30/13     |
| pH 7 Buffer Solution  | RICCA LOT#2111388 EXP 10/30/13  |
| pH 10 Buffer Solution | FISCHER LOT#105427 EXP 09/30/12 |
| pH 13 Buffer Solution | AQUA SOL. LOT#1080516 EXP 08/30 |
|                       |                                 |

Form: GN087-01 Rev. Date:8/23/2012



Test: Redox Potential
Matrix: Aqueous
Matrix: Solid

•

**Test Code: REDOX** 

Method: ASTM D1498-76

Method: ASTM D1498-76 Mod.

 Analyst:
 SANJAYA

 Date:
 08/29/12

 GN Batch ID:
 GN71238

Temp (Deg C): 25

| _            | •               | _         |       |         |       |        |         |
|--------------|-----------------|-----------|-------|---------|-------|--------|---------|
| Sample ID: _ | GN71238-D1      | Results:_ | 677.8 | Dup:_   | 676.8 | % RPD: | 0.15%   |
| Ferrous-Ferr | ic True: 675    | -         |       | Found   | 667.2 | % Rec  | 98.84%  |
| pH 4 Quinhy  | drone True: 462 |           |       | Found   | 493.5 | % Rec  | 106.82% |
| pH 4 Quinhy  | drone True: 462 |           |       | Found   | 449.6 | % Rec  | 97.32%  |
| pH 4 Quinhy  | drone True: 462 |           |       | Found   | 480.3 | % Rec  | 103.96% |
| pH 7 Quinhy  | drone True: 285 |           |       | Found_  | 279.7 | % Rec  | 98.14%  |
| pH 7 Quinhy  | drone True: 285 |           |       | Found _ | 247.7 | % Rec  | 86.91%  |
| pH 7 Quinhy  | drone True: 285 |           |       | Found   | 263.8 | % Rec  | 92.56%  |

| Comple 46      |            | mv vs. Ag/AgCl    | Corrected results (mv<br>vs. Hydrogen electrode) |
|----------------|------------|-------------------|--------------------------------------------------|
| Sample #:      |            | Electrode         | ****                                             |
| Ferrous-Ferric | Solution   | 491.9             | 667.2                                            |
| pH 4 Quinhydi  | rone       | 318               | 493.5                                            |
| pH 7 Quinhydi  |            | 104.2             | 279.7                                            |
| Dup            | GN71238-D1 | 501.5             | 676.8                                            |
| 1.             | JB14656-1  | 502.4             | 677.8                                            |
| 2.             | JB14656-10 | 254               | 429.4                                            |
| 3.             | JB14656-11 | 246.7             | 422.1                                            |
| 4.             | JB14656-12 | 200.2             | 375.8                                            |
| 5.             | JB14656-13 | 189.7             | 365.1                                            |
| 6.             | JB14656-2  | 212               | 387.5                                            |
| 7.             | JB14656-3  | 140.2             | 315.6                                            |
| 8.             | JB14656-4  | 128.5             | 303.9                                            |
| 9.             | JB14656-5  | <del>-119.5</del> | 56                                               |
| pH 4 Quinhydi  | rone       | 274.3             | 449.6                                            |
| pH 7 Quinhydı  |            | 72.3              | 247.7                                            |
| 10.            | JB14656-6  | 66.4              | 241.9                                            |
| 11.            | JB14656-7  | 40.5              | 215.9                                            |
| 12.            | JB14656-8  | 43.5              | 218.9                                            |
| 13.            | JB14656-9  | -102              | 73.5                                             |
| 14.            |            | ·                 |                                                  |
| 15.            |            |                   |                                                  |
| 16.            |            |                   |                                                  |
| 17.            |            |                   |                                                  |
| 18.            |            |                   |                                                  |
| 19.            |            |                   |                                                  |
| pH 4 Quinhydi  | rone       | 304.9             | 480.3                                            |
| pH 7 Quinhydi  |            | 88.3              | 263.8                                            |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers: | Redox Standard: GNE-31456-ORP Exp:9/15/12 |                |                                                   | *************************************** |
|------------------|-------------------------------------------|----------------|---------------------------------------------------|-----------------------------------------|
|                  |                                           |                |                                                   |                                         |
| Comments:        |                                           | 11 1           | 1                                                 |                                         |
|                  |                                           | $+\mathcal{U}$ | <del>//                                    </del> |                                         |
| Analyst: S.A.    | Date: <u>08/29/12</u> QC Reviewer:        | V V            | / Date:                                           |                                         |

F/N GN141.DOC

Rev. Date: 3/27/2007



| 0 0 |  |  |
|-----|--|--|

Method LH/Pt

Prep Date \$\\29/12

GP# GN 71237-PH

ON 71238.

Balance #\_\_\_\_\_\_

Sample Prep Log

| Sample ID | Sample Size   | Final Volume     |
|-----------|---------------|------------------|
| 3B14652-1 | S035          | added SON L PHRO |
| -1Rip     |               | 1                |
| -2        | 506           |                  |
| -7        | So 22         |                  |
| _8        | \$0.75        |                  |
| -9        | <u> 50 lg</u> |                  |
| -14       | 500/08        |                  |
| JD14656-1 | 50.0s         |                  |
| -2        | 5045          |                  |
| -3        | 503/          |                  |
| 4         | 50 bg         |                  |
| -5        | SO ls         |                  |
| -6        | 50 4g         |                  |
|           | <u> 50.7s</u> |                  |
| -8        | SD 2g         |                  |
| <u> </u>  | <u> </u>      |                  |
| -10       | Solg          |                  |
| -11       |               | •                |
| -12       | S0.4g         |                  |
| -13       | 50 24         |                  |
| 7014656-1 | 90.0g         |                  |
|           |               | F                |
|           | ·             |                  |

Form: GN166-02 Rev. Date: 8/5/05

QC Review





Test: (pH) Corrosivity Method: SW846 9040B or SW846 9045C Product: Pt, CORR
Analyst: SANJAYA
GN Batch ID: GN71252

Analysis Date: 8/29/2012 pH Meter ID: 50

 QC Summary

 Duplicate ID:
 GN71252-D1
 Sample ID:
 JB14656-14

 Dup Result:
 7.67
 % RPD:
 0.26%

|                  | Wt./Vol. used | Uncorrected/<br>Corrected Temp in |        |             |           |
|------------------|---------------|-----------------------------------|--------|-------------|-----------|
| Sample ID        | for soilds    | Deg C.                            | Result | Corrosivity | Read time |
| Buffer Check: 4  |               | 25                                | 4.01   | 1           | 13:07     |
| Buffer Check: 7  |               | 25                                | 6.99   |             |           |
| Buffer Check: 10 |               | 25                                | 9.95   |             |           |
| GN71252-D1       |               | 25                                | 7.67   |             |           |
| JB14105-2        |               | 25                                | 2.24   |             |           |
| JB14105-4        |               | 25                                | 1.87   |             |           |
| JB14105-6        |               | 25                                | 1.79   |             |           |
| JB14656-14       |               | 25                                | 7.69   |             |           |
| JB14656-15       |               | 25                                | 7.41   |             |           |
| JB14656-16       |               | 25                                | 7.45   |             |           |
| JB14656-17       |               | 25                                | 8.17   |             |           |
| JB14656-18       |               | 25                                | 8.10   |             |           |
| JB14656-19       |               | 25                                | 7.94   |             |           |
| Buffer Check: 2  |               | 25                                | 2.02   |             |           |
| Buffer Check: 10 |               | 25                                | 10.00  |             |           |
| JB14656-21       |               | 25                                | 8.29   |             |           |
| JB14785-1        |               | 25                                | 6.76   |             |           |
| JB14785-2        |               | 25                                | 7.81   |             |           |
| JB14785-6        |               | 25                                | 7.72   |             |           |
|                  |               |                                   |        |             |           |
|                  |               |                                   |        |             |           |
|                  |               |                                   |        |             |           |
| Buffer Check: 7  |               | 25                                | 7.04   |             |           |
| Buffer Check: 10 |               | 25                                | 10.03  |             | 13:49     |
|                  |               |                                   |        | -           |           |
|                  |               |                                   |        |             |           |
|                  |               |                                   |        |             |           |
|                  |               |                                   |        |             |           |
| Buffer Check:    |               |                                   |        |             |           |
| Buffer Check:    |               |                                   |        |             |           |
|                  |               | <u> </u>                          |        | L           |           |

| Comments:           |                   | \/ | 0/2                       |          |  |
|---------------------|-------------------|----|---------------------------|----------|--|
|                     |                   |    | AIX                       | -        |  |
|                     |                   | IM | 01.                       |          |  |
| Validated By:       | Nancy Cole        | _  | <b>∜</b> alidated Date: _ | 8/7/2012 |  |
| Document Control #: | AGN-PH CORR-AQ-01 |    |                           |          |  |





Balance # 38

| Analyst S.A       |
|-------------------|
| Method EHPH       |
| Prep Date 8/29/12 |
| GP# GN 7/252-OH   |
| GN 71253-RH       |

Sample Prep Log

| Sample ID  | Sample Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Final Volume     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 3B14656-14 | 50.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | added SonLOFItes |
| -14Pp      | 50.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 45         | 50.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| -16        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| -(7.       | S075 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |
| -18        | 50.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| -19        | 5015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ·                |
| -21        | 50.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| 3614105-2  | 30 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | added 30mg/100   |
| _4         | 30.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                |
| -6         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                |
| 3/3/4785-1 | 50.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | added Soul Praco |
| -2         | 50.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| -6         | 50.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                |
|            | V AMAZON CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CO |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            | y comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of the comments of  |                  |
|            | # TANKS (1974)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_\_



## Reagent Information Log Test Name:\_\_\_\_pH\_\_\_

GN71252

## Reagent

| pH 2 Buffer Solution  | FICHER LOT#115910 EXP 11/30/13  |
|-----------------------|---------------------------------|
| pH 4 Buffer Solution  | BDH LOT#2110255 EXP 9/30/13     |
| pH 7 Buffer Solution  | RICCA LOT#2111388 EXP 10/30/13  |
| pH 10 Buffer Solution | FISCHER LOT#105427 EXP 09/30/12 |
| pH 13 Buffer Solution | AQUA SOL. LOT#1080516 EXP 08/30 |

Form: GN087-01 Rev. Date:8/23/2012



Temp (Deg C):



| Test: Redox Po  | tential |
|-----------------|---------|
| Matrix: Aqueous | 0       |
| Matrix: Solid   |         |

Test Code: REDOX

Method: ASTM D1498-76 Method: ASTM D1498-76 Mod. 
 Analyst:
 SANJAYA

 Date:
 08/29/12

 GN Batch ID:
 GN71253

25

| Quality Cont | rol Summary     |          |       |       |       |        |         |
|--------------|-----------------|----------|-------|-------|-------|--------|---------|
| Sample ID:   | GN71253-D1      | Results: | 214.1 | Dup:  | 195.1 | % RPD: | 9.29%   |
| Ferrous-Ferr | ric True: 675   | -<br>-   |       | Found | 617.4 | % Rec  | 91.47%  |
|              | drone True: 462 |          |       | Found | 468.7 | % Rec  | 101.45% |
|              | drone True: 462 |          |       | Found | 443   | % Rec  | 95.89%  |
| pH 4 Quinhy  | drone True: 462 |          |       | Found | 442.2 | % Rec  | 95.71%  |
| pH 7 Quinhy  | drone True: 285 |          |       | Found | 260.2 | % Rec  | 91.30%  |
| pH 7 Quinhy  | drone True: 285 |          |       | Found | 269.6 | % Rec  | 94.60%  |
| pH 7 Quinhy  | drone True: 285 |          |       | Found | 269.1 | % Rec  | 94.42%  |

| Sample #:               | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv<br>vs. Hydrogen electrode) |
|-------------------------|-----------------------------|--------------------------------------------------|
| Ferrous-Ferric Solution | 442.1                       | 617,4                                            |
| pH 4 Quinhydrone        | 293.3                       | 468.7                                            |
| pH 7 Quinhydrone        | 84.7                        | 260.2                                            |
| Dup GN71253-D1          | 19.4                        | 195.1                                            |
| 1. JB14656-14           | 38.8                        | 214.1                                            |
| 2. JB14656-15           | -16                         | 159.4                                            |
| 3. JB14656-16           | 116.6                       | 291.9                                            |
| 4. JB14656-17           | 122.3                       | 297.7                                            |
| 5. JB14656-18           | 129                         | 304.5                                            |
| 6. JB14656-19           | 133.1                       | 308.6                                            |
| 7. JB14656-21           | 129.5                       | 304.9                                            |
| 8. JB14785-1            | 123.6                       | 298.9                                            |
| 9. JB14785-2            | 95.2                        | 270.7                                            |
| pH 4 Quinhydrone        | 267.7                       | 443                                              |
| pH 7 Quinhydrone        | 94.2                        | 269.6                                            |
| 10. JB14785-6           | 50.9                        | 226.4                                            |
| 11.                     |                             |                                                  |
| 12.                     |                             |                                                  |
| 13.                     |                             |                                                  |
| 14.                     |                             |                                                  |
| 15.                     |                             |                                                  |
| 16.                     |                             |                                                  |
| 17.                     |                             |                                                  |
| 18.                     |                             |                                                  |
| 19.                     |                             |                                                  |
| pH 4 Quinhydrone        | 266.9                       | 442.2                                            |
| pH 7 Quinhydrone        |                             |                                                  |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers:            | Redox Standard: GNE-31 | 456-ORP Exp:9/15/12 |      | and the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o | _        |
|-----------------------------|------------------------|---------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Comments:                   |                        |                     | 111/ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>-   |
| Analyst: S.A. F/N GN141.DOC | Date: 08/29/12         | QC Reviewer:        | W    | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>-</u> |

F/N GN141.DOC Rev. Date: 3/27/2007





| 30        |  |
|-----------|--|
| Balance # |  |

| Analyst S.A       |
|-------------------|
| Method EHPH       |
| Prep Date 8/29/12 |
| GP# GN 7/252-PH   |
| GN 71253-CH       |

Sample Prep Log

| Sample ID   | Sample Size                           | Final Volume      |
|-------------|---------------------------------------|-------------------|
| 3B:14656-14 | 50.78                                 | added Son patho   |
| -14/2       | 50.3                                  |                   |
| -15         | 50.24                                 |                   |
| -16         | 5005                                  |                   |
| -(7.        | 50.75                                 |                   |
| -18         | 50.7%                                 |                   |
| -19         | 5012                                  |                   |
| 721         | 50.2                                  |                   |
| 3B14105-2   | 30.88                                 | added Boneptino   |
| -4          | $\rightarrow 0.2$                     | 1                 |
| -6          | 300                                   | V                 |
| 3/3/4785-1  | 50 82                                 | added Soul O FALO |
| -2          |                                       |                   |
| -6          | 50.90                                 | V                 |
|             |                                       |                   |
|             |                                       |                   |
|             |                                       |                   |
| 1918 876-1- |                                       |                   |
|             |                                       |                   |
|             |                                       |                   |
|             | · · · · · · · · · · · · · · · · · · · |                   |
|             |                                       |                   |
|             |                                       | -                 |

| Form:  | GN1   | 66-02  |
|--------|-------|--------|
| Rev. I | )ate: | 8/5/05 |

QC Review\_\_\_\_

**Hexavalent Chromium** Y Values Corr X Values Final Vol. Sam Wt. Sample BKGRD. Analysis Sample Units MDL Final Conc. RDL Sample # Absorbance Times Absorbance Conc(mg/l) (ml) (g) Method: SW846 3060A, 7196A Test Title: XCRA GN Batch: GN71343 Analyst: JO Prep Date: 8/29/2012 Note: All results below shown on a wet weight basis. **Analysis Date:** 8/30/2012 Instrument ID: Н 0.99973 Corr. Coef: 0.0000 Cal. Bik. 0.000 NΑ 10:20 0.000 STD 1 0.011 NΑ 0.011 0.0100 Slope: 0.9042 0.0500 STD 2 0.045 NA NA 0.045 STD 3 0.094 NA NA 0.094 0.1000 Y intercept: 0.0017 0.3000 STD 4 0.273 NΑ NΔ 0.273 STD 5 ÑΑ NΑ 0.450 0.5000 0.450 0.8000 STD 6 0.742 NΑ NA 0.742 Final Vol. Sam. Wt. RDL STD 7 10:29 1.0000 Final Conc <u>Units</u> <u>MDL</u> 0.894 NA 0.894 (ml) Dilution CCV 0.430 NA 11:40 0.430 0.4737 NΑ NΑ NΑ NA mg/l 0.003 0.010 0.010 CCB NA NA NA 0.003 NA 11:41 0.000 -0.0019 NA mg/l 0.000 -0.0019 100.0 2.5000 -0.075 0.117 0.400 GP66863-MB1 0.000 0.000 12:00 0.000 1 mg/kg 0.117 0.400 GP66863-B1 0.818 0.000 12:00 0.818 0.9028 100.0 2.5000 1 36 111 mg/kg GP66863-S1 0.813 0.006 12:00 0.807 0.8906 100.0 2.5100 1 35.483 mg/kg 0.117 0,398 0.394 GP66863-D1 0.004 0.009 12:00 0.000 -0.0019 100.0 2.5400 1 -0.074mg/kg 0.115 0.003 0.000 12:00 0.003 0.0014 100.0 2.5500 0.057 mg/kg 0.115 0.392 JB14656-12 2.5000 1 -0.075 0.117 0.400 GP66863-B2 OVR FALSE -0.0019 100.0 mg/kg GP66863-S2 ÖVR FALSE -0.0019 100.0 2.5600 -0.073 mg/kg 0.114 0.391 20 000 GP66863-B2 0.345 0.000 12:00 0.345 0.3797 100.0 2.5000 50 759.342 mg/kg 5 860 0.397 0.4372 19.531 GP66863-S2 0.397 0.000 12:00 100.0 2.5600 50 853.866 mg/kg 5.723 JB14656-1 0.026 0.002 12:00 0.024 0.0247 100.0 2.4800 1 0.995 mg/kg 0.118 0.403 CCV 0.4759 NA 0.010 12:00 0.432 NA NA NA 0.003 0.432 NA mg/l CCB 0.000 NA 12:.01 0.000 -0.0019 NA NA NΑ NA mg/l 0.003 0.010 #DIV/0! #DIV/0 100.0 #DIV/0! FALSE -0.00191 mg/kg FALSE -0.0019 100.0 1 #DIV/0! mg/kg #DIV/0! #DIV/0! FALSE -0.0019 100.0 1 #DIV/0! #DIV/01 #DIV/0! mg/kg 1 #DIV/0! #DIV/0! #DIV/0! FALSE -0.0019 100.0 mg/kg #DIV/0I #DIV/0! FALSE -0.0019100.0 1 #DIV/09 mg/kg FALSE -0.0019 100.0 1 #DIV/01 mg/kg #DIV/0! #D!V/0! #DIV/0! 1 #DIV/01 #DIV/0! FALSE -0.0019 100.0 mg/kg FALSE -0.0019 100.0 1 #DIV/0! #DIV/0! #DIV/0! ma/ka FALSE -0.0019 100.0 1 #DIV/0! mg/kg #DIV/0! #DIV/0! FALSE -0.0019 100.0 1 #DIV/0! #DIV/0! #DIV/0! mg/kg CCV 0.441 NA 13:12 0.4858 NA NΑ NΑ 0.003 0.010 0.441 NA mg/l NΑ 0.010 CCB 0.000 -0.0019 NA NΑ 0.003 NA 13:13 0.000NA mg/l GP66863-PS1CONF 0.391 0.000 13:26 0.391 0.4305 100.0 2.5500 2 33.768 mg/kg 0.230 0.784 0.117 0.400 100.0 2.5000 1.208 JB14656-2 0.030 0.001 13:26 0.029 0.0302 1 mg/kg 2.4600 0.119 0.407 JB14656-3 0.053 0.000 13:26 0.053 0.0567 100.0 2.306 mg/kg -0.0019 100.0 2.5400 1 -0.074 0.115 0.394 JR14656-4 0.000 0.000 13:26 0.000 mg/kg -0.074 0.116 0.395 JB14656-5 0.000 0.000 13:26 0.000 -0.0019100.0 2.5300 1 mg/kg 0.057 0.116 0.397 100.0 2.5200 JB14656-6 0.021 0.018 13:26 0.003 0.0014 1 mg/kg JB14656-7 0.000 0.000 13:26 0.000 -0.0019 100.0 2.5400 -0.074 mg/kg 0.115 0.394 2.5300 0.116 JB14656-8 0.000 0.000 13:26 0.000 -0.0019 100.0 1 -0.074mg/kg 0.395 JB14656-9 0.009 0.000 13:26 0.009 0.0081 100.0 2.5600 0.316 mg/kg 0.114 0.391 JB14656-10 0.038 0.018 13:26 0.020 0.0202 100.0 2.5100 1 0.807 mg/kg 0.117 0.398CCV 0.441 0.4858 NΑ NA NA NA 0.003 0.010 0.441 NA 13:26 mg/l CCB 0.000 NA 13:27 Ø.000 -0.0019NA NA NA NA 0.003 0.010 mg/l FALSE -0.0019 100.0 1 #DIV/0! #DIV/0! #DIV/0! mg/kg FALŞE -0.0019 100.0 1 #DIV/0! mg/kg #DIV/0! #DIV/0I 100.0 1 #DIV/0! #DIV/0! #DIV/0! FALSE -0.0019 mg/kg FALSE -0.0019 100.0 1 #DIV/0! #DIV/0! #DIV/0! mg/kg FALSE 100.0 1 #DIV/0! #DIV/0! #DIV/0! -0.0019 mg/kg -0.0019 100.0 1 #DIV/0! #DIV/01 #DIV/0! FALSE mg/kg #DIV/0! #DIV/0! #DIV/0! 100.0 FALSE -0.0019 1 mg/kg

FALSE

FALSE

FALSE

0.435

0.000

0.026

0.004

0.005

0.003

0.074

CCV

CCB

JB14656-11

JB14656-13

JB14656-14

JB14656-15

JB14656-16

0.435

0.000

0.040

0.006

0.055

0.040

0.089

NA

NA

0.014

0.002

0.050

0.037

0.015

16:10

16:11

16:26

16:26

16:26

16:26

16:26

-0.0019

-0.0019

0:0019

0.4792

-0.0019

0.0269

0.0025

0.0037

0.0014

0.0800



100.0

100.0

100.0

NA

NA

100.0

100.0

100.0

100.0

100.0

NA

NA

2.5300

2.5200

2.5600

2.5200

2.5600

#DIV/0!

#DIV/0!

#DIV/0!

NA

NA

1.062

0.101

0.143

0.057

3.124

1

NA

NΑ

1

1

1

mg/kg

mg/kg

mg/kg

mg/l

mg/l

mg/kg

mg/kg

mg/kg

mg/kg

#DIV/0!

#DIV/0!

#DIV/0!

0.003

0.003

0.116

0.116

0.114

0.116

0.114

#DIV/0!

#DIV/0!

#DIV/0!

0.010

0.010

0.395

0.397

0.391

0.397

0.391

|                |       |                                                   |                                                   |                | ,                  |             |              |          |          |                |       |            |
|----------------|-------|---------------------------------------------------|---------------------------------------------------|----------------|--------------------|-------------|--------------|----------|----------|----------------|-------|------------|
| JB14656-17     | 0.112 | 0.019                                             | 16:26                                             | 0.093          | 0.1010             | 100.0       | 2.5600       | 1        | 3.944    | mg/kg          | 0.114 | 0.3        |
| JB14656-18     | 0.010 | 0.025                                             | 16:26                                             | 0.000          | -0.0019            | 100.0       | 2.5300       | 1        | -0.074   | mg/kg          | 0.116 | 0.3        |
| JB14656-19     | 0.211 | 0.036                                             | 16:26                                             | 0.175          | 0.1917             | 100.0       | 2.5700       | 1        | 7.458    | mg/kg          | 0.114 | 0.3        |
| JB14656-21     | 0.026 | 0.000                                             | 16:26                                             | 0.026          | 0.0269             | 100.0       | 2.4500       | 1        | 1.097    | mg/kg          | 0.120 | 0.4        |
| 564            |       | · · · · · · · · · · · · · · · · · · ·             | 225.65                                            | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.4        |
| CCV            | 0.441 | NA<br>NA                                          | 16:26                                             | 0.441          | 0.4858 /           | NA<br>NA    | NA<br>NA     | NA<br>NA | NA<br>NA | mg/l           | 0.003 | 0.0        |
| CCB            | 0.000 | NA                                                | 16:27                                             | 0.000          | -0.0019<br>-0.0019 | NA<br>100.0 | NA<br>2.5000 | NA<br>1  | -0.075   | mg/l           | 0.003 | 0.4        |
|                |       | +                                                 |                                                   | FALSE<br>FALSE | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg<br>mg/kg | 0.117 | 0.4        |
|                |       | 1                                                 |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.4        |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.4        |
|                |       | <del>- </del>                                     | <del> </del>                                      | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.4        |
|                |       | <del> </del>                                      |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       | 1                                                 |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       | +                                                 |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.4        |
|                |       | +                                                 | <del> </del>                                      | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
| <del> </del>   |       | <del>                                      </del> |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.4        |
| ccv            | 0.445 | NA NA                                             | 17:25                                             | 0.445          | 0.4903             | NA          | NA           | NA NA    | NA       | mg/l           | 0.003 | 0.         |
| ССВ            | 0.000 | NA NA                                             | 17:26                                             | 0.000          | -0.0019            | NA NA       | NA NA        | NA NA    | NA NA    | mg/l           | 0.003 | 0.         |
| GP66863-PSCONF | 0.468 | 0.000                                             | 0,00                                              | 0.468          | 0.5157             | 100.0       | 2,5100       | 2        | 41.092   | mg/kg          | 0.233 | 0.         |
| JB14656-12     | 0.000 | 0.000                                             | 9.00                                              | 0.000          | -0.0019            | 100.0       | 2.5100       | 5        | -0.374   | mg/kg          | 0.584 | 1.         |
| 3514030-12     | 0.000 | 0.000                                             | 17:32                                             | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       | +                                                 | 1 (1 - 2 -                                        | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   | <del> </del>                                      | FALSE          | -0.0019            | 100.0       | 2,5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       | +                                                 | 1                                                 | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       | +                                                 | (M) A 2                                           | I.W FALSE      | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       | <del> </del>                                      | + VP/ 8-2                                         | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   | <del>  '                                   </del> | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
| l              |       | +                                                 | 7.32                                              | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
| ccv            | 0.468 | NA                                                | 0,00                                              | 0.468          | 0.5157             | NA NA       | NA           | NA NA    | NA       | mg/l           | 0.003 | 0.         |
| ССВ            | 0.000 | NA.                                               | 17:32                                             | 0.000          | -0.0019            | NA          | NA           | NA       | > NA     | mg/l           | 0.003 | 0.         |
|                | 0.000 | 1,,,,                                             |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1 ,      | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   | İ                                                 | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   | <del></del>                                       | FALSE          | -0.0019            | 100.0       | 2,5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   | 1                                                 | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       | <del> </del>                                      |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
| ccv            |       | NA NA                                             | 100                                               |                | #VALUE!            | NA.         | NA.          | NA       | NA       | mg/i           | 0.003 | 0          |
| CCB            |       | NA NA                                             | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1          |                | #VALUE1            | NA          | NA           | NA NA    | NA       | mg/l           | 0.003 | 0          |
|                |       |                                                   | · · · · · · · · · · · · · · · · · · ·             | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   | 1                                                 | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   | 1                                                 | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0,117 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FALSE.         | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
| ccv            |       | NA                                                |                                                   |                | #VALUE!            | NA          | NA           | NA       | NA       | mg/l           | 0.003 | 0          |
| ССВ            |       | NA                                                |                                                   |                | #VALUE!            | NA          | NA           | NA       | NA       | mg/i           | 0.003 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0,117 | 0          |
|                |       |                                                   | 1                                                 | FALSE          | 0.0019             | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   | T                                                 | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100,0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FAL\$E         | -0.0019            | 196.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0          |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 100 b       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
|                |       |                                                   |                                                   | FALSE          | -0.0019            | 1000        | 2.500        | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
| <u> </u>       |       | 1                                                 |                                                   | FALSE          | -0.0019            | 100.0       | 2.5000       | 1        | -0.075   | mg/kg          | 0.117 | 0.         |
| 1              |       | i                                                 |                                                   | 541.05         | 0.0040             | 1 35441     | N 0 5080     |          | 0.075    |                | 0.447 | <b>1</b> ~ |

| 1 |
|---|
|   |

CCV

ССВ

| Comments: |
|-----------|
|           |
|           |
|           |
|           |
|           |
|           |

-0.0019

-0.0019

#VALUE!

#VALUE!

FALSE

FALSE

2.5000

NA

NΑ

2.5000

NA

NA

1

NA

NA

-0.075

-0.075

NA

NΑ

mg/kg

mg/kg

mg/l

mg/l

0.117

0.117

0.005

0.005

0.400

0.400

0.010

0.010



NΑ

NΑ



| Test: Hexavalent Chr | omium |
|----------------------|-------|
|----------------------|-------|

Product: XCr

MDL = 0.117 mg/kg RDL = 0.40 mg/kg GNBatch ID: GN 71 3 43
Date: 8 | 30 | 12

Method: SW846 3060A/7196A **Digestion Batch QC Summary** Units = mg/kg Date: 8/29/12 Result: <MDL RDL: 0.010 <RDL: YES. MBI Method Blank ID: Sol. Spike Blank ID: Date: Result: 36.11 Spike: 40 %Rec.: 90.3. Bλ Insol. Spike Blank ID: Date: \_\_ Result: 759-34 Spike: 843-07 %Rec.: Duplicate ID: TB14656-12 Samp. Result: <MDL Dup. Result: <MDL %RPD: O SI Samp. Result: <MDL MS Result: 35.48 Spike: 39.94 %Rec: 89.1 Sol, MS ID: 52 Insol. MS ID: Samp. Result: < MD4 MS Result: 853-87 Spike: 1049-56 %Rec: 81-4 129 Post Spike ID: Samp. Result: <a href="MDL">MDL</a> PS Result: 33.77 Spike: 40.09 %Rec: 84-2 NAKROL Dil. Result: HA KRN %RPD: NH 07 WAJRI4657-ISamp. Result: Diluted Sample ID:\_\_ ZRDA MS Result: -## pH adj. PS ID: Samp. Result: Spike: WA %Rec: NA . 41.09. Analysis Batch QC Summary Units = mg/l ccv: 8/30/12 Result: 4737 TV: 0.500\_\_\_ %Rec.: CCV: Result: 4759 TV: 0.500 %Rec.: Result: .4858 TV: 0.500 CCV: %Rec.: Result: <u>4858</u> TV: 0.500 %Rec.: CCV: CCV: Result: 4792 TV: 0.500 %Rec.: Result: <u>4858</u> TV: 0.500 CCV: %Rec.: Result: <u>4903</u> TV: 0.500 CCV: %Rec.: Result: 5157 TV: 0.500 CCV: CCV: TV: 0.500 %Rec. 8/30/12 Result: くパル RDL: 0.010 <RDL: Result: <RD L CCB: RDL: 0.010 < RDL: Result: <RDL CCB: <RDL: RDL: 0.010 CCB: Result: ∠RD4 <RDL RDL: 0.010 CCB: Result: <u>LRPL</u> RDL: 0.010 <RDL: CCB: Result: LRDL: 0.010 <RDL: Result: CRDL CCB: RDL: 0.010 <RDL: Result: CADC CCB: RDL: 0.010 <RDL: CCB: Result: RDL: 0.010 <RDL:

| Insoluble spike = PbCrO <sub>4</sub> | ation - refer to attached reagent reference information page(s).  Molecular weight = 323.2 g/mol |  |
|--------------------------------------|--------------------------------------------------------------------------------------------------|--|
| {1000000 ug/g x Insoluble sp         | nike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount                                  |  |
| Analyst: Landbul [                   | Date: 2 30 12                                                                                    |  |
| Comments:                            |                                                                                                  |  |

Form: GN066-01 Rev. Date: 4/25/11



## ACCUTEST LABS DAYTON, NJ

## 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

NOTE: Always dilute post-spike first, then take a 45 ml aliquot of the diluted post-spike and add the spike amount.

|            | ays dilute pos | NOTE: Always diduce post-spike fillst, titleft take a 40 fill allydox of title diduced post-spike after spike differential | I lake a 40 I | III ample of            | ווכ מוומוכמ    | יום האוולכ וכסס | 2000        | alico di liconite                      |             |                       |            |                        |
|------------|----------------|----------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|----------------|-----------------|-------------|----------------------------------------|-------------|-----------------------|------------|------------------------|
|            |                |                                                                                                                            |               |                         |                |                 |             |                                        |             |                       |            |                        |
|            |                |                                                                                                                            |               |                         |                |                 |             |                                        | Actual ml   | ****                  |            |                        |
|            |                |                                                                                                                            |               |                         |                |                 |             | Suggested                              | ot 100      |                       |            |                        |
|            | PS Aliquot     |                                                                                                                            |               | Amount in               | -              |                 |             | ml of 100                              | ppm to      | Est. Read- Calculated | Calculated |                        |
|            | Weight in g    |                                                                                                                            |               | ml to add               |                | Suggested       | Actual      | ppm to spike                           | spike on    | back on               | Spike      |                        |
|            | Digested in    | Digested in   Weight in 45   Results in of 100 ppm                                                                         | Results in    | of 100 ppm              | Dilution       | Dilution to     | Dilution to | Difution to on dilution of dilution of | dilution of | curve in              | Amount in  | Use calculated or      |
| Sample ID  |                | , <u>E</u>                                                                                                                 | mg/kg.        | solution                | needed         | esn             | pe nsed     | sample.                                | sample.     | l/gm                  | mg/kg      | default spike?         |
| JB14656-12 | 2.55           | 1.1475                                                                                                                     | 0             | 0.459                   | yes            | 0               | 2           | 0.23                                   | 0.23        | 0.511                 | 40.087     | fault (40 mg/kg) spike |
| PHADJPS    | 2.51           | 1.1295                                                                                                                     | 0             | 0.452                   | yes            | 0               | 2           | 0.226                                  | 0.23        | 0.511                 | 40.726     | fault (40 mg/kg) spike |
|            |                | #VALUE!                                                                                                                    |               | #VALUE! #VALUE!         | #VALUE!        | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |
|            |                | #VALUE!                                                                                                                    |               | #VALUE! #VALUE! #VALUE! | #VALUE!        | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |
|            |                | #VALUE!                                                                                                                    |               | #VALUE! #VALUE! #VALUE! | #VALUE!        | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |
|            |                | #VALUE!                                                                                                                    |               | #VALUE! #VALUE! #VALUE! | #VALUE!        | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |
|            |                | #VALUE!                                                                                                                    |               | #VALUE! #VALUE!         | #VALUE!        | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |
|            |                | #VALUE!                                                                                                                    |               | #VALUE!                 | VALUE! #VALUE! | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |
|            |                | #VALUE!                                                                                                                    |               | #VALUE! #VALUE!         | #VALUE!        | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |
|            |                | #VALUE!                                                                                                                    |               | #VALUE! #VALUE!         | #VALUE!        | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |
|            |                | #VALUE!                                                                                                                    |               | #VALUE!                 | VALUE! #VALUE! | #VALUE!         |             | #VALUE!                                |             | #VALUE!               | #VALUE!    | calculated spike       |

## 3060A/7196A INSOLUBLE SPIKE CALCULATION

| ht of Weight of Amount | rO4 Sample Spiked | 131 2.5 843.069 | 167 2.56 1049.563 | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
|------------------------|-------------------|-----------------|-------------------|---------|---------|---------|---------|---------|---------|---------|
| Weight of 1            | PbCr04            | 0.0131          | 0.0167            |         |         |         |         |         |         |         |

| N           | Amount    | Spiked | 843.069 | 1049.563 | *AVALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
|-------------|-----------|--------|---------|----------|----------|---------|---------|---------|---------|---------|---------|
| CALCULATION | Weight of | Sample | 2.5     | 2.56     |          |         |         |         |         |         |         |
| اِی         | Weight of | PbCr04 | 0.0131  | 0.0167   |          |         |         |         |         |         |         |



(7-8) (1.5-2.4)

Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>₩</b> 1 %                            |               | Metho           | od Sw84    | 6 3060A/            | 7196A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | الم                | 1                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------|-----------------|------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
| *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                       | $\mathcal{O}$ | <b>~</b> )      |            |                     | pH Meter ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | pH-5               | <u>.</u>             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |               | <b>②</b>        | <u>(1)</u> |                     | Digestion Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | te: <i>81</i> 29/1 | <i>d</i>             |
| pri a maji otali c (1111/2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15:02                                   | 10.36         | 12:25           | 11:10      |                     | pH adj. Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8/30/1             | Q .                  |
| pH adj. end time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15:57                                   | 10:59.        | 13:00           | 11:30      |                     | GN Batch ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | <del></del>          |
| PP 66863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sample                                  |               | Final           |            | bkg pH              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weight in                               |               | Volume          |            |                     | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Spike              | Digestate            |
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                | HNO3          | (ml)            | H2SO4      | H2SO4               | Amounts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Solution           | Description/Comments |
| CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 7.1207        | 100             | 1.772      |                     | 5.0m/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10 ppm             | Wm                   |
| CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 7.072         | 100             | 2.004      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L 1'               |                      |
| ccv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 7.112_        | 100             | 1.821.     |                     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                  |                      |
| CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |               |                 |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| ССВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>                                |               |                 |            |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| ССВ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 7.204         | 001             | 2.00f 8/A  | 2                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| CCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 7.1402        | 100             | 274        | 1516                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| CCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 7. 245        |                 | 2.050      |                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                      |
| MS (SOI) JB14656-1d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | 7.207         |                 | 1.668      | 1.762               | 1.0m1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 pom            | ASSUI                |
| MS (Insol(s)) -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.56                                    | 7-063         |                 | 1.731      | 2.001               | 0.0167                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phiron             |                      |
| DUP U -12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.54                                    | 7-237-        |                 | 1.521      | 1.991               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| SB (Sol) (RI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.56                                    | 7.622         |                 | 1.794      | 1.870               | 1.0 M[                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 ppm            | A5101                |
| SB (Insol) (B2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                | 7.026         |                 | 1-582      | 1.921               | 6.0131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Phiron             |                      |
| MB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                       | 7-055         |                 | 1.576      | 1.578               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| 1JB 14656-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.55                                    | 7.292         |                 | 2.315      | 1.667               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Clear                |
| 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,48                                    | 7.065         |                 | 3-202      | 1.822               | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |                    | lignt yellow         |
| 3 - J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.50                                    | 7.860         |                 | 2.002      | 1.992               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | <del>y y</del>       |
| 4 -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.46                                    | 7.274         |                 | 2-014      | 1.721               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ( Hexr               |
| 5 -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.54                                    | 7-11-3        |                 | 2-073      | 2.001               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | LIBAY                |
| 6 -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.63                                    | 7.023         |                 | 1.923      | 1.722               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | yellow               |
| 7 -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a 52                                    | 7.181         |                 | 1-844      | 1.691               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Clear                |
| 8 - 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 254                                     | 7-072         |                 | 2-047      | 1.770               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Clear                |
| 9 -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.53                                    | 7.175         |                 | 2.004      | 1.800               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | light Brown          |
| 10 -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.56                                    | 7-761.        |                 | 2.015      | 1921                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | yerrow               |
| 11 -10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 251                                     | 7.881         |                 | 1.793      | 1.990               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Tight yellow         |
| 12 -11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.53                                    | 7-716         |                 | 1.890      | 1.681               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Giord Braun          |
| 13 -13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 7.635         |                 | 2.191      | 1.882               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | ( Year               |
| 14 -14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 7.408         | _               | 1.731      | 1.622               | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Brown                |
| 15 -15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 7.116         |                 | 1.650      | 2.080               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 0,000,               |
| 16 -16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 7.581         |                 | 1.009      | 1.994               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| 17 -17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | 7.379         | 1               | 1.936      | 1.762               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Light Brawn          |
| 18 -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.53                                    | 7.015         | 1               | 1-939      | 1.808               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>        | 1 gry Brawn          |
| 19 - 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.57                                    | 7.433         |                 | 1-740      | 1.648               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| 20 1 -2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.45                                    | 7.492         |                 | 2.214      | 2.004               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ight yellow          |
| 3B (Insol) &2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.50                                    | 7.026         | <del>17  </del> | 1.990      | 1.597               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| AS (Insol.) 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | 7.063         | <del></del>     | 1.872      |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| 28JB14656-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *************************************** | 7.29.2        | ♥               | 1-807.     | 1·772<br>1·588      | 0-22-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10000              | dilution (1:50)      |
| H adjusted PS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA                                      | NA            | W ( d           |            |                     | 0-23ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100ppm             | 1:2 DILution         |
| :5 dil.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         | ·····         | NA<br>NA        | NA         | NA                  | -UA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NA                 | NA                   |
| JB14656-12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                      | NA            | /UA             | _/''\      | NA                  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NA                 | NA.                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | rofo- to -    | ttonkod -       |            | E                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                      |
| 1000000 ug/g x Insolit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hie enike w                             | - refer to a  | ttached r       | eagent re  | rerence in          | ormation pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | je(s).             |                      |
| 1000000 ug/g x Insolu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Aic shike M                             |               |                 | sample wt( | g) = insolut        | ole spike amou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | int of PbCrO4      | VY                   |
| ≥nd analyst check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jan X                                   | 8/30/19       | V ·             | inauah     | 10,00               | a.do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                  |                      |
| The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |                                         | 0 /2 //       |                 | Anayst:    | عمتمي               | ndo_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                      |
| $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | \             | i               | Date:      | <del>0   24  </del> | ld.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                      |

Form: GN-067

## GN7/343



Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

|                      |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | pH Meter ID    |                                                  |                            |
|----------------------|---------------------------------------|--------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------|--------------------------------------------------|----------------------------|
|                      |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Digestion Da   |                                                  | 12_                        |
| pH adj. start time:  |                                       | 17:08        | ····                                    | www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         | pH adj. Date   | : <u>2/3</u> 0                                   | /12-                       |
| pH adj. end time:    |                                       | 17:15        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | hurr                                    | GN Batch ID    |                                                  | <del> </del>               |
| '                    | Sample                                |              | Final                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bkg pH                                  |                |                                                  |                            |
|                      | Weight in                             | 1 '          | Volume                                  | pH after                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         | Spike          | Spike                                            | Digestate                  |
| Sample ID            | g                                     | HNO3         | (ml)                                    | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H2SO4                                   | Amounts        | Solution                                         | Description/Comments       |
| CCV                  |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| ccv                  |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| CCV                  | <u> </u>                              |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| CCV                  |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| ССВ                  | $\perp$                               |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| ССВ                  | <u> </u>                              |              | <u> </u>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| ССВ                  |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| CCB                  |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| MS (Sol)             |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| MS (Insol.)          |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| DUP                  |                                       |              |                                         | $\overline{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                |                                                  |                            |
| SB (Sof)             |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                       |                |                                                  |                            |
| SB (Insol)           |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| MB                   |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| 1                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| >                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                | 1                                                |                            |
| <b>.</b>             |                                       |              |                                         | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                |                                                  |                            |
|                      |                                       |              | /                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·   |                |                                                  |                            |
| }                    |                                       |              | · · · · · · · · · · · · · · · · · · ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
|                      | · · · · · · · · · · · · · · · · · · · |              | ······································  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                | <del>                                     </del> |                            |
|                      |                                       | -/-1         | **************************************  | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                |                                                  |                            |
|                      |                                       | /            |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
|                      |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *************************************** |                |                                                  |                            |
| 0                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| 1                    |                                       |              |                                         | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th |                                         |                |                                                  |                            |
| 2                    | 1/                                    |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| 3                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| 4                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| 5                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ······         | l                                                |                            |
| 5                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | •              | V(                                               | <del></del>                |
| 6 /                  |                                       |              |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                |                                                  | THE PROPERTY AND ASSESSED. |
| 3                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| 9                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  |                            |
| )                    |                                       |              |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                |                                                  |                            |
| B (Insol)            |                                       |              | *************************************** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  | dilution                   |
| S (Insol.)           |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                |                                                  | dilution                   |
| S                    |                                       |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | ·              |                                                  | dilution                   |
| l adjusted PS        | 2.51                                  | 7-301        | 100                                     | 1,722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.010                                   | 0.23ml         | 1000                                             | 1111 1 225                 |
| 5 dil. JB14656-12    | 2.51                                  | 7:301        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.823                                   | 0.Y2W1         | 100pm                                            | plf Ady to 8.250           |
|                      | 4 21                                  | 1-201        | +                                       | 1.104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.842                                   |                |                                                  | 1:5 Dil '                  |
| eagent Reference In  | formation                             | - refer to s | ttachod .                               | oagost ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Forance :                               | famaati        |                                                  |                            |
| 000000 ug/g x Insolu | hle snike w                           | t(a) v 52/3  | 23 21/me n                              | cagent re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | a) = lession                            | his only       | ye(s).                                           |                            |
|                      | V OPING W                             | 1(8) N JEIJ  | _JJJ   1115 S                           | ample will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>a) –</i> msom                        | nie shike awoi | unit of PDCrO2                                   | +                          |
| nd analyst check:    | and.                                  | to           |                                         | Anayst:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lared                                   | ondo           |                                                  |                            |

Form: GN-067



## GN71343

## Hexavalent Chromium pH Adjustment Log

Method: SW846 3060A/7196A

pH adj. start time: pH adj. end time:

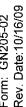
|                                       |           | ,        |                                                  | , ,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | <b>,</b>           |
|---------------------------------------|-----------|----------|--------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------|
|                                       | Sample    | pH after | Final<br>Volume                                  | pH after |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
| Sample ID                             | Weight in | HNO3     | (ml)                                             | H2SO4    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | Spike Info.        |
|                                       |           |          | 100                                              | 198      | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                    |
| Calibration Blank                     | NA<br>NA  | 7.91     | 100                                              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
| 0.010 mg/l standard                   | NA        | 7.52     | <del>                                     </del> | 214      | ( O Y PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Absolve | 0.10 ml of 10 mg/l |
| 0.050 mg/l standard                   | NA        | 778      | <del>  </del>                                    | 207      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 0.50 ml of 10 mg/l |
| 0.100 mg/l standard                   | NA NA     | 7-47     |                                                  | 208      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 1.00 ml of 10 mg/l |
| 0.300 mg/l standard                   | NA NA     | 7.74     |                                                  | 211      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 3.00 ml of 10 mg/l |
| 0.500 mg/l standard                   | NA NA     | 7.51     |                                                  | 192      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 5.00 ml of 10 mg/l |
| 0.800 mg/l standard                   | NA NA     | 4.61     |                                                  | 1.98     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | 8.00 ml of 10 mg/l |
| 1.00 mg/l standard                    | NA NA     | 7.42     | <i>\X</i>                                        | 2121     | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | 10.0 ml of 10 mg/l |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | -                  |
|                                       | -         |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       | ·         |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _/      |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           | •        |                                                  |          | The same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the sa |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       | 1         |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
|                                       | -         |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ,                  |
| · · · · · · · · · · · · · · · · · · · |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         | ON                 |
|                                       |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |
| <u> </u>                              |           |          |                                                  |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                    |

Reagent Reference Information - refer to attached reagent reference information page(s).

{1000000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

| Anayst: | 22 |      |             |       |
|---------|----|------|-------------|-------|
| Date:   |    | 1-30 | <i>مر</i> – | $\nu$ |
|         |    |      |             | •     |

Form: GN068-01 Rev. Date: 5/22/06




## GN71343

## HEXAVALENT CHROMIUM STANDARD PREPARATION LOG Product: $X \subset \mathbb{R}$ GN or GP Number: \_\_\_\_\_

|              |                                |               |               |         |                                       | Final Conc.  |            |         |          |
|--------------|--------------------------------|---------------|---------------|---------|---------------------------------------|--------------|------------|---------|----------|
| Intermediate |                                |               | Stock         | -       |                                       | of           |            |         |          |
| Standard     |                                | Stock         | volume        |         | Final                                 | Intermediate | Expiration |         |          |
| Description  | Stock used to prepare standard | concentration | lm ui pasn    | Diluent | Volume                                | (mg/l)       | Date       | Analyst | Date     |
| 10 ppm       | Absolute Grade Lot # 041215    | 1000 ppm      | 1.0 ml        | ۵       | 100 mls                               | 10 mg/l      | 4/12/2015  | 77      | 5-30-2   |
| 100 ppm      |                                | 1000 ppm      | 10 ml         | ō       | 100 mls                               | 100 mg/l     |            |         |          |
| 5 ppm        |                                | 1000 ppm      | 1.0 ml        | Ю       | 200 mg/l                              | 5 mg/l       |            |         |          |
| 7.5 ppm      |                                | 1000 ppm      | 1.5 ml        | 5       | 200 mg/l                              | 7.5 mg/l     |            |         |          |
| 10 ppm       | Ultra lot L00439 .             | 1000 ppm      | 1.0 ml        | DI      | 100 mg/l                              | 10 mg/l      | 5/31/2017  |         |          |
|              |                                |               | Intermediate  |         |                                       |              |            |         |          |
|              |                                | Intermediate  | or Stock      |         |                                       | Final Conc.  |            |         |          |
| Standard     | Intermediate or Stock used to  | or Stock      | volume        |         | Final                                 | Of Standard  | Expiration |         |          |
| Description  | prepare standard               | concentration | lm used in ml | Diluent | Volume                                | (mg/l)       | Date       | Analyst | Date     |
| .010 ppm     | 10.0 ppm abs                   | 10.0 ppm      | 0.1 ppm       | IO      | 100 mls                               | 0.01 mg/l    | f-31-12    | 772     | A-30-12  |
| .050 ppm     | j                              | ļ             | 0.5 ppm       | IO      | · · · · · · · · · · · · · · · · · · · | 0.05 mg/l    |            |         | _        |
| . 10 ppm     |                                |               | 1.0 ppm       | DI      |                                       | 0.10 mg/l    |            |         |          |
| .30 ppm      |                                |               | 3.0 ppm       | DI      |                                       | 0.30 mg/!    |            |         |          |
| .50 ppm      |                                |               | 5.0 ppm       | DI      |                                       | 0.50 mg/l    |            |         |          |
| .80 ppm      |                                | į             | 8.0 ppm       | IQ      |                                       | 0.80 mg/l    |            |         |          |
| 1.00 ppm     | <b>→</b>                       | 1             | 10.0 ppm      | DI      | 70                                    | 1.0 mg/l     | <b>→</b>   | -       | <b>\</b> |
|              |                                |               |               |         |                                       |              |            |         |          |
|              |                                |               |               |         |                                       |              |            |         |          |
|              |                                |               |               | -       |                                       |              |            |         |          |
|              |                                | •             |               |         |                                       |              |            |         |          |
|              |                                |               |               |         |                                       |              |            |         |          |
|              |                                |               |               |         |                                       |              |            |         |          |

Form: GN205-02 Rev. Date:10/16/09





GNIGP Batch ID: GN 71343

## Reagent Information Log - XCRA (soil 3060A/7196)

| Reagent                                             | Exp. Date  | Reagent # or Manufacturer/Lot |
|-----------------------------------------------------|------------|-------------------------------|
| Calibration Source: Hexavalent Chromium,            |            |                               |
| 1000 mg/L Stock                                     | 4/12/2015  | Absolute Grade Lot # 041212   |
| Calibration Checks: Hexavalent Chromium,            |            |                               |
| 1000 mg/L Stock                                     | 5/31/2017  | Ultra lot # L00439            |
| Spiking Solution Source                             | 4/12/2015  | Absolute Grade Lot # 041212   |
| Lead Chromate (Insoluble Hexavalent Chromium Spike) | 7/26/2017  | Sigma Aldrich Lot # BCBG0578V |
| Magnesium Chloride, Anhydrous                       | 7/11/2016  | Alfa Aesar Lot # B17X012      |
| 1N NaOH                                             | -NA 9/11/1 | 2 NA GNE8-33405-TCLP          |
| Digestion Solution                                  | 9/24/12    | GNE8- 33383-X(B               |
| Phosphate Buffer Solution                           | 2/14/13    | 4NE8-33273-XCRA               |
| 5.0 M Nitric Acid                                   | 1/23/12    | GNE8-33359- XCRA.             |
| Diphenylcarbazide Solution                          | 9/28/12    | GNE8-33407-XCR                |
| Sulfuric Acid, 10%                                  | 1/17/13    | GNE7-32927-XCR                |
| Filter                                              | NA         | F2 EA198111                   |
| Teflon Chips                                        | NA NA      | 919120                        |
| ·                                                   |            | OH 6                          |

Form: GN087A-21B Rev. Date: 2/18/10





## GN71343

# HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 331/397/(83/195) Thermometer Correction factor: 0/-2/2/0

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Temp. in deg. C    | Temp. in deg. C    | Temp. in deg. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp, in dea, C    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|           | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |          | Hot Plate #        | Hot Plate # 2 -    | Hot Plate # 3 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hot Plate # 5 -    |
| Digestion |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Uncorrected/Correc | Uncorrected/Correc | Incorrected/Correct Uncorrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corr | Uncorrected/Correc |
| Batch ID  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time     | ted                | ted                | ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ted                |
|           | Starting Time 9:30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 08:16    | 90/40              | 92/90              | 65/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /                  |
|           | Time 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00:01    | 90/90              | 98/86              | 65/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|           | Ending Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | c€:01    | 90/40              | 92/40              | 63/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | •                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|           | Starting Time   10:40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10:40    | 90/40              | 92/90              | 9119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 96/40              |
|           | Time 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 01:11    | 90/90              | 06/86              | 86/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/96              |
|           | Ending Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 to :11 | 90/40              | 94/40              | 65116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/90              |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |
|           | Starting Time 11:50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11:50    | 90/90              | 94/90              | 66/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /                  |
|           | Time 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a : 40   | 90/90              | 92/40              | <i>\$5/16</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |
|           | Ending Time 1点うう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19:50    | 90/90              | 05/8b              | 91/43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |

Analyst: 2nd Analyst Check:

Rev. Date: 8/08/12 Form: GN074-02



|                   | H    | eH (MV) |
|-------------------|------|---------|
| Phase Change Line | 0    | 1027.7  |
|                   | 14   | -105.6  |
|                   |      | ·       |
| Sample Number     | hd   | eH (mv) |
| JB14656-7         | 8.5  | 216     |
| JB14656-8         | 8.53 | 219     |
| JB14656-9         | 7.91 | 73.5    |
| JB14656-10        | 8.11 | 429     |
| JB14656-11        | 8.21 | 422     |
| JB14656-12        | 8.24 | 376     |
| JB14656-13        | 8.06 | 365     |
| JB14656-14        | 7.69 | 214     |
| JB14656-15        | 7.41 | 159     |
| JB14656-16        | 7.45 | 292     |

-\*- JB14656-10

JB14656-9

-+-- JB14656-7

Eh pH Phase Diagram
Phase Diagram based on the HCrO<sub>4</sub>/Cr(OH)<sub>3</sub> ratio
Below phase change line indicates reducing environment.
Above phase change line indicates oxidizing environment

→ JB14656-8

—◆— JB14656-12

--- JB14656-11

-a-JB14656-13

--- JB14656-14

→ JB14656-15

→ JB14656-16

|        |     |              | /                  |         | /        | /        | <i>y</i> |          | <b>?</b> |          |          |         |      | • | 3 | ×   |   |   |     |      |  |
|--------|-----|--------------|--------------------|---------|----------|----------|----------|----------|----------|----------|----------|---------|------|---|---|-----|---|---|-----|------|--|
| 700    | 020 | 000          | 009                | 220     |          |          |          |          | ĵэə      | lə e     | oue      | h (fere | r re |   |   | 200 | 3 | 0 | -20 | -100 |  |
| -105.6 |     | eH (mv)      | 219                | 73.5    | 429      | 422      | 376      | 365      | 214      | 159      | 292      |         |      |   |   |     |   |   |     |      |  |
| 14     |     | Hd           | 0.0<br>53.0        | 7.91    | 8.11     | 8.21     | 8.24     | 8.06     | 7.69     | 7.41     | 7.45     |         |      |   |   |     |   |   |     |      |  |
|        | -   | Imple Number | 14656-7<br>14656-8 | 14656-9 | 14656-10 | 14656-11 | 14656-12 | 14656-13 | 14656-14 | 14656-15 | 14656-16 |         |      |   |   |     |   |   |     |      |  |

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

■Phase Change Line

4

13

12

7

10

0

ω

9

2

4

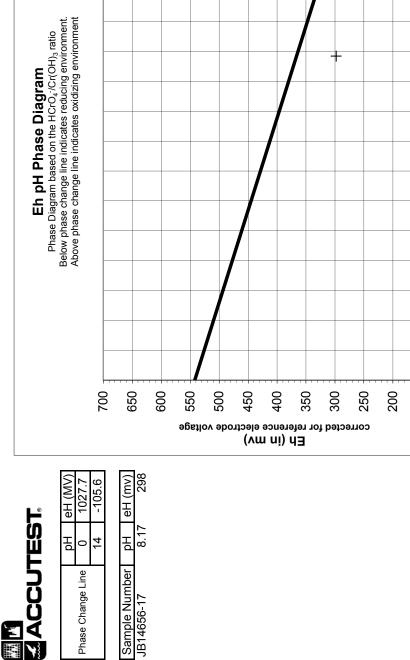
က

된

Reference for graph: SW846 method 3060A



|                   | H    | eH (MV) |
|-------------------|------|---------|
| Phase Change Line | 0    | 1027.7  |
|                   | 14   | -105.6  |
|                   |      |         |
| Sample Number     | hd   | eH (mv) |
| JB14656-18        | 8.1  | 305     |
| JB14656-19        | 7.94 | 309     |
| JB14656-20        | 6.54 | 372     |
| JB14656-21        | 8.29 | 305     |
| JB14656-1         | 7.79 | 678     |
| JB14656-2         | 8.08 | 388     |
| JB14656-3         | 9.34 | 316     |
| JB14656-4         | 9.11 | 304     |
| JB14656-5         | 7.92 | 26      |
| JB14656-6         | 7.84 | 242     |


| — <del>▲</del> — JB14656-19 | —————————————————————————————————————— |                            | —— JB14656-1     | → JB14656-2            | —— JB14656-3 | JB14656-4 | →— JB14656-5 | →— JB14656-6 | Phase Change Line                       |
|-----------------------------|----------------------------------------|----------------------------|------------------|------------------------|--------------|-----------|--------------|--------------|-----------------------------------------|
|                             |                                        |                            |                  |                        |              |           |              |              | 4                                       |
|                             |                                        |                            |                  |                        |              |           |              |              | 13                                      |
|                             |                                        |                            |                  |                        |              |           |              |              | 5                                       |
|                             |                                        |                            |                  |                        |              |           |              |              | = ===================================== |
|                             |                                        |                            |                  |                        |              |           |              |              | 0. <b>F</b>                             |
|                             |                                        |                            |                  |                        | 1            |           |              |              | თ                                       |
| •                           |                                        |                            |                  | 1                      | X            | •         |              | •            | - ω                                     |
|                             |                                        |                            |                  |                        |              |           |              |              |                                         |
| 200                         | 650                                    |                            | 900              | 350                    |              | 250       |              | 20           | 9                                       |
|                             |                                        |                            |                  | uce elect              | !) 43        | i betteam | 00           |              |                                         |
| -105.6                      | eH (mv)<br>.1 305<br>34 309            | 54 372<br>29 305<br>70 678 | 38 388<br>34 316 | 304<br>32 56<br>34 242 | !            |           |              |              |                                         |

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A

---- JB14656-18

Eh pH Phase Diagram
Phase Diagram based on the HCrO<sub>4</sub>/Cr(OH)<sub>3</sub> ratio
Below phase change line indicates reducing environment.
Above phase change line indicates oxidizing environment



■Phase Change Line —+— JB14656-17 þ • + 0 ω 된 ဖ 150 100

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A

978-905-2100 tel 978-905-2101 fax

## **Data Validation Report**

| Project:                   | PPG – Garfield Av<br>Northern Canal Bo | enue Supplemental Remedial Investigation (GARIS) rings |
|----------------------------|----------------------------------------|--------------------------------------------------------|
| Laboratory:                | Accutest, Dayton,                      | NJ                                                     |
| Laboratory Job No.:        | JB14769                                |                                                        |
| Analysis/Method:           | Hexavalent Chrom                       | ium SW846 3060A/7196A                                  |
| Validation Level:          | Full (Hexavalent C                     | hromium)                                               |
| Site Location/Address:     | PPG Site 114 – Ga                      | arfield Avenue, Jersey City, NJ                        |
| AECOM Project Number:      | 60213772.5.A                           |                                                        |
| Prepared by: Kristin Ruthe | ford/AECOM Co                          | mpleted on: September 13, 2012                         |
| Reviewed by: Lisa Krowitz/ | AECOM File                             | Name: 2012-09-13 DV Report JB14769-F.docx              |

#### Introduction

The data were reviewed in accordance with the FSP-QAPP and the following NJDEP and/or Region 2 validation Standard Operating Procedure (SOP):

 NJDEP Office of Data Quality SOP 5.A.10, Rev 3 (September 2009), SOP for Analytical Data Validation of Hexavalent Chromium – for USEPA SW-846 Method 3060A, USEPA SW-846 Method 7196A and USEPA SW-846 Method 7199.

The results of quality control data analyzed with site samples were used to assess the overall reliability of the data. The following qualifiers were used to identify data quality issues:

- U: Indicates the analyte was not detected in the sample above the sample reporting limit.
- J: Indicates the result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.
- UJ: Indicates the analyte was not detected above the reporting limit and the reporting limit was approximate.
- R: The sample result was rejected due to serious deficiencies; the presence or absence of the analyte could not be confirmed.

AECOM 2

#### **Sample Information**

The sample listed below was collected by AECOM on August 27, 2012 as part of the Garfield Avenue Supplemental Remedial Investigation (GARIS) Northern Canal Boring Sampling at the PPG Site - 114 Jersey City, New Jersey.

| Field ID                                                   | Laboratory ID | Matrix  | Fraction            |
|------------------------------------------------------------|---------------|---------|---------------------|
| NSB-F1-20.0-20.5                                           | JB14769-1     | Soil    | Hexavalent Chromium |
| NSB-F1-16.0-16.5                                           | JB14769-2     | Soil    | Hexavalent Chromium |
| NSB-F1-10.0-10.5                                           | JB14769-3     | Soil    | Hexavalent Chromium |
| NSB-F1-4.0-4.5                                             | JB14769-4     | Soil    | Hexavalent Chromium |
| NSB-F1-1.0-1.5                                             | JB14769-5     | Soil    | Hexavalent Chromium |
| NSB-E4-21.0-21.5                                           | JB14769-6     | Soil    | Hexavalent Chromium |
| NSB-E4-16.0-16.5X<br>(field duplicate of NSB-E4-16.0-16.5) | JB14769-7     | Soil    | Hexavalent Chromium |
| NSB-E4-16.0-16.5                                           | JB14769-8     | Soil    | Hexavalent Chromium |
| NSB-E4-12.0-12.5                                           | JB14769-9     | Soil    | Hexavalent Chromium |
| NSB-EB20120827 (equipment blank)                           | JB14769-10    | Aqueous | Hexavalent Chromium |
| NSB-E4-6.5-7.0                                             | JB14769-11    | Soil    | Hexavalent Chromium |

The samples were collected following the procedures detailed in the Remedial Investigation Work Plan – Soil for Non-Residential Chromate Chemical Production Waste Sites 114, 132, 133, 135, 137, 143, and 186, Jersey City, New Jersey and the Field Sampling Plan/Quality Assurance Project Plan for Non-Residential and Residential Chromium Sites Hudson County, New Jersey (December 2011).

#### **General Comments**

The data package was complete. Quality control (QC) issues identified during validation are discussed below. Refer to the Soil Target Analyte Summary Hit List for a listing of all detected results, qualified results, and associated qualifications, where applicable.

#### **Hexavalent Chromium**

#### Matrix Spike Results

Sample NSB-E4-6.5-7.0 (JB14769-11) was selected for the matrix spike (MS) analysis associated with the samples in this SDG and was used for supporting data quality recommendations. The soluble and insoluble MS recoveries were 90.8% and 88.0%, respectively; both results met the quality control criteria of 75-125%. The post digestion spike (PDS) recovery was 90.7%, which met the PDS criteria of 85-115%. No data qualification was required on the basis of spike recoveries.

#### Sample Results

Reported results (flagged B by the laboratory) that were less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL) are approximate values and have been qualified as estimated (J).

#### **Data Quality and Usability**

In general, these data appear to be valid and may be used for decision-making purposes. No data were rejected. Qualified results, if applicable, are discussed in attachments A and B below.

Some sample results are usable as estimated values since they were detected between the RL and MDL.

AECOM 3

#### **Attachments**

Attachment A Target Analyte Summary Hitlist(s)

Attachment B Data Validation Report Form

Attachment A

Target Analyte Summary Hitlist(s)

AECOM Page 1 of 3

#### **Soil Target Analyte Summary Hit List (Hexavalent Chromium)**

Site Name PPG –GARIS Northern Canal Borings at PPG Site 114, Jersey City, NJ

Sampling Date August 27, 2012

Lab Name/ID Accutest Laboratories, Dayton, NJ

**SDG No** JB14769

Sample Matrix Soil
Trip Blank ID NA

Field Blank ID NSB-EB20120827

| Field Sample ID   | Lab Sample ID | Analyte               | Method Blank<br>(mg/kg) | Laboratory<br>Sample Result<br>(mg/kg) | Validation<br>Sample Result<br>(mg/kg) | RL<br>(mg/kg) | Quality<br>Assurance<br>Decision | NJDEP<br>Validation<br>Footnote |
|-------------------|---------------|-----------------------|-------------------------|----------------------------------------|----------------------------------------|---------------|----------------------------------|---------------------------------|
| NSB-E4-12.0-12.5  | JB14769-9     | CHROMIUM (HEXAVALENT) | U                       | 0.34                                   | 0.34                                   | 0.52          | Qualify                          | 31                              |
| NSB-E4-16.0-16.5  | JB14769-8     | CHROMIUM (HEXAVALENT) | U                       | 0.21                                   | 0.21                                   | 0.48          | Qualify                          | 31                              |
| NSB-E4-16.0-16.5X | JB14769-7     | CHROMIUM (HEXAVALENT) | U                       | 0.39                                   | 0.39                                   | 0.50          | Qualify                          | 31                              |
| NSB-F1-1.0-1.5    | JB14769-5     | CHROMIUM (HEXAVALENT) | U                       | 1.6                                    | 1.6                                    | 0.44          |                                  |                                 |
| NSB-F1-10.0-10.5  | JB14769-3     | CHROMIUM (HEXAVALENT) | U                       | 1.2                                    | 1.2                                    | 0.55          |                                  |                                 |
| NSB-F1-16.0-16.5  | JB14769-2     | CHROMIUM (HEXAVALENT) | U                       | 0.16                                   | 0.16                                   | 0.49          | Qualify                          | 31                              |
| NSB-F1-4.0-4.5    | JB14769-4     | CHROMIUM (HEXAVALENT) | U                       | 3.4                                    | 3.4                                    | 0.55          |                                  |                                 |

Note: A "U" under Method Blank column indicates a nondetect result.

A "U" under the Laboratory Sample Result and Validation Sample Result columns indicates a nondetect result at the RL.

#### NJDEP Laboratory Footnote

- 1. The value reported is less than or equal to 3x the value in the preparation/reagent blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.
- 2. The value reported is greater than three (3) times but less than ten (10) times the value in the preparation/reagent blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to the preparation/reagent blank contamination. The "B" qualifier alerts the end-user to the presence of this analyte in the preparation/reagent blank.
- 3. The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the policy of NJDEP-DPFSR to negate the reported value as due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.
- 4. The value reported is greater than three (3) times but less than ten (10) times the value in the trip/field blanks and is considered "real". However, the reported value must be quantitatively qualified "J" due to trip/field blank contamination.

AECOM Page 2 of 3

- 5. The concentration reported by the laboratory is incorrectly calculated.
- 6. The laboratory failed to report the presence of the analyte in the sample.
- 7. The reported Hexavalent Chromium value was qualified because the Calibration Check Standard was not within the recovery range (90-110 percent).
- 8. In the Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of <u>+</u> 20 percent for sample results > 4xRL or <u>+</u> RL for sample results < 4xRL. Therefore, the result was qualified.
- 9. This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.
- 10. The reported value was qualified because the PVS recovery was greater than 115 percent.
- 11. The reported value was qualified because the PVS recovery was less than 85 percent.
- 12. The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.
- 13. The reported analyte was qualified because the associated Calibration Blank result was greater than the MDL.
- 14. The laboratory made a transcription error. No hits were found in the raw data.
- 15. This analyte is rejected because the laboratory exceeded the holding time for digestion and analysis.
- 16. The laboratory subtracted the preparation/reagent blank from the sample result. The Reviewer's calculation puts the preparation/reagent blank back into the result.
- 17. The photocopy is unreadable. Therefore, the QA reviewer cannot read the laboratory's reported concentration result.
- 18. The reported value was qualified because the predigestion spike recovery was less than 75 %, but greater than 50%.
- 19. The reported value was qualified because the predigestion spike recovery was greater than 125 percent.
- 20. The non-detected value was qualified (UJ) because the redigestion spike recovery was less than 75 percent. The possibility of a false negative exists.
- 21. The reported result was qualified or rejected because the laboratory did not record the pH value(s) of the sample in a laboratory notebook.
- 22. The reported value was qualified (J/UJ) because the sample moisture content exceeded 50 percent.

AECOM Page 3 of 3

- 23. The sample result was rejected because the soluble and insoluble matrix spike recoveries were less than 50%.
- 24. The detected sample result was qualified (J) because the incorrect spike concentration was used.
- 25. The reported sample results were rejected because the predigestion spike recovery was greater than 150 percent.
- 26. The reported sample results were rejected because the redigestion spike recovery was greater than 150 percent.
- 27. The reported value was qualified (J) because the redigestion spike recovery was less than 75 percent.
- 28. The reported value was qualified (J/UJ) because the sample digestion temperature was less than 90°C.
- 29. In the Field Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of ≤ 20% for sample results > 4xRL or ± RL for sample results < 4xRL. Therefore, the result was qualified.
- 30. The reported value was qualified as estimated (J/UJ) but the bias is uncertain due to both high and low MS recoveries.
- 31. The reported result was greater than the MDL but less than the RL and qualified (J) as estimated by the laboratory.
- 32. The reported value was qualified because the sample replicate precision criterion of ≤20% for method 7199 was exceeded.
- 33. The reported value was qualified (J/UJ) because the laboratory control sample (LCS) recovery was less than 80%.
- 34. The reported value was qualified (J) because the laboratory control sample (LCS) recovery was greater than 120%.
- 35. The reported result was qualified because the matrix spike analysis was not performed at the proper frequency.
- 36. The reported result was qualified because the laboratory duplicate analysis was not performed at the proper frequency.
- 37. The result was qualified because the cooler temperature upon sample receipt exceeded 6°C.
- 38. The reported value was qualified because the redigestion spike recovery was greater than 125 percent.
- 39. The reported result was rejected because the laboratory failed to perform the reanalysis due to insufficient sample volume.
- 40. The reported results was qualified because the laboratory failed to analyze an ending CCB.

**Attachment B** 

**Data Validation Report Form** 

#### AECOM DATA VALIDATION REPORT FORM – HEXAVALENT CHROMIUM ANALYSIS (7196) Page 1 of 5

| Client Name: PPG Industries                      | Project Number: 60213772.5.A            |
|--------------------------------------------------|-----------------------------------------|
| Site Location: PPG- GARIS Northern Canal Borings | Project Manager: Robert Cataldo         |
| Laboratory: Accutest, Dayton, New Jersey         | Limited or Full Validation (circle one) |
| Laboratory Job No: JB14769                       | Date Checked: 09/13/2012                |
| Validator: Kristin Rutherford                    | Peer: Lisa Krowitz                      |

| ITEM                                            | YES | NO | N/A | COMMENTS                                    |
|-------------------------------------------------|-----|----|-----|---------------------------------------------|
| Sample results included?                        | Х   |    |     | 10 soils and 1 EB                           |
| Reporting Limits met project requirements?      | Х   |    |     |                                             |
| Field I.D. included?                            | х   |    |     |                                             |
| Laboratory I.D. included?                       | х   |    |     |                                             |
| Sample matrix included?                         | х   |    |     |                                             |
| Sample receipt temperature 2-6°C?               | х   |    |     | 4.0°C                                       |
| Signed COCs included?                           | х   |    |     |                                             |
| Date of sample collection included?             | х   |    |     | 08/27/2012                                  |
| Date of sample digestion included?              | х   |    |     | Soil: JB14769 HxCr prepped on 09/06/2012    |
| Holding time to digestion met criteria?         | х   |    |     | Yes                                         |
| Soils -30 days from collection to digestion.    |     |    |     |                                             |
| Date of analysis included?                      | x   |    |     | Soil: JB14769: HxCr analyzed on 09/07/2012. |
|                                                 |     |    |     | AQ: 8/27/12                                 |
| Holding time to analysis met criteria?          | х   |    |     | Yes                                         |
| Soils -168 hours from digestion to analysis.    |     |    |     |                                             |
| Aqueous – 24 hours from collection to analysis. |     |    |     |                                             |
| Method reference included?                      | х   |    |     | 3060A/7196A                                 |
| Laboratory Case Narrative included?             | х   |    |     |                                             |

Definitions: MDL – Method Detection Limit; %R – Percent Recovery; RL – Reporting Limit; RPD – Relative Percent Difference; RSD – Relative Standard Deviation: Corr – Correlation Coefficient.

#### Comments

Field Duplicates: NSB-E4-16.0-16.5 and NSB-E4-16.0-16.5X. RPD criteria met (difference ±RL for results ≤4X RL). No qualifications required.

Percent Solids: all samples >50%, no qualifications

Sample Dilutions: None for this SDG

| ITEM                                                                                                                                                                                                                                                                               | YES         | NO | N/A | COMMENTS                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|-----|------------------------------------------------------------------------------------------------------|
| Initial Calibration Documentation Included in Lab Package?                                                                                                                                                                                                                         | х           |    |     | Cal source (soil – Absolute lot # 041212); AQ Absolute Lot #011212                                   |
| <ol> <li>Blank plus 4 standards (7196A) or blank plus 3 standards (7199),</li> <li>Correlation coefficient of ≥0.995 (7196A) or ≥0.999 (7199).</li> <li>Calibrate daily or each time instrument is set up.</li> </ol>                                                              | x<br>x<br>x |    |     | Each analysis 1 blank and 7 cal STDs     All analyses meet CC     Yes                                |
| Calibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 Included in Lab Package?                                                                                                                                                                      | х           |    |     | Check source (soil and AQ – Ultra lot # L00439)                                                      |
| NR criteria met? (90 - 110%).     Correct frequency of once every 10 samples     CCS and QCS from independent source and at mid level of calibration curve.                                                                                                                        | x<br>x<br>x |    |     | All met %R     Analyzed every 10 samples     Yes                                                     |
| Calibration Blanks                                                                                                                                                                                                                                                                 | х           |    |     |                                                                                                      |
| Analyzed prior to initial calibration standards and after each CCS/QCS?     Absolute value should not exceed MDL.                                                                                                                                                                  | x<br>x      |    |     | 1. Yes<br>2. Yes                                                                                     |
| Method Blank and Field Blanks Included in Lab Package?                                                                                                                                                                                                                             | х           |    |     | Equipment Blank NSB-EB20120827                                                                       |
| Method blank analyzed with each preparation batch?     Absolute value should not exceed MDL.                                                                                                                                                                                       | x<br>x      |    |     | Yes, Soil – JB14769 GP66995-MB1, AQ GN71131     Yes, all method and field blanks were less than MDL. |
| Eh and pH data.                                                                                                                                                                                                                                                                    | х           |    |     |                                                                                                      |
| Eh and pH data was included and plotted for all samples?                                                                                                                                                                                                                           | х           |    |     |                                                                                                      |
| Soluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                                                                                 | Х           |    |     | JB14769-11 [NSB-E4-6.5-7.0]                                                                          |
| 1. %R criteria met? (75-125%R).                                                                                                                                                                                                                                                    | x           |    |     | 1. JB14769 – Yes (90.8 %)                                                                            |
| 2. Was the spike concentration 40 mg/Kg or twice the sample concentration, whichever is greater?                                                                                                                                                                                   |             | x  |     | 2. JB14769 No, 62.1 mg/kg. No impact to data.                                                        |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                                  | х           |    |     | Yes for all batches.                                                                                 |
| Insoluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                                                                               | х           |    |     | JB14769-11 [NSB-E4-6.5-7.0]                                                                          |
| 1. %R criteria met? (75-125%R).                                                                                                                                                                                                                                                    | х           |    |     | 1. JB14769: Yes (88.0%)                                                                              |
| 2. Was the spike concentration around 400 to 800 mg/Kg?                                                                                                                                                                                                                            |             | x  |     | 2. JB14769 No (1620 mg/kg). No impact to data.                                                       |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                                  | х           |    |     | Yes for all batches.                                                                                 |
| Post Digestion Spike                                                                                                                                                                                                                                                               | х           |    |     | JB14769-11 [NSB-E4-6.5-7.0]                                                                          |
| 1. %R criteria met? (85-115%R).                                                                                                                                                                                                                                                    | х           |    |     | 1. JB14769 Yes (90.7%)                                                                               |
| 2. Was the spike concentration 40 mg/Kg or twice the sample concentration?                                                                                                                                                                                                         | x           |    |     | 2. a. JB14769 Yes, 41.55 mg/kg                                                                       |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                                  | х           |    |     | Yes for all batches.                                                                                 |
| Sample Duplicate Data Included in Lab Package?                                                                                                                                                                                                                                     | х           |    |     | JB14769-11 [NSB-E4-6.5-7.0]                                                                          |
| <ol> <li>RPD criteria met? (RPD &lt; 20%) of both results are ≥4x RL or<br/>control limit of ±RL if both results are &lt;4x RL.</li> </ol>                                                                                                                                         | х           |    |     | 1. JB14769 - Yes, both results ND                                                                    |
| 2. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                                                                                  | x           |    |     | 2. Yes                                                                                               |
| Was a Laboratory Control Sample (LCS) Included in Lab Package?                                                                                                                                                                                                                     | х           |    |     |                                                                                                      |
| %R criteria met? (80-120%R).     Was an LCS analyzed at the frequency of 1/batch or 20 samples?                                                                                                                                                                                    | x<br>x      |    |     | Yes, all LCS recoveries were within quality control criteria.     Yes                                |
| Miscellaneous Items.                                                                                                                                                                                                                                                               |             |    |     |                                                                                                      |
| 1. For soils by 3060A, was the initial pH within a range of 7.0-8.0? 2. For soils by 7199, was the pH within a range of 9.0-9.5? 3. For aqueous by 7196A, was the pH with a range of 1.5-2,5? 4. For soils (3060A), was the digestion temperature 90-95°C for at least 60 minutes? | x<br>x<br>x |    | х   | 1. Yes<br>2. NA<br>3. Yes<br>4. Yes                                                                  |
| <ol> <li>For 7199, was each sample injected twice and was the RPD ≤20?</li> </ol>                                                                                                                                                                                                  | <u> </u>    |    | х   | 5. NA                                                                                                |

NJDEP SOP 5.A.10 for SW846 Hx Cr

April 2011

AECOM Page 3 of 5

## **Holding Time**

| Sample ID         | Method | Days from<br>Sampling to Prep | Days from Prep to<br>Analysis | Days from<br>Sampling to<br>Analysis | Sample to Prep<br>Status | Prep to Analysis<br>Status | Sample to<br>Analysis Status |
|-------------------|--------|-------------------------------|-------------------------------|--------------------------------------|--------------------------|----------------------------|------------------------------|
| NSB-EB20120827    | SW7196 |                               |                               | 0                                    |                          |                            | OK @1 days                   |
| NSB-E4-12.0-12.5  | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-E4-16.0-16.5  | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-E4-16.0-16.5X | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-E4-21.0-21.5  | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-E4-6.5-7.0    | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F1-1.0-1.5    | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F1-10.0-10.5  | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F1-16.0-16.5  | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F1-20.0-20.5  | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F1-4.0-4.5    | SW7196 | 10                            | 1                             | 11                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |

### **Percent Solids**

| Sample ID         | Percent Solids (%) | Status  |
|-------------------|--------------------|---------|
| NSB-E4-12.0-12.5  | 76.9               | ok @50% |
| NSB-E4-16.0-16.5  | 82.9               | ok @50% |
| NSB-E4-16.0-16.5X | 79.6               | ok @50% |
| NSB-E4-21.0-21.5  | 87.7               | ok @50% |
| NSB-E4-6.5-7.0    | 63.4               | ok @50% |
| NSB-F1-1.0-1.5    | 90.3               | ok @50% |
| NSB-F1-10.0-10.5  | 72.7               | ok @50% |
| NSB-F1-16.0-16.5  | 81.6               | ok @50% |
| NSB-F1-20.0-20.5  | 84.1               | ok @50% |
| NSB-F1-4.0-4.5    | 73.1               | ok @50% |

## Field **Duplicate**

| Sample ID        | Duplicate ID      | Compound              | Sample Result | Duplicate Result | QL   | Units | RPD |
|------------------|-------------------|-----------------------|---------------|------------------|------|-------|-----|
| NSB-E4-16.0-16.5 | NSB-E4-16.0-16.5X | CHROMIUM (HEXAVALENT) | 0.21          | 0.39             | 0.48 | mg/kg | 60  |

AECOM Page 4 of 5

| Wet weight (g) Dry weight (g)        | 36.34<br>33.55    |                   |                         |                    |
|--------------------------------------|-------------------|-------------------|-------------------------|--------------------|
| Wet weight (g)                       | 36.34             |                   |                         |                    |
| /ك/ ك ر                              |                   |                   |                         |                    |
| Empty dish weight (g)                | 28.72             | , 1, 3            |                         |                    |
| Percent Solids                       | NSB-E4-6.5-7.0 (  | JB14769-11) pas.  | 35                      |                    |
| AECOM%R                              | 88                | OK                | Reported %R             | 88                 |
| Native concentration (mg/Kg)         | 0                 | 01/               | Demonstration C         |                    |
| True Value (mg/Kg)                   | 1620              |                   |                         |                    |
| %R = Found/True*100                  | NSB-E4-6.5-7.0 (  | JB14769-11) pgs.  | 33                      |                    |
|                                      |                   |                   |                         |                    |
| AECOM Calculated MS Result (mg/Kg)   | 1429              | OK rounding       | Reported Result (mg/Kg) | 1430               |
| Dilution Factor                      | 50                |                   |                         |                    |
| Percent solids                       | 0.634             |                   |                         |                    |
| Final Volume (L)                     | 0.1               |                   |                         |                    |
| Sample weight (Kg)                   | 0.00248           |                   |                         |                    |
| Instrument Concentration (mg/L)      | 0.4495            |                   |                         |                    |
| Total absorbance - background        | 0.407             |                   |                         |                    |
| Total absorbance                     | 0.407             |                   |                         |                    |
| Background absorbance reading        | 0                 | C = -0.0-7.0 (0D1 | -1 00-1 1/ pgs. 00      |                    |
| MS calculation                       | GP66005-92 NSI    | B-E4-6.5-7.0 (JB1 | 4769-11) ngs 50         |                    |
| AECOM Calculated %R                  | 91.3              | OK                | Reported %R             | 91.3               |
| True Value (mg/Kg)                   | 40                |                   |                         |                    |
| %R = Found/True*100                  | pg. 31            |                   |                         |                    |
| AECOM Calculated LCS Result (mg/Kg)  | 36.5              | OK                | Reported Result (mg/Kg) | 36.5               |
| Dilution Factor                      | 11                |                   |                         |                    |
| Final Volume (L)                     | 0.1               |                   |                         |                    |
| Sample weight (Kg)                   | 0.0025            |                   |                         |                    |
| Instrument Concentration (mg/L)      | 0.9133            |                   |                         |                    |
| Total absorbance - background        | 0.826             |                   |                         |                    |
| Total absorbance                     | 0.826             |                   |                         |                    |
| Background Absorbance                | 0                 |                   |                         |                    |
| LCS calculation                      | GP66995-B1 pg.    | 50                |                         |                    |
| AECOM Calculated r                   | 0.99997           | OK                | Reported r              | 0.99997            |
| AECOM Slope                          | 0.9033            | OK                | Reported Slope          | 0.9033             |
| AECOM Calculated Intercept           | 0.0010            | OK                | Reported intercept      | 0.0010             |
|                                      |                   |                   |                         | (p. 50 of data pkg |
|                                      | 1                 | 0.903             |                         |                    |
|                                      | 0.8               | 0.721             |                         |                    |
|                                      | 0.5               | 0.459             |                         |                    |
|                                      | 0.3               | 0.273             |                         |                    |
| (p. 50 of data pkg)                  | 0.03              | 0.091             |                         |                    |
| (p. 50 of data pkg)                  | 0.01              | 0.009             |                         |                    |
| Batch: GN71682<br>Cr+6 ICAL 09/07/12 | 0<br>0.01         | 0<br>0.009        |                         |                    |
| SDG#: JB14769                        |                   |                   |                         |                    |
| PPG GARIS Soils by Method 7196       | x - concentration | y - response      |                         |                    |

AECOM Page 5 of 5

| Reporting Limit         | NSB-E4-6.5-7.0 ( | JB14769-11) pgs | s. 50, 19            |      |
|-------------------------|------------------|-----------------|----------------------|------|
| Low Standard (mg/L)     | 0.01             |                 |                      |      |
| Initial weight (Kg)     | 0.00254          |                 |                      |      |
| Final volume (L)        | 0.1              |                 |                      |      |
| Percent solids          | 0.634            |                 |                      |      |
| Dilution Factor         | 1                |                 |                      |      |
| Reporting Limit (mg/Kg) | 0.62             | OK rounding     | Reported RL (mg/Kg)= | 0.63 |

#### **Sample Calculations**

| NOD E4 0 E 7 0   | ( ID4 4700 44) | FO 40       |
|------------------|----------------|-------------|
| NSB-E4-6.5-7.0 ( | (JB14769-11)   | pgs. 50, 19 |

| 1100 0.0 1.0 ( |                                                         | 00, .0                                                       |                                                    |
|----------------|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| 0              |                                                         |                                                              |                                                    |
| 0.002          |                                                         |                                                              |                                                    |
| 0.002          |                                                         |                                                              |                                                    |
| 0.001          |                                                         |                                                              |                                                    |
| 0.00254        |                                                         |                                                              |                                                    |
| 0.1            |                                                         |                                                              |                                                    |
| 0.634          |                                                         |                                                              |                                                    |
| 1              |                                                         |                                                              |                                                    |
| 0.07           | OK < 0.18 U                                             | Reported Result (mg/Kg)                                      | 0.18 U                                             |
|                | 0<br>0.002<br>0.002<br>0.001<br>0.00254<br>0.1<br>0.634 | 0<br>0.002<br>0.002<br>0.001<br>0.00254<br>0.1<br>0.634<br>1 | 0.002<br>0.002<br>0.001<br>0.00254<br>0.1<br>0.634 |



09/10/12



## Technical Report for

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14769

Sampling Date: 08/27/12

#### Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 60



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



## **Sections:**

## **Table of Contents**

-1-

| Section 1: Sample Summary                        | 3         |
|--------------------------------------------------|-----------|
| Section 2: Case Narrative/Conformance Summary    | 4         |
| Section 3: Summary of Hits                       |           |
| Section 4: Sample Results                        | 8         |
| <b>4.1:</b> JB14769-1: NSB-F1-20.0-20.5          | 9         |
| <b>4.2:</b> JB14769-2: NSB-F1-16.0-16.5          | 10        |
| <b>4.3:</b> JB14769-3: NSB-F1-10.0-10.5          | 11        |
| <b>4.4:</b> JB14769-4: NSB-F1-4.0-4.5            | 12        |
| <b>4.5:</b> JB14769-5: NSB-F1-1.0-1.5            | 13        |
| <b>4.6:</b> JB14769-6: NSB-E4-21.0-21.5          | 14        |
| <b>4.7:</b> JB14769-7: NSB-E4-16.0-16.5X         | 15        |
| <b>4.8:</b> JB14769-8: NSB-E4-16.0-16.5          | 16        |
| <b>4.9:</b> JB14769-9: NSB-E4-12.0-12.5          | 17        |
| <b>4.10:</b> JB14769-10: NSB-EB20120827          | 18        |
| <b>4.11:</b> JB14769-11: NSB-E4-6.5-7.0          | 19        |
| Section 5: Misc. Forms                           | 20        |
| <b>5.1:</b> Chain of Custody                     | 21        |
| 5.2: Sample Tracking Chronicle                   | 23        |
| 5.3: Internal Chain of Custody                   | 26        |
| Section 6: General Chemistry - QC Data Summaries | 30        |
| 6.1: Method Blank and Spike Results Summary      | 31        |
| 6.2: Duplicate Results Summary                   | 32        |
| 6.3: Matrix Spike Results Summary                | 33        |
| 6.4: Percent Solids Raw Data Summary             | 34        |
| Section 7: General Chemistry - Raw Data          | <b>36</b> |
| 7.1: Raw Data GN71131: Chromium, Hexavalent      | 37        |
| <b>7.2:</b> Raw Data GN71547: pH                 | 43        |
| 7.3: Raw Data GN71548: Redox Potential Vs H2     | 46        |
| 7.4: Raw Data GN71666: Redox Potential Vs H2     | 48        |
| 7.5: Raw Data GN71682: Chromium, Hexavalent      | 50        |
| 7.6: Eh pH Phase Diagram                         | 58        |



## **Sample Summary**

Job No:

JB14769

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code |                   | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|-------------------|---------------------|
| JB14769-1        | 08/27/12          | 15:20 CM | 08/27/12 | SO            | Soil              | NSB-F1-20.0-20.5    |
| JB14769-2        | 08/27/12          | 15:00 CM | 08/27/12 | SO            | Soil              | NSB-F1-16.0-16.5    |
| JB14769-3        | 08/27/12          | 14:45 CM | 08/27/12 | so            | Soil              | NSB-F1-10.0-10.5    |
| JB14769-4        | 08/27/12          | 14:20 CM | 08/27/12 | SO            | Soil              | NSB-F1-4.0-4.5      |
| JB14769-5        | 08/27/12          | 13:50 CM | 08/27/12 | so            | Soil              | NSB-F1-1.0-1.5      |
| JB14769-6        | 08/27/12          | 10:45 CM | 08/27/12 | SO            | Soil              | NSB-E4-21.0-21.5    |
| JB14769-7        | 08/27/12          | 10:36 CM | 08/27/12 | so            | Soil              | NSB-E4-16.0-16.5X   |
| JB14769-8        | 08/27/12          | 10:30 CM | 08/27/12 | SO            | Soil              | NSB-E4-16.0-16.5    |
| JB14769-9        | 08/27/12          | 10:15 CM | 08/27/12 | so            | Soil              | NSB-E4-12.0-12.5    |
| JB14769-10       | 08/27/12          | 15:30 CM | 08/27/12 | AQ            | Equipment Blank   | NSB-EB20120827      |
| JB14769-11       | 08/27/12          | 10:00 CM | 08/27/12 | SO            | Soil              | NSB-E4-6.5-7.0      |
| JB14769-11D      | 08/27/12          | 10:00 CM | 08/27/12 | SO            | Soil Dup/MSD      | NSB-E4-6.5-7.0      |
| JB14769-11S      | 08/27/12          | 10:00 CM | 08/27/12 | SO            | Soil Matrix Spike | NSB-E4-6.5-7.0      |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14769

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 9/10/2012 7:37:13 PM

On 08/27/2012, 11 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 4 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14769 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Wet Chemistry By Method ASTM D1498-76

Matrix: AQ Batch ID: GN71666

Sample(s) JB14769-10DUP were used as the QC samples for Redox Potential Vs H2.

#### Wet Chemistry By Method ASTM D1498-76M

Matrix: SO Batch ID: GN71548

- Sample(s) JB14769-11DUP were used as the QC samples for Redox Potential Vs H2.
- RPD(s) for Duplicate for Redox Potential Vs H2 are outside control limits for sample GN71548-D1. Outside of in house limits, but within reasonable method recovery limits.

#### Wet Chemistry By Method SM18 2540G

Matrix: SO Batch ID: GN71520

The data for SM18 2540G meets quality control requirements.

Matrix: SO Batch ID: GN71533

The data for SM18 2540G meets quality control requirements.

#### Wet Chemistry By Method SM20 4500H B

Matrix: AQ Batch ID: R115536

- The data for SM20 4500H B meets quality control requirements.
- JB14769-10 for pH: Sample received out of holding time for pH analysis.

#### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP66995

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14769-11DUP, JB14769-11MS were used as the QC samples for Chromium, Hexavalent.
- GP66995-S1 for Chromium, Hexavalent: Good recovery on soluble XCR matrix spike. Good recovery (90.7%) on the post-spike.
- GP66995-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



#### Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN71131

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

#### Wet Chemistry By Method SW846 9045C,D

Matrix: SO Batch ID: GN71547

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Sample(s) JB14769-11DUP were used as the QC samples for pH.

Summary of Hits Job Number: JB14769 Account: AECOM AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Collected: 08/27/12

| Lab Sample ID (<br>Analyte                  | Client Sample ID | Result/<br>Qual       | RL   | MDL  | Units             | Method                                               |
|---------------------------------------------|------------------|-----------------------|------|------|-------------------|------------------------------------------------------|
| JB14769-1                                   | NSB-F1-20.0-20.5 |                       |      |      |                   |                                                      |
| Redox Potential Vs<br>pH                    | s H2             | 261<br>8.30           |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14769-2                                   | NSB-F1-16.0-16.5 |                       |      |      |                   |                                                      |
| Chromium, Hexav<br>Redox Potential Vs<br>pH |                  | 0.16 B<br>273<br>7.94 | 0.49 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14769-3                                   | NSB-F1-10.0-10.5 |                       |      |      |                   |                                                      |
| Chromium, Hexav<br>Redox Potential Vs<br>pH |                  | 1.2<br>55.9<br>7.62   | 0.55 | 0.16 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14769-4                                   | NSB-F1-4.0-4.5   |                       |      |      |                   |                                                      |
| Chromium, Hexav<br>Redox Potential Vs<br>pH |                  | 3.4<br>284<br>7.88    | 0.55 | 0.16 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14769-5                                   | NSB-F1-1.0-1.5   |                       |      |      |                   |                                                      |
| Chromium, Hexav<br>Redox Potential Vs<br>pH |                  | 1.6<br>351<br>8.41    | 0.44 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14769-6                                   | NSB-E4-21.0-21.5 |                       |      |      |                   |                                                      |
| Redox Potential Vs<br>pH                    | s H2             | 293<br>8.90           |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14769-7                                   | NSB-E4-16.0-16.5 | X                     |      |      |                   |                                                      |
| Chromium, Hexav<br>Redox Potential Vs<br>pH |                  | 0.39 B<br>234<br>8.88 | 0.50 | 0.15 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14769-8                                   | NSB-E4-16.0-16.5 |                       |      |      |                   |                                                      |
| Chromium, Hexav<br>Redox Potential Vs<br>pH |                  | 0.21 B<br>241<br>8.86 | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |



# **Summary of Hits Job Number:** JB14769

Account: AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ **Project:** 

**Collected:** 08/27/12

| Lab Sample ID Cl<br>Analyte                   | Client Sample ID | Result/<br>Qual        | RL   | MDL  | Units             | Method                                               |
|-----------------------------------------------|------------------|------------------------|------|------|-------------------|------------------------------------------------------|
| JB14769-9 N                                   | SB-E4-12.0-12.5  |                        |      |      |                   |                                                      |
| Chromium, Hexaval<br>Redox Potential Vs<br>pH |                  | 0.34 B<br>16.0<br>8.53 | 0.52 | 0.15 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14769-10 N                                  | SB-EB20120827    |                        |      |      |                   |                                                      |
| Redox Potential Vs pH <sup>a</sup>            | H2               | 382<br>6.71            |      |      | mv<br>su          | ASTM D1498-76<br>SM20 4500H B                        |
| JB14769-11 N                                  | SB-E4-6.5-7.0    |                        |      |      |                   |                                                      |
| Redox Potential Vs pH                         | H2               | 189<br>9.94            |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |

<sup>(</sup>a) Sample received out of holding time for pH analysis.





| Sample Results     |
|--------------------|
| Report of Analysis |



## **Report of Analysis**

Client Sample ID: NSB-F1-20.0-20.5

 Lab Sample ID:
 JB14769-1
 Date Sampled:
 08/27/12

 Matrix:
 SO - Soil
 Date Received:
 08/27/12

 Percent Solids:
 84.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.14 U | 0.48 | 0.14 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 261    |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 84.1   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| pН                    | 8.30   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## \_\_i

Page 1 of 1

## **Report of Analysis**

Client Sample ID: NSB-F1-16.0-16.5

 Lab Sample ID:
 JB14769-2
 Date Sampled:
 08/27/12

 Matrix:
 SO - Soil
 Date Received:
 08/27/12

 Percent Solids:
 81.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.16 B | 0.49 | 0.14 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 273    |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 81.6   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| pН                    | 7.94   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## 4

## **Report of Analysis**

Client Sample ID: NSB-F1-10.0-10.5

 Lab Sample ID:
 JB14769-3
 Date Sampled:
 08/27/12

 Matrix:
 SO - Soil
 Date Received:
 08/27/12

 Percent Solids:
 72.7

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 1.2    | 0.55 | 0.16 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 55.9   |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 72.7   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| pН                    | 7.62   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## 4

## **Report of Analysis**

Client Sample ID: NSB-F1-4.0-4.5 Lab Sample ID: JB14769-4

Matrix: SO - Soil

Date Sampled: 08/27/12Date Received: 08/27/12Percent Solids: 73.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 3.4    | 0.55 | 0.16 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 284    |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 73.1   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| pН                    | 7.88   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-F1-1.0-1.5 Lab Sample ID: JB14769-5 Matrix: SO - Soil

**Date Sampled:** 08/27/12 **Date Received:** 08/27/12 **Percent Solids:** 90.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 1.6    | 0.44 | 0.13 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 351    |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 90.3   |      |      | %     | 1  | 09/05/12 12:50 RO SM18 2540G        |
| pН                    | 8.41   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



#### 4

## **Report of Analysis**

Client Sample ID: NSB-E4-21.0-21.5

 Lab Sample ID:
 JB14769-6
 Date Sampled:
 08/27/12

 Matrix:
 SO - Soil
 Date Received:
 08/27/12

 Percent Solids:
 87.7

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.13 U | 0.46 | 0.13 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 293    |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 87.7   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| pН                    | 8.90   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-E4-16.0-16.5X

 Lab Sample ID:
 JB14769-7
 Date Sampled:
 08/27/12

 Matrix:
 SO - Soil
 Date Received:
 08/27/12

 Percent Solids:
 79.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.39 B | 0.50 | 0.15 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 234    |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 79.6   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| рH                    | 8.88   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-E4-16.0-16.5

 Lab Sample ID:
 JB14769-8
 Date Sampled:
 08/27/12

 Matrix:
 SO - Soil
 Date Received:
 08/27/12

 Percent Solids:
 82.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.21 B | 0.48 | 0.14 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 241    |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 82.9   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| pН                    | 8.86   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## 4

## **Report of Analysis**

Client Sample ID: NSB-E4-12.0-12.5

 Lab Sample ID:
 JB14769-9
 Date Sampled:
 08/27/12

 Matrix:
 SO - Soil
 Date Received:
 08/27/12

 Percent Solids:
 76.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.34 B | 0.52 | 0.15 | mg/kg | 1  | 09/07/12 16:26 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 16.0   |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 76.9   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| pН                    | 8.53   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



## **Report of Analysis**

Client Sample ID: NSB-EB20120827

Lab Sample ID:JB14769-10Date Sampled:08/27/12Matrix:AQ - Equipment BlankDate Received:08/27/12Percent Solids:n/a

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                                       | Result          | RL    | MDL    | Units      | DF | Analyzed By Method                                         |
|-----------------------------------------------|-----------------|-------|--------|------------|----|------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 0.0014 U<br>382 | 0.010 | 0.0014 | mg/l<br>mv | 1  | 08/27/12 19:45 MM SW846 7196A<br>09/07/12 SA ASTM D1498-76 |
| pH <sup>a</sup>                               | 6.71            |       |        | su         | 1  | 08/27/12 18:13 TH SM20 4500H B                             |

(a) Sample received out of holding time for pH analysis.

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



4

## **Report of Analysis**

Client Sample ID: NSB-E4-6.5-7.0 Lab Sample ID: JB14769-11 **Date Sampled:** 08/27/12 Matrix: SO - Soil

PPG Northern Canal Borings, Jersey City, NJ **Project:** 

**Date Received:** 08/27/12 Percent Solids: 63.4

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.18 U | 0.63 | 0.18 | mg/kg | 1  | 09/07/12 15:53 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 189    |      |      | mv    | 1  | 09/05/12 METASTM D1498-76M          |
| Solids, Percent       | 63.4   |      |      | %     | 1  | 09/05/12 11:30 KP SM18 2540G        |
| pН                    | 9.94   |      |      | su    | 1  | 09/05/12 16:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



ACCUTEST

JB14769



Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



Page:

50 F3

| Lab Infor | mation:                          | Duniont Cofe               |                               | The Chain-of- | -Custody is a i | LEGAL DOCUMENT        |             |            | pleted and a   | courate.          | 1                                       |                                         | Tasi         |               | of Samp         |             | n Canal    | Borings         |                | 814              | 7/1     |
|-----------|----------------------------------|----------------------------|-------------------------------|---------------|-----------------|-----------------------|-------------|------------|----------------|-------------------|-----------------------------------------|-----------------------------------------|--------------|---------------|-----------------|-------------|------------|-----------------|----------------|------------------|---------|
|           | ACCUTEST                         | Project Info<br>Site ID #: | rmation:<br>PPG Garfield Ave  |               |                 | Send Invoid           |             |            | 7              |                   |                                         |                                         |              | TAT           | See             | Spec. Instr | ections T  | Rush            |                | 217              | 10      |
| Address:  | 2235 Route 130 , Dayton NJ       | Project #:                 | 60213772.5.A                  |               |                 | Address:              |             | ollo Drive |                |                   |                                         |                                         | T.           |               | = Field F       |             |            | Kusii           |                |                  |         |
|           | 08810                            | Site                       | 70 Carteret Avenu             | ie            |                 | City/State.           |             | sford, MA  | 01824          | Phone #:          | 978-905-2278                            |                                         | so           |               | - 11007         | ittoreu , r | i- Holu    |                 |                |                  |         |
|           |                                  | Address:                   |                               |               |                 |                       |             |            |                |                   |                                         |                                         | No           |               |                 |             |            |                 |                |                  |         |
|           | Matt Cordova<br>x: 732-329-0200/ | City Jersey (<br>PM Name:  |                               | NJ            | 07304           |                       | 40256       |            |                |                   |                                         |                                         | Lab          |               |                 |             |            |                 |                |                  |         |
| M email:  | X: 1-32-329-02001                |                            | Chris Martell<br>732-564-3633 |               |                 | Send EDD<br>CC Hardco | to: Ir      | VJLABDATA@ | Baecom.c       | om<br>OM, Piscata | way MI                                  |                                         | tive         |               |                 |             |            |                 |                |                  |         |
|           |                                  |                            | 1                             |               |                 | TOC HAIGCO            | эру то      | Cin raire  | 11, ALC        | OW, 1 ISOAIA      | way, INJ                                |                                         | BA.          |               |                 |             |            |                 |                |                  |         |
|           |                                  | PM Email:                  | Christopher.Mart              | ell@aeco      | m.com           |                       |             |            |                |                   | *************************************** |                                         | Preservative |               |                 |             |            |                 |                |                  |         |
| ITEM B    | Field Sampl                      | e No. /Identifical         | tion                          | MATRIX CODE   | G=GRAB C=COMP   |                       | SAMPLE DATE |            | #OF CONTAINERS |                   | Comment                                 |                                         | Analysis     | GARA-HexChrom | GARA-pH-ORP     |             |            |                 |                |                  |         |
| 1 N       | SB-F1-20.0-20.5                  | -1                         |                               | so            | G               | 08/2                  | 7/2012 1    | 5:20       | 1              |                   |                                         |                                         |              | Х             | Х               |             |            |                 |                |                  |         |
| 2 N       | SB-F1-16.0-16.5                  | - 2                        |                               | so            | G               | 08/2                  | 7/2012 1    | 5:00       | 1              |                   | <i></i>                                 |                                         |              | Х             | Х               |             |            |                 |                |                  |         |
| 3 N       | SB-F1-10.0-10.5                  | - 3                        |                               | so            | G               | 08/2                  | 7/2012 1    | 4:45       | 1              | 7                 | EX45_                                   | 7                                       | f            | Х             | Х               |             | $\neg$     |                 |                |                  |         |
| 4 N       | SB-F1-4.0-4.5                    | - <u>-</u> 4               |                               | so            | G               | 08/2                  | 7/2012 1    | 4:20       | 1              | <del>-</del>      | ME 41.                                  |                                         | -            | Х             | х               |             |            | $\dashv$        | $\neg \dagger$ |                  |         |
| 5 N       | SB-F1-1.0-1.5                    | - 5                        |                               | so            | G               | 08/2                  | 7/2012 1    | 3:50       | 1              |                   | WCY7                                    | -                                       | 1            | Х             | ×               |             |            |                 | -              |                  |         |
| 6 N       | SB-E4-21.0-21.5                  | - 1                        |                               | so            | G               | 08/2                  | 7/2012 1    | n·45       | 1              |                   |                                         |                                         | +            | X             | X               |             |            |                 |                |                  |         |
| -         |                                  | <u> </u>                   |                               |               |                 |                       |             |            |                |                   |                                         |                                         | ł            |               |                 |             |            |                 |                | -                |         |
|           | SB-E4-16.0-16.5X                 | ···········                |                               | so            | G               | 08/2                  | 7/2012 1    | 0:36       | 1              |                   |                                         |                                         | -            | X             | X               |             |            |                 |                |                  |         |
| 8 N       | SB-E4-16.0-16.5                  | 8                          |                               | SO            | G               | 08/2                  | 7/2012 1    | 0:30       | 1              |                   |                                         |                                         |              | Х             | Х               |             |            |                 |                |                  |         |
| 9 N       | SB-E4-12.0-12.5                  | - 9                        | ·                             | so            | G               | 08/2                  | 7/2012 1    | 0:15       | 1              |                   |                                         | *************************************** |              | Х             | Х               |             |            |                 |                |                  |         |
| 10 N      | SB-EB20120827                    | 16 pt=                     | - 6.71*                       | WQ            | G               | 08/2                  | 7/2012 1    | 5:30       | 2              |                   | Preserved:None                          |                                         |              | Х             | х               |             |            |                 |                |                  |         |
|           | SB-E4-6.5-7.0                    | - ((                       |                               | so            | G               | 08/2                  | 7/2012 1    | 0:00       | 2              |                   | 1 Jar for MS/MSD                        |                                         |              | Х             | х               |             |            |                 |                |                  |         |
|           | al Comments/Special Ins          | tructions:                 | 8/21/21                       | RELINO        | UISHED E        | BY / AFFILIAT         | ION         | DATE       | TIME           | ACCEPTED          | BY / AFFILIATION                        |                                         |              |               | DATE            | TIME        | Samp       | ole Receip      | t Conditio     | ons              |         |
| Standard  | IAI                              |                            | 8/5/1/5.10                    | 1             | ~ (F            | 4                     |             | 8/27/12    | 1610           | 155 B             | Matin                                   | 8/2                                     | 74           | 184           | 61 D            |             |            | Y/              |                | / N              | Υ/      |
|           |                                  |                            | , ,                           | 100           | NIE             | wp.                   | 4 32        | 12 1       | 130            | /                 | "CONSTRUCT                              | Account                                 |              | 18/           | 17/12           | (7)         | <u> </u>   | 10              |                | N.               | Y (     |
|           |                                  |                            |                               |               |                 |                       |             |            |                |                   |                                         |                                         |              |               |                 |             | +          | Y/              |                | / N<br>/ N       | Y /     |
|           |                                  |                            |                               |               |                 |                       | F.          |            |                |                   | 4                                       |                                         |              |               | ST. ST. ST. ST. |             | 550 T      |                 |                |                  |         |
|           |                                  |                            |                               |               | Shippe          | er:                   |             |            |                |                   |                                         | DATE/TIME:                              |              |               |                 |             | §          | 9 6             |                | riac             | Rlank?  |
|           |                                  |                            |                               |               |                 |                       | <b></b>     |            |                |                   |                                         |                                         |              |               |                 |             | Temp in 0C | . s             |                | 96               | 8       |
| 4 oh at   | to lest abolición                |                            |                               |               | Tracking        | g #:                  |             |            |                |                   | Cu                                      | stody Seal(s):                          | /            |               |                 |             | Je Je      | Samples on Ice? |                | sample intact of | Trip    |
| - 41.00   | t of list strange                |                            |                               | 1 .           |                 | 1                     | 1           |            |                |                   |                                         |                                         |              |               |                 |             |            |                 | و ا            |                  | <u></u> |
|           |                                  |                            |                               | 1             | 11              | 00/6/                 | e           |            |                |                   |                                         |                                         |              |               |                 |             | Ĺ          | 1.0             | C              |                  |         |
|           |                                  |                            |                               |               | . –             | •                     | -           |            |                |                   |                                         |                                         |              |               |                 |             |            | 6.8             |                |                  |         |

JB14769: Chain of Custody Page 1 of 2







### **Accutest Laboratories Sample Receipt Summary**

| Accutest Job Number: JB                                                                  | 14769       |                    | Client:      |               |      | Project:                                                                                                            |                               |              |                                        |
|------------------------------------------------------------------------------------------|-------------|--------------------|--------------|---------------|------|---------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------|----------------------------------------|
| Date / Time Received: 8/2                                                                | 27/2012     |                    | Del          | livery Method | d:   | Airbill #'s:                                                                                                        |                               |              |                                        |
| Cooler Temps (Initial/Adjus                                                              | ted): #     | 1: (4/4); (        | <u>)</u>     |               |      |                                                                                                                     |                               |              |                                        |
|                                                                                          |             |                    |              |               |      |                                                                                                                     |                               |              |                                        |
| Custody Seals Present:                                                                   | Y or N      | 3.                 | COC Presen   | t: 🔽          | or N | Sample Integrity - Documentation  1. Sample labels present on bottles:                                              | <u>Y</u>                      | or N         |                                        |
| 2. Custody Seals Intact:                                                                 | <b>Z</b>    | ] 4. Sm            | pl Dates/Tim | ne OK 🗸       |      | Container labeling complete:                                                                                        | ✓                             |              |                                        |
| Cooler Temperature                                                                       | <u>Y</u>    | or N               |              |               |      | 3. Sample container label / COC agree:                                                                              | $\checkmark$                  |              |                                        |
| Temp criteria achieved:     Cooler temp verification:     Cooler media:     No. Coolers: |             | IR Gun<br>ce (Bag) |              |               |      | Sample Integrity - Condition  1. Sample recvd within HT:  2. All containers accounted for:  3. Condition of sample: | <ul><li>✓</li><li>✓</li></ul> | or N         |                                        |
| Quality Control Preservation                                                             | on Y        | or N               | N/A          |               |      | Sample Integrity - Instructions                                                                                     | Υ                             | or N         | N/A                                    |
| 1. Trip Blank present / cooler:                                                          |             |                    | $\checkmark$ |               |      | Analysis requested is clear:                                                                                        | <u> </u>                      |              |                                        |
| 2. Trip Blank listed on COC:                                                             |             |                    | $\checkmark$ |               |      | Bottles received for unspecified tests                                                                              |                               | $\checkmark$ |                                        |
| 3. Samples preserved properly                                                            | /: <b>_</b> |                    |              |               |      | 3. Sufficient volume recvd for analysis:                                                                            | <b>✓</b>                      |              |                                        |
| 4. VOCs headspace free:                                                                  |             |                    | $\checkmark$ |               |      | 4. Compositing instructions clear:                                                                                  |                               |              | ✓                                      |
|                                                                                          |             |                    |              |               |      | 5. Filtering instructions clear:                                                                                    |                               |              | ✓                                      |
| Comments                                                                                 |             |                    |              |               |      |                                                                                                                     |                               |              |                                        |
| Accutest Laboratories<br>V:732.329.0200                                                  |             |                    |              |               |      | Highway 130<br>2.329.3499                                                                                           |                               |              | Dayton, New Jersey<br>www/accutest.com |

JB14769: Chain of Custody

Page 2 of 2



### **Internal Sample Tracking Chronicle**

AECOM, INC.

JB14769 Job No:

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number                    | Method                                                             | Analyzed                                                           | Ву                    | Prepped     | Ву      | Test Codes                 |
|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|-------------|---------|----------------------------|
| JB14769-1<br>NSB-F1-20              | Collected: 27-AUG-12<br>.0-20.5                                    | 15:20 By: CM                                                       | Recei                 | ved: 27-AUG | 3-12 By | 7: MPC                     |
| JB14769-1<br>JB14769-1<br>JB14769-1 | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A |                                                                    | MET<br>KP<br>SA<br>MM | 06-SEP-12   |         | EH<br>SOL104<br>PH<br>XCRA |
| JB14769-2<br>NSB-F1-16              | Collected: 27-AUG-12<br>.0-16.5                                    | 15:00 By: CM                                                       | Recei                 | ved: 27-AUG | i-12 By | : MPC                      |
| JB14769-2<br>JB14769-2              | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 11:30<br>05-SEP-12 16:11<br>07-SEP-12 16:26 | MET<br>KP<br>SA<br>MM | 06-SEP-12   | RI      | EH<br>SOL104<br>PH<br>XCRA |
| JB14769-3<br>NSB-F1-10              | Collected: 27-AUG-12<br>.0-10.5                                    | 14:45 By: CM                                                       | Receiv                | ved: 27-AUG | -12 By  | 7: MPC                     |
| JB14769-3<br>JB14769-3              | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 11:30<br>05-SEP-12 16:11<br>07-SEP-12 16:26 | MET<br>KP<br>SA<br>MM | 06-SEP-12   | RI      | EH<br>SOL104<br>PH<br>XCRA |
| JB14769-4<br>NSB-F1-4.0             | Collected: 27-AUG-12                                               | 14:20 By: CM                                                       | Recei                 | ved: 27-AUG | -12 By  | r: MPC                     |
| JB14769-4<br>JB14769-4              | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 11:30<br>05-SEP-12 16:11<br>07-SEP-12 16:26 | MET<br>KP<br>SA<br>MM | 06-SEP-12   | RI      | EH<br>SOL104<br>PH<br>XCRA |
| JB14769-5<br>NSB-F1-1.0             | Collected: 27-AUG-12                                               | 13:50 By: CM                                                       | Recei                 | ved: 27-AUG | -12 By  | 7: MPC                     |
| JB14769-5<br>JB14769-5              | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 12:50<br>05-SEP-12 16:11<br>07-SEP-12 16:26 | MET<br>RO<br>SA<br>MM | 06-SEP-12   | RI      | EH<br>SOL104<br>PH<br>XCRA |

### **Internal Sample Tracking Chronicle**

AECOM, INC.

JB14769 Job No:

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number        | Method                                                             | Analyzed                                                           | Ву                    | Prepped     | Ву    | Test Codes                 |
|-------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|-------------|-------|----------------------------|
| JB14769-6<br>NSB-E4-21  | Collected: 27-AUG-12<br>.0-21.5                                    | 10:45 By: CM                                                       | Receiv                | ved: 27-AUG | -12 B | y: MPC                     |
| JB14769-6<br>JB14769-6  | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 11:30<br>05-SEP-12 16:11<br>07-SEP-12 16:26 | MET<br>KP<br>SA<br>MM | 06-SEP-12   | RI    | EH<br>SOL104<br>PH<br>XCRA |
| JB14769-7<br>NSB-E4-16  | Collected: 27-AUG-12<br>.0-16.5X                                   | 10:36 By: CM                                                       | Receiv                | ved: 27-AUG | -12 B | y: MPC                     |
| JB14769-7<br>JB14769-7  | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 11:30<br>05-SEP-12 16:11<br>07-SEP-12 16:26 | MET<br>KP<br>SA<br>MM | 06-SEP-12   | RI    | EH<br>SOL104<br>PH<br>XCRA |
| JB14769-8<br>NSB-E4-16  | Collected: 27-AUG-12<br>.0-16.5                                    | 10:30 By: CM                                                       | Receiv                | ved: 27-AUG | -12 B | y: MPC                     |
| JB14769-8<br>JB14769-8  | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 11:30<br>05-SEP-12 16:11<br>07-SEP-12 16:26 | MET<br>KP<br>SA<br>MM | 06-SEP-12   | RI    | EH<br>SOL104<br>PH<br>XCRA |
| JB14769-9<br>NSB-E4-12  | Collected: 27-AUG-12<br>.0-12.5                                    | 10:15 By: CM                                                       | Receiv                | ved: 27-AUG | -12 B | y: MPC                     |
| JB14769-9<br>JB14769-9  | ASTM D1498-76M<br>SM18 2540G<br>SW846 9045C,D<br>SW846 3060A/7196A | 05-SEP-12<br>05-SEP-12 11:30<br>05-SEP-12 16:11<br>07-SEP-12 16:26 | MET<br>KP<br>SA<br>MM | 06-SEP-12   | RI    | EH<br>SOL104<br>PH<br>XCRA |
| JB14769-10<br>NSB-EB201 | Collected: 27-AUG-12<br>120827                                     | 15:30 By: CM                                                       | Receiv                | ved: 27-AUG | -12 B | y: MPC                     |
| JB14769-10              | ) SM20 4500H B<br>) SW846 7196A<br>) ASTM D1498-76                 | 27-AUG-12 18:13<br>27-AUG-12 19:45<br>07-SEP-12                    |                       |             |       | PH<br>XCR<br>EH            |

### **Internal Sample Tracking Chronicle**

AECOM, INC.

JB14769 Job No:

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number        | Method                          | Analyzed                           | Ву       | Prepped     | Ву     | Test Codes   |
|-------------------------|---------------------------------|------------------------------------|----------|-------------|--------|--------------|
| JB14769-11<br>NSB-E4-6. | 1 Collected: 27-AUG-12          | 10:00 By: CM                       | Receiv   | ved: 27-AUC | 6-12 B | y: MPC       |
|                         | 1 ASTM D1498-76M                | 05-SEP-12                          | MET      |             |        | EH           |
| JB14769-11              | 1 SM18 2540G<br>1 SW846 9045C,D | 05-SEP-12 11:30<br>05-SEP-12 16:11 | KP<br>SA |             |        | SOL104<br>PH |
|                         | I SW846 3060A/7196A             | 07-SEP-12 15:53                    | MM       | 06-SEP-12   | RI     | XCRA         |

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM     | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|----------------------|----------------------|----------------|-----------------------|
| 11001                   |                      |                      |                |                       |
| JB14769-1.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14769-1.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14769-1.1             | Secured Staging Area | Krimesh Patel        |                | Retrieve from Storage |
| JB14769-1.1             | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14769-1.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14769-1.1             | Dave Hunkele         | Sanjay Advani        |                | Custody Transfer      |
| JB14769-1.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14769-1.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14769-1.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14769-1.1             | Secured Staging Area | Mayur Patel          |                | Retrieve from Storage |
| JB14769-1.1             | Mayur Patel          | Secured Storage      | 09/06/12 16:02 | Return to Storage     |
| JB14769-2.1             | Secured Storage      | Dave Hunkele         | 09/05/12 08:00 | Retrieve from Storage |
| JB14769-2.1             | Dave Hunkele         | Secured Staging Area |                | Return to Storage     |
| JB14769-2.1             | Secured Staging Area | Krimesh Patel        |                | Retrieve from Storage |
| JB14769-2.1             | Krimesh Patel        | Secured Storage      | 09/05/12 12:00 | Return to Storage     |
| JB14769-2.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14769-2.1             | Dave Hunkele         | Sanjay Advani        |                | Custody Transfer      |
| JB14769-2.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14769-2.1             | Secured Storage      | Dave Hunkele         | 09/06/12 06:43 | Retrieve from Storage |
| JB14769-2.1             | Dave Hunkele         | Secured Staging Area | 09/06/12 06:44 | Return to Storage     |
| JB14769-2.1             | Secured Staging Area | Mayur Patel          | 09/06/12 08:11 | Retrieve from Storage |
| JB14769-2.1             | Mayur Patel          | Secured Storage      | 09/06/12 16:02 | Return to Storage     |
| JB14769-3.1             | Secured Storage      | Dave Hunkele         | 09/05/12 08:00 | Retrieve from Storage |
| JB14769-3.1             | Dave Hunkele         | Secured Staging Area | 09/05/12 08:01 | Return to Storage     |
| JB14769-3.1             | Secured Staging Area | Krimesh Patel        | 09/05/12 08:41 | Retrieve from Storage |
| JB14769-3.1             | Krimesh Patel        | Secured Storage      | 09/05/12 12:00 | Return to Storage     |
| JB14769-3.1             | Secured Storage      | Dave Hunkele         | 09/05/12 12:22 | Retrieve from Storage |
| JB14769-3.1             | Dave Hunkele         | Sanjay Advani        | 09/05/12 12:24 | Custody Transfer      |
| JB14769-3.1             | Sanjay Advani        | Secured Storage      | 09/05/12 16:29 | Return to Storage     |
| JB14769-3.1             | Secured Storage      | Dave Hunkele         | 09/06/12 06:43 | Retrieve from Storage |
| JB14769-3.1             | Dave Hunkele         | Secured Staging Area | 09/06/12 06:44 | Return to Storage     |
| JB14769-3.1             | Secured Staging Area | Mayur Patel          | 09/06/12 08:11 | Retrieve from Storage |
| JB14769-3.1             | Mayur Patel          | Secured Storage      | 09/06/12 16:02 | Return to Storage     |
| JB14769-4.1             | Secured Storage      | Dave Hunkele         | 09/05/12 08:00 | Retrieve from Storage |
| JB14769-4.1             | Dave Hunkele         | Secured Staging Area | 09/05/12 08:01 | Return to Storage     |
| JB14769-4.1             | Secured Staging Area | Krimesh Patel        | 09/05/12 08:41 | Retrieve from Storage |
| JB14769-4.1             | Krimesh Patel        | Secured Storage      |                | Return to Storage     |
| JB14769-4.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
| JB14769-4.1             | Dave Hunkele         | Sanjay Advani        |                | Custody Transfer      |
| JB14769-4.1             | Sanjay Advani        | Secured Storage      |                | Return to Storage     |
| JB14769-4.1             | Secured Storage      | Dave Hunkele         |                | Retrieve from Storage |
|                         |                      |                      |                |                       |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| JB14769-4.1 Secure JB14769-5.1 Secure JB14769-5.1 Dave JB14769-5.1 Secure JB14769-5.1 Rober JB14769-5.1 Secure JB14769-5.1 Mayur  JB14769-6.1 Secure JB14769-6.1 Dave  | Hunkele ed Staging Area r Patel ed Storage Hunkele ed Staging Area rt OConnor ed Storage r Patel ed Storage Hunkele | Secured Staging Area Mayur Patel Secured Storage  Dave Hunkele Secured Staging Area Robert OConnor Secured Storage Mayur Patel Secured Storage Dave Hunkele | 09/06/12 08:11<br>09/06/12 16:02<br>09/05/12 10:47<br>09/05/12 10:48<br>09/05/12 11:11<br>09/05/12 16:21<br>09/06/12 10:56<br>09/06/12 16:02 | Return to Storage Retrieve from Storage Return to Storage Retrieve from Storage Return to Storage Return to Storage Retrieve from Storage Return to Storage Return to Storage Retrieve from Storage Retrieve from Storage |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JB14769-4.1 Mayur<br>JB14769-5.1 Secure<br>JB14769-5.1 Dave<br>JB14769-5.1 Secure<br>JB14769-5.1 Rober<br>JB14769-5.1 Secure<br>JB14769-6.1 Secure<br>JB14769-6.1 Dave | r Patel  ed Storage Hunkele ed Staging Area rt OConnor ed Storage r Patel  ed Storage                               | Dave Hunkele Secured Staging Area Robert OConnor Secured Storage Mayur Patel Secured Storage                                                                | 09/06/12 16:02<br>09/05/12 10:47<br>09/05/12 10:48<br>09/05/12 11:11<br>09/05/12 16:21<br>09/06/12 10:56<br>09/06/12 16:02                   | Return to Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Return to Storage Retrieve from Storage                                                                                               |
| JB14769-5.1 Secure<br>JB14769-5.1 Dave<br>JB14769-5.1 Secure<br>JB14769-5.1 Rober<br>JB14769-5.1 Mayur<br>JB14769-6.1 Secure<br>JB14769-6.1 Dave                       | ed Storage Hunkele ed Staging Area rt OConnor ed Storage r Patel                                                    | Dave Hunkele<br>Secured Staging Area<br>Robert OConnor<br>Secured Storage<br>Mayur Patel<br>Secured Storage                                                 | 09/05/12 10:47<br>09/05/12 10:48<br>09/05/12 11:11<br>09/05/12 16:21<br>09/06/12 10:56<br>09/06/12 16:02                                     | Retrieve from Storage<br>Return to Storage<br>Retrieve from Storage<br>Return to Storage<br>Retrieve from Storage                                                                                                         |
| JB14769-5.1 Dave<br>JB14769-5.1 Secure<br>JB14769-5.1 Rober<br>JB14769-5.1 Secure<br>JB14769-6.1 Secure<br>JB14769-6.1 Dave                                            | Hunkele ed Staging Area rt OConnor ed Storage r Patel ed Storage                                                    | Secured Staging Area<br>Robert OConnor<br>Secured Storage<br>Mayur Patel<br>Secured Storage                                                                 | 09/05/12 10:48<br>09/05/12 11:11<br>09/05/12 16:21<br>09/06/12 10:56<br>09/06/12 16:02                                                       | Return to Storage<br>Retrieve from Storage<br>Return to Storage<br>Retrieve from Storage                                                                                                                                  |
| JB14769-5.1 Secure<br>JB14769-5.1 Rober<br>JB14769-5.1 Secure<br>JB14769-6.1 Secure<br>JB14769-6.1 Dave                                                                | ed Staging Area rt OConnor ed Storage r Patel ed Storage                                                            | Robert OConnor<br>Secured Storage<br>Mayur Patel<br>Secured Storage                                                                                         | 09/05/12 11:11<br>09/05/12 16:21<br>09/06/12 10:56<br>09/06/12 16:02                                                                         | Retrieve from Storage<br>Return to Storage<br>Retrieve from Storage                                                                                                                                                       |
| JB14769-5.1 Rober<br>JB14769-5.1 Secure<br>JB14769-5.1 Mayur<br>JB14769-6.1 Secure<br>JB14769-6.1 Dave                                                                 | rt OConnor<br>ed Storage<br>r Patel<br>ed Storage                                                                   | Secured Storage<br>Mayur Patel<br>Secured Storage                                                                                                           | 09/05/12 16:21<br>09/06/12 10:56<br>09/06/12 16:02                                                                                           | Return to Storage<br>Retrieve from Storage                                                                                                                                                                                |
| JB14769-5.1 Secure<br>JB14769-5.1 Mayur<br>JB14769-6.1 Secure<br>JB14769-6.1 Dave                                                                                      | ed Storage<br>r Patel<br>ed Storage                                                                                 | Mayur Patel<br>Secured Storage                                                                                                                              | 09/06/12 10:56<br>09/06/12 16:02                                                                                                             | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-5.1 Mayur<br>JB14769-6.1 Secure<br>JB14769-6.1 Dave                                                                                                            | r Patel<br>ed Storage                                                                                               | Secured Storage                                                                                                                                             | 09/06/12 16:02                                                                                                                               |                                                                                                                                                                                                                           |
| JB14769-6.1 Secure<br>JB14769-6.1 Dave                                                                                                                                 | ed Storage                                                                                                          | -                                                                                                                                                           |                                                                                                                                              | Return to Storage                                                                                                                                                                                                         |
| JB14769-6.1 Dave                                                                                                                                                       |                                                                                                                     | Dave Hunkele                                                                                                                                                |                                                                                                                                              |                                                                                                                                                                                                                           |
|                                                                                                                                                                        | Hunkele                                                                                                             |                                                                                                                                                             | 09/05/12 08:00                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-6.1 Secure                                                                                                                                                     |                                                                                                                     | Secured Staging Area                                                                                                                                        |                                                                                                                                              | Return to Storage                                                                                                                                                                                                         |
|                                                                                                                                                                        | ed Staging Area                                                                                                     | Krimesh Patel                                                                                                                                               | 09/05/12 08:41                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-6.1 Krime                                                                                                                                                      | esh Patel                                                                                                           | Secured Storage                                                                                                                                             | 09/05/12 12:00                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
| JB14769-6.1 Secure                                                                                                                                                     | ed Storage                                                                                                          | Dave Hunkele                                                                                                                                                | 09/05/12 12:22                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-6.1 Dave                                                                                                                                                       | Hunkele                                                                                                             | Sanjay Advani                                                                                                                                               | 09/05/12 12:24                                                                                                                               | Custody Transfer                                                                                                                                                                                                          |
| JB14769-6.1 Sanjay                                                                                                                                                     | y Advani                                                                                                            | Secured Storage                                                                                                                                             | 09/05/12 16:29                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
| JB14769-6.1 Secure                                                                                                                                                     | ed Storage                                                                                                          | Dave Hunkele                                                                                                                                                | 09/06/12 06:43                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-6.1 Dave                                                                                                                                                       | Hunkele                                                                                                             | Secured Staging Area                                                                                                                                        | 09/06/12 06:44                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
| JB14769-6.1 Secure                                                                                                                                                     | ed Staging Area                                                                                                     | Mayur Patel                                                                                                                                                 | 09/06/12 08:11                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-6.1 Mayur                                                                                                                                                      | r Patel                                                                                                             | Secured Storage                                                                                                                                             | 09/06/12 16:02                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
| JB14769-7.1 Secure                                                                                                                                                     | ed Storage                                                                                                          | Dave Hunkele                                                                                                                                                | 09/05/12 08:00                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-7.1 Dave                                                                                                                                                       | Hunkele                                                                                                             | Secured Staging Area                                                                                                                                        | 09/05/12 08:01                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
| JB14769-7.1 Secure                                                                                                                                                     | ed Staging Area                                                                                                     | Krimesh Patel                                                                                                                                               | 09/05/12 08:41                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-7.1 Krime                                                                                                                                                      | esh Patel                                                                                                           | Secured Storage                                                                                                                                             | 09/05/12 12:00                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
| JB14769-7.1 Secure                                                                                                                                                     | ed Storage                                                                                                          | Dave Hunkele                                                                                                                                                | 09/05/12 12:22                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-7.1 Dave                                                                                                                                                       | Hunkele                                                                                                             | Sanjay Advani                                                                                                                                               | 09/05/12 12:24                                                                                                                               | Custody Transfer                                                                                                                                                                                                          |
| JB14769-7.1 Sanjay                                                                                                                                                     | y Advani                                                                                                            | Secured Storage                                                                                                                                             | 09/05/12 16:29                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
|                                                                                                                                                                        | ed Storage                                                                                                          | Dave Hunkele                                                                                                                                                | 09/06/12 06:43                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-7.1 Dave                                                                                                                                                       | Hunkele                                                                                                             | Secured Staging Area                                                                                                                                        | 09/06/12 06:44                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
| JB14769-7.1 Secure                                                                                                                                                     | ed Staging Area                                                                                                     | Mayur Patel                                                                                                                                                 | 09/06/12 08:11                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
| JB14769-7.1 Mayur                                                                                                                                                      | r Patel                                                                                                             | Secured Storage                                                                                                                                             | 09/06/12 16:02                                                                                                                               | Return to Storage                                                                                                                                                                                                         |
| JB14769-8.1 Secure                                                                                                                                                     | ed Storage                                                                                                          | Dave Hunkele                                                                                                                                                | 09/05/12 08:00                                                                                                                               | Retrieve from Storage                                                                                                                                                                                                     |
|                                                                                                                                                                        | Hunkele                                                                                                             | Secured Staging Area                                                                                                                                        |                                                                                                                                              | Return to Storage                                                                                                                                                                                                         |
|                                                                                                                                                                        | ed Staging Area                                                                                                     | Krimesh Patel                                                                                                                                               |                                                                                                                                              | Retrieve from Storage                                                                                                                                                                                                     |
|                                                                                                                                                                        | esh Patel                                                                                                           | Secured Storage                                                                                                                                             |                                                                                                                                              | Return to Storage                                                                                                                                                                                                         |
|                                                                                                                                                                        | ed Storage                                                                                                          | Dave Hunkele                                                                                                                                                |                                                                                                                                              | Retrieve from Storage                                                                                                                                                                                                     |
|                                                                                                                                                                        | Hunkele                                                                                                             | Sanjay Advani                                                                                                                                               |                                                                                                                                              | Custody Transfer                                                                                                                                                                                                          |
|                                                                                                                                                                        | y Advani                                                                                                            | Secured Storage                                                                                                                                             |                                                                                                                                              | Return to Storage                                                                                                                                                                                                         |
|                                                                                                                                                                        | ed Storage                                                                                                          | Dave Hunkele                                                                                                                                                |                                                                                                                                              | Retrieve from Storage                                                                                                                                                                                                     |
|                                                                                                                                                                        | Hunkele                                                                                                             | Secured Staging Area                                                                                                                                        |                                                                                                                                              | Return to Storage                                                                                                                                                                                                         |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM         | Transfer<br>TO       | Date/Time      | Reason                |
|-------------------------|--------------------------|----------------------|----------------|-----------------------|
| JB14769-8.1             | Secured Staging Area     | Mayur Patel          | 09/06/12 08:11 | Retrieve from Storage |
| JB14769-8.1             | Mayur Patel              | Secured Storage      |                | Return to Storage     |
| JB14769-9.1             | Secured Storage          | Dave Hunkele         | 09/05/12 08:00 | Retrieve from Storage |
| JB14769-9.1             | Dave Hunkele             | Secured Staging Area |                | Return to Storage     |
| JB14769-9.1             | Secured Staging Area     | Krimesh Patel        |                | Retrieve from Storage |
| JB14769-9.1             | Krimesh Patel            | Secured Storage      | 09/05/12 12:00 | Return to Storage     |
| JB14769-9.1             | Secured Storage          | Dave Hunkele         | 09/05/12 12:22 | Retrieve from Storage |
| JB14769-9.1             | Dave Hunkele             | Sanjay Advani        | 09/05/12 12:24 | Custody Transfer      |
| JB14769-9.1             | Sanjay Advani            | Secured Storage      | 09/05/12 16:29 | Return to Storage     |
| JB14769-9.1             | Secured Storage          | Dave Hunkele         | 09/06/12 06:43 | Retrieve from Storage |
| JB14769-9.1             | Dave Hunkele             | Secured Staging Area | 09/06/12 06:44 | Return to Storage     |
| JB14769-9.1             | Secured Staging Area     | Mayur Patel          | 09/06/12 08:11 | Retrieve from Storage |
| JB14769-9.1             | Mayur Patel              | Secured Storage      | 09/06/12 16:02 | Return to Storage     |
| JB14769-10.1            | Secured Storage          | Mehmet Temizsu       | 08/27/12 19:03 | Retrieve from Storage |
| JB14769-10.1            | Mehmet Temizsu           | Megan Melkowitz      | 08/27/12 19:05 | Custody Transfer      |
| JB14769-10.1            | Megan Melkowitz          | Secured Storage      | 08/27/12 23:22 | Return to Storage     |
| JB14769-10.2            | Secured Storage          | Todd Shoemaker       | 09/04/12 10:17 | Retrieve from Storage |
| JB14769-10.2            | Todd Shoemaker           | Nirali Patel         |                | Custody Transfer      |
| JB14769-10.2            | Nirali Patel             | Secured Storage      |                | Return to Storage     |
| JB14769-10.2            | Secured Storage          | Dave Hunkele         |                | Retrieve from Storage |
| JB14769-10.2            | Dave Hunkele             | Secured Staging Area |                | Return to Storage     |
| JB14769-10.2            | Secured Staging Area     | Sanjay Advani        |                | Retrieve from Storage |
| JB14769-10.2            | Shirley Grzybowski       | Secured Storage      |                | Return to Storage     |
| Analyst unavailab       | le for custody transfer. | C                    |                | Ç                     |
| JB14769-11.1            | Secured Storage          | Dave Hunkele         | 09/05/12 08:00 | Retrieve from Storage |
| JB14769-11.1            | Dave Hunkele             | Secured Staging Area |                | Return to Storage     |
| JB14769-11.1            | Secured Staging Area     | Krimesh Patel        | 09/05/12 08:41 | Retrieve from Storage |
| JB14769-11.1            | Krimesh Patel            | Secured Storage      | 09/05/12 12:00 | Return to Storage     |
| JB14769-11.1            | Secured Storage          | Dave Hunkele         | 09/05/12 12:22 | Retrieve from Storage |
| JB14769-11.1            | Dave Hunkele             | Sanjay Advani        | 09/05/12 12:24 | Custody Transfer      |
| JB14769-11.1            | Sanjay Advani            | Secured Storage      |                | Return to Storage     |
| JB14769-11.1            | Secured Storage          | Dave Hunkele         | 09/06/12 06:43 | Retrieve from Storage |
| JB14769-11.1            | Dave Hunkele             | Secured Staging Area |                | Return to Storage     |
| JB14769-11.1            | Secured Staging Area     | Mayur Patel          |                | Retrieve from Storage |
| JB14769-11.1            | Mayur Patel              | Secured Storage      |                | Return to Storage     |
| JB14769-11.1            | Secured Storage          | Adam Scott           |                | Retrieve from Storage |
| JB14769-11.1            | Adam Scott               | Secured Staging Area |                | Return to Storage     |
| JB14769-11.1            | Secured Staging Area     | Sanjay Advani        |                | Retrieve from Storage |
| JB14769-11.1            | Shirley Grzybowski       | Secured Storage      |                | Return to Storage     |
|                         | le for custody transfer. | C                    |                | C                     |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number                                      | Transfer<br>FROM                                                         | Transfer<br>TO                                                           | Date/Time                        | Reason                                                                                   |
|--------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|
| JB14769-11.2<br>JB14769-11.2<br>JB14769-11.2<br>JB14769-11.2 | Secured Storage<br>Dave Hunkele<br>Secured Staging Area<br>Krimesh Patel | Dave Hunkele<br>Secured Staging Area<br>Krimesh Patel<br>Secured Storage | 09/05/12 08:01<br>09/05/12 08:41 | Retrieve from Storage<br>Return to Storage<br>Retrieve from Storage<br>Return to Storage |





### General Chemistry

### QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary

### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14769 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                              | Batch ID                                      | RL    | MB<br>Result | Units                  | Spike<br>Amount        | BSP<br>Result       | BSP<br>%Recov         | QC<br>Limits                  |
|----------------------------------------------------------------------|-----------------------------------------------|-------|--------------|------------------------|------------------------|---------------------|-----------------------|-------------------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent<br>Chromium, Hexavalent | GN71131<br>GP66995/GN71682<br>GP66995/GN71682 | 0.010 | 0.0          | mg/l<br>mg/kg<br>mg/kg | .15<br>40.00<br>984.65 | 0.15<br>36.5<br>976 | 100.0<br>91.3<br>99.1 | 90-110%<br>80-120%<br>80-120% |

Associated Samples:

Batch GN71131: JB14769-10

Batch GP66995: JB14769-1, JB14769-2, JB14769-3, JB14769-4, JB14769-5, JB14769-6, JB14769-7, JB14769-8, JB14769-9, JB14769-9

(\*) Outside of QC limits



6.2

### DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

### Login Number: JB14769 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                       | Batch ID                   | QC<br>Sample             | Units       | Original<br>Result | DUP<br>Result | RPD             | QC<br>Limits   |
|-----------------------------------------------|----------------------------|--------------------------|-------------|--------------------|---------------|-----------------|----------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | GP66995/GN71682<br>GN71548 | JB14769-11<br>JB14769-11 | mg/kg<br>mv | 0.18 U<br>189      | 0.0<br>165    | 0.0<br>13.6*(a) | 0-20%<br>0-13% |
| Redox Potential Vs H2 pH                      | GN71666<br>GN71547         | JB14769-10<br>JB14769-11 | mv<br>su    | 382<br>9.94        | 378<br>9.70   | 1.1             | 0-10%<br>0-5%  |

Associated Samples:

Batch GN71131: JB14769-10

Batch GN71547: JB14769-1, JB14769-2, JB14769-3, JB14769-4, JB14769-5, JB14769-6, JB14769-7, JB14769-8, JB14769-9, JB14769-11

Batch GN71548: JB14769-1, JB14769-2, JB14769-3, JB14769-4, JB14769-5, JB14769-6, JB14769-7, JB14769-8, JB14769-9, JB14769-11

Batch GN71666: JB14769-10

Batch GP66995: JB14769-1, JB14769-2, JB14769-3, JB14769-4, JB14769-5, JB14769-6, JB14769-7, JB14769-8, JB14769-9, JB14769-11

- (\*) Outside of QC limits
- (a) Outside of in house limits, but within reasonable method recovery limits.



### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14769 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec    | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|---------|--------------|
| Chromium, Hexavalent | GP66995/GN71682 | JB14769-11   | mg/kg | 0.18 U             | 1620            | 1430         | 88.0(a) | 75-125%      |
| Chromium, Hexavalent | GP66995/GN71682 | JB14769-11   | mg/kg | 0.18 U             | 62.1            | 56.4         | 90.8(b) | 75-125%      |

### Associated Samples:

Batch GN71131: JB14769-10

Batch GP66995: JB14769-1, JB14769-2, JB14769-3, JB14769-4, JB14769-5, JB14769-6, JB14769-7, JB14769-8, JB14769-9, JB14769-9 11

- (\*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
  (a) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.
- (b) Good recovery on soluble XCR matrix spike. Good recovery (90.7%) on the post-spike.



### Percent Solids Raw Data Summary Job Number: JB14769

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| <b>Sample:</b> JB14769-1                                   | Analyzed: 05-     | SEP_12 by KP | Method:  | SM18 2540G    |
|------------------------------------------------------------|-------------------|--------------|----------|---------------|
| ClientID: NSB-F1-20.0-20.5                                 | initing zett. US- | ODI 12 07 IN | michiou. | 51,110 25 100 |
| Wet Weight (Total)                                         | 32.26             | g            |          |               |
| Tare Weight                                                | 23.2              | g            |          |               |
| Dry Weight (Total)                                         | 30.82             | g            |          |               |
| Solids, Percent                                            | 84.1              | %            |          |               |
| <b>Sample:</b> JB14769-2 <b>ClientID:</b> NSB-F1-16.0-16.5 | Analyzed: 05-     | SEP-12 by KP | Method:  | SM18 2540G    |
| Wet Weight (Total)                                         | 29.53             | g            |          |               |
| Tare Weight                                                | 23.59             | g            |          |               |
| Dry Weight (Total)                                         | 28.44             | g            |          |               |
| Solids, Percent                                            | 81.6              | %            |          |               |
| <b>Sample:</b> JB14769-3 <b>ClientID:</b> NSB-F1-10.0-10.5 | Analyzed: 05-     | SEP-12 by KP | Method:  | SM18 2540G    |
| Wet Weight (Total)                                         | 25.7              | g            |          |               |
| Tare Weight                                                | 19.88             | g            |          |               |
| Dry Weight (Total)                                         | 24.11             | g            |          |               |
| Solids, Percent                                            | 72.7              | %            |          |               |
| <b>Sample:</b> JB14769-4 <b>ClientID:</b> NSB-F1-4.0-4.5   | Analyzed: 05-     | SEP-12 by KP | Method:  | SM18 2540G    |
| Wet Weight (Total)                                         | 31.38             | g            |          |               |
| Tare Weight                                                | 23.6              | g            |          |               |
| Dry Weight (Total)                                         | 29.29             | g            |          |               |
| Solids, Percent                                            | 73.1              | %            |          |               |
| <b>Sample:</b> JB14769-5 <b>ClientID:</b> NSB-F1-1.0-1.5   | Analyzed: 05-     | SEP-12 by RO | Method:  | SM18 2540G    |
| Wet Weight (Total)                                         | 28.6              | g            |          |               |
| Tare Weight                                                | 20.66             | g            |          |               |
| Dry Weight (Total)                                         | 27.83             | g            |          |               |
| Solids, Percent                                            | 90.3              | %            |          |               |
| Sample: JB14769-6<br>ClientID: NSB-E4-21.0-21.5            | Analyzed: 05-     | SEP-12 by KP | Method:  | SM18 2540G    |
| Wet Weight (Total)                                         | 33.61             | g            |          |               |
| Tare Weight                                                | 26.06             | g            |          |               |
| Dry Weight (Total)                                         | 32.68             | g            |          |               |
| Solids, Percent                                            | 87.7              | %            |          |               |



### Percent Solids Raw Data Summary Job Number: JB14769

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14769-7<br>ClientID: NSB-E4-16.0-16.5X                           | •                               | 05-SEP-12 by KP  | Method: | SM18 2540G |
|----------------------------------------------------------------------------|---------------------------------|------------------|---------|------------|
| Wet Weight (Total)<br>Tare Weight<br>Dry Weight (Total)<br>Solids, Percent | 35.49<br>26.46<br>33.65<br>79.6 | g<br>g<br>g<br>% |         |            |
| Sample: JB14769-8<br>ClientID: NSB-E4-16.0-16.5                            | Analyzed:                       | 05-SEP-12 by KP  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent          | 31.48<br>21.83<br>29.83<br>82.9 | g<br>g<br>g<br>% |         |            |
| Sample: JB14769-9<br>ClientID: NSB-E4-12.0-12.5                            | Analyzed:                       | 05-SEP-12 by KP  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent          | 29.03<br>22.58<br>27.54<br>76.9 | g<br>g<br>g<br>% |         |            |
| Sample: JB14769-11<br>ClientID: NSB-E4-6.5-7.0                             | Analyzed:                       | 05-SEP-12 by KP  | Method: | SM18 2540G |
| Wet Weight (Total) Tare Weight Dry Weight (Total) Solids, Percent          | 36.34<br>28.72<br>33.55<br>63.4 | g<br>g<br>g<br>% |         |            |





| General Chemistry |  |
|-------------------|--|
| Raw Data          |  |



NA

8/27/2012

H

Prep Date:

Analysis Date:

Instrument ID:

### Hexavalent Chromium fr/1 Sampuz Mitwed prorpo

Y Values Corr X Values Final Vol. Sam Vol. Bottle Sample **BKGRD** Analyzed Sample (ml) Dilution Final Conc. Times Sample # Absorbance Abs Absorbance Conc(mg/l) (ml) Method: SW846 7196A TITHEW WHAT: PZEA 197811 Test Title: XCr GN71131 GN Batch: Analyst: MM

Note: Use 4 for CLP list pointer, 1 for reg. List pointer.

|             | Cai, Dik,                                          | 0.000 | NA.                                              | 19.23                                            | 0.000          | 0.0000             | į.           |              |                                       |                  |               |                  |              |
|-------------|----------------------------------------------------|-------|--------------------------------------------------|--------------------------------------------------|----------------|--------------------|--------------|--------------|---------------------------------------|------------------|---------------|------------------|--------------|
|             | STD1                                               | 0.009 | NA                                               | NA NA                                            | 0.009          | 0.0100             | 1            |              |                                       | Slope:           | 0.8884        |                  |              |
|             | STD2                                               | 0.044 | NA                                               | NA                                               | 0.044          | 0.0500             |              |              |                                       |                  |               |                  |              |
|             | STD3                                               | 0.089 | NA                                               | NA                                               | 0.089          | 0.1000             |              |              |                                       | Y intercept:     | 8000.0        |                  |              |
|             | STD4                                               | 0.267 | NA                                               | NA NA                                            | 0.267          | 0.3000             |              |              |                                       |                  |               |                  |              |
|             | STD5                                               | 0.452 | NA.                                              | NA                                               | 0.452          | 0.5000             | 1            |              |                                       |                  |               |                  |              |
| _           | STD6                                               |       |                                                  | 1                                                |                | 0.8000             | Final Val    | Com Val      |                                       |                  |               |                  |              |
| <del></del> | +                                                  | 0.710 | NA NA                                            | NA NA                                            | 0.710          |                    | 1            | Sam. Vol.    |                                       |                  | 11            | MEN              |              |
|             | STD7                                               | 0.887 | NA NA                                            | 19:28                                            | 0.887          | 1.0000             | (ml)         |              | Dilution                              | Final Conc.      | <u>Units</u>  | MDL              | RDL          |
|             | CCV                                                | 0.438 | NA                                               | 19:41                                            | 0.438          | 0.4922             | NA           | NA           | NA                                    | NA               | mg/l          | 0.001            | 0.010        |
|             | CCB                                                | 0.000 | NA                                               | 19:41                                            | 0.000          | -0.0009            | NA           | NA           | NA                                    | NA               | mg/l          | 0.0013           | 0.010        |
|             | GN71131-MB1                                        | 0.000 | 0.000                                            | 19:45                                            | 0.000          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | GN71131-B1                                         | 0.133 | 0.000                                            | 19:45                                            | 0.133          | 0.1489             | 50.0         | 50.0         | 1                                     | 0.149            | mg/l          | 0.0014           | 0.010        |
|             | <del> </del>                                       | 0.078 |                                                  | 1                                                | <del></del>    |                    |              |              |                                       |                  |               | 0.0014           | 0.010        |
|             | GN71131-S1                                         |       | 0.000                                            | 19:45                                            | 0.078          | 0.0869             | 50.0         | 50.0         | 1                                     | 0.087            | mg/l          |                  |              |
|             | GN71131-D1                                         | 0.001 | 0.000                                            | 19:45                                            | 0.001          | 0.0003             | 50.0         | 50.0         | 11                                    | 0.000            | mg/l          | 0.0014           | 0.010        |
| 13          | JB14757-1F                                         | 0.001 | 0.000                                            | 19:45                                            | 0.001          | 0.0003             | 50.0         | 50.0         | 1                                     | 0.000            | mg/l          | 0.0014           | 0.010        |
| 1           | JB14769-10                                         | 0.000 | 0.000                                            | 19:45                                            | 0.000          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/i          | 0.0014           | 0.010        |
|             | JB14757-1FDILCONF                                  | 0.000 | 0.000                                            | 19:45                                            | 0.000          | -0.0009            | 50.0         | 50.0         | 5                                     | -0.004           | mg/f          | 0.0070           | 0.050        |
| JE          | B14757-1PHADJPSCC                                  | 0.073 | 0.004                                            | 19:45                                            | 0.069          | 0.0768             | 50.0         | 50.0         | 1                                     | 0.077            | mg/l          | 0.0014           | 0.010        |
| <u> </u>    | 1                                                  | 0.070 | 0.001                                            | 10.40                                            | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           |               | 0.0014           | 0.010        |
| -           |                                                    |       |                                                  |                                                  |                |                    |              |              | 1                                     |                  | mg/l          | ·····            |              |
| 1           | 1                                                  |       | <del></del>                                      |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | ccv                                                | 0.433 | NA                                               | 19:45                                            | 0.433          | 0.4865             | NA           | NA           | NA                                    | NA               | mg/l          | 0.0013           | 0.010        |
|             | CCB                                                | 0.000 | NA                                               | 19:45                                            | 0.000          | -0.0009            | NA           | NΑ           | NA                                    | NA               | mg/l          | 0.0013           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | †                                                  |       |                                                  | <u> </u>                                         | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           |               | 0.0014           | 0.010        |
|             | +                                                  |       | <del>                                     </del> | <del>                                     </del> |                |                    | <del></del>  |              | -                                     |                  | mg/l          |                  |              |
|             |                                                    |       | <b></b>                                          |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  | L                                                | FALSE          | -0.0009            | 50.0         | 50.0         | 11                                    | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | <u> </u>                                           |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | 1                                                  |       |                                                  | <del>                                     </del> |                | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           |               | 0.0014           | 0.010        |
|             | · · · · · · · · · · · · · · · · · · ·              |       |                                                  | $\vdash$                                         | FALSE          |                    |              |              |                                       |                  | mg/l          |                  |              |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 11                                    | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | ccv                                                |       | NA                                               |                                                  |                | #VALUE!            | NA           | NA           | NA                                    | NA               | mg/l          | 0.0013           | 0.010        |
|             | CCB                                                |       | NA                                               | dusán to telu                                    |                | #VALUE!            | NA           | NA           | NA                                    | NA NA            | mg/l          | 0.0013           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALŞE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       | <del></del>                                      | <del>                                     </del> | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           |               | 0.0014           | 0.010        |
| _           |                                                    |       |                                                  |                                                  |                |                    | 1            | <del> </del> | · · · · · · · · · · · · · · · · · · · |                  | mg/l          |                  | <del> </del> |
| -           |                                                    |       | <b></b>                                          |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | ļ <b>.</b>                                         |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  | L!                                               | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | -0:0014          | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | _mg/i         | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           |               | 0.0014           | 0.010        |
|             |                                                    |       |                                                  | <del>                                     </del> |                |                    |              |              |                                       |                  | mg/l          |                  |              |
| -           | 001                                                |       | <del></del>                                      | <del>                                     </del> | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
| ļ           | CCV                                                |       | NA NA                                            |                                                  |                | #VALUEY            | NA S4        | NA           | NA                                    | NA NA            | mg/l          | 0.0013           | 0.010        |
| <u></u>     | CCB                                                |       | NA                                               |                                                  |                | #VALUE!            | NA 🕅         | NA           | NA _                                  | NA NA            | mg/l          | 0.0013           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0019            | 50.0         | 50.0         |                                       | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.d A       | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | 1                                                  |       |                                                  | $\overline{}$                                    | FALSE          | -0.0009            | 1 66         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | <del>†                                      </del> |       | ł                                                | <del>  </del>                                    |                | -0.0009            | NAV.         |              | 1                                     |                  | $\overline{}$ |                  |              |
| <b> </b>    | +                                                  |       | ₩                                                | $\vdash$                                         | FALSE          |                    | 1/4          | 50.0         |                                       | -0.001           | mg/l          | 0.0014           | 0.010        |
| <u> </u>    | + +                                                |       | <del></del>                                      | <b></b>                                          | FALSE          | -0,0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       | <u> </u>                                         |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    | ,     |                                                  | · · · · · · · · · · · · · · · · · · ·            | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | <del>                                     </del>   |       | t                                                | <del>                                     </del> | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     |                  |               | 0.0014           |              |
|             | 001                                                |       | <del> </del>                                     | 1                                                | FALSE          |                    |              |              | +                                     | -0.001           | mg/l          |                  | 0.010        |
| <u> </u>    | ccv                                                |       | NA NA                                            | La Children                                      |                | #VALUE!            | NA           | NA           | NA NA                                 | NA               | mg/i          | 0.0013           | 0.010        |
|             | CCB                                                |       | NA                                               |                                                  |                | #VALUE!            | NA           | NA NA        | NA                                    | NA NA            | mg/l          | 0.0013           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             |                                                    |       |                                                  |                                                  | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | mg/l          | 0.0014           | 0.010        |
|             | † · · · · · · · · · · · · · · · · · · ·            |       | t                                                | <del>                                     </del> | FALSE          | -0.0009            | 50.0         | 50.0         | 1                                     | -0.001           | -             | 0.0014           | 0.010        |
| <b>—</b>    | + +                                                |       | <del></del>                                      | <del>                                     </del> |                |                    |              |              | <del></del>                           |                  | mg/l          |                  |              |
|             |                                                    |       |                                                  |                                                  |                |                    |              |              |                                       |                  |               |                  |              |
| ļ           | <del>                                     </del>   |       | <del> </del> -                                   |                                                  | FALSE<br>FALSE | -0.0009<br>-0.0009 | 50.0<br>50.0 | 50.0<br>50.0 | 1 1                                   | -0.001<br>-0.001 | mg/l<br>mg/l  | 0.0014<br>0.0014 | 0.010        |



| Test: Hexavalent Chromium                | MDL = 0.0013 mg/l GNBatch ID: <u>GNT\B\</u>             |
|------------------------------------------|---------------------------------------------------------|
| Product: XCr                             | RDL = 0.010 mg/l Date: <u>977/26/2</u>                  |
| Method: SW846 7196A                      | \ \ \                                                   |
| Digestion Batch QC Summary               | Units = mg/l                                            |
| 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | POLE Result: AMD RDL: O.O.O. <rdl: mr<="" th=""></rdl:> |
| Spike Blank ID: 4 TIBI Date:             | Result: 40 Spike: 15 %Rec.: 00 36                       |
| Duplicate ID: 6N71131-DI Samp. Res       | sult: <u>()</u> Dup. Result: O %RPD: <u>LWD</u>         |
| MS ID: 6NTIBI-SI Samp. Result:           | 0 MS Result: (15) Spike: 15 %Rec: 50%                   |
|                                          | D. Result: O %RPD: ∠MDL                                 |
| pH adj. PS ID: 4 Samp. Res               | sult: 0 MS Result: 11 Spike: 15 %Rec: 51.3%             |
| Analysis Batch QC Summary Ur             | its = mg/l                                              |
| CCV: 8/21/2002 Result: 492               | V: D %Rec.: 9849                                        |
| CCV: Result: 491 1                       |                                                         |
| CCV : Result: 1                          | "V: %Rec.:                                              |
| CCV: Result:1                            |                                                         |
|                                          | V: %Rec.:                                               |
| CCV : Result: 1                          | V:                                                      |
| CCB: 8/27/00/2 Result: LMD R             | $D(\cdot \cap \Delta O) < RD(\cdot \cap MO)$            |
| 1 1                                      | DL: + <rdl: +<="" th=""  =""></rdl:>                    |
| CCB: Result: R                           | V                                                       |
|                                          | DL: <rdl:< th=""></rdl:<>                               |
| CCB: Result: R                           | DL: <rdl:< th=""></rdl:<>                               |
| CCB: Result: R                           | DL: <rdl:< th=""></rdl:<>                               |
|                                          |                                                         |
| Reagent Reference Numbers:               |                                                         |
|                                          |                                                         |
| Let                                      | attachea                                                |
| / 0                                      |                                                         |
|                                          | · · · · · · · · · · · · · · · · · · ·                   |
| Initial Calibration Source:              |                                                         |

Form: GN076-01 Rev. Date: 1/10/11

Comments:



Continuing Calibration Source:



### Hexavalent Chromium pH Adjustment Log Method: SW846 7196A

| Method. 3446        | 40 / 130A | , , <u>,</u>                 |
|---------------------|-----------|------------------------------|
| pH adj. start time: | 1931      | <br>pH Adjust. Date: 827000_ |
| pH adj. end time:   | 19:34     | GN Batch ID: 6171181         |

| Comple ID     | Initial<br>Sample<br>Volume<br>(ml) | Final<br>Volume<br>(ml) | pH after<br>H2SO4 | bkg pH<br>after<br>H2SO4 |          |                                         |
|---------------|-------------------------------------|-------------------------|-------------------|--------------------------|----------|-----------------------------------------|
| Sample ID     |                                     |                         |                   | H23U4                    |          | Comments                                |
| ccv           | 45                                  | 50                      | 1.21              |                          | SML      | 5 ppns Ulla                             |
| ccv           | <u> </u>                            |                         |                   |                          |          | , ,                                     |
| ccv           | <u> </u>                            |                         |                   |                          |          |                                         |
| ccv           | 16                                  |                         | _                 |                          |          |                                         |
| ССВ           | 45                                  | 50                      | 173               |                          |          |                                         |
| ССВ           |                                     |                         |                   |                          | <u> </u> |                                         |
| ССВ           |                                     |                         |                   |                          |          |                                         |
| CCB           |                                     |                         | , ,               |                          |          |                                         |
| MSJB4-757-1F  | 45                                  | 9                       | 1.00              | 184                      | IML      | 75 ppm Market.                          |
| DUP 4         |                                     |                         | 193               | 1.09                     |          | , , , , , , , , , , , , , , , , , , , , |
| SB/S          |                                     |                         | 1.89              | 173                      | I MI_    | 75 ppm mille.                           |
| PBMBI         |                                     |                         | 1.80              | 172                      |          | \ \                                     |
| 1.1BA757-1F   |                                     |                         | 19                | 1.79                     |          |                                         |
| 2.11314710910 | 4                                   | 4                       | 192               | 1.87                     |          |                                         |
| 3.            |                                     |                         |                   |                          |          |                                         |
| 4.            |                                     |                         |                   |                          |          |                                         |
| 5             |                                     |                         |                   |                          |          |                                         |
| 6.            |                                     |                         |                   |                          |          |                                         |
| 7.            |                                     |                         |                   |                          |          |                                         |
| 8.            |                                     |                         |                   |                          |          |                                         |
| 9.            |                                     |                         |                   |                          |          |                                         |
| 10.           |                                     |                         |                   |                          |          |                                         |
| 11.           |                                     |                         |                   |                          |          |                                         |
| 12.           |                                     |                         |                   |                          |          |                                         |
| 13.           |                                     |                         | ·                 |                          |          |                                         |
| 14.           |                                     |                         |                   |                          |          |                                         |
| 15.           |                                     |                         |                   |                          |          |                                         |
| 16.           |                                     |                         |                   |                          |          |                                         |
| 17.           |                                     |                         |                   |                          |          |                                         |
| 18.           |                                     |                         |                   |                          |          |                                         |
| 19.           |                                     |                         |                   | ·                        |          |                                         |
| 20.           |                                     |                         |                   |                          |          |                                         |
| PSJBA757-IF   | 45                                  | 50                      | 193               | 771                      | OHTBION  | IN INL75 pm MXLLL                       |
| DIL +         | 4                                   | 4                       | 195               | 1.00                     | 11110124 | 115 dilliam                             |
| DIL           |                                     | 4                       | 1                 |                          |          | - Jannary Land                          |
|               |                                     |                         |                   |                          |          |                                         |

| Reagent Information                          | n:                         |       |
|----------------------------------------------|----------------------------|-------|
|                                              |                            |       |
| Analyst:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Date: 8/27/00/20 Reviewer: | Date: |
|                                              | 1 1                        | ·     |

Form: GN077-01 Rev. Date:1/10/11



### **Sample Filtration Request** (Wet Chem)

| Sample numbers:      | JB14757 - JB14757-1F, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |
|----------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--|
| Date:                | 8/27/2012             | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5:14 PM |  |
| Locations:           | ME 32, ME 41,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |
| Tests:               | , XCR,                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |
| Comments:            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |  |
| Requested By:        | MATTCA                | and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t |         |  |
| Samples Received By: |                       | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |  |

Form: SM07 Rev. Date 2/2/99





### Hexavalent Chromium pH Adjustment Log

Method: SW846 7196A pH Adjust. Date: ODD GN Batch ID: GNTI pH adj. start time:

| pH adj. end time:   |              | 19:18        | •                 | GN Batch ID:    | 191                            |
|---------------------|--------------|--------------|-------------------|-----------------|--------------------------------|
|                     | Initial      |              |                   |                 |                                |
|                     | Sample       | Final        |                   |                 |                                |
|                     | Volume       | Volume       | pH after<br>H2SO4 | Comments        | Spike Info.                    |
| Sample ID           | (ml)         | (ml)         |                   | Comments        | Зріке іпіо.                    |
| Calibration Blank   | 45           | 3            | 1.03              | 60000 A L L L L | 0.40 -1.45 2.40 50 51 51/      |
| 0.010 mg/l standard |              |              | igo               | Sppm MOVULU     | 0.10 ml of 5 mg/l to 50 ml FV  |
| 0.050 mg/l standard |              |              | TH                |                 | 0.50 ml of 5 mg/l to 50 mL FV  |
| 0.100 mg/l standard |              |              | 1991              |                 | 1.00 ml of 5 mg/l to 50 mL FV  |
| 0.300 mg/l standard |              |              | 197               |                 | 3.00 ml of 5 mg/l to 50 mL FV  |
| 0.500 mg/l standard |              |              | 194               |                 | 5.00 ml of 5 mg/l to 50 mL FV  |
| 0.800 mg/l standard |              |              | 190               |                 | 8.00 ml of 5 mg/l to 50 mL FV  |
| 1.00 mg/l standard  | 4            | 4            | 190               | 4               | 10.0 ml of 5 mg/l to 50 mL FV  |
| 2.00 mg/l standard  |              |              |                   |                 | 20.0 ml of 5 mg/l to 50 ml. FV |
|                     | <u> </u>     |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              | ,                 |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     | `            |              |                   |                 |                                |
|                     | <del> </del> |              |                   |                 |                                |
|                     |              | <u> </u>     |                   |                 |                                |
|                     |              |              | <del> </del>      |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              | <del> </del> | <del> </del>      |                 |                                |
|                     |              |              | <del> </del>      |                 |                                |
|                     |              |              |                   |                 |                                |
|                     |              |              |                   |                 |                                |

Reagent Information:

Form: GN078-01 Rev. Date: 1/10/11



### Reagent Information Log - XCR - water - 7196A

| Reagent                                  | Exp. Date | Reagent # or Manufacturer/Lot |
|------------------------------------------|-----------|-------------------------------|
| Calibration Source: Hexavalent Chromium, |           |                               |
| 1000 mg/L Stock                          | 1/12/2015 | Absolute Grade Lot# 011212    |
| Calibration Checks: Hexavalent Chromium, |           |                               |
| 1000 mg/L Stock                          | 5/31/2017 | Ultra Scientific Lot# L00439  |
| External Check                           | NA        | NA                            |
| Spiking Solution Source                  | 1/12/2015 | Absolute Grade Lot# 011212    |
| Diphenyl carbazide Solution              | apple     | GNED 33332A-XXX               |
| Sulfurie-Acid, 10%                       | inters    | ENET-SORT-XIX                 |
|                                          |           |                               |
|                                          |           |                               |
|                                          | •         |                               |
|                                          |           |                               |
|                                          |           |                               |

Form: GN087A-23 Rev. Date: 10/3/05



Test: pH, Corrosivity Method: SW846 9040B or SW846 9045C

Product: PH, CORR
Analyst: SANJAYA
GN Batch ID: GN71547

Thermometer ID: 6539 Anal Correction Factor: 0 pH

Analysis Date: 9/5/2012 pH Meter ID: 50

QC Summary

Duplicate ID: GN71547-D1

Dup Result: 9.70

Sample ID: JB14769-11 % RPD: 2.72%

Uncorrected/ Wt./Vol. used Corrected Temp in Sample ID Result for soilds Deg C. Corrosivity Read time Buffer Check: 4 3.98 14:58 25 Buffer Check: 7 25 Buffer Check: 10 10.03 25 GN71547-D1 25 9.70 JB13955-1R 25 10.07 JB13955-3R 25 12.02 JB13955-4R 25 10.75 JB14089-1R 25 11.65 JB14089-2R 25 11.15 JB14089-3R 25 8.04 JB14769-1 25 8.30 JB14769-11 25 9.94 JB14769-2 25 7.94 Buffer Check: 4 25 4.05 Buffer Check: 13 25 13.01 25 JB14769-3 7.62 JB14769-4 25 7.88 JB14769-5 25 8.41 JB14769-6 25 8.90 JB14769-7 25 8.88 JB14769-8 25 8.86 JB14769-9 25 8.53 JB15276-1 25 8.05 25 JB15276-2 7.78 JB15276-3 25 7.93 Buffer Check: 7 25 7.01 Buffer Check: 10 16:11 10.01 Buffer Check: Buffer Check:

| Comments:     |            |                 |          |
|---------------|------------|-----------------|----------|
|               | ·          |                 |          |
| Validated By: | Nancy Cole | Validated Date: | 8/7/2012 |

Document Control #: AGN-PH CORR-AQ-01





Balance # 8 - 36

| Analyst K.P.       |   |
|--------------------|---|
| Melhod Eft.PH      |   |
| Prep Date 9  5  12 |   |
| GP# (FN71547-PH    | _ |
| GN 71548-ett       |   |

Sample Prep Log

|                                       | Sample Frep Log |              |
|---------------------------------------|-----------------|--------------|
| Sample ID                             | Sample Size     | Final Volume |
| 1B14769-1.                            | 50.8gm          | 50 ml DI Hel |
| 2                                     | 50.4 gm         |              |
| 3                                     | 50.3 gm         |              |
| 4                                     | 50.6 gm         |              |
| 5                                     | . 50:6 gm.      |              |
| 6                                     | 50.C= g=n       |              |
| 7                                     | 50.1 gm         |              |
| 8                                     | 50-3gm          |              |
| 9                                     | 20.7 dw         |              |
| U                                     | 50.5 gm         |              |
| 11-DUP                                | 50.6 gm         |              |
| 11-DUP<br>1815276-1<br>2              | 50.9 gm         |              |
| 2                                     | . 50.3 gm       |              |
| 3                                     | 50.2 gm         |              |
| JB13955-1                             | 50. 1 gm        | -            |
| JB13955-33                            | 50. 7 gran      |              |
| 4                                     | 50.3 gm         |              |
| JB14084-1.                            | 50.9 gm         |              |
| -2                                    | 50.8 gm         |              |
| <u> </u>                              | 50.4 gm         | V .          |
| · · · · · · · · · · · · · · · · · · · | -               | K            |
|                                       |                 |              |
|                                       |                 |              |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_\_



### 

(N 71548

### Reagent

| pH 2 Buffer Solution  | FICHER LOT#115910 EXP 11/30/13  |
|-----------------------|---------------------------------|
| pH 4 Buffer Solution  | BDH LOT#2110255 EXP 9/30/13     |
| pH 7 Buffer Solution  | RICCA LOT#2111388 EXP 10/30/13  |
| pH 10 Buffer Solution | FISCHER LOT#105427 EXP 09/30/12 |
| pH 13 Buffer Solution | AQUA SOL. LOT#1080516 EXP 08/30 |

Form: GN087-01 Rev. Date:9/5/2012





Test: Redox Potential

Matrix: Aqueous 
Matrix: Solid

Test Code: REDOX

Method: ASTM D1498-76

Method: ASTM D1498-76 Mod.

 Analyst:
 SANJAYA

 Date:
 09/05/12

 GN Batch ID:
 GN71548

 Temp (Deg C):
 25

| Sample ID:    | GN71548-1       | Results:    | 188.6 | Dup:   | 165   | % RPD:  | 13.35%  |
|---------------|-----------------|-------------|-------|--------|-------|---------|---------|
| Cample ID.    | 0147 1040-1     | - 11000110. | 100.0 | - Dup  | 100   | 70 KFD. | 13.3376 |
| Ferrous-Ferri | c True: 675     |             |       | Found_ | 639.5 | % Rec   | 94.74%  |
| pH 4 Quinhyo  | irone True: 462 |             |       | Found  | 477.8 | % Rec   | 103.42% |
| pH 4 Quinhyo  | frone True: 462 |             |       | Found  | 449   | % Rec   | 97.19%  |
| pH 4 Quinhyo  | Irone True: 462 |             |       | Found  | 471.3 | % Rec   | 102.01% |
| pH 7 Quinhyo  | Irone True: 285 |             |       | Found  | 260.9 | % Rec   | 91.54%  |
| pH 7 Quinhyo  | frone True: 285 |             |       | Found  | 260.1 | % Rec   | 91.26%  |
| pH 7 Quinhyo  | Irone True: 285 |             |       | Found  | 274   | % Rec   | 96.14%  |

| Sample #:      |            | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv<br>vs. Hydrogen electrode)<br>*** |
|----------------|------------|-----------------------------|---------------------------------------------------------|
| Ferrous-Ferric | Solution   | 455.8                       | 639.5                                                   |
| pH 4 Quinhydr  | one        | 294                         | 477.8                                                   |
| pH 7 Quinhydr  | one        | 77.1                        | 260.9                                                   |
| Dup            | GN71548-D1 | -18.7                       | 165                                                     |
| 1.             | JB13955-1R | 38.5                        | 222.9                                                   |
| 2.             | JB13955-3R | -80.8                       | 103                                                     |
| 3.             | JB13955-4R | -54.8                       | 128.8                                                   |
| 4.             | JB14089-1R | -65.7                       | 118                                                     |
| 5. <b>—</b>    | JB14089-2R | -140.6                      | 43.1                                                    |
| 6.             | JB14089-3R | 6.9                         | 190.6                                                   |
| 7.             | JB14769-1  | 77.5                        | 261.2                                                   |
| 8.             | JB14769-11 | <del></del>                 | 188.6                                                   |
| 9.             | JB14769-2  | 88.8                        | 272.5                                                   |
| pH 4 Quinhydr  | one        | 265.4                       | 449                                                     |
| pH 7 Quinhydr  |            | 76.4                        | 260.1                                                   |
| 10.            | JB14769-3  | -127.8                      | <del></del> 55.9                                        |
| 11.            | JB14769-4  | 100.2                       | 283.9                                                   |
| 12.            | JB14769-5  | 167.2                       | 351                                                     |
| 13.            | JB14769-6  | 109                         | 292.7                                                   |
| 14.            | JB14769-7  | 50.1                        | 233.8                                                   |
| 15.            | JB14769-8  | 57.5                        | 241.2                                                   |
| 16.            | JB14769-9  | -167.8                      | 16                                                      |
| 17.            | JB15276-1  | 7.8                         | 191.4                                                   |
| 18.            | JB15276-2  | 85.5                        | 269.2                                                   |
| 19. JE         | 315276-3   | 95                          | 279.7                                                   |
| pH 4 Quinhydr  |            | 287.6                       | 471.3                                                   |
| pH 7 Quinhydr  |            | 90.3                        | 274                                                     |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

Reagent Numbers: Redox Standard: GNE-31456-ORP Exp:9/15/12

Comments:

Analyst: S.A.

F/N GN141.DOC Rev. Date: 3/27/2007 Date: 09/05/12

QC Reviewer:

46 of 60
ACCUTEST

JB14769

LABORATORIES

Date:



Balance # 8 - 36

| Analyst | W.P         |
|---------|-------------|
| Method  | EH PH       |
| Prep Da | 10 9 15 112 |
|         | GN71547-AL  |
|         | 17/548-ett  |

Sample Prep Log

| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Size | Final Volume |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| JB14769-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.8gm      | 50 ml DI Hel |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | So. Ligan   |              |
| .3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.3 gm     |              |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.6 900    |              |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 50:6 gm   |              |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.c- day   |              |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | So.1 Jm     |              |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50-3gm      |              |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20.7 dw     |              |
| (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.5 gm     |              |
| 11-DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20.6 gen    |              |
| 11-DUP<br>JB 15276-1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.9 gm     |              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.3 gm     |              |
| 3 :-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.2 gm     |              |
| JB13955-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50. 1 gm    |              |
| JB13955-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.7gm      |              |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.3 gm     |              |
| JB14089-1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50.9 gm     |              |
| -2<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50.8- gm    |              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.4 gm     | <u> </u>     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |
| Marie Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company Company |             |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |              |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_



| Test: Redox I | otentia |
|---------------|---------|
| Matrix: Aqueo | us O    |
| Matrix: Solid | •       |

**Test Code: REDOX** Method: ASTM D1498-76 Method: ASTM D1498-76 Mod.

Analyst: SANJAYA Date: 09/07/12 GN Batch ID: GN71666 25 Temp (Deg C): \_\_\_\_

| Quality Con | trol Summary    |          |       |        |       |         |         |
|-------------|-----------------|----------|-------|--------|-------|---------|---------|
| Sample ID:  | GN71666-D1      | Results: | 382.3 | Dup:   | 377.8 | % RPD:  | 1.18%   |
| Ferrous-Fer | ric True: 675   | _        |       | Found  | 637.5 | % Rec   | 94.44%  |
| pH 4 Quinhy | drone True: 462 |          |       | Found  | 491.6 | % Rec   | 106.41% |
| pH 4 Quinhy | drone True: 462 |          |       | Found  | 460.9 | % Rec   | 99.76%  |
| pH 4 Quinhy | drone True: 462 |          |       | Found  |       | % Rec   |         |
| pH 7 Quinhy | drone True: 285 |          |       | Found  | 263.7 | % Rec   | 92.53%  |
| pH 7 Quinhy | drone True: 285 |          |       | Found  | 264.4 | % Rec   | 92.77%  |
| pH 7 Quinhy | drone True: 285 |          |       | Found  |       | % Rec   |         |
| pH 7 Quinhy | drone True: 285 |          |       | Found_ |       | . % Rec |         |

| Sample #:                | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv<br>vs. Hydrogen electrode)<br>*** |  |  |
|--------------------------|-----------------------------|---------------------------------------------------------|--|--|
| Ferrous-Ferric Solution  | 453.9                       | 637.5                                                   |  |  |
| pH 4 Quinhydrone         | 308                         | 491.6                                                   |  |  |
| pH 7 Quinhydrone         | 80                          | 263.7                                                   |  |  |
| Dup GN71666-D1           | 194.1                       | 377.8                                                   |  |  |
| 1. <u>JB14769-10</u>     | 198.5                       | 382.3                                                   |  |  |
| 2.<br>3.                 |                             |                                                         |  |  |
| 4                        |                             |                                                         |  |  |
| 5.                       |                             | -                                                       |  |  |
| 6                        | ** ····                     |                                                         |  |  |
| 7                        |                             |                                                         |  |  |
| 8. <u> </u>              |                             |                                                         |  |  |
| 9                        | Name and                    |                                                         |  |  |
| pH 4 Quinhydrone         | 277.1                       | 460.9                                                   |  |  |
| pH 7 Quinh <u>ydrone</u> | 80.7                        | 264.4                                                   |  |  |
| 10.                      |                             |                                                         |  |  |
| 11                       |                             |                                                         |  |  |
| 12.                      |                             |                                                         |  |  |
| 13                       |                             | W                                                       |  |  |
| 14,                      |                             |                                                         |  |  |
| 15                       |                             |                                                         |  |  |
| 16                       |                             |                                                         |  |  |
| 17                       |                             |                                                         |  |  |
| 18                       |                             |                                                         |  |  |
| 19                       |                             |                                                         |  |  |
| pH 4 Quinhydrone         |                             |                                                         |  |  |
| pH 7 Quinhydrone         |                             |                                                         |  |  |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers: | Redox Standard: GNE-31456-ORP | Exp:9/15/12 |
|------------------|-------------------------------|-------------|
|                  |                               |             |

| Comments:                   |                       |              | h |            | ^ <i>i</i> |       |
|-----------------------------|-----------------------|--------------|---|------------|------------|-------|
| -                           |                       |              |   | 1 /        | 7          |       |
| Analyst: S.A. F/N GN141.DOC | Date: <u>09/07/12</u> | QC Reviewer: | M | <i>T</i> ( |            | Date: |

Rev. Date: 3/27/2007





|           | 2x |
|-----------|----|
| Balance # | 70 |

| Analyst S.A      |
|------------------|
| Method 1= H      |
| Prep Date 9/7/12 |
| GP# GN71666-eH   |

Sample Prep Log

|             | Sample Frep Log |                                            |
|-------------|-----------------|--------------------------------------------|
| Sample ID   | Sample Size     | Final Volume                               |
| OB 14769-10 | Gonl,           |                                            |
| OB 14769-10 | 6001-           |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |
| /           |                 |                                            |
| ·           |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             | 1               | 17-28-28-28-28-28-28-28-28-28-28-28-28-28- |
|             |                 |                                            |
|             | •               |                                            |
|             | •               |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             |                 | ·                                          |
|             |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |
|             |                 |                                            |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_\_



### Hexavalent Chromium

BKGRD Analysis Sample Analysis Absorbance Conc(mg/l) Dilution Final Conc. Absorbance (ml) (g) Sample # Method: SW846 3060A, 7196A Test Title: XCRA GN71682 GN Batch: Analyst: ММ Note: All results below shown on a wet weight basis. 9/6/2012 Prep Date: 9/7/2012 Analysis Date:

| strument ID: | Н     | ]     |       |       |        |
|--------------|-------|-------|-------|-------|--------|
| Çal, Blk.    | 0.000 | NA NA | 9:00  | 0.000 | 0.0000 |
| STD 1        | 0.009 | NA NA | NA NA | 0.009 | 0.0100 |
| STD 2        | 0.045 | NA    | NA    | 0.045 | 0.0500 |
| STD 3        | 0.091 | NA    | NA NA | 0.091 | 0.1000 |
| STD 4        | 0.273 | NA    | NA NA | 0.273 | 0.3000 |
| CTD F        | 0.450 | NIA   | NIA   | 0.450 | 0.5000 |

|   | STD 1            | 0.009                                            | NA.                                              | NA NA                                   | 0.009   | 0.0100    |                                                  |                                                  |          | Slope:       | 0.9033        |         |         |
|---|------------------|--------------------------------------------------|--------------------------------------------------|-----------------------------------------|---------|-----------|--------------------------------------------------|--------------------------------------------------|----------|--------------|---------------|---------|---------|
|   | STD 2            | 0.045                                            | NA .                                             | NA                                      | 0.045   | 0.0500    |                                                  |                                                  |          |              |               |         |         |
|   | STD 3            | 0.091                                            | NA                                               | NA                                      | 0.091   | 0.1000    |                                                  |                                                  |          | Y intercept; | 0.001         |         |         |
|   | STD 4            | 0.273                                            | NA                                               | NA                                      | 0.273   | 0.3000    |                                                  |                                                  |          |              |               |         |         |
|   | STD 5            | 0.459                                            | NA                                               | NA                                      | 0.459   | 0.5000    |                                                  |                                                  |          |              |               |         |         |
|   | STD 6            | 0.721                                            | NA                                               | NA                                      | 0.721   | 0.8000    | Final Vol.                                       | Sam. Wt.                                         |          |              |               |         |         |
|   | STD 7            | 0.903                                            | NA                                               | 9:03                                    | 0.903   | 1.0000    | <u>(ml)</u>                                      | (g)                                              | Dilution | Final Conc.  | <u>Units</u>  | MDL     | RDL     |
|   | ccv              | 0.440                                            | NA                                               | 15:47                                   | 0.440   | 0.4860 🗹  | NA                                               | NA                                               | NA       | NA NA        | mg/l          | 0.003   | 0.010   |
|   | CCB              | 0.000                                            | NA                                               | 15:47                                   | 0.000   | -0.0011 📶 | NA                                               | NA                                               | NA       | NA NA        | mg/i          | 0.003   | 0.010   |
|   | GNP66995-MB1     | 0.000                                            | 0.000                                            | 15:53                                   | 0.000   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   | GP66995-B1       | 0.826                                            | 0.000                                            | 15:53                                   | 0.826   | 0.9133    | 100.0                                            | 2,5000                                           | 1        | 36.533       | mg/kg         | 0.117   | 0.400   |
|   | GP66995-S1       | 0.825                                            | 0.004                                            | 15:53                                   | 0.821   | 0.9078    | 100.0                                            | 2.5400                                           | 1        | 35.740       | mg/kg         | 0.115   | 0.394   |
| _ | GP66995-D1       | 0.001                                            | 0.000                                            | 15:53                                   | 0.001   | 0.0000    | 100.0                                            | 2.5400                                           | 1        | 0.001        | mg/kg         | 0.115   | 0.394   |
|   | JB14769-11       | 0.002                                            | 0.000                                            | 15:53                                   | 0.002   | 0.0011    | 100.0                                            | 2.5400                                           | 1        | 0.044        | mg/kg         | 0.115   | 0.394   |
|   | JB14769-11PSCONF | 0.437                                            | 0.003                                            | 15:53                                   | 0.434   | 0.4794    | 100.0                                            | 2.5400                                           | 2        | 37,746       | mg/kg         | 0.231   | 0.787   |
|   | GP66995-B2       | >3                                               | OVR                                              | i                                       | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   | GP66995-S2       | >3                                               | OVR                                              |                                         | FALSE   | -0.0011   | 100.0                                            | 2.4800                                           | 1        | -0.044       | mg/kg         | 0.118   | 0.403   |
|   | GP66995-B2       | 0.442                                            | 0.000                                            | 15:53                                   | 0.442   | 0.4882    | 100.0                                            | 2.5000                                           | 50       | 976.449      | mg/kg         | 5.860   | 20.000  |
|   | GP66995-S2       | 0.407                                            | 0.000                                            | 15:53                                   | 0.407   | 0.4495    | 100.0                                            | 2.4800                                           | 50       | 906.205      | mg/kg         | 5.907   | 20.161  |
|   | CCV              | 0.439                                            | NA NA                                            | 15:53                                   | 0.439   | 0.4849    | NA                                               | NA                                               | NA       | NA NA        | mg/l          | 0.003   | 0.010   |
|   | CCB              | 0.000                                            | NA NA                                            | 15:53                                   | 0.000   | -0.0011   | NA                                               | NA                                               | NA       | NA           | mg/l          | 0.003   | 0.010   |
|   | - 505            | 0.000                                            | 100                                              | 1,0.00                                  | FALSE   | -0.0011   | 100.0                                            | "                                                | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/01 |
|   |                  |                                                  |                                                  | 1                                       | FALSE   | -0.0011   | 100.0                                            |                                                  | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #D!V/0! |
| _ |                  |                                                  |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | 1                                                | 1        | #DIV/0!      | mg/kg         | #DIV/01 | #DIV/0! |
|   |                  |                                                  | <del>                                     </del> |                                         | FALSE   | -0.0011   | 100.0                                            | <del>                                     </del> | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/0! |
|   |                  |                                                  | <del>                                     </del> |                                         | FALSE   | -0.0011   | 100.0                                            | <del>                                     </del> | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/0! |
|   |                  |                                                  | +                                                |                                         |         | -0.0011   | 100.0                                            | <del></del>                                      | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/0! |
|   |                  |                                                  | +                                                |                                         | FALSE   | -0.0011   | 100.0                                            |                                                  | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/0! |
|   |                  |                                                  | <del> </del>                                     | ļ <u> </u>                              | FALSE   |           | <del>                                     </del> |                                                  | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/0! |
|   |                  |                                                  | ļ                                                | 1                                       | FALSE   | -0.0011   | 100.0                                            |                                                  | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/0! |
|   |                  |                                                  | <b>_</b>                                         | ļ                                       | FALSE   | -0.0011   | 100.0                                            |                                                  | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/0! |
|   |                  |                                                  |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | h.,                                              | NA NA    | NA NA        | mg/l          | 0.003   | 0.010   |
|   | CCV              | 0.441                                            | NA                                               | 16:21                                   | 0.441   | 0.4871    | NA<br>NA                                         | NA NA                                            | +        | NA NA        |               | 0.003   | 0.010   |
|   | ССВ              | 0.000                                            | NA                                               | 16:21                                   | 0.000   | -0.0011   | NA<br>100.0                                      | NA<br>D 5000                                     | NA<br>1  | 0.045        | mg/l<br>mg/kg | 0.116   | 0.397   |
|   | JB14769-1        | 0.002                                            | 0.000                                            | 16:26                                   | 0.002   | 0.0011    | 100.0                                            | 2.5200                                           | 1        |              |               | 0.116   | 0.395   |
|   | JB14769-2        | 0.004                                            | 0.000                                            | 16:26                                   | 0.004   | 0.0033    | 100.0                                            | 2.5300                                           | 1        | 0.132        | mg/kg         | 0.118   | 0.403   |
|   | JB14769-3        | 0.046                                            | 0.026                                            | 16:26                                   | 0.020   | 0.0210    | 100.0                                            | 2.4800                                           | 1        | 0.849        | mg/kg         |         | 0.412   |
|   | JB14769-4        | 0.061                                            | 0.005                                            | 16:26                                   | 0.056   | 0.0609    | 100.0                                            | 2,4300                                           | 1        | 2.506        | mg/kg         | 0.121   |         |
|   | JB14769-5        | 0.036                                            | 0.002                                            | 16:26                                   | 0.034   | 0.0365    | 100.0                                            | 2.4800                                           | 1        | 1.474        | mg/kg         | 0.118   | 0.403   |
|   | JB14769-6        | 0.002                                            | 0.000                                            | 16:26                                   | 0.002   | 0.0011    | 100.0                                            | 2.5000                                           | 1        | 0.045        | mg/kg         | 0.117   | 0.400   |
|   | JB14769-7        | 0.008                                            | 0.000                                            | 16:26                                   | 0.008   | 0.0078    | 100.0                                            | 2.4700                                           | 1        | 0.314        | mg/kg         | 0.119   | 0.405   |
|   | JB14769-8        | 0.005                                            | 0.000                                            | 16:26                                   | 0.005   | 0.0044    | 100.0                                            | 2.5400                                           | 11       | 0.175        | mg/kg         | 0.115   | 0.394   |
|   | JB14769-9        | 0.015                                            | 0.008                                            | 16:26                                   | 0.007   | 0.0067    | 100.0                                            | 2.5800                                           | 1        | 0.258        | mg/kg         | 0.114   | 0.388   |
|   |                  |                                                  |                                                  | I                                       | FALSE   | -0.0011   | 100.0                                            |                                                  | 1        | #DIV/0!      | mg/kg         | #DIV/0! | #DIV/0! |
|   | CCV              | 0.438                                            | NA                                               | 16:26                                   | 0.438   | 0.4838 -  | NA                                               | NA_                                              | NA NA    | NA NA        | mg/l          | 0.003   | 0.010   |
|   | ССВ              | 0.000                                            | NA                                               | 16:26                                   | 0.000   | -0.0011   | NA                                               | NA.                                              | NA       | NA           | mg/l          | 0.003   | 0.010   |
|   |                  |                                                  |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 11       | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  |                                                  |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  |                                                  |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  | 1                                                |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   | -                |                                                  |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  | † <del></del>                                    |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  |                                                  | 1                                                |                                         | FALSE   | -0,0011   | 100.0                                            | 2.5000                                           | 11       | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  |                                                  |                                                  | 1                                       | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   | +                | 1                                                |                                                  |                                         | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   | <del> </del>     |                                                  | 1                                                | 1                                       | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   | ccv              |                                                  | NA NA                                            | 2,400,457                               |         | #VALUE!   | NA                                               | NA                                               | NA       | NA NA        | mg/l          | 0.003   | 0.010   |
|   | ССВ              | <del> </del>                                     | NA NA                                            |                                         |         | #VALUE!   | NA                                               | NA                                               | NA       | NA .         | mg/l          | 0.003   | 0.010   |
|   | <del>  ""</del>  |                                                  | <b>———</b>                                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  | +                                                | +                                                | +                                       | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  |                                                  | +                                                | +                                       | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   |                  | <del>                                     </del> | +                                                | +                                       | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.400   |
|   | -                | 1                                                | <del> </del>                                     | +                                       | FALSE   | -0.0011   | 100.0                                            | 2.5000                                           | 1        | -0.044       | mg/kg         | 0.117   | 0.460   |
|   | I                | i                                                |                                                  |                                         | T LWF9E | +0.0011   | 100.0                                            |                                                  |          | 3.011        | 7.0           |         |         |



Test: Hexavalent Chromium

Product: XCr

Method: SW846 3060A/7196A

MDL = 0.117 mg/kgRDL = 0.40 mg/kg GNBatch ID: 6100 Date: 91000

**Digestion Batch QC Summary** Units = mg/kg OR Result: AMDL RDL: NAD <RDL:\ \M\_ Result: 30.53 Spike: 4010 %Rec. 191.3% Result: 116.45 Spike: 104.10% Rec.: 101.29 Insol. Spike Blank ID: 6 A COMS 182 Date: Samp. Result: 4MDL Dup. Result: 4MDL %RPD: 4MDL Duplicate ID: 6000005-DI \_Samp. Result:\_\_\_\_\_\_\\_\_\_MS Result: <u>35.74\_</u> Spike:<u>39.37</u> %Rec: *0*(0.1*9*0 SOI. MS ID: 617000005-51 MS Result: 906.21 Spike: M5.186Rec: 98.49 Insol. MS ID: 4100000005-52 \_Samp. Result: PS Result: 37.75 Spike: 4555 %Rec: 91.0% Post Spike ID: WY VF 1091-11 Samp. Result: Samp. Result: \_\_\_\_\_ Dil. Result: %RPD: Diluted Sample ID:\_ Samp. Result: MS Result: Spike: %Rec: pH adj. PS ID:\_ Analysis Batch QC Summary Units = mg/lccv: amble Result: 400 TV: 0.500 %Rec.: 1290 Result: 495 TV: 0.500 %Rec.: 0710% CCV:\_ Result: 40 TV: 0.500 %Rec.: 17\410 CCV: Result: .404 TV: \_0.500\_ %Rec.: (No.45) CCV :\_ %Rec.: CCV: Result: \_\_ TV: \_0.500\_ Result:\_ %Rec.: CCV: TV: \_0.500\_ ~ Result:\_\_ TV: 0.500 CCV: %Rec.: CCV: Result: \_ TV: \_0.500\_ %Rec.: CCV: Result: TV: \_0.500\_ %Rec.: Result: 4MNL RDL: 0.010 <RDL: CCB: CCB: Result: RDL:\_0.010\_\_\_ <RDL:\_ RDL:\_0.010\_\_\_ <RDL:\_ CCB: Result: RDL: 0.010 \_\_ <RDL:\_ CCB: Result: CCB: Result: RDL:\_0.010\_\_\_ <RDL:\_ RDL: 0.010 < RDL: CCB: Result: CCB: Result: RDL:\_0.010\_\_\_ <RDL:\_ CCB: Result: RDL:\_0.010\_\_\_ <RDL:\_ CCB: Result: RDL:\_0.010\_\_\_ <RDL:\_

| Reagent F   | Refere | nce Informati        | on - refer to attached reagent re | eference information page(s). |
|-------------|--------|----------------------|-----------------------------------|-------------------------------|
| Insoluble s | spike  | = PbCrO <sub>4</sub> | Molecular weight = 323.2 g/mol    | Cr = 52.0 g/mol               |
| {1000000    | ug/g x | Insoluble spike      | e wt(g) x 52/323.2}/ms sample wt  | (g) = Insoluble spike amount  |

Analyst: M Date: 01700

Comments:

Form: GN066-01 Rev. Date: 4/25/11



### M ACCUTEST.

### Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

|                                           |            |              | 11101110  |                          |             | pH Meter ID:    | 51                                     |                                       |
|-------------------------------------------|------------|--------------|-----------|--------------------------|-------------|-----------------|----------------------------------------|---------------------------------------|
|                                           |            |              |           |                          |             | Digestion Date  | *4-8/2                                 | 916112                                |
| adj. start time:                          |            | 15:24        | 15:56     | 15:35                    | 16:10       | pH adj. Date:   |                                        | <u> </u>                              |
| adj. end time:                            |            | 15:30        | 16:03     | 15:37                    | 1 10:13     | GN Batch ID:    | GNITION                                | 2                                     |
| p66995                                    | Sample     |              | Final     |                          | bkg pH      |                 | 0.7                                    | m:                                    |
| h0e (1)                                   | Weight in  |              | Volume    | pH after                 | after       | Spike           | Spike<br>Solution                      | Digestate Description/Comments        |
| mple ID                                   | g          | HNO3         | (ml)      | H2SO4                    | H2SO4       | Amounts         |                                        |                                       |
| <u> </u>                                  |            | 732          | 100       | 1.76                     |             | S.om I          | 10 ppm                                 | $\frac{u_{1}u_{2}}{u_{1}u_{2}}$       |
| <u> </u>                                  |            | 143          | 4         |                          |             |                 |                                        | <u> </u>                              |
| <u>v</u>                                  |            |              |           |                          |             |                 |                                        |                                       |
| y<br>3                                    |            | 799          | 100       | 2.01                     |             |                 |                                        |                                       |
| 3                                         |            | 751          | 7         |                          | :           |                 |                                        |                                       |
| 3                                         |            |              |           |                          |             |                 |                                        |                                       |
| 3                                         |            |              | 1         |                          |             |                 |                                        |                                       |
| (Sol) JB14769-11                          | 2.54       | 7.16         | 100       | 1.90                     | 1.02        | 1-om1           | phyroy                                 | 1350/                                 |
| (Insol.) —\(                              | 2.45       | 792          |           | 173                      | av          | 6:6158          | PHYNOY                                 | · · · · · · · · · · · · · · · · · · · |
| <u> </u>                                  | 2.54       | 793          | ···       | 182                      | 1.74        |                 |                                        | Navad                                 |
| (Sol)                                     | 2.50       | 724          |           | 197                      | 180         | 1.0m1           | portoy                                 | 175301                                |
| (Insol)                                   |            | 772          |           | 1001                     | W.          | 0.0153          | PACTOG                                 |                                       |
| 03/1/07/6                                 | 211        | 7.41         |           | 100                      | 197         |                 |                                        | creat                                 |
| B14769-11                                 | 2.46       | 756          |           | 196                      | 184         |                 |                                        |                                       |
| <u> </u>                                  | 2.53       | 769          |           | 100                      | 183         |                 |                                        |                                       |
|                                           | 2.49       | 798          |           | 190                      | 190         |                 |                                        | 1 sho 660un                           |
| -4                                        | 2.43       | 734          |           | 1-00                     | 1-14        |                 | -                                      | 1 ight year w                         |
| -5                                        | 2.48       | 123          |           | 202                      | TOP         |                 |                                        | 000                                   |
| -6                                        | 2.50       | 7.19         |           | 196                      | 100         |                 |                                        | cient                                 |
| <u> </u>                                  | 2.47       | 726          |           | 1.01                     | 180         |                 |                                        | ( lear                                |
| -8                                        | 2.54       | 794          |           | 1.82                     | 172         |                 |                                        | CHEAN                                 |
| -9                                        | 2.58       | 702          | 4         | 179                      | 169         |                 |                                        | light brown                           |
|                                           |            |              |           |                          |             |                 |                                        | <i>V</i>                              |
|                                           |            |              |           |                          |             |                 |                                        |                                       |
|                                           |            |              |           |                          |             |                 |                                        |                                       |
|                                           |            |              |           |                          |             |                 |                                        |                                       |
|                                           |            | ,            |           |                          |             | <del> </del>    |                                        |                                       |
|                                           |            |              |           |                          |             |                 |                                        | •                                     |
|                                           |            |              |           |                          |             |                 |                                        |                                       |
|                                           |            |              |           |                          |             |                 | ······································ |                                       |
|                                           |            |              |           |                          |             |                 |                                        |                                       |
| (Insol)                                   | 100        | 7.72         | 100       | 1.881                    | 174         |                 |                                        | dilution (A)                          |
| (Insol.)                                  | 240        | 782          | 1         | 2.10                     | 101         |                 |                                        | dilution 1:50                         |
|                                           | 240        | 791          | 4         | 1.00                     | 1.90        | 23mL (0)        | oons Moscul                            | H +12 allutay                         |
| adjusted PS                               |            |              |           |                          |             |                 | ( ) -                                  |                                       |
| dil.                                      |            |              |           |                          |             |                 |                                        |                                       |
| m JB14769-11                              | 246        | <u> </u>     | <u> </u>  | <u> </u>                 | <u> </u>    |                 |                                        |                                       |
| agent Reference li                        | nformation | n - refer to | attached  | reagent r                | eterence i  | information pa  | ge(s).                                 | <i>1</i>                              |
| 000000 ug/g x Insol                       | uble spike | wt(g) x 52/  | 323.2}/ms | sample wt                | (g) = insol | iubie spike amo | / / /                                  |                                       |
| يال داد د الله الله الله الله الله الله ا |            |              |           | Anayst: <u>√</u>         | MIN         |                 | LOY                                    | 9.7.n                                 |
| d analyst check:                          |            |              | W         | Date:                    | 217122      | <b>9</b>        |                                        |                                       |
| •                                         |            |              |           | <i>∪</i> αι <del>ς</del> | (11 1/2-K/V | A.T.            |                                        |                                       |

Form: GN-067

## 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                              |              |                                        |                | e)                      | ē                               |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|------------------------------|--------------|----------------------------------------|----------------|-------------------------|---------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                              |              | Use calculated or                      | default spike? | efault (40 mg/kg) spike | #DIV/0! sfault (40 mg/kg) spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | Calculated                   | Spike        | Amount in                              | mg/kg          | 41.554                  | #DIV/0!                         | #VALUE!          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | ppm to Est. Read- Calculated | back on      | curve in                               | l/gm           | 0.511                   | 10//\IQ#                        | #VALUE!          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Actual ml | of 100    | ppm to                       | spike on     | dilution of                            | sample.        | 0.23                    |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Suggested | ml of 100                    | ppm to spike | Dilution to on dilution of dilution of | sample.        | 0.222                   | #DIV/0i                         | #VALUE!          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | •         |                              | Actual       | Dilution to                            | pe nsed        | 2                       |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| n oudo you                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |                              | Suggested    | Dilution to                            | nse            | 0                       | 0                               | #VALUE!          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           |                              |              | Dilution                               | needed         | 2                       | 2                               | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          |
| o tonhina m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |           | Amount in                    | ml to add    | of 100 ppm                             | solution       | 0.443                   | 0.000                           | #VALUE!          |
| I canc a 40 I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |           |                              |              | Results in of 100 ppm                  | mg/kg.         |                         |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| NOTE: Always ulture post-spine inst, titelitance and interpretable of the director post spine and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control o |           |           |                              |              | Weight in 45                           | le le          | 1.107                   | c                               | #VALUE!          | #VALUE!          | #VALUE           | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          | #VALUE!          |
| iys uninte post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |           | P.S. Alignot                 | Weight in a  |                                        | 100 ml         |                         |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| NOIE: AIWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |           |                              |              |                                        | Sample 1D      | IB14769-11              |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |

### 3060A/7196A INSOLUBLE SPIKE

| S         | CALCULATION | Z        |
|-----------|-------------|----------|
| Weight of | Weight of   | Amount   |
| PbCr04    | Sample      | Spiked   |
| 0.0153    | 2.5         | 984.653  |
| 0.0158    | 2.48        | 1025.032 |
|           |             | #VALUE!  |
|           |             | #VALUE!  |
|           |             | #VALUE!  |
|           |             | #VALUE!  |
|           |             | #VALUE!  |
|           |             | #VALUE!  |
|           |             | #VALUE!  |

|         | 53 of 60     |
|---------|--------------|
| ACC     | CUTEST       |
| JB14769 | LABORATORIES |

### Hexavalent Chromium pH Adjustment Log

| Method: SW846       | 3060A/7196A |          |                       | ۵        |
|---------------------|-------------|----------|-----------------------|----------|
| pH adj. start time; | £-33        | <u> </u> | pH adjustment Date: _ | <u> </u> |
| pH adj. end time:   | f-3F        | p. 44    | GN Batch ID: _        | EN,      |

|                                        | Sample    |                  | Final                                            | n Ll 0#0-         |                 |                    |
|----------------------------------------|-----------|------------------|--------------------------------------------------|-------------------|-----------------|--------------------|
| Sample ID                              | Weight in | pH after<br>HNO3 | Volume<br>(ml)                                   | pH after<br>H2SO4 | Comments        | Spike Info.        |
|                                        | g         |                  | 100                                              | 211               | 0               |                    |
| Calibration Blank                      | NA NA     | 7,75             | 177                                              | <del> </del>      | Lo John Nichorn | 0.10 ml of 10 mg/l |
| 0.010 mg/l standard                    | NA NA     | 7.80             | <del>                                     </del> | 20                | 10 pp Assina    | 0.50 ml of 10 mg/l |
| 0.050 mg/l standard                    | NA NA     | 7.85             | <del>                                     </del> | 2.54              |                 | 1.00 ml of 10 mg/l |
| 0.100 mg/l standard                    | NA        | 7.79             | <del>                                     </del> | 1.98              |                 | 3.00 ml of 10 mg/l |
| 0.300 mg/l standard                    | NA NA     | 7.77             | <del>                                     </del> | 2/0-              |                 | 5.00 ml of 10 mg/l |
| 0.500 mg/l standard                    | NA NA     | 7.60             | <del>                                     </del> | 1.94              |                 | 8.00 ml of 10 mg/l |
| 0.800 mg/l standard                    | NA NA     | 7.74             | <del>                                     </del> |                   |                 | 10.0 ml of 10 mg/l |
| 1.00 mg/l standard                     | NA_       | 9-29             | <del>  -\/</del>                                 | 2/2               |                 |                    |
|                                        |           | <u> </u>         |                                                  | -                 |                 |                    |
|                                        |           | <u> </u>         | <del> </del>                                     | <del> </del>      |                 |                    |
|                                        |           | <u> </u>         |                                                  | <del></del>       |                 |                    |
|                                        |           | <del></del>      | <del> </del>                                     | <del></del>       |                 |                    |
|                                        |           | <del> </del>     | <del> </del>                                     | <del></del>       |                 |                    |
|                                        |           | <del> </del>     |                                                  |                   |                 |                    |
|                                        |           | <del> </del>     |                                                  |                   |                 |                    |
|                                        |           |                  | ļ                                                |                   |                 |                    |
|                                        |           |                  |                                                  | <del></del>       |                 |                    |
|                                        |           |                  |                                                  | <del> </del>      |                 |                    |
|                                        |           | <del> </del>     |                                                  |                   |                 |                    |
| ·                                      |           | <u> </u>         |                                                  | <del> </del>      |                 |                    |
|                                        |           |                  |                                                  | _                 |                 |                    |
|                                        |           |                  |                                                  | <del> </del>      |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  | _                                                | <del></del>       |                 |                    |
|                                        |           |                  |                                                  | _                 |                 |                    |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  | <del></del>                                      |                   |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
|                                        |           |                  |                                                  |                   |                 |                    |
| - <del></del> -                        | i i       | 1                | 1 .                                              |                   | 1               |                    |

Reagent Reference Information - refer to attached reagent reference information page(s). {1000000 Ugg x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

> Anayst:\_ 9-4-2012

Form: GN068-01 Rev. Date:5/22/06





### HEXAVALENT CHROMIUM STANDARD PREPARATION LOG

Product: XCR GN or GP Number: ANT 1692

|             |                                |               | Stock        |         |          | of           |            |         | *****  |
|-------------|--------------------------------|---------------|--------------|---------|----------|--------------|------------|---------|--------|
| Standard    |                                | Stock         | volume       |         | Final    | Intermediate | Expiration |         |        |
| Description | Stock used to prepare standard | concentration | used in ml   | Diluent | Volume   | (l/gm)       | Date       | Analyst | Date   |
| 10 ppm      | Absolute Grade Lot # 041215    | 1000 ppm      | 1.0 ml       | IO      | 100 mls  | 10 mg/i      | 4/12/2015  | 122     | 7)-4-b |
| 100 ppm     |                                | 1000 ppm      | 10 ml        | ΙO      | 100 mls  | 100 mg/l     |            | _       | _      |
| 5 ppm       |                                | 1000 ppm      | 1.0 ml       | i       | 200 mg/l | 5 mg/l       |            |         |        |
| 7.5 ppm     |                                | 1000 ppm      | 1.5 ml       | ō       | 200 mg/l | 7.5 mg/l     |            |         |        |
| 10 ppm      | Ultra lot L00439               | 1000 ppm      | 1.0 ml       | IO      | 100 mg/l | 10 mg/l      | 5/31/2017  | ->      | _      |
|             |                                |               | Intermediate |         |          |              |            |         |        |
|             |                                | Intermediate  | or Stock     |         |          | Final Conc.  |            |         |        |
| Standard    | Intermediate or Stock used to  | or Stock      | volume       |         | Final    | Of Standard  | Expiration |         |        |
| Description | prepare standard               | concentration | used in ml   | Diluent | Volume   | (mg/l)       | Date       | Analyst | Date   |
| 010 ppm     | 10.0 ppm abs                   | 10.0 ppm      | 0.1 ppm      | iO      | 100 mls  | 0.01 mg/l    | 7-1-1-6    | Q.      | 4-4-12 |
| 050 ppm     |                                |               | 0.5 ppm      | DI      |          | 0.05 mg/l    |            |         |        |
| . 10 ppm    |                                |               | 1.0 ppm      | IO      |          | 0.10 mg/l    |            |         |        |
| 30 ppm      |                                |               | 3.0 ppm      | IO      |          | 0.30 mg/l    |            |         |        |
| 50 ppm      |                                |               | 5.0 ppm      | IO      |          | 0.50 mg/l    |            |         |        |
| 80 ppm      |                                |               | 8.0 ppm      | Ы       |          | 0.80 mg/l    |            |         |        |
| .00 ppm     | 7                              | ,<br>,        | 10.0 ppm     | IO      | ->       | 1.0 mg/l     | <b>→</b>   | -       | - 3.   |
|             |                                |               |              |         |          |              |            |         |        |
|             |                                |               |              |         |          |              |            |         |        |
|             |                                |               |              |         |          |              |            |         |        |
|             |                                |               |              |         |          |              |            |         |        |
|             |                                |               |              |         |          |              |            |         |        |
|             |                                |               |              |         |          |              |            |         |        |

Form: GN205-02 Rev. Date:10/16/09



# HEXAVALENT CHROMIUM TEMPEP ATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle ,, and ending temperatures for each batch.

Thermometer ID: 38/1397/18a/17 Thermometer Correction factor: の /- オ/ 人 し

Note: Minimum of 1 hothardigestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

|                         |                              |        | Temp. in deg. C                      | Temp. in dea. C                      | Temp, in deg. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp. in deg. C                     |
|-------------------------|------------------------------|--------|--------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| Diges <sup>f:</sup> Jon | -1                           |        | Hot Plate #1 -<br>Uncorrected/Correc | Hot Plate # ろ・<br>Uncorrected/Correc | Hot Plate # 4 Hot Plate # 2 Hot Plate # 2 Hot Plate # 4 Uncorrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Correcte | Hot Plate # ザ<br>Uncorrected/Correc |
| Patch ID                | Descripțion                  | Time   | ted                                  | ted                                  | ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pet                                 |
| ૃદુવિદૃ                 | 9 6691 Starting Time         | 8:55   | 30/90                                | 92/90                                | 90/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/40                               |
|                         | Time 1                       | 9.25   | 9.25 90190                           | 92/40                                | 90/93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/90                               |
|                         | Ending Time                  | 9.55   | 90100                                | 99/190                               | 90/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/90                               |
|                         |                              |        |                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                         | Starting Time 16745          | 10:45  | 90/40                                | 94/90                                | 90/94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/90                               |
|                         | Time 1                       | 11:05  | 11:15 90/40                          | 92/90                                | 40/44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/40                               |
|                         | Ending Time                  | الكهزا | 9060                                 | 9,4/90                               | PHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 99/66                               |
|                         |                              |        | •                                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |
|                         | Starting Time 11:55 90/40    | 11:55  | 9/0/40                               | 99/40                                | Pb/06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/40                               |
|                         | Time 1 11.25 90/90           | (X: XS | 90/90                                | 90 190                               | 90192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/40                               |
|                         | Ending Time (4 255   9 0/4 0 | (d 555 | 90140                                | 92,190                               | 90192                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 90/06                               |
| Analyst:                | IW )                         | . d    | 7                                    | Date:                                | Date: 9/6///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |
| Analys                  | 2nd Analyst Check:           |        |                                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |

Rev. Date: 8/08/12 Form: GN074-02



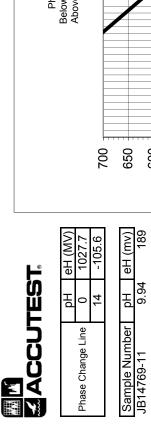
GN/GP Batch ID: 9766995

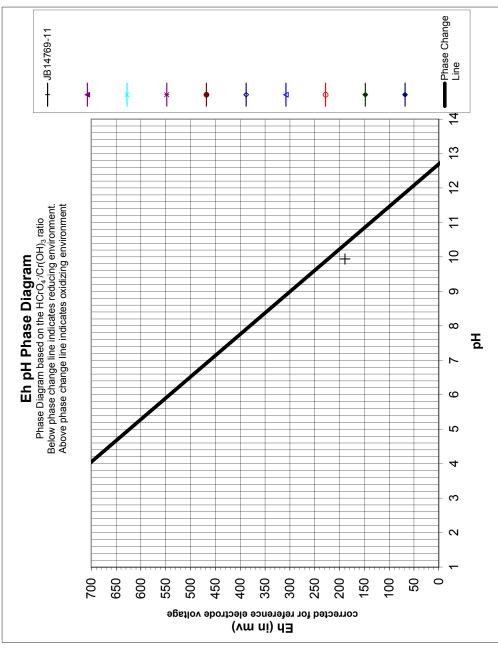
### Reagent Information Log - XCRA (soil 3060A/7196)

| Reagent                                                  | Exp. Date | Reagent # or Manufacturer/Lot |
|----------------------------------------------------------|-----------|-------------------------------|
| Calibration Source: Hexavalent Chromium, 1000 mg/L Stock | 4/12/2015 | Absolute Grade Lot # 041212   |
| Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock | 5/31/2017 | Ultra lot # L00439            |
| Spiking Solution Source                                  | 4/12/2015 | Absolute Grade Lot # 041212   |
| Lead Chromate (Insoluble Hexavalent Chromium Spike)      | 7/26/2017 | Sigma Aldrich Lot # BCBG0578V |
| Magnesium Chloride, Anhydrous                            | 7/11/2016 | Alfa Aesar Lot # B17X012      |
| 1N NaOH                                                  |           |                               |
| Digestion Solution                                       | 9-30-     | 2 GNE 8-33421 XCRA            |
| Phosphate Buffer Solution                                | 2-14-13   | GNF-F-33273 XCKA              |
| 5.0 M Nitric Acid                                        | 3/4/2013  | 9NE9-33456-XCVQ               |
| Diphenylcarbazide Solution                               | vojskar   | CINED-334to8-XCI              |
| Sulfuric Acid, 10%                                       | 3/10/2018 | GNEA-33402-XXX                |
| Filter                                                   | NA        | P2EA 19511                    |
| Teflon Chips                                             | NA        | 919120                        |

Form: GN087A-21B Rev. Date: 2/18/10

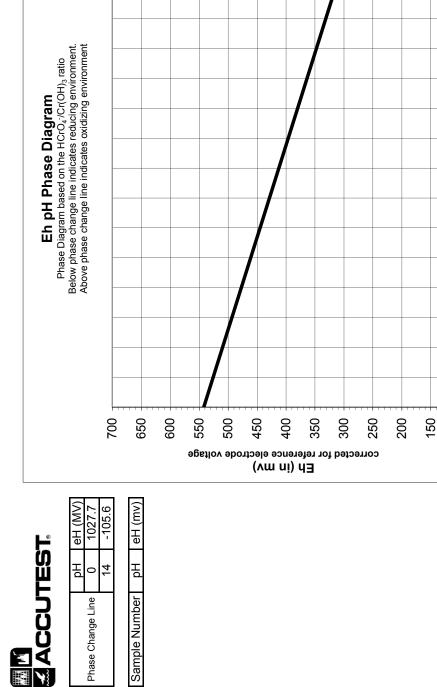






|         |                   |          | <br>          |           |           |           |           |           |           |           |           |           |             |
|---------|-------------------|----------|---------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-------------|
| eH (MV) | 1027.7            | -105.6   | eH (mv)       | 261       | 273       | 55.9      | 284       | 351       | 293       | 234       | 241       | 16        | 382         |
| Hd      | 0                 | 14       | Hd            | 8.3       | 7.94      | 7.62      | 7.88      | 8.41      | 8.9       | 8.88      | 8.86      | 8.53      | 6 71        |
|         | Phase Change Line | <u> </u> | Sample Number | JB14769-1 | JB14769-2 | JB14769-3 | JB14769-4 | JB14769-5 | JB14769-6 | JB14769-7 | JB14769-8 | JB14769-9 | .IB14769-10 |

| JB14769-1                                                                                                                                                                                                   | — <del>≛</del> — JB14769-2 |                      | -*- JB14769-4 | JB14769-5 | — <del>6</del> — JB14769-6 | — <del>s</del> — JB14769-7              | — <del>—</del> JB14769-8 | →—JB14769-9 | → JB14769-10 | Phase Change<br>Line                    |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------|---------------|-----------|----------------------------|-----------------------------------------|--------------------------|-------------|--------------|-----------------------------------------|--------|
|                                                                                                                                                                                                             |                            |                      |               |           |                            |                                         |                          |             |              | 4                                       |        |
|                                                                                                                                                                                                             |                            |                      |               |           |                            |                                         |                          |             |              | 6                                       |        |
| o<br>nent.<br>nent                                                                                                                                                                                          |                            |                      |               |           |                            |                                         |                          |             |              | 12                                      |        |
| <b>m</b><br>(OH) <sub>3</sub> rati<br>g environn<br>g environr                                                                                                                                              |                            |                      |               |           |                            |                                         |                          |             |              | = ===================================== |        |
| Eh pH Phase Diagram Phase Diagram based on the HCrO <sub>4</sub> /Cr(OH) <sub>3</sub> ratio Below phase change line indicates reducing environment. Above phase change line indicates oxidizing environment |                            |                      |               |           |                            |                                         |                          |             |              | 6                                       |        |
| hase Let on the Periodicates                                                                                                                                                                                |                            |                      |               |           |                            |                                         |                          |             | •            | _<br>_<br>_ ი                           | H<br>H |
| n pH P<br>pram base<br>hange ling<br>thange lin                                                                                                                                                             |                            |                      |               |           |                            | *                                       |                          | X           |              | ∞                                       | _      |
| Et<br>nase Diag<br>v phase c<br>e phase c                                                                                                                                                                   |                            |                      |               |           | •                          |                                         |                          |             |              |                                         |        |
| Pł<br>Belov<br>Abov                                                                                                                                                                                         |                            |                      |               |           |                            |                                         |                          |             |              | 9                                       |        |
|                                                                                                                                                                                                             |                            |                      |               |           |                            |                                         |                          |             |              | ro.                                     |        |
|                                                                                                                                                                                                             |                            |                      |               |           |                            |                                         |                          |             |              | 4                                       |        |
|                                                                                                                                                                                                             | 200                        | 920                  | tage 550      | trode vol |                            | Eh (ir<br>for referen<br>50 50<br>60 50 |                          | 200         | -20          | -100                                    |        |
| H (MV)                                                                                                                                                                                                      | 105.6                      | 1 (mv)<br>261<br>273 | 55.9<br>284   |           |                            |                                         |                          |             |              |                                         |        |

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode


Reference for graph: SW846 method 3060A





Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A



Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

■Phase Change Line

0

ω

ဖ

100

된

+

•

þ

Reference for graph: SW846 method 3060A

978-905-2100 tel 978-905-2101 fax

# **Data Validation Report**

| Project:                   | PPG – Garfield Avenue Supplemental Remedial Investigation (GARIS) Northern Canal Borings |
|----------------------------|------------------------------------------------------------------------------------------|
| Laboratory:                | Accutest, Dayton, NJ                                                                     |
| Laboratory Job No.:        | JB14858 and JB14858R                                                                     |
| Analysis/Method:           | Hexavalent Chromium SW846 3060A/7196A                                                    |
| Validation Level:          | Full (Hexavalent Chromium)                                                               |
| Site Location/Address:     | PPG Site 114 – Garfield Avenue, Jersey City, NJ                                          |
| AECOM Project Number:      | 60213772.5.A                                                                             |
| Prepared by: Kristin Ruthe | ford/AECOM Completed on: September 20, 2012                                              |
| Reviewed by: Lisa Krowitz/ | AECOM File Name: 2012-09-20 DV Report JB14858_R-F.docx                                   |

#### Introduction

The data were reviewed in accordance with the FSP-QAPP and the following NJDEP and/or Region 2 validation Standard Operating Procedure (SOP):

 NJDEP Office of Data Quality SOP 5.A.10, Rev 3 (September 2009), SOP for Analytical Data Validation of Hexavalent Chromium – for USEPA SW-846 Method 3060A, USEPA SW-846 Method 7196A and USEPA SW-846 Method 7199.

The results of quality control data analyzed with site samples were used to assess the overall reliability of the data. The following qualifiers were used to identify data quality issues:

- U: Indicates the analyte was not detected in the sample above the sample reporting limit.
- J: Indicates the result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.
- UJ: Indicates the analyte was not detected above the reporting limit and the reporting limit was approximate.
- R: The sample result was rejected due to serious deficiencies; the presence or absence of the analyte could not be confirmed.

AECOM 2

#### **Sample Information**

The samples listed below were collected by AECOM on August 28, 2012 as part of the Garfield Avenue Supplemental Remedial Investigation (GARIS) Northern Canal Boring Sampling at the PPG Site - 114 Jersey City, New Jersey.

| Field ID                                                | Laboratory ID    | Matrix  | Fraction            |
|---------------------------------------------------------|------------------|---------|---------------------|
| NSB-F2-21.5-22.0                                        | JB14858-1, -1R   | Soil    | Hexavalent Chromium |
| NSB-F2-17.8-18.3                                        | JB14858-2, -2R   | Soil    | Hexavalent Chromium |
| NSB-F2-15.0-15.5                                        | JB14858-3, -3R   | Soil    | Hexavalent Chromium |
| NSB-F2-10.5-11.0X                                       | JB14858-4, -4R   | Soil    | Hexavalent Chromium |
| (field duplicate of NSB-F2-10.5-11.0)  NSB-F2-10.5-11.0 | JB14858-5, -5R   | Soil    | Hexavalent Chromium |
| NSB-F2-4.0-4.5                                          | JB14858-6, -6R   | Soil    | Hexavalent Chromium |
| NSB-F2-1.0-1.5                                          | JB14858-7, -7R   | Soil    | Hexavalent Chromium |
| NSB-F3-20.0-20.5                                        | JB14858-8, -8R   | Soil    | Hexavalent Chromium |
| NSB-F3-15.0-15.5                                        | JB14858-9, -9R   | Soil    | Hexavalent Chromium |
| NSB-F3-10.0-10.5                                        | JB14858-10, -10R | Soil    | Hexavalent Chromium |
| NSB-F4-20.0-20.5                                        | JB14858-11, -11R | Soil    | Hexavalent Chromium |
| NSB-F4-16.0-16.5                                        | JB14858-12, -12R | Soil    | Hexavalent Chromium |
| NSB-F3-4.0-4.5                                          | JB14858-13, -13R | Soil    | Hexavalent Chromium |
| NSB-F3-1.0-1.5                                          | JB14858-14, -14R | Soil    | Hexavalent Chromium |
| NSB-F4-10.0-10.5                                        | JB14858-15, -15R | Soil    | Hexavalent Chromium |
| NSB-F4-6.0-6.5                                          | JB14858-16, -16R | Soil    | Hexavalent Chromium |
| NSB-EB20120828 (equipment blank)                        | JB14858-17       | Aqueous | Hexavalent Chromium |
| NSB-F4-0.0-0.5                                          | JB14858-18, -18R | Soil    | Hexavalent Chromium |

The samples were collected following the procedures detailed in the Remedial Investigation Work Plan – Soil for Non-Residential Chromate Chemical Production Waste Sites 114, 132, 133, 135, 137, 143, and 186, Jersey City, New Jersey and the Field Sampling Plan/Quality Assurance Project Plan for Non-Residential and Residential Chromium Sites Hudson County, New Jersey (December 2011).

#### **General Comments**

The data package was complete. Quality control (QC) issues identified during validation are discussed below. Refer to the Soil Target Analyte Summary Hit List for a listing of all detected results, qualified results, and associated qualifications, where applicable.

#### **Hexavalent Chromium**

#### Matrix Spike Results

Sample NSB-F4-0.0-0.5 (JB14858-18) was selected for the soil matrix spike analysis and used for supporting data quality recommendations. The soluble and insoluble matrix spike (MS) recoveries from the initial batch (GN71774) were 37.6% and 82.1%, respectively; the soluble MS recovery did not meet quality control criteria of 75-125%R, and was <50%R. The post digestion spike (PDS) recovery was 84% and the pH-adjusted PDS recovery was 61%, which did not meet the PDS criteria of 85-115%.

Based on poor soluble MS recovery of less than 75%R, the samples were reanalyzed using Method 7196.

The soluble and insoluble matrix spike recoveries from the re-analysis (batch GN71967) were 61.6% and 87.4%, respectively; again the soluble MS recovery did not meet the quality control criteria of

AECOM 3

75-125%R. The post spike result for the re-analysis batch was recovered at 86.3%, which met the PDS criteria of 85-115%.

Due to low MS recoveries, additional parameters were analyzed to determine if possible matrix interferences could be the cause for the poor matrix spike recoveries. The sample was tested for pH and oxidation reduction potential (ORP) and plotted on an Eh/pH phase diagram chart. From this chart, the source sample for the matrix spike analysis was plotted below the phase change line, indicating reducing potential within the sample matrix, incapable of supporting hexavalent chromium. Analyses for ferrous iron, sulfide screen, and total organic carbon (TOC) were performed on the MS source sample to confirm the reducing potential within the sample matrix. The sulfide screen was reported as nondetect, indicating no reducing agents within the sample matrix; however, the ferrous iron result was (0.62%) and the TOC (118,000 mg/Kg) were positive, indicating potential reducing agents within the sample matrix.

The soil hexavalent chromium results were reported from the re-analysis since the MS and PDS recoveries showed improvement from the initial analysis. However, the highest result for hexavalent chromium was reported for each sample so some results were reported from the initial analysis. Since the soluble MS recoveries from the initial and reanalysis were below 75%R, the reported positive and nondetect hexavalent chromium results for all soil samples in this SDG were qualified as estimated (J and UJ, respectively).

#### Field Duplicate Precision

Samples NSB-F2-10.5-11.0 and NSB-F2-10.5-11.0X were collected as the field duplicate pair in this SDG. The relative percent difference (RPD) criteria were met for results in the initial analysis (JB14858), but the RPD was not calculated in the re-analysis (JB14858R) since one result was nondetect and the other was >4X the reporting limit. Since the results for hexavalent chromium were reported from the re-analysis based on matrix spike recoveries, the results for hexavalent chromium in all soil samples were qualified as estimated (J/UJ) with the potential for bias in an unknown direction.

#### <u>Laboratory Duplicate Precision</u>

Sample NSB-F2-10.5-11.0 was analyzed as the laboratory duplicate pair in this SDG. The relative percent difference (RPD) criteria were met for results in the initial analysis (JB14858), but the RPD (36.8%) did not meet criteria of <20% for results >4X the reporting limit in the re-analysis (JB14858R). Since the results for hexavalent chromium were reported from the re-analysis based on matrix spike recoveries, the results for hexavalent chromium in all soil samples were qualified as estimated (J/UJ) with the potential for bias in an unknown direction.

#### Sample Results

Reported results (flagged B by the laboratory) that were less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL) are approximate values and have been qualified as estimated (J).

#### **Data Quality and Usability**

In general, these data appear to be valid and may be used for decision-making purposes. No data were rejected. Qualified results, if applicable, are discussed in attachments A and B below.

The reported hexavalent chromium results in all soil samples are usable as estimated values with the potential for bias low due to poor MS recoveries.

AECOM 4

The reported hexavalent chromium results in all soil samples are usable as estimated values with the potential for bias in an unknown direction due to poor laboratory and field duplicate precision.

Sample results detected between the RL and MDL are usable as estimated values with the potential for bias in an unknown direction.

#### **Attachments**

Attachment A Target Analyte Summary Hitlist(s)

Attachment B Data Validation Report Form

Attachment A

Target Analyte Summary Hitlist(s)

AECOM Page 1 of 4

## Soil Target Analyte Summary Hit List (Hexavalent Chromium)

Site Name PPG –GARIS Northern Canal Borings at PPG Site 114, Jersey City, NJ

Sampling Date August 28, 2012

Lab Name/ID Accutest Laboratories, Dayton, NJ

**SDG No** JB14858 and JB14858R

Sample Matrix Soil
Trip Blank ID NA

Field Blank ID NSB-EB20120828

| Field Sample ID   | Lab Sample<br>ID | Analyte               | Method<br>Blank<br>(mg/kg) | Laboratory<br>Sample<br>Result<br>(mg/kg) | Validation<br>Sample<br>Result<br>(mg/kg) | RL<br>(mg/kg) | Quality<br>Assurance<br>Decision | NJDEP<br>Validation<br>Footnote |
|-------------------|------------------|-----------------------|----------------------------|-------------------------------------------|-------------------------------------------|---------------|----------------------------------|---------------------------------|
| NSB-F2-1.0-1.5    | JB14858-7        | CHROMIUM (HEXAVALENT) | U                          | 2.8                                       | 2.8                                       | 0.48          | Qualify                          | 8,18,29                         |
| NSB-F2-10.5-11.0  | JB14858-5        | CHROMIUM (HEXAVALENT) | U                          | 0.60                                      | 0.60                                      | 0.52          | Qualify                          | 8,18,29                         |
| NSB-F2-15.0-15.5  | JB14858-3        | CHROMIUM (HEXAVALENT) | U                          | 1.8                                       | 1.8                                       | 0.52          | Qualify                          | 8,18,29                         |
| NSB-F2-21.5-22.0  | JB14858-1        | CHROMIUM (HEXAVALENT) | U                          | 0.74                                      | 0.74                                      | 0.47          | Qualify                          | 8,18,29                         |
| NSB-F2-4.0-4.5    | JB14858-6        | CHROMIUM (HEXAVALENT) | U                          | 2.6                                       | 2.6                                       | 0.46          | Qualify                          | 8,18,29                         |
| NSB-F4-20.0-20.5  | JB14858-11       | CHROMIUM (HEXAVALENT) | U                          | 0.60                                      | 0.60                                      | 0.47          | Qualify                          | 8,18,29                         |
| NSB-F4-6.0-6.5    | JB14858-16       | CHROMIUM (HEXAVALENT) | U                          | 0.53                                      | 0.53                                      | 0.63          | Qualify                          | 8,18,29,31                      |
| NSB-F2-10.5-11.0X | JB14858-4R       | CHROMIUM (HEXAVALENT) | U                          | 3.3                                       | 3.3                                       | 0.53          | Qualify                          | 8,18,29                         |
| NSB-F2-17.8-18.3  | JB14858-2R       | CHROMIUM (HEXAVALENT) | U                          | U                                         | U                                         | 0.45          | Qualify                          | 8,18,29                         |
| NSB-F3-1.0-1.5    | JB14858-14R      | CHROMIUM (HEXAVALENT) | U                          | 1.3                                       | 1.3                                       | 0.46          | Qualify                          | 8,18,29                         |
| NSB-F3-10.0-10.5  | JB14858-10R      | CHROMIUM (HEXAVALENT) | U                          | 1.3                                       | 1.3                                       | 0.69          | Qualify                          | 8,18,29                         |
| NSB-F3-15.0-15.5  | JB14858-9R       | CHROMIUM (HEXAVALENT) | U                          | 1.8                                       | 1.8                                       | 0.46          | Qualify                          | 8,18,29                         |
| NSB-F3-20.0-20.5  | JB14858-8R       | CHROMIUM (HEXAVALENT) | U                          | 3.8                                       | 3.8                                       | 0.46          | Qualify                          | 8,18,29                         |
| NSB-F3-4.0-4.5    | JB14858-13R      | CHROMIUM (HEXAVALENT) | U                          | 7.7                                       | 7.7                                       | 0.49          | Qualify                          | 8,18,29                         |
| NSB-F4-0.0-0.5    | JB14858-18R      | CHROMIUM (HEXAVALENT) | U                          | 3.1                                       | 3.1                                       | 0.49          | Qualify                          | 8,18,29                         |
| NSB-F4-10.0-10.5  | JB14858-15R      | CHROMIUM (HEXAVALENT) | U                          | 2.0                                       | 2.0                                       | 0.65          | Qualify                          | 8,18,29                         |
| NSB-F4-16.0-16.5  | JB14858-12R      | CHROMIUM (HEXAVALENT) | U                          | 0.72                                      | 0.72                                      | 0.52          | Qualify                          | 8,18,29                         |

Note: A "U" under Method Blank column indicates a nondetect result.

A "U" under the Laboratory Sample Result and Validation Sample Result columns indicates a nondetect result at the RL.

AECOM Page 2 of 4

#### **NJDEP Laboratory Footnote**

1. The value reported is less than or equal to 3x the value in the preparation/reagent blank. It is the policy of NJDEP-DPFSR to negate the reported value due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.

- 2. The value reported is greater than three (3) times but less than ten (10) times the value in the preparation/reagent blank and is considered "real". However, the reported value must be quantitatively qualified "J" due to the preparation/reagent blank contamination. The "B" qualifier alerts the end-user to the presence of this analyte in the preparation/reagent blank.
- 3. The value reported is less than or equal to three (3) times the value in the trip/field blank. It is the policy of NJDEP-DPFSR to negate the reported value as due to probable foreign contamination unrelated to the actual sample. The end-user, however, is alerted that a reportable quantity of the analyte was detected.
- 4. The value reported is greater than three (3) times but less than ten (10) times the value in the trip/field blanks and is considered "real". However, the reported value must be quantitatively qualified "J" due to trip/field blank contamination.
- 5. The concentration reported by the laboratory is incorrectly calculated.
- 6. The laboratory failed to report the presence of the analyte in the sample.
- 7. The reported Hexavalent Chromium value was qualified because the Calibration Check Standard was not within the recovery range (90-110 percent).
- 8. In the Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of <u>+</u> 20 percent for sample results > 4xRL or <u>+</u> RL for sample results < 4xRL. Therefore, the result was qualified.
- 9. This analyte was rejected because the laboratory performed the Duplicate Analysis on a field blank.
- 10. The reported value was qualified because the PVS recovery was greater than 115 percent.
- 11. The reported value was qualified because the PVS recovery was less than 85 percent.
- 12. The non-detected value was qualified (UJ) because the PVS recovery was less than 85 percent. The possibility of a false negative exists.
- 13. The reported analyte was qualified because the associated Calibration Blank result was greater than the MDL.
- 14. The laboratory made a transcription error. No hits were found in the raw data.
- 15. This analyte is rejected because the laboratory exceeded the holding time for digestion and analysis.

AECOM Page 3 of 4

16. The laboratory subtracted the preparation/reagent blank from the sample result. The Reviewer's calculation puts the preparation/reagent blank back into the result.

- 17. The photocopy is unreadable. Therefore, the QA reviewer cannot read the laboratory's reported concentration result.
- 18. The reported value was qualified because the predigestion spike recovery was less than 75 %, but greater than 50%.
- 19. The reported value was qualified because the predigestion spike recovery was greater than 125 percent.
- 20. The non-detected value was qualified (UJ) because the redigestion spike recovery was less than 75 percent. The possibility of a false negative exists.
- 21. The reported result was qualified or rejected because the laboratory did not record the pH value(s) of the sample in a laboratory notebook.
- 22. The reported value was qualified (J/UJ) because the sample moisture content exceeded 50 percent.
- 23. The sample result was rejected because the soluble and insoluble matrix spike recoveries were less than 50%.
- 24. The detected sample result was qualified (J) because the incorrect spike concentration was used.
- 25. The reported sample results were rejected because the predigestion spike recovery was greater than 150 percent.
- 26. The reported sample results were rejected because the redigestion spike recovery was greater than 150 percent.
- 27. The reported value was qualified (J) because the redigestion spike recovery was less than 75 percent.
- 28. The reported value was qualified (J/UJ) because the sample digestion temperature was less than 90°C.
- 29. In the Field Duplicate Sample Analysis, Hexavalent Chromium fell outside the control limits of ≤ 20% for sample results > 4xRL or ± RL for sample results < 4xRL. Therefore, the result was qualified.
- 30. The reported value was qualified as estimated (J/UJ) but the bias is uncertain due to both high and low MS recoveries.
- 31. The reported result was greater than the MDL but less than the RL and qualified (J) as estimated by the laboratory.
- 32. The reported value was qualified because the sample replicate precision criterion of ≤ 20% for method 7199 was exceeded.
- 33. The reported value was qualified (J/UJ) because the laboratory control sample (LCS) recovery was less than 80%.

AECOM Page 4 of 4

- 34. The reported value was qualified (J) because the laboratory control sample (LCS) recovery was greater than 120%.
- 35. The reported result was qualified because the matrix spike analysis was not performed at the proper frequency.
- 36. The reported result was qualified because the laboratory duplicate analysis was not performed at the proper frequency.
- 37. The result was qualified because the cooler temperature upon sample receipt exceeded 6°C.
- 38. The reported value was qualified because the redigestion spike recovery was greater than 125 percent.
- 39. The reported result was rejected because the laboratory failed to perform the reanalysis due to insufficient sample volume.
- 40. The reported results was qualified because the laboratory failed to analyze an ending CCB.

**Attachment B** 

**Data Validation Report Form** 

#### AECOM DATA VALIDATION REPORT FORM – HEXAVALENT CHROMIUM ANALYSIS (7196) Page 1 of 8

| Client Name: PPG Industries                      | Project Number: 60213772.5.A            |
|--------------------------------------------------|-----------------------------------------|
| Site Location: PPG- GARIS Northern Canal Borings | Project Manager: Robert Cataldo         |
| Laboratory: Accutest, Dayton, New Jersey         | Limited or Full Validation (circle one) |
| Laboratory Job No: JB14858 and JB14858R          | Date Checked: 09/20/2012                |
| Validator: Kristin Rutherford                    | Peer: Lisa Krowitz                      |

| ITEM                                                                                                                                  | YES | NO | N/A | COMMENTS                                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|-----|----|-----|------------------------------------------------------------------------------------------------------|
| Sample results included?                                                                                                              | х   |    |     | 17 soils and 1 EB                                                                                    |
| Reporting Limits met project requirements?                                                                                            | х   |    |     |                                                                                                      |
| Field I.D. included?                                                                                                                  | x   |    |     |                                                                                                      |
| Laboratory I.D. included?                                                                                                             | х   |    |     |                                                                                                      |
| Sample matrix included?                                                                                                               | x   |    |     |                                                                                                      |
| Sample receipt temperature 2-6°C?                                                                                                     | x   |    |     | 6.0°C                                                                                                |
| Signed COCs included?                                                                                                                 | х   |    |     |                                                                                                      |
| Date of sample collection included?                                                                                                   | х   |    |     | 08/28/2012                                                                                           |
| Date of sample digestion included?                                                                                                    | х   |    |     | Soil: JB14858 HxCr prepped on 09/08/2012 Soil: JB14858R HxCr prepped on 09/12/2012                   |
| Holding time to digestion met criteria? Soils -30 days from collection to digestion.                                                  | х   |    |     | Yes                                                                                                  |
| Date of analysis included?                                                                                                            | х   |    |     | Soil: JB14858: HxCr analyzed on 09/10/2012. Soil: JB14858R: HxCr analyzed on 09/13/2012. AQ: 8/28/12 |
| Holding time to analysis met criteria?  Soils -168 hours from digestion to analysis.  Aqueous – 24 hours from collection to analysis. | х   |    |     | Yes                                                                                                  |
| Method reference included?                                                                                                            | х   |    |     | 3060A/7196A                                                                                          |
| Laboratory Case Narrative included?                                                                                                   | х   |    |     |                                                                                                      |

Definitions: MDL – Method Detection Limit; %R – Percent Recovery; RL – Reporting Limit; RPD – Relative Percent Difference; RSD – Relative Standard Deviation: Corr – Correlation Coefficient.

#### **Comments**

Field Duplicates: NSB-F2-10.5-11.0 and NSB-F2-10.5-11.0X. RPD criteria met in JB14858 (difference ±RL for results ≤4X RL). RPD criteria not met in JB14858R; one result was ND and the other was >4XRL. Results in all soil samples qualified (J/J).

Percent Solids: all samples >50%, no qualifications

Sample Dilutions: None for this SDG

| ITEM                                                                                                                                                                                                                  | YES         | NO     | N/A | COMMENTS                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-----|----------------------------------------------------------------------------------------------------------------------------|
| Initial Calibration Documentation Included in Lab Package?                                                                                                                                                            | х           |        |     | Cal source JB14858 soil – Absolute lot # 041212; AQ Absolute Lot #011212; soil JB14858R Absolute lot #072512               |
| <ol> <li>Blank plus 4 standards (7196A) or blank plus 3 standards (7199),</li> <li>Correlation coefficient of ≥0.995 (7196A) or ≥0.999 (7199).</li> <li>Calibrate daily or each time instrument is set up.</li> </ol> | x<br>x<br>x |        |     | Each analysis 1 blank and 7 cal STDs     All analyses meet CC     Yes                                                      |
| Calibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 Included in Lab Package?                                                                                                         | х           |        |     | Check source (soil and AQ – Ultra lot # L00439)                                                                            |
| %R criteria met? (90 - 110%).     Correct frequency of once every 10 samples     CCS and QCS from independent source and at mid level of calibration curve.                                                           | x<br>x<br>x |        |     | All met %R     Analyzed every 10 samples     Yes                                                                           |
| Calibration Blanks                                                                                                                                                                                                    | х           |        |     |                                                                                                                            |
| Analyzed prior to initial calibration standards and after each CCS/QCS?     Absolute value should not exceed MDL.                                                                                                     | x<br>x      |        |     | 1. Yes<br>2. Yes                                                                                                           |
| Method Blank and Field Blanks Included in Lab Package?                                                                                                                                                                |             |        |     |                                                                                                                            |
| Method blank analyzed with each preparation batch?                                                                                                                                                                    | x           |        |     | Equipment Blank NSB-EB20120828  1. Yes, Soil – JB14858 GP67051-MB1, AQ GN71209;                                            |
| Absolute value should not exceed MDL.                                                                                                                                                                                 | x           |        |     | JB14858R GP67127-MB1  2. Yes, all method and field blanks were less than MDL.                                              |
| Eh and pH data.                                                                                                                                                                                                       | х           |        |     |                                                                                                                            |
| Eh and pH data was included and plotted for all samples?                                                                                                                                                              | х           |        |     |                                                                                                                            |
| Soluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                    | х           |        |     | JB14858-18 [NSB-F4-0.0-0.5]; JB14858-18R [NSB-F4-0.0-0.5]                                                                  |
| 1. %R criteria met? (75-125%R).                                                                                                                                                                                       |             | x<br>x |     | 1. a. JB14858 – No (37.6 %)<br>b. JB14858R – No (61.6%)                                                                    |
| 2. Was the spike concentration 40 mg/Kg or twice the sample concentration, whichever is greater?                                                                                                                      |             | x<br>x |     | <ol> <li>a. JB14858 No, 48.6 mg/kg. No impact to data.</li> <li>b. JB14858R No (49.4 mg/kg) No impact to data.</li> </ol>  |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                     | х           |        |     | Yes for all batches.                                                                                                       |
| Insoluble Matrix Spike Data Included in Lab Package?                                                                                                                                                                  | х           |        |     | JB14858-18 [NSB-F4-0.0-0.5]; JB14858-18R [NSB-F4-0.0-0.5]                                                                  |
| 1. %R criteria met? (75-125%R).                                                                                                                                                                                       | x<br>x      |        |     | 1. a. JB14858: Yes (82.1%)<br>b. JB14858R Yes (87.4%)                                                                      |
| 2. Was the spike concentration around 400 to 800 mg/Kg?                                                                                                                                                               |             | x<br>x |     | <ol> <li>a. JB14858 No (989 mg/kg). No impact to data.</li> <li>b. JB14858R No (1320 mg/kg). No impact to data.</li> </ol> |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                     | x           |        |     | Yes for all batches.                                                                                                       |
| Post Digestion Spike                                                                                                                                                                                                  | х           |        |     | JB14858-18 [NSB-F4-0.0-0.5]; JB14858-18R [NSB-F4-0.0-0.5]                                                                  |
| 1. %R criteria met? (85-115%R).                                                                                                                                                                                       | х           | х      |     | a. JB14858 No (84.0%); low pH-adjusted PDS (61.0%R)     b. JB14858R Yes (86.3%R)                                           |
| 2. Was the spike concentration 40 mg/Kg or twice the sample concentration?                                                                                                                                            | x<br>x      |        |     | 2. a. JB14858 Yes, 40.89 mg/kg<br>b. JB14858R Yes 42.07 mg/kg                                                              |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                     | х           |        |     | Yes for all batches.                                                                                                       |
| Sample Duplicate Data Included in Lab Package?                                                                                                                                                                        | х           |        |     | JB14858-18 [NSB-F4-0.0-0.5]; JB14858-18R [NSB-F4-0.0-0.5]                                                                  |
| <ol> <li>RPD criteria met? (RPD &lt; 20%) of both results are ≥4x RL or<br/>control limit of ±RL if both results are &lt;4x RL.</li> </ol>                                                                            | х           | х      |     | A. JB14858 – Yes (RPD 6.2%)     b. JB14858R – No (RPD 36.8%); qualify results in all soil samples (J/UJ)                   |
| Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                                                        | x           |        |     | 2. Yes                                                                                                                     |
| Was a Laboratory Control Sample (LCS) Included in Lab Package?                                                                                                                                                        | x           |        |     |                                                                                                                            |
| NR criteria met? (80-120%R).     Was an LCS analyzed at the frequency of 1/batch or 20 samples?                                                                                                                       | x<br>x      |        |     | Yes, all LCS recoveries were within quality control criteria.     Yes                                                      |
| Miscellaneous Items.                                                                                                                                                                                                  |             |        |     |                                                                                                                            |
| For soils by 3060A, was the initial pH within a range of 7.0-8.0?                                                                                                                                                     | х           |        |     | 1. Yes                                                                                                                     |
| 2. For soils by 7199, was the pH within a range of 9.0-9.5? 3. For aqueous by 7196A, was the pH with a range of 1.5-2,5? 4. For soils (3060A), was the digestion temperature 90-95°C for at                           | X<br>X      |        | x   | 2. NA<br>3. Yes<br>4. Yes                                                                                                  |
| least 60 minutes?  5. For 7199, was each sample injected twice and was the RPD ≤20?                                                                                                                                   |             |        | х   | 5. NA                                                                                                                      |

AECOM Page 3 of 8

**Holding Time** 

| Sample ID         | Method | Days from<br>Sampling to Prep | Days from Prep to<br>Analysis | Days from<br>Sampling to<br>Analysis | Sample to Prep<br>Status | Prep to Analysis<br>Status | Sample to<br>Analysis Status |
|-------------------|--------|-------------------------------|-------------------------------|--------------------------------------|--------------------------|----------------------------|------------------------------|
| NSB-EB20120828    | SW7196 |                               |                               | 0                                    |                          |                            | OK @1 days                   |
| NSB-F2-1.0-1.5    | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-1.0-1.5    | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-10.5-11.0  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-10.5-11.0  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-10.5-11.0X | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-10.5-11.0X | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-15.0-15.5  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-15.0-15.5  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-17.8-18.3  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-17.8-18.3  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-21.5-22.0  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-21.5-22.0  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-4.0-4.5    | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F2-4.0-4.5    | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-1.0-1.5    | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-1.0-1.5    | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-10.0-10.5  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-10.0-10.5  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-15.0-15.5  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-15.0-15.5  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-20.0-20.5  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-20.0-20.5  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-4.0-4.5    | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F3-4.0-4.5    | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-0.0-0.5    | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-0.0-0.5    | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-10.0-10.5  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-10.0-10.5  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-16.0-16.5  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-16.0-16.5  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-20.0-20.5  | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-20.0-20.5  | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-6.0-6.5    | SW7196 | 11                            | 2                             | 13                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NSB-F4-6.0-6.5    | SW7196 | 15                            | 1                             | 16                                   | OK @30 days              | OK @7 days                 | OK @37 days                  |

AECOM Page 4 of 8

Matrix Spike

| Sample ID       | Compound              | Soluble MS %<br>Recovery | Insoluble MS %<br>Recovery | Lower<br>Limit | Upper<br>Limit | PDS %<br>Recovery | pH<br>Adjusted<br>PDS<br>%Recovery | PDS<br>Lower<br>Limit | PDS<br>Upper<br>Limit |
|-----------------|-----------------------|--------------------------|----------------------------|----------------|----------------|-------------------|------------------------------------|-----------------------|-----------------------|
| NSB-F4-0.0-0.5  | CHROMIUM (HEXAVALENT) | 37.6                     | 82.1                       | 75             | 125            | 84.0              | 61.0                               | 85                    | 115                   |
| NSB-F4-0.0-0.5R | CHROMIUM (HEXAVALENT) | 61.6                     | 87.4                       | 75             | 125            | 86.3              | NA                                 | 85                    | 115                   |

## **Percent Solids**

| Sample ID         | Percent Solids (%) | Status  |
|-------------------|--------------------|---------|
| NSB-F2-1.0-1.5    | 83.1               | ok @50% |
| NSB-F2-10.5-11.0  | 77.6               | ok @50% |
| NSB-F2-10.5-11.0X | 75.3               | ok @50% |
| NSB-F2-15.0-15.5  | 76.6               | ok @50% |
| NSB-F2-17.8-18.3  | 88.4               | ok @50% |
| NSB-F2-21.5-22.0  | 85.1               | ok @50% |
| NSB-F2-4.0-4.5    | 87.6               | ok @50% |
| NSB-F3-1.0-1.5    | 86.9               | ok @50% |
| NSB-F3-10.0-10.5  | 58.3               | ok @50% |
| NSB-F3-15.0-15.5  | 86.7               | ok @50% |
| NSB-F3-20.0-20.5  | 86.5               | ok @50% |
| NSB-F3-4.0-4.5    | 81.8               | ok @50% |
| NSB-F4-0.0-0.5    | 81.7               | ok @50% |
| NSB-F4-10.0-10.5  | 61.3               | ok @50% |
| NSB-F4-16.0-16.5  | 76.4               | ok @50% |
| NSB-F4-20.0-20.5  | 85.6               | ok @50% |
| NSB-F4-6.0-6.5    | 62.2               | ok @50% |

Field Duplicate

| Sample ID         | Duplicate ID       | Compound              | Sample Result | Duplicate Result | QL   | Units | RPD                                                            |
|-------------------|--------------------|-----------------------|---------------|------------------|------|-------|----------------------------------------------------------------|
| NSB-F2-10.5-11.0R | NSB-F2-10.5-11.0XR | CHROMIUM (HEXAVALENT) | ND            | 3.3              | 0.52 | mg/kg | not calculated since one result was ND and the other was >4XRL |

Lab Duplicate

| Sample ID       | Sample Result | Duplicate Sample Result | Units | QL   | %RPD | %RPD<br>Limits |
|-----------------|---------------|-------------------------|-------|------|------|----------------|
| NSB-F4-0.0-0.5R | 3.1           | 4.5                     | mg/kg | 0.49 | 36.8 | ≤20            |

AECOM Page 5 of 8

|                                       |                   | I                   | ٦                       |                     |
|---------------------------------------|-------------------|---------------------|-------------------------|---------------------|
| SDG#: JB14858                         | x - concentration | y - response        |                         |                     |
| Batch: GN71774                        |                   | _                   |                         |                     |
| Cr+6 ICAL 09/10/2012<br>Soil          | 0.01              | 0<br>0.009          |                         |                     |
|                                       | 0.01              | 0.009               |                         |                     |
| (p. 66 of data pkg)                   | 0.05              | 0.047               |                         |                     |
|                                       | 0.3               | 0.092               |                         |                     |
|                                       | 0.5               | 0.273               |                         |                     |
|                                       | 0.8               | 0.723               |                         |                     |
|                                       | 1                 | 0.723               |                         |                     |
|                                       | ı                 | 0.929               |                         | (p. 66 of data pkg) |
| AECOM Calculated Intercept            | -0.0007           | OK                  | Reported intercept      | -0.0007             |
| AECOM Slope                           | 0.9199            | OK                  | Reported Slope          | 0.9199              |
| AECOM Calculated r                    | 0.99986           | OK                  | Reported r              | 0.99986             |
| 7 LOOM Calculator 1                   | 0.00000           | - Oil               | reported i              | 0.00000             |
| LCS calculation                       | GP67051-B1 pgs    | . 66, 43            |                         |                     |
| Background Absorbance                 | 0                 |                     |                         |                     |
| Total absorbance                      | 0.856             |                     |                         |                     |
| Total absorbance - background         | 0.856             |                     |                         |                     |
| Instrument Concentration              | 0.931             |                     |                         |                     |
| Sample weight (mg/kg)                 | 0.0025            |                     |                         |                     |
| Final Volume (L)                      | 0.1               |                     |                         |                     |
| Dilution Factor                       | 1                 |                     |                         |                     |
| AECOM Calculated LCS Result (mg/Kg)   | 37.3              | OK                  | Reported Result (mg/Kg) | 37.3                |
|                                       |                   |                     |                         |                     |
| %R = Found/True*100                   | pg. 43            |                     |                         |                     |
| True Value (mg/kg)                    | 40                |                     |                         |                     |
| AECOM Calculated %R                   | 93.1              | OK rounding         | Reported %R             | 93.3                |
| MS calculation                        | ID440E0 40 INCE   | . E4 0 0 0 E1 mm 6  | •                       |                     |
| Background reading                    | 0 JB 14030-10     | 3-F4-0.0-0.5] pg. 6 | •                       |                     |
| Total absorbance                      | 0.306             |                     |                         |                     |
| Total absorbance - background         | 0.306             |                     |                         |                     |
| Instrument Concentration              | 0.3334            |                     |                         |                     |
| Sample weight (mg/kg)                 | 0.00251           |                     |                         |                     |
|                                       | 0.00251           |                     |                         |                     |
| Final Volume (L) Percent solids       | 0.1               |                     |                         |                     |
| Dilution Factor                       | 0.817<br>50       |                     |                         |                     |
| AECOM Calculated MS Result (mg/Kg)    | 813               | OK                  | Reported Result (ma/Ka) | 813                 |
| ALCOM Calculated MS Result (mg/Rg)    | 013               | OK                  | Reported Result (mg/Rg) | 013                 |
| %R = Found/True*100                   | JB14858-18 [NSE   | 3-F4-0.0-0.5] pg. 6 | 6                       |                     |
| True Value (mg/kg)                    | 989               |                     |                         |                     |
| Native concentration (mg/Kg)          | 0.94              |                     |                         |                     |
| AECOM%R                               | 82.1              | OK                  | Reported %R             | 82.1                |
|                                       |                   |                     |                         |                     |
| Percent Solids                        | .IR14858-18 INSE  | 3-F4-0.0-0.5] pg. 4 | 8                       |                     |
|                                       | 0D14000 10 [NOL   |                     |                         |                     |
| Empty dish weight=                    | 21.25             |                     |                         |                     |
| Wet weight=                           | <del>-</del>      |                     |                         |                     |
| · · · · · · · · · · · · · · · · · · · | 21.25             |                     |                         |                     |

AECOM Page 6 of 8

| Reporting Limit        | JB14858-18 [NSE | 8-F4-0.0-0. | 5] pg. 66, 28        |      |
|------------------------|-----------------|-------------|----------------------|------|
| Low Standard           | 0.01            |             |                      |      |
| Initial weight (mg/kg) | 0.0025          |             |                      |      |
| Final volume (L)       | 0.1             |             |                      |      |
| Percent solids         | 0.817           |             |                      |      |
| Dilution Factor        | 1               |             |                      |      |
| Reporting Limit        | 0.49            | OK          | Reported RL (mg/Kg)= | 0.49 |

#### **Sample Calculations**

| [NSB-F4-0.0-0.5]                | JB14858-18 [NSE | 3-F4-0.0-0.5 | ] pg. 66, 28            |      |
|---------------------------------|-----------------|--------------|-------------------------|------|
| Background reading              | 0.026           |              |                         |      |
| Total absorbance                | 0.043           |              |                         |      |
| Total absorbance - background   | 0.017           |              |                         |      |
| Instrument Response             | 0.019           |              |                         |      |
| Sample weight (mg/kg)           | 0.0025          |              |                         |      |
| Final Volume (L)                | 0.1             |              |                         |      |
| Percent solids                  | 0.817           |              |                         |      |
| Dilution Factor                 | 1               |              |                         |      |
| AECOM Calculated Result (mg/Kg) | 0.94            | OK           | Reported Result (mg/Kg) | 0.94 |

AECOM Page 7 of 8

| SDG#: JB14858R                                                                                         | x - concentration                                        | y - response                      |                               |                    |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-------------------------------|--------------------|
| Batch: GN71967                                                                                         |                                                          |                                   |                               |                    |
| Cr+6 ICAL 09/13/2012                                                                                   | 0                                                        | 0                                 |                               |                    |
| Soil                                                                                                   | 0.01                                                     | 0.011                             |                               |                    |
| (p. 94 of data pkg)                                                                                    | 0.05                                                     | 0.045                             |                               |                    |
|                                                                                                        | 0.1                                                      | 0.089                             |                               |                    |
|                                                                                                        | 0.3                                                      | 0.28                              |                               |                    |
|                                                                                                        | 0.5                                                      | 0.443                             |                               |                    |
|                                                                                                        | 0.8                                                      | 0.7                               |                               |                    |
|                                                                                                        | 1                                                        | 0.867                             |                               |                    |
|                                                                                                        |                                                          |                                   |                               | (p. 94 of data pkg |
| AECOM Calculated Intercept                                                                             | 0.0047                                                   | OK                                | Reported intercept            | 0.0047             |
| AECOM Slope                                                                                            | 0.8686                                                   | OK                                | Reported Slope                | 0.8686             |
| AECOM Calculated r                                                                                     | 0.99980                                                  | OK                                | Reported r                    | 0.99980            |
| LCS calculation                                                                                        | GD67127-B1 pgs                                           | 04 41                             |                               |                    |
| Background Absorbance                                                                                  | <b>GP67127-B1 pgs</b> .                                  | . 34, 41                          |                               |                    |
| Total absorbance                                                                                       | 0.848                                                    |                                   |                               |                    |
| Total absorbance - background                                                                          | 0.848                                                    |                                   |                               |                    |
| Instrument Concentration                                                                               | 0.971                                                    |                                   |                               |                    |
| Sample weight (mg/kg)                                                                                  | 0.0025                                                   |                                   |                               |                    |
|                                                                                                        |                                                          |                                   |                               |                    |
| Final Volume (L) Dilution Factor                                                                       | 0.1                                                      |                                   |                               |                    |
|                                                                                                        | 1                                                        | 01/                               | Depart and Depart (many (Kar) | 00.0               |
| AECOM Calculated LCS Result (mg/Kg)                                                                    | 38.8                                                     | OK                                | Reported Result (mg/Kg)       | 38.8               |
| %R = Found/True*100                                                                                    | pg. 41                                                   |                                   |                               |                    |
| True Value (mg/kg)                                                                                     | 40                                                       |                                   |                               |                    |
| AECOM Calculated %R                                                                                    | 97.1                                                     | OK rounding                       | Reported %R                   | 97.0               |
| MC adjustics                                                                                           | ID4 4050 40D ING                                         | PD F4 0 0 0 F1                    | 04                            |                    |
| MS calculation                                                                                         | JB14858-18R [NS                                          | ъв-г4-и.и-и.э <u>]</u> pg.        | . 94                          |                    |
| Background reading                                                                                     | 0 447                                                    |                                   |                               |                    |
| Total absorbance                                                                                       | 0.417                                                    |                                   |                               |                    |
| Total absorbance - background<br>Instrument Concentration                                              | 0.417<br>0.4747                                          |                                   |                               |                    |
|                                                                                                        |                                                          |                                   |                               |                    |
| Sample weight (mg/kg)                                                                                  | 0.0025                                                   |                                   |                               |                    |
| Final Volume (L)                                                                                       | 0.1                                                      |                                   |                               |                    |
| Percent solids                                                                                         | 0.817                                                    |                                   |                               |                    |
| Dilution Factor                                                                                        | 50                                                       | OK rounding                       | Papartad Pagult (mg/Kg)       | 1160               |
| AECOM Calculated MS Result (mg/Kg)                                                                     | 1162                                                     | OK founding                       | Reported Result (mg/Kg)       | 1160               |
|                                                                                                        |                                                          |                                   |                               |                    |
| %R = Found/True*100                                                                                    | JB14858-18R [NS                                          | B-F4-0.0-0.5] pg.                 | . 43                          |                    |
| %R = Found/True*100<br>True Value (mg/kg)                                                              | <b>JB14858-18R [NS</b><br>1320                           | \$B-F4-0.0-0.5] pg.               | 43                            |                    |
|                                                                                                        | -                                                        | \$B-F4-0.0-0.5] pg.               | 43                            |                    |
| True Value (mg/kg)                                                                                     | 1320                                                     | 6B-F4-0.0-0.5] pg.<br>OK rounding | . 43  Reported %R             | 87.4               |
| True Value (mg/kg) Native concentration (mg/Kg) AECOM%R                                                | 1320<br>3.1<br>87.8                                      | OK rounding                       | Reported %R                   | 87.4               |
| True Value (mg/kg) Native concentration (mg/Kg) AECOM%R  Percent Solids                                | 1320<br>3.1<br>87.8<br>JB14858-18R [NS                   | OK rounding                       | Reported %R                   | 87.4               |
| True Value (mg/kg) Native concentration (mg/Kg) AECOM%R  Percent Solids Empty dish weight=             | 1320<br>3.1<br>87.8<br>JB14858-18R [NS<br>21.25          | OK rounding                       | Reported %R                   | 87.4               |
| True Value (mg/kg) Native concentration (mg/Kg) AECOM%R  Percent Solids Empty dish weight= Wet weight= | 1320<br>3.1<br>87.8<br>JB14858-18R [NS<br>21.25<br>27.82 | OK rounding                       | Reported %R                   | 87.4               |
| True Value (mg/kg) Native concentration (mg/Kg) AECOM%R  Percent Solids Empty dish weight=             | 1320<br>3.1<br>87.8<br>JB14858-18R [NS<br>21.25          | OK rounding                       | Reported %R                   | 87.4               |

AECOM Page 8 of 8

| Reporting Limit        | JB14858-18R [NS | B-F4-0.0-0.5] pg | . 94, 26             |      |
|------------------------|-----------------|------------------|----------------------|------|
| Low Standard           | 0.01            |                  |                      |      |
| Initial weight (mg/kg) | 0.00243         |                  |                      |      |
| Final volume (L)       | 0.1             |                  |                      |      |
| Percent solids         | 0.817           |                  |                      |      |
| Dilution Factor        | 1               |                  |                      |      |
| Reporting Limit        | 0.50            | OK rounding      | Reported RL (mg/Kg)= | 0.49 |

### **Sample Calculations**

| NSB-F4-0.0-0.5                  | JB14858-18R [NS | B-F4-0.0-0 | 0.5] pg. 94             |     |
|---------------------------------|-----------------|------------|-------------------------|-----|
| Background reading              | 0.091           |            |                         |     |
| Total absorbance                | 0.15            |            |                         |     |
| Total absorbance - background   | 0.059           |            |                         |     |
| Instrument Response             | 0.063           |            |                         |     |
| Sample weight (mg/kg)           | 0.00243         |            |                         |     |
| Final Volume (L)                | 0.1             |            |                         |     |
| Percent solids                  | 0.817           |            |                         |     |
| Dilution Factor                 | 1               |            |                         |     |
| AECOM Calculated Result (mg/Kg) | 3.1             | OK         | Reported Result (mg/Kg) | 3.1 |



09/12/12



# Technical Report for

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14858

Sampling Date: 08/28/12

## Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 78



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



### -1-

**Table of Contents** 

Section 2: Case Narrative/Conformance Summary ....... 5

| Section 3: Summary of Hits              | 7  |
|-----------------------------------------|----|
| Section 4: Sample Results               |    |
| <b>4.1:</b> JB14858-1: NSB-F2-21.5-22.0 | 11 |

| <b>4.1:</b> JB14858-1: NSB-F2-21.5-22.0 | 1. |
|-----------------------------------------|----|
| <b>4.2:</b> JB14858-2: NSB-F2-17.8-18.3 | 12 |
| 4 3· IR14858-3· NSR-F2-15 0-15 5        | 1′ |

| <b>4.3:</b> JB14858-3: NSB-F2-15.0-15.5  | <br>13 |
|------------------------------------------|--------|
| <b>4.4:</b> JB14858-4: NSB-F2-10.5-11.0X | <br>14 |
| 4 F 1D14050 5 NOD FO 10 5 11 0           | 4      |

| <b>4.5:</b> JB14858-5: NSB-F2-10.5-11.0 | <br>1. |
|-----------------------------------------|--------|
| <b>4.6:</b> JB14858-6: NSB-F2-4.0-4.5   | <br>16 |
| <b>4.7:</b> IB14858-7: NSB-F2-1 0-1 5   | 17     |

| <b>4.8:</b> JB14858-8: NSB-F3-20.0-20.5   | 18 |
|-------------------------------------------|----|
| <b>4.9:</b> JB14858-9: NSB-F3-15.0-15.5   | 19 |
| <b>4.10:</b> JB14858-10: NSB-F3-10.0-10.5 | 20 |
| <b>4.11:</b> JB14858-11: NSB-F4-20.0-20.5 | 21 |

| <b>4.12:</b> JB14858-12: | NSB-F4-16.0-16.5 | 2  |
|--------------------------|------------------|----|
| <b>4.13:</b> JB14858-13: | NSB-F3-4.0-4.5   | 2. |
| <b>4.14:</b> JB14858-14: | NSB-F3-1.0-1.5   | 2  |
| <b>4.15:</b> JB14858-15: | NSB-F4-10.0-10.5 | 2: |

| <b>4.16:</b> JB14858-16: | NSB-F4-6.0-6.5 | 26 |
|--------------------------|----------------|----|
| <b>4.17:</b> JB14858-17: | NSB-EB20120828 | 27 |
|                          |                |    |

| Section 5: Misc. Forms                  | 29 |
|-----------------------------------------|----|
| <b>4.18:</b> JB14858-18: NSB-F4-0.0-0.5 | 28 |
| 4.17. JB14636-17. NSB-EB20120626        | 41 |

| <b>5.1:</b> Chain of Custody                     | 30 |
|--------------------------------------------------|----|
| 5.2: Sample Tracking Chronicle                   |    |
| 5.3: Internal Chain of Custody                   |    |
| Section 6: General Chemistry - OC Data Summaries | 42 |

| ection of General Chemistry - QC Data Summaries | 74 |
|-------------------------------------------------|----|
| 6.1: Method Blank and Spike Results Summary     | 43 |
| 6.2: Duplicate Results Summary                  |    |
| 6.3: Matrix Snike Results Summary               | 4  |

| 0.3. Wath Spike Results Summary             | 43 |
|---------------------------------------------|----|
| <b>6.4:</b> Percent Solids Raw Data Summary | 46 |
| Section 7: General Chemistry - Raw Data     |    |
| 7.1: Raw Data GN71209: Chromium Hexavalent  |    |

| 772 That Bata Of (7120). Chi ohii ahii, 110ha (afoit | -  |
|------------------------------------------------------|----|
| <b>7.2:</b> Raw Data GN71685: pH                     | 56 |
| 7.3: Raw Data GN71686: Redox Potential Vs H2         |    |
| <b>7.4:</b> Raw Data GN71733: pH                     | 6  |

| Turn Buttu Gitt 1733. pli                    | 0  |
|----------------------------------------------|----|
| 7.5: Raw Data GN71734: Redox Potential Vs H2 | 64 |
| 7.6: Raw Data GN71774: Chromium, Hexavalent  | 66 |
| 7.7: Raw Data GN71842: Redox Potential Vs H2 | 74 |

| 7.7: Raw Data GN71842: Redox Potential Vs H2 | 75 |
|----------------------------------------------|----|
| 7.8: Eh pH Phase Diagram                     | 76 |

# **Sample Summary**

Job No:

JB14858

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code |      | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|------|---------------------|
| JB14858-1        | 08/28/12          | 14:15 CM | 08/28/12 | SO            | Soil | NSB-F2-21.5-22.0    |
| JB14858-2        | 08/28/12          | 14:10 CM | 08/28/12 | SO            | Soil | NSB-F2-17.8-18.3    |
| JB14858-3        | 08/28/12          | 14:00 CM | 08/28/12 | SO            | Soil | NSB-F2-15.0-15.5    |
| JB14858-4        | 08/28/12          | 13:55 CM | 08/28/12 | SO            | Soil | NSB-F2-10.5-11.0X   |
| JB14858-5        | 08/28/12          | 13:50 CM | 08/28/12 | SO            | Soil | NSB-F2-10.5-11.0    |
| JB14858-6        | 08/28/12          | 13:30 CM | 08/28/12 | SO            | Soil | NSB-F2-4.0-4.5      |
| JB14858-7        | 08/28/12          | 13:10 CM | 08/28/12 | SO            | Soil | NSB-F2-1.0-1.5      |
| JB14858-8        | 08/28/12          | 12:05 CM | 08/28/12 | SO            | Soil | NSB-F3-20.0-20.5    |
| JB14858-9        | 08/28/12          | 12:00 CM | 08/28/12 | SO            | Soil | NSB-F3-15.0-15.5    |
| JB14858-10       | 08/28/12          | 11:50 CM | 08/28/12 | SO            | Soil | NSB-F3-10.0-10.5    |
| JB14858-11       | 08/28/12          | 11:25 CM | 08/28/12 | SO            | Soil | NSB-F4-20.0-20.5    |
| JB14858-12       | 08/28/12          | 11:00 CM | 08/28/12 | SO            | Soil | NSB-F4-16.0-16.5    |
| JB14858-13       | 08/28/12          | 10:40 CM | 08/28/12 | SO            | Soil | NSB-F3-4.0-4.5      |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





# Sample Summary (continued)

Job No:

JB14858

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code |                   | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|-------------------|---------------------|
| JB14858-14       | 08/28/12          | 10:35 CM | 08/28/12 | SO            | Soil              | NSB-F3-1.0-1.5      |
| JB14858-15       | 08/28/12          | 10:20 CM | 08/28/12 | SO            | Soil              | NSB-F4-10.0-10.5    |
| JB14858-16       | 08/28/12          | 10:10 CM | 08/28/12 | SO            | Soil              | NSB-F4-6.0-6.5      |
| JB14858-17       | 08/28/12          | 14:45 CM | 08/28/12 | AQ            | Field Blank Soil  | NSB-EB20120828      |
| JB14858-18       | 08/28/12          | 09:15 CM | 08/28/12 | SO            | Soil              | NSB-F4-0.0-0.5      |
| JB14858-18D      | 08/28/12          | 09:15 CM | 08/28/12 | so            | Soil Dup/MSD      | NSB-F4-0.0-0.5      |
| JB14858-18S      | 08/28/12          | 09:15 CM | 08/28/12 | SO            | Soil Matrix Spike | NSB-F4-0.0-0.5      |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





#### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14858

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 9/12/2012 12:53:35 P

On 08/28/2012, 17 Sample(s), 0 Trip Blank(s) and 1 Field Blank(s) were received at Accutest Laboratories at a temperature of 6 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14858 was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

#### Wet Chemistry By Method ASTM D1498-76

Matrix: AQ Batch ID: GN71842

The data for ASTM D1498-76 meets quality control requirements.

#### Wet Chemistry By Method ASTM D1498-76M

Matrix: SO Batch ID: GN71686

Sample(s) JB14858-18DUP were used as the QC samples for Redox Potential Vs H2.

Matrix: SO Batch ID: GN71734

- Sample(s) JB14858-1DUP were used as the QC samples for Redox Potential Vs H2.
- RPD(s) for Duplicate for Redox Potential Vs H2 are outside control limits for sample GN71734-D1. Probable cause due to sample homogeneity.
- GN71734-D1 for Redox Potential Vs H2: Outside of in house limits, but within reasonable method recovery limits.

#### Wet Chemistry By Method SM18 2540G

Matrix: SO Batch ID: GN71696

The data for SM18 2540G meets quality control requirements.

#### Wet Chemistry By Method SM20 4500H B

Matrix: AQ Batch ID: R115745

- The data for SM20 4500H B meets quality control requirements.
- JB14858-17 for pH: Sample received out of holding time for pH analysis.

#### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP67051

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14858-18DUP, JB14858-18MS were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Soluble XCR matrix spike recovery indicates possible matrix interference. Low post spike recovery (84\_%) on this sample.Low pH adjusted post spike (61%). Good agreement between the sample and 1:5 dilution.
- GP67051-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



## Wet Chemistry By Method SW846 7196A

Matrix: AQ Batch ID: GN71209

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14205-78DUP, JB14205-78MS were used as the QC samples for Chromium, Hexavalent.
- GN71209-S1 for Chromium, Hexavalent: Spike recovery indicates possible matrix interference. Good recovery on pH adjusted post spike (98%)

#### Wet Chemistry By Method SW846 9045C,D

Matrix: SO Batch ID: GN71685

Sample(s) JB14858-18DUP were used as the QC samples for pH.

Matrix: SO Batch ID: GN71733

Sample(s) JB14858-1DUP were used as the QC samples for pH.

Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

Summary of Hits Job Number: JB14858 Account: AECOM, AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

Collected: 08/28/12

| Lab Sample ID<br>Analyte                  | Client Sample ID           | Result/<br>Qual     | RL   | MDL  | Units             | Method                                               |  |  |
|-------------------------------------------|----------------------------|---------------------|------|------|-------------------|------------------------------------------------------|--|--|
| JB14858-1                                 | NSB-F2-21.5-22.0           |                     |      |      |                   |                                                      |  |  |
| Chromium, Hexa<br>Redox Potential V<br>pH |                            | 0.74<br>336<br>8.63 | 0.47 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |  |  |
| JB14858-2                                 | JB14858-2 NSB-F2-17.8-18.3 |                     |      |      |                   |                                                      |  |  |
| Redox Potential v                         | Vs H2                      | 268<br>8.52         |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |  |  |
| JB14858-3                                 | NSB-F2-15.0-15.5           |                     |      |      |                   |                                                      |  |  |
| Chromium, Hexa<br>Redox Potential V<br>pH |                            | 1.8<br>271<br>7.93  | 0.52 | 0.15 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |  |  |
| JB14858-4                                 | NSB-F2-10.5-11.0           | X                   |      |      |                   |                                                      |  |  |
| Chromium, Hexa<br>Redox Potential V<br>pH |                            | 0.94<br>239<br>7.46 | 0.53 | 0.16 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |  |  |
| JB14858-5                                 | NSB-F2-10.5-11.0           |                     |      |      |                   |                                                      |  |  |
| Chromium, Hexa<br>Redox Potential V<br>pH |                            | 0.60<br>217<br>7.36 | 0.52 | 0.15 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |  |  |
| JB14858-6                                 | NSB-F2-4.0-4.5             |                     |      |      |                   |                                                      |  |  |
| Chromium, Hexa<br>Redox Potential V<br>pH |                            | 2.6<br>331<br>8.04  | 0.46 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |  |  |
| JB14858-7                                 | JB14858-7 NSB-F2-1.0-1.5   |                     |      |      |                   |                                                      |  |  |
| Chromium, Hexa<br>Redox Potential V<br>pH |                            | 2.8<br>346<br>8.15  | 0.48 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |  |  |
| JB14858-8                                 | NSB-F3-20.0-20.5           |                     |      |      |                   |                                                      |  |  |
| Chromium, Hexa<br>Redox Potential         |                            | 1.3<br>267          | 0.46 | 0.14 | mg/kg<br>mv       | SW846 3060A/7196A<br>ASTM D1498-76M                  |  |  |



**Summary of Hits Job Number:** JB14858

Account: AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/28/12

| Lab Sample ID<br>Analyte                  | Client Sample ID | Result/<br>Qual       | RL   | MDL  | Units             | Method                                               |
|-------------------------------------------|------------------|-----------------------|------|------|-------------------|------------------------------------------------------|
| pН                                        |                  | 9.20                  |      |      | su                | SW846 9045C,D                                        |
| JB14858-9                                 | NSB-F3-15.0-15.5 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.92<br>245<br>9.51   | 0.46 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14858-10                                | NSB-F3-10.0-10.5 |                       |      |      |                   |                                                      |
| Redox Potential V                         | Vs H2            | 249<br>7.84           |      |      | mv<br>su          | ASTM D1498-76M<br>SW846 9045C,D                      |
| JB14858-11                                | NSB-F4-20.0-20.5 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.60<br>282<br>7.91   | 0.47 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14858-12                                | NSB-F4-16.0-16.5 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 0.37 B<br>158<br>7.89 | 0.52 | 0.15 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14858-13                                | NSB-F3-4.0-4.5   |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 3.5<br>345<br>8.17    | 0.49 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14858-14                                | NSB-F3-1.0-1.5   |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 1.2<br>334<br>8.25    | 0.46 | 0.13 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |
| JB14858-15                                | NSB-F4-10.0-10.5 |                       |      |      |                   |                                                      |
| Chromium, Hexa<br>Redox Potential V<br>pH |                  | 1.0<br>234<br>9.69    | 0.65 | 0.19 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |



# **Summary of Hits Job Number:** JB14858

Account: AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/28/12

| Lab Sample ID Client Sample ID Analyte              | Result/<br>Qual       | RL   | MDL  | Units             | Method                                               |  |
|-----------------------------------------------------|-----------------------|------|------|-------------------|------------------------------------------------------|--|
| JB14858-16 NSB-F4-6.0-6.5                           |                       |      |      |                   |                                                      |  |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.53 B<br>231<br>9.21 | 0.63 | 0.19 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |  |
| JB14858-17 NSB-EB20120828                           |                       |      |      |                   |                                                      |  |
| Redox Potential Vs H2 pH <sup>a</sup>               | 400<br>5.89           |      |      | mv<br>su          | ASTM D1498-76<br>SM20 4500H B                        |  |
| JB14858-18 NSB-F4-0.0-0.5                           |                       |      |      |                   |                                                      |  |
| Chromium, Hexavalent<br>Redox Potential Vs H2<br>pH | 0.94<br>390<br>6.45   | 0.49 | 0.14 | mg/kg<br>mv<br>su | SW846 3060A/7196A<br>ASTM D1498-76M<br>SW846 9045C,D |  |

<sup>(</sup>a) Sample received out of holding time for pH analysis.





| Sample Results     |  |
|--------------------|--|
| Report of Analysis |  |



# 4

# **Report of Analysis**

Client Sample ID: NSB-F2-21.5-22.0

 Lab Sample ID:
 JB14858-1
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 85.1

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.74   | 0.47 | 0.14 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 336    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 85.1   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| pН                    | 8.63   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F2-17.8-18.3

 Lab Sample ID:
 JB14858-2
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 88.4

Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.13 U | 0.45 | 0.13 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 268    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 88.4   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| pН                    | 8.52   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



JB14858

~

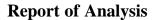
# **Report of Analysis**

Client Sample ID: NSB-F2-15.0-15.5

 Lab Sample ID:
 JB14858-3
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 76.6


Project: PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 1.8    | 0.52 | 0.15 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 271    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 76.6   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| pН                    | 7.93   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL





Client Sample ID: NSB-F2-10.5-11.0X

 Lab Sample ID:
 JB14858-4
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 75.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.94   | 0.53 | 0.16 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 239    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 75.3   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| pН                    | 7.46   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# 1

# **Report of Analysis**

Client Sample ID: NSB-F2-10.5-11.0

 Lab Sample ID:
 JB14858-5
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 77.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.60   | 0.52 | 0.15 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 217    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 77.6   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| pН                    | 7.36   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F2-4.0-4.5 Lab Sample ID: JB14858-6

**Date Sampled:** 08/28/12 SO - Soil **Date Received:** 08/28/12 **Percent Solids:** 87.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

Matrix:

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 2.6    | 0.46 | 0.13 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 331    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 87.6   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| рН                    | 8.04   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# 4

# **Report of Analysis**

Client Sample ID: NSB-F2-1.0-1.5 Lab Sample ID: JB14858-7

Matrix: SO - Soil

Date Sampled: 08/28/12Date Received: 08/28/12Percent Solids: 83.1

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 2.8    | 0.48 | 0.14 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 346    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 83.1   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| pН                    | 8.15   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F3-20.0-20.5

 Lab Sample ID:
 JB14858-8
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 86.5

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 1.3    | 0.46 | 0.14 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 267    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 86.5   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| pН                    | 9.20   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F3-15.0-15.5

 Lab Sample ID:
 JB14858-9
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 86.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.92   | 0.46 | 0.13 | mg/kg | 1  | 09/10/12 16:44 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 245    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 86.7   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| рH                    | 9.51   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



JB14858

# **Report of Analysis**

Client Sample ID: NSB-F3-10.0-10.5

 Lab Sample ID:
 JB14858-10
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 58.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed      | Ву   | Method              |
|-----------------------|--------|------|------|-------|----|---------------|------|---------------------|
| Chromium, Hexavalent  | 0.20 U | 0.69 | 0.20 | mg/kg | 1  | 09/10/12 16:4 | 4 MM | I SW846 3060A/7196A |
| Redox Potential Vs H2 | 249    |      |      | mv    | 1  | 09/08/12      | SA   | ASTM D1498-76M      |
| Solids, Percent       | 58.3   |      |      | %     | 1  | 09/07/12 17:3 | 0 RO | SM18 2540G          |
| pН                    | 7.84   |      |      | su    | 1  | 09/08/12 13:1 | 1 SA | SW846 9045C,D       |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F4-20.0-20.5

 Lab Sample ID:
 JB14858-11
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 85.6

Project: PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed      | By           | Method              |
|-----------------------|--------|------|------|-------|----|---------------|--------------|---------------------|
| Chromium, Hexavalent  | 0.60   | 0.47 | 0.14 | mg/kg | 1  | 09/10/12 17:1 | 0 <b>M</b> M | I SW846 3060A/7196A |
| Redox Potential Vs H2 | 282    |      |      | mv    | 1  | 09/08/12      | SA           | ASTM D1498-76M      |
| Solids, Percent       | 85.6   |      |      | %     | 1  | 09/07/12 17:3 | 0 RO         | SM18 2540G          |
| pН                    | 7.91   |      |      | su    | 1  | 09/08/12 13:1 | 1 SA         | SW846 9045C,D       |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F4-16.0-16.5

 Lab Sample ID:
 JB14858-12
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 76.4

Project: PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.37 B | 0.52 | 0.15 | mg/kg | 1  | 09/10/12 17:10 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 158    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 76.4   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| рH                    | 7.89   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

 Client Sample ID:
 NSB-F3-4.0-4.5

 Lab Sample ID:
 JB14858-13
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 81.8

Project: PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte                                       | Result       | RL   | MDL  | Units       | DF     | Analyzed By Method                                                |
|-----------------------------------------------|--------------|------|------|-------------|--------|-------------------------------------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 3.5<br>345   | 0.49 | 0.14 | mg/kg<br>mv | 1<br>1 | 09/10/12 17:10 MM SW846 3060A/7196A<br>09/08/12 SA ASTM D1498-76M |
| Solids, Percent<br>pH                         | 81.8<br>8.17 |      |      | %<br>su     | 1<br>1 | 09/07/12 17:30 RO SM18 2540G<br>09/08/12 13:11 SA SW846 9045C,D   |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



4



# **Report of Analysis**

 Client Sample ID:
 NSB-F3-1.0-1.5

 Lab Sample ID:
 JB14858-14
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

Percent Solids: 86.9

Project: PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 1.2    | 0.46 | 0.13 | mg/kg | 1  | 09/10/12 17:10 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 334    |      |      | mv    | 1  | 09/08/12 SA ASTM D1498-76M          |
| Solids, Percent       | 86.9   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| pН                    | 8.25   |      |      | su    | 1  | 09/08/12 13:11 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

f Analysis Page 1 of 1

Client Sample ID: NSB-F4-10.0-10.5

 Lab Sample ID:
 JB14858-15
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 61.3

Project: PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed       | By Method            |
|-----------------------|--------|------|------|-------|----|----------------|----------------------|
| Chromium, Hexavalent  | 1.0    | 0.65 | 0.19 | mg/kg | 1  | 09/10/12 17:10 | MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 234    |      |      | mv    | 1  | 09/08/12       | SA ASTM D1498-76M    |
| Solids, Percent       | 61.3   |      |      | %     | 1  | 09/07/12 17:30 | RO SM18 2540G        |
| pН                    | 9.69   |      |      | su    | 1  | 09/08/12 13:11 | SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F4-6.0-6.5 Lab Sample ID: JB14858-16 Matrix: SO - Soil **Date Received:** 08/28/12 **Percent Solids:** 62.2

**Project:** PPG Northern Canal Borings, Jersey City, NJ **Date Sampled:** 08/28/12

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.53 B | 0.63 | 0.19 | mg/kg | 1  | 09/10/12 17:10 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 231    |      |      | mv    | 1  | 09/07/12 SA ASTM D1498-76M          |
| Solids, Percent       | 62.2   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| рH                    | 9.21   |      |      | su    | 1  | 09/07/12 16:13 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL





# 4

### **Report of Analysis**

Client Sample ID: NSB-EB20120828

Lab Sample ID:JB14858-17Date Sampled:08/28/12Matrix:AQ - Field Blank SoilDate Received:08/28/12Percent Solids:n/a

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte                                       | Result          | RL    | MDL    | Units      | DF | Analyzed             | By Method                           |
|-----------------------------------------------|-----------------|-------|--------|------------|----|----------------------|-------------------------------------|
| Chromium, Hexavalent<br>Redox Potential Vs H2 | 0.0014 U<br>400 | 0.010 | 0.0014 | mg/l<br>mv | 1  | 08/28/12<br>09/11/12 | MM SW846 7196A<br>JOO ASTM D1498-76 |
| pH <sup>a</sup>                               | 5.89            |       |        | su         | 1  | 08/28/12 20:0        | 0 AS SM20 4500H B                   |

(a) Sample received out of holding time for pH analysis.

RL = Reporting Limit MDL = Method Detection Limit U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



# **Report of Analysis**

Client Sample ID: NSB-F4-0.0-0.5 Lab Sample ID: JB14858-18 Matrix: SO - Soil

Date Sampled: 08/28/12Date Received: 08/28/12Percent Solids: 81.7

Project: PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte               | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|-----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent  | 0.94   | 0.49 | 0.14 | mg/kg | 1  | 09/10/12 16:00 MM SW846 3060A/7196A |
| Redox Potential Vs H2 | 390    |      |      | mv    | 1  | 09/07/12 SA ASTM D1498-76M          |
| Solids, Percent       | 81.7   |      |      | %     | 1  | 09/07/12 17:30 RO SM18 2540G        |
| рH                    | 6.45   |      |      | su    | 1  | 09/07/12 16:13 SA SW846 9045C,D     |

RL = Reporting Limit U = Indicates a result < MDL





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



Address:

PM Email:

Field Sample No. /Identification

Project Information:

Site ID #: PPG Garfield Ave

Project #: 60213772.5.A

City Jersey City State, Zip NJ
PM Name: Chris Martell
Phone/Fax: 732-564-3633

- Z

- 3

-- 4

- 5

- 6

-7

-8

-9

-10

-11

70 Carteret Avenue

Christopher.Martell@aecom.com

MATRIX CODE

so G

so G

so G

so

so G

so G

so G

so G

so G

so G

so

C=COMP

G=GRAB

**AECOM** 

Lab Information: Lab: |ACCUTEST

Lab PM: Matt Cordova Phone/Fax: 732-329-0200/ PM email:

Address: 2235 Route 130 , Dayton NJ 08810

NSB-F2-21.5-22.0

NSB-F2-17.8-18.3

NSB-F2-15.0-15.5

NSB-F2-10.5-11.0X

NSB-F2-10.5-11.0

NSB-F2-4.0-4.5

NSB-F2-1.0-1.5

NSB-F3-20.0-20.5

NSB-F3-15.0-15.5

NSB-F3-10.0-10.5

NSB-F4-20.0-20.5

Standard TAT

Additional Comments/Special Instructions:

#### CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-28\_RI\_ACCUTEST\_COC\_NSB The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate

Send Invoice to: Lisa Krowitz Address: 250 Apollo Drive

SAMPLE DATE

08/28/2012 14:15

08/28/2012 14:10

08/28/2012 14:00

08/28/2012 13:55

08/28/2012 13:50

08/28/2012 13:30

08/28/2012 13:10

08/28/2012 12:05

08/28/2012 12:00

08/28/2012 11:50

City/State. Chelmsford, MA 01824 | Phone #: 978-905-2278

CONTAINERS

#0F

1

1

1

1

1

PO #: 40256ACM
Send EDD to: NJLABDATA@secom.com
CC Hardcopy to Erin Farrell, AECOM, Piscataway, NJ

Other Information:

Comment

Task: GARIS- Northern Canal Borings
Total # of Samples: 18 TAT see Spec. Instructions Rush
Notes: F= Field Filtered , H= Hold JB14858

GARA-HexChrom Х Х Х Х 39 ME Х Х 41 Х Χ WC 47 Х Х Х Х Х Χ Х Χ

G 08/28/2012 11:25 Х Х STIEU 67 / AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME /450 8/28/12 1920 7-12- 5-28-12 192 Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N DATE/TIME Tracking #: Custody Seal(s)

Х Х

Х Х

6.0-

JB14858: Chain of Custody

Page 1 of 4



ZA

# CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-28\_RI\_ACCUTEST\_COC\_NSB

|          |                                        |                         |                   |             |               | LEGAL DOCUMENT        |                     |             | -              |                       | 1                | Ta       |               |             |             | rn Canal | Borin | gs              |                |            |
|----------|----------------------------------------|-------------------------|-------------------|-------------|---------------|-----------------------|---------------------|-------------|----------------|-----------------------|------------------|----------|---------------|-------------|-------------|----------|-------|-----------------|----------------|------------|
| Lab Info | ormation:                              | Project Info            | rmation:          |             |               | Other Info            | rmation             | ı:          |                |                       |                  |          | Total #       | of Sam      | oles: 18    |          |       |                 |                |            |
| Lab:     | ACCUTEST                               |                         | PPG Garfield Ave  |             |               | Send Invoid           |                     |             | z              |                       |                  | +        | TAT           | 800         | Spec. Insti | ructions | Ru    | sh              |                |            |
| Addres   | 3; 2235 Route 130 , Dayton NJ<br>08810 |                         | 60213772.5.A      |             |               | Address:              |                     | pollo Drive |                |                       |                  |          | Notes:        | F= Field F  | iltered,    | H= Hold  |       |                 |                |            |
|          |                                        | Site<br>Address:        | 70 Carteret Avenu |             |               | City/State.           |                     | nsford, MA  | 01824          | Phone #: 978-         | -905-2278        | Notes    |               |             | J           | B141     | 851   | ₹               |                |            |
|          | : Matt Cordova<br>-ax: 732-329-0200/   | City Jersey<br>PM Name: | City State, Zip   | NJ          | 07304         | PO #:                 | 40256               |             |                |                       |                  | F        |               |             | 7 1         | 011      | · ·   | <u> </u>        |                |            |
| Phone/i  |                                        |                         | 732-564-3633      |             |               | Send EDD<br>CC Hardco |                     | NJLABDATA   | JAECOM.O       | om<br>DM, Piscataway, | NI               | - 18     |               |             |             |          |       |                 |                |            |
|          |                                        | PM Email:               | Christopher.Mart  | ell@aeco    | m.com         | Too Halado            | P) 10               |             | 11,712.00      | on, r ioudaway,       | 110              | reserva  |               |             |             |          |       |                 |                |            |
| TEM #    | Field Sample N                         | lo. /Identifica         | tion              | MATRIX CODE | G=GRAB C=COMP |                       | SAMPLE DATE         |             | #OF CONTAINERS |                       | Comment          | Analysis | GARA-HexChrom | GARA-pH-ORP |             |          |       |                 |                |            |
| 12       | NSB-F4-16.0-16.5                       |                         | -12               | so          | G             | 08/28                 | B/2012 <sup>-</sup> | 11:00       | 1              |                       |                  |          | Х             | Х           |             |          |       |                 |                |            |
| 13       | NSB-F3- 4.0-4.5                        |                         | - (3              | so          | G             | 08/28                 | 8/2012              | 10:40       | 1              |                       |                  |          | Х             | х           |             |          |       |                 |                |            |
| 14       | NSB-F3-1.0-1.5                         |                         | -14               | so          | G             | 08/28                 | 8/2012              | 10:35       | 1              |                       |                  |          | Х             | х           |             |          |       |                 |                |            |
| 15       | NSB-F4-10.0-10.5                       |                         | -15               | so          | G             | 08/28                 | 8/2012              | 10:20       | 1              |                       |                  |          | Х             | х           |             |          |       |                 |                |            |
| 16       | NSB-F4-6.0-6.5                         |                         | - 16              | so          | G             | 08/28                 | 8/2012              | 10:10       | 1              |                       |                  |          | Х             | х           |             |          |       |                 |                |            |
| 17       | NSB-EB20120828                         | ***                     | -17               | WQ          | G             | 08/28                 | 8/2012              | 14:45       | 2              | Р                     | reserved: None   |          | Х             | х           |             |          |       |                 |                |            |
| 18       | NSB-F4-0.0-0.5                         |                         | -18               | so          | G             | 08/28                 | 8/2012 (            | 09:15       | 2              | 1                     | Jar for MS/MSD   |          | Х             | х           |             |          |       |                 |                |            |
|          |                                        |                         |                   |             |               |                       |                     |             |                |                       |                  |          |               |             |             |          |       |                 |                |            |
|          |                                        |                         |                   |             |               |                       |                     |             |                |                       |                  |          |               |             |             |          |       |                 |                |            |
|          |                                        |                         |                   |             |               |                       |                     |             |                |                       |                  |          |               |             |             |          |       |                 |                |            |
|          |                                        |                         |                   |             |               |                       |                     |             |                |                       |                  |          |               |             |             |          |       |                 |                |            |
| Ctanda   | nal Comments/Special Instru-           |                         |                   | RELINO      | DISHED        | BY / ASSILIATI        | ION                 | DATE        | TIME           | ACCEPTED BY           | AFFILIATION      |          |               | DATE        |             |          |       | eipt Cor        | ditions        |            |
| Clanda   | 1 0.1                                  | a a                     | 1 1.              | 吴           | 1             | > 8-28                | 2-17                | 8/27/11     | 920            |                       | 1-826 F          | レ        |               |             | 163         | •        |       | Y/N             | Y/N            | Y/N        |
| 1        | AH = 5, 8                              | 7 (8)                   | 8/28/12           | 1           | 77            | - 6 - 2Y              | -11                 | <del></del> | 700            |                       |                  |          | -             |             |             |          |       | Y/N<br>Y/N      | Y/N<br>Y/N     | Y/N<br>Y/N |
| X        | PH = 5, 8'                             | Ŭ                       | '                 |             |               |                       |                     |             |                |                       |                  |          |               |             |             |          |       | Y/N<br>Y/N      | Y/N<br>Y/N     | Y/N<br>Y/N |
|          | ı                                      |                         |                   |             | Shipp         | er:                   |                     |             |                |                       | DATE/TIME:       |          |               |             |             | 5        | 3     | on Ice?         | intact?        | Blank?     |
|          |                                        |                         |                   |             | Trackin       | g#:                   |                     |             |                |                       | Custody Seal(s): |          |               |             |             | - C      | di di | Samples on Ice? | Sample intact? | Trip Bi    |

6.0L

JB14858: Chain of Custody Page 2 of 4





### **Accutest Laboratories Sample Receipt Summary**

| Accutest Job Number:                                                                     | JB14858          |             | Client:  |                     |          |          | Project:                                                                                                                                       |                               |      |                    |
|------------------------------------------------------------------------------------------|------------------|-------------|----------|---------------------|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------|--------------------|
| Date / Time Received: 8                                                                  |                  |             |          | Delivery N          | flethod: |          | <br>Airbill #'s:                                                                                                                               |                               |      |                    |
| Cooler Temps (Initial/Adju                                                               | usted): <u>#</u> | 1: (6/6); ( | <u>)</u> | _                   | _        |          |                                                                                                                                                |                               | -    |                    |
| Cooler Security  1. Custody Seals Present: 2. Custody Seals Intact:                      | Y or №  ✓ □      | 3.          | COC Pr   | esent:<br>s/Time OK |          | <u>1</u> | Sample Integrity - Documentation  1. Sample labels present on bottles: 2. Container labeling complete:                                         | <u>Y</u>                      | or N |                    |
| Cooler Temperature                                                                       | Υ                | or N        |          |                     |          |          | Sample container label / COC agree:                                                                                                            | <b>✓</b>                      |      |                    |
| 1. Temp criteria achieved: 2. Cooler temp verification: 3. Cooler media: 4. No. Coolers: | <b>V</b>         | ce (Bag)    |          |                     |          |          | Sample Integrity - Condition  1. Sample recvd within HT:  2. All containers accounted for:  3. Condition of sample:                            | <ul><li>✓</li><li>✓</li></ul> | or N |                    |
| Quality Control Preserva                                                                 | tion Y           | or N        | N/A      |                     |          |          | Sample Integrity - Instructions                                                                                                                | -                             | or N | N/A                |
| <ol> <li>Trip Blank present / coole</li> <li>Trip Blank listed on COC:</li> </ol>        | _                |             | <b>✓</b> |                     |          |          | Analysis requested is clear:     Bottles received for unspecified tests                                                                        | <u></u>                       |      | IVA                |
| <ul><li>3. Samples preserved prope</li><li>4. VOCs headspace free:</li></ul>             | rly: 🗸           |             | V        |                     |          |          | <ul><li>3. Sufficient volume recvd for analysis:</li><li>4. Compositing instructions clear:</li><li>5. Filtering instructions clear:</li></ul> |                               |      | V                  |
| Comments  Accutest Laboratories                                                          |                  |             |          |                     | 2:       | 235 US H | ighway 130                                                                                                                                     |                               |      | Dayton, New Jersey |
| V:732.329.0200                                                                           |                  |             |          |                     | 2.       |          | 29.3499                                                                                                                                        |                               |      | www/accutest.com   |

JB14858: Chain of Custody

Page 3 of 4



To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Client

Above Changes Per:

**Date:** 9/11/2012

Job Change Order:

JB14858 9/11/2012

8/28/2012 9/11/2012

Received Date:

FULT1

Deliverable: TAT (Days):

Due Date:

9/11/2012 Requested Date:

Account Name:

AECOM, INC.

Project CSR:

Æ

PPG Northern Canal Borings, Jersey City, NJ

Please relog for XXCRAR Change:

Sample #: JB14858-1 thru -16, -18

Sample #: JB14858-18

Change:

Please relog MS/MSD for XXCRAR; please relog sample for FE2/7, SULFS, TOCLK

Change:

NSB-F4-0.0-0.5

Sample #: JB14858-

JB14858: Chain of Custody

Page 4 of 4

AECOM, INC.

Job No: JB14858

| Sample<br>Number                    | Method                                                                                     | Analyzed                                                           | Ву                   | Prepped                  | Ву      | Test Codes                 |
|-------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|--------------------------|---------|----------------------------|
| JB14858-1<br>NSB-F2-21              | Collected: 28-AUG-12<br>.5-22.0                                                            | 14:15 By: CM                                                       | Recei                | ved: 28-AUG              | 4-12 By | v: SC                      |
| JB14858-1<br>JB14858-1<br>JB14858-1 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A<br>Collected: 28-AUG-12 |                                                                    |                      | 08-SEP-12<br>ved: 28-AUG |         | SOL104<br>EH<br>PH<br>XCRA |
| NSB-F2-17                           |                                                                                            | 14.10 By. CWI                                                      | Recei                | vcu. 20-A00              | 1-12 Dy | . SC                       |
| JB14858-2<br>JB14858-2              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A                         | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12                | CW      | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-3<br>NSB-F2-15              | Collected: 28-AUG-12<br>.0-15.5                                                            | 14:00 By: CM                                                       | Recei                | ved: 28-AUG              | -12 By  | v: SC                      |
| JB14858-3<br>JB14858-3              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A                         | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12                | CW      | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-4<br>NSB-F2-10              | Collected: 28-AUG-12<br>.5-11.0X                                                           | 13:55 By: CM                                                       | Recei                | ved: 28-AUG              | 4-12 By | v: SC                      |
| JB14858-4<br>JB14858-4              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A                         | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12                | CW      | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-5<br>NSB-F2-10              | Collected: 28-AUG-12                                                                       | 13:50 By: CM                                                       | Recei                | ved: 28-AUG              | -12 By  | r: SC                      |
| JB14858-5<br>JB14858-5              | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A                         | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12                | CW      | SOL104<br>EH<br>PH<br>XCRA |

AECOM, INC.

Job No: JB14858

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву                   | Prepped     | Ву     | Test Codes                 |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|-------------|--------|----------------------------|
| JB14858-6<br>NSB-F2-4.0  | Collected: 28-AUG-12                                               | 13:30 By: CM                                                       | Receiv               | red: 28-AUG | -12 By | : SC                       |
| JB14858-6<br>JB14858-6   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-7<br>NSB-F2-1.0  | Collected: 28-AUG-12                                               | 13:10 By: CM                                                       | Receiv               | ed: 28-AUG  | -12 By | : SC                       |
| JB14858-7<br>JB14858-7   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-8<br>NSB-F3-20.  | Collected: 28-AUG-12 0-20.5                                        | 12:05 By: CM                                                       | Receiv               | ed: 28-AUG  | -12 By | : SC                       |
| JB14858-8<br>JB14858-8   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-9<br>NSB-F3-15.  | Collected: 28-AUG-12 0-15.5                                        | 12:00 By: CM                                                       | Receiv               | ed: 28-AUG  | -12 By | : SC                       |
| JB14858-9<br>JB14858-9   | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-10<br>NSB-F3-10. | Collected: 28-AUG-12 0-10.5                                        | 11:50 By: CM                                                       | Receiv               | ed: 28-AUG  | -12 By | : SC                       |
| JB14858-10<br>JB14858-10 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 16:44 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |

Page 2 of 4

AECOM, INC.

Job No: JB14858

| Sample<br>Number         | Method                                                             | Analyzed                                                           | Ву                   | Prepped     | Ву     | Test Codes                 |
|--------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|-------------|--------|----------------------------|
| JB14858-11<br>NSB-F4-20. | Collected: 28-AUG-12 0-20.5                                        | 11:25 By: CM                                                       | Receiv               | ved: 28-AUG | -12 By | : SC                       |
| JB14858-11<br>JB14858-11 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 17:10 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-12<br>NSB-F4-16. | Collected: 28-AUG-12 0-16.5                                        | 11:00 By: CM                                                       | Receiv               | ved: 28-AUG | -12 By | : SC                       |
| JB14858-12<br>JB14858-12 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 17:10 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-13<br>NSB-F3-4.0 | Collected: 28-AUG-12<br>0-4.5                                      | 10:40 By: CM                                                       | Receiv               | ved: 28-AUG | -12 By | : SC                       |
| JB14858-13<br>JB14858-13 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 17:10 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-14<br>NSB-F3-1.0 | Collected: 28-AUG-12                                               | 10:35 By: CM                                                       | Receiv               | ved: 28-AUG | -12 By | : SC                       |
| JB14858-14<br>JB14858-14 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 17:10 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |
| JB14858-15<br>NSB-F4-10. | Collected: 28-AUG-12 0-10.5                                        | 10:20 By: CM                                                       | Receiv               | ved: 28-AUG | -12 By | : SC                       |
| JB14858-15<br>JB14858-15 | SM18 2540G<br>ASTM D1498-76M<br>SW846 9045C,D<br>SW846 3060A/7196A | 07-SEP-12 17:30<br>08-SEP-12<br>08-SEP-12 13:11<br>10-SEP-12 17:10 | RO<br>SA<br>SA<br>MM | 08-SEP-12   | CW     | SOL104<br>EH<br>PH<br>XCRA |

AECOM, INC.

Job No: JB14858

| Sample<br>Number                       | Method                                                                     | Analyzed                                                           | Ву                   | Prepped     | Ву      | Test Codes                 |
|----------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------|-------------|---------|----------------------------|
| JB14858-16<br>NSB-F4-6.0               | Collected: 28-AUG-12                                                       | 10:10 By: CM                                                       | Receiv               | ved: 28-AUG | 5-12 By | v: SC                      |
| JB14858-16<br>JB14858-16<br>JB14858-16 | 5 ASTM D1498-76M<br>5 SW846 9045C,D<br>5 SM18 2540G<br>5 SW846 3060A/7196A | 07-SEP-12<br>07-SEP-12 16:13<br>07-SEP-12 17:30<br>10-SEP-12 17:10 | SA<br>SA<br>RO<br>MM | 08-SEP-12   | CW      | EH<br>PH<br>SOL104<br>XCRA |
| JB14858-17<br>NSB-EB201                | Collected: 28-AUG-12                                                       | 14:45 By: CM                                                       | Receiv               | ved: 28-AUG | 6-12 By | v: SC                      |
| JB14858-17                             | SW846 7196A<br>SM20 4500H B<br>ASTM D1498-76                               | 28-AUG-12<br>28-AUG-12 20:00<br>11-SEP-12                          | MM<br>AS<br>JOO      |             |         | XCR<br>PH<br>EH            |
| JB14858-18<br>NSB-F4-0.0               | Collected: 28-AUG-12<br>0-0.5                                              | 09:15 By: CM                                                       | Receiv               | ved: 28-AUG | 6-12 By | r: SC                      |
| JB14858-18<br>JB14858-18               | ASTM D1498-76M<br>SW846 9045C,D<br>SM18 2540G<br>SW846 3060A/7196A         | 07-SEP-12<br>07-SEP-12 16:13<br>07-SEP-12 17:30<br>10-SEP-12 16:00 | SA<br>SA<br>RO<br>MM | 08-SEP-12   | CW      | EH<br>PH<br>SOL104<br>XCRA |

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle     | Transfer                     | Transfer                 | D 4 /E'        | D.                    |
|-------------------|------------------------------|--------------------------|----------------|-----------------------|
| Number            | FROM                         | ТО                       | Date/Time      | Reason                |
| JB14858-1.1       | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-1.1       | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| JB14858-1.1       | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-1.1       | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| Bottle was return | ed to secure storage, but in | advertently not scanned. |                |                       |
| JB14858-1.1       | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-1.1       | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-1.1       | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |
| JB14858-2.1       | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-2.1       | Adam Scott                   | Secured Staging Area     |                | Return to Storage     |
| JB14858-2.1       | Secured Staging Area         | Sanjay Advani            |                | Retrieve from Storage |
| JB14858-2.1       | Secured Storage              | Adam Scott               |                | Retrieve from Storage |
| Bottle was return | ed to secure storage, but in | advertently not scanned. |                | <u>C</u>              |
| JB14858-2.1       | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-2.1       | Secured Staging Area         | Ching Wong               |                | Retrieve from Storage |
| JB14858-2.1       | Ching Wong                   | Secured Storage          |                | Return to Storage     |
| JB14858-3.1       | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-3.1       | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| JB14858-3.1       | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-3.1       | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| Bottle was return | ed to secure storage, but in | advertently not scanned. |                | _                     |
| JB14858-3.1       | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-3.1       | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-3.1       | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |
| JB14858-4.1       | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-4.1       | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| JB14858-4.1       | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-4.1       | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| Bottle was return | ed to secure storage, but in | advertently not scanned. |                |                       |
| JB14858-4.1       | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-4.1       | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-4.1       | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |
| JB14858-5.1       | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-5.1       | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| JB14858-5.1       | Secured Staging Area         | Sanjay Advani            |                | Retrieve from Storage |
| JB14858-5.1       | Secured Storage              | Adam Scott               |                | Retrieve from Storage |
|                   | ed to secure storage, but in | advertently not scanned. |                | Č                     |
| JB14858-5.1       | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-5.1       | Secured Staging Area         | Ching Wong               |                | Retrieve from Storage |
| JB14858-5.1       | Ching Wong                   | Secured Storage          |                | Return to Storage     |
|                   |                              |                          |                |                       |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| JB14858-6.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from St JB14858-6.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storag JB14858-6.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from St JB14858-6.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-6.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storag JB14858-6.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from St JB14858-6.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storag JB14858-7.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from St JB14858-7.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from St JB14858-7.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St JB14858-7.1 Secured |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| JB14858-6.1 Secured Staging Area Sanjay Advani O9/07/12 08:18 Return to Storag O9/07/12 08:35 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:42 Return to Storag O9/08/12 06:42 Return to Storag O9/08/12 06:42 Return to Storag O9/08/12 12:21 Retrieve from St O9/08/12 12:21 Retrieve from St O9/08/12 12:21 Retrieve from St O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 08:18 Retrieve from St O9/08/12 08:18 Retrieve from St O9/08/12 08:18 Retrieve from St O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Retrieve from St O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18  |        |
| JB14858-6.1 Secured Staging Area Sanjay Advani O9/07/12 08:18 Return to Storag O9/07/12 08:35 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:42 Return to Storag O9/08/12 06:42 Return to Storag O9/08/12 06:42 Return to Storag O9/08/12 12:21 Retrieve from St O9/08/12 12:21 Retrieve from St O9/08/12 12:21 Retrieve from St O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 08:18 Retrieve from St O9/08/12 08:18 Retrieve from St O9/08/12 08:18 Retrieve from St O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Retrieve from St O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18 Return to Storag O9/08/12 08:18  | torage |
| JB14858-6.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from St JB14858-6.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-6.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage JB14858-6.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from St JB14858-6.1 Ching Wong Secured Storage O9/08/12 17:18 Return to Storage JB14858-7.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from St JB14858-7.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from St JB14858-7.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve fro |        |
| JB14858-6.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-6.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage D9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/07/12 08:18 Return to Storage JB14858-7.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve | torage |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-6.1 Adam Scott Secured Staging Area  JB14858-6.1 Secured Staging Area  Ching Wong  JB14858-6.1 Ching Wong  JB14858-7.1 Secured Storage  Adam Scott  JB14858-7.1 Adam Scott  JB14858-7.1 Secured Staging Area  JB14858-7.1 Secured Staging Area  JB14858-7.1 Secured Staging Area  JB14858-7.1 Secured Staging Area  Secured Staging Area  JB14858-7.1 Secured Staging Area  JB14858-7.1 Secured Staging Area  JB14858-7.1 Secured Staging Area  Sanjay Advani  O9/07/12 08:18 Return to Storage  JB14858-7.1 Secured Staging Area  JB14858-7.1 Secured Staging Area  Sanjay Advani  O9/07/12 08:35 Retrieve from Storage  JB14858-7.1 Secured Storage  Adam Scott  O9/08/12 06:41 Retrieve from Storage  Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _      |
| JB14858-6.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storag O9/08/12 12:21 Retrieve from St O9/08/12 12:21 Retrieve from St O9/08/12 12:21 Retrieve from St O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 17:18 Return to Storag O9/08/12 08:18 Retrieve from St O9/07/12 08:18 Return to Storag O9/07/12 08:18 Return to Storag O9/07/12 08:18 Return to Storag O9/07/12 08:35 Retrieve from St O9/07/12 08:35 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Retrieve from St O9/08/12 06:41 Ret | C      |
| JB14858-6.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from St JB14858-6.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-7.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-7.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from St JB14858-7.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (e     |
| JB14858-6.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage  JB14858-7.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from St JB14858-7.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-7.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from St JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |
| JB14858-7.1 Adam Scott Secured Staging Area JB14858-7.1 Secured Staging Area Sanjay Advani JB14858-7.1 Secured Storage Adam Scott Bottle was returned to secure storage, but inadvertently not scanned.  O9/07/12 08:18 Return to Storage 09/07/12 08:35 Retrieve from Storage 09/08/12 06:41 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| JB14858-7.1 Adam Scott Secured Staging Area JB14858-7.1 Secured Staging Area Sanjay Advani JB14858-7.1 Secured Storage Adam Scott Bottle was returned to secure storage, but inadvertently not scanned.  O9/07/12 08:18 Return to Storage 09/07/12 08:35 Retrieve from Storage 09/08/12 06:41 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | torage |
| JB14858-7.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Staging JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Staging Area Scott scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |
| JB14858-7.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Structure was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |
| Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _      |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C      |
| JB14858-7.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (e     |
| JB14858-7.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |
| JB14858-7.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
| JB14858-8.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | torage |
| JB14858-8.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e,     |
| JB14858-8.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Staging Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | torage |
| JB14858-8.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | torage |
| Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| JB14858-8.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;e     |
| JB14858-8.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | torage |
| JB14858-8.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;e     |
| JB14858-9.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | torage |
| JB14858-9.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;e     |
| JB14858-9.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | torage |
| JB14858-9.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | torage |
| Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| JB14858-9.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ;e     |
| JB14858-9.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Staging Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | torage |
| JB14858-9.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ;e     |
| JB14858-10.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _      |
| JB14858-10.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •      |
| JB14858-10.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | torage |
| JB14858-10.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | torage |
| Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |
| JB14858-10.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ;e     |
| JB14858-10.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | torage |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle     | Transfer                     | Transfer                 | D-4-/T*        | D                     |
|-------------------|------------------------------|--------------------------|----------------|-----------------------|
| Number            | FROM                         | ТО                       | Date/Time      | Reason                |
| JB14858-10.1      | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |
| JB14858-11.1      | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-11.1      | Adam Scott                   | Secured Staging Area     |                | Return to Storage     |
| JB14858-11.1      | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-11.1      | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| Bottle was return | ed to secure storage, but in | advertently not scanned. |                |                       |
| JB14858-11.1      | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-11.1      | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-11.1      | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |
| JB14858-12.1      | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-12.1      | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| JB14858-12.1      | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-12.1      | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| Bottle was return | ed to secure storage, but in | advertently not scanned. |                |                       |
| JB14858-12.1      | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-12.1      | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-12.1      | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |
| JB14858-13.1      | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-13.1      | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| JB14858-13.1      | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-13.1      | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| Bottle was return | ed to secure storage, but in | advertently not scanned. |                |                       |
| JB14858-13.1      | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-13.1      | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-13.1      | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |
| JB14858-14.1      | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-14.1      | Adam Scott                   | Secured Staging Area     |                | Return to Storage     |
| JB14858-14.1      | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-14.1      | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| Bottle was return | ed to secure storage, but in | advertently not scanned. |                |                       |
| JB14858-14.1      | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| JB14858-14.1      | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-14.1      | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |
| JB14858-15.1      | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-15.1      | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| JB14858-15.1      | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-15.1      | Secured Storage              | Adam Scott               |                | Retrieve from Storage |
|                   | ed to secure storage, but in | advertently not scanned. |                | 3                     |
| JB14858-15.1      | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM             | Transfer<br>TO           | Date/Time      | Reason                    |
|-------------------------|------------------------------|--------------------------|----------------|---------------------------|
| JB14858-15.1            | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage     |
| JB14858-15.1            | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage         |
| JB14858-16.1            | Secured Storage              | Adam Scott               |                | Retrieve from Storage     |
| JB14858-16.1            | Adam Scott                   | Secured Staging Area     |                | Return to Storage         |
| JB14858-16.1            | Secured Staging Area         | Sanjay Advani            |                | Retrieve from Storage     |
| JB14858-16.1            | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage     |
| Bottle was return       | ed to secure storage, but in |                          |                |                           |
| JB14858-16.1            | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage         |
| JB14858-16.1            | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage     |
| JB14858-16.1            | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage         |
| JB14858-17.1            | Secured Storage              | Mehmet Temizsu           | 08/28/12 21:18 | Retrieve from Storage     |
| JB14858-17.1            | Mehmet Temizsu               | Secured Storage          |                | Return to Storage         |
| JB14858-17.2            | Secured Storage              | Jared O. Onindo          | 09/11/12 10:35 | Retrieve from Storage     |
| JB14858-17.2            | Jared O. Onindo              | Secured Storage          | 09/11/12 20:05 | Return to Storage         |
| JB14858-18.1            | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage     |
| JB14858-18.1            | Adam Scott                   | Secured Staging Area     |                | Return to Storage         |
| JB14858-18.1            | Secured Staging Area         | Sanjay Advani            |                | Retrieve from Storage     |
| JB14858-18.1            | Secured Storage              | Adam Scott               |                | Retrieve from Storage     |
| Bottle was return       | ed to secure storage, but in | advertently not scanned. |                |                           |
| JB14858-18.1            | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage         |
| JB14858-18.1            | Secured Staging Area         | Ching Wong               |                | Retrieve from Storage     |
| JB14858-18.1            | Ching Wong                   | Secured Storage          |                | Return to Storage         |
| JB14858-18.2            | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage     |
| JB14858-18.2            | Adam Scott                   | Secured Staging Area     |                | Return to Storage         |
| JB14858-18.2            | Secured Staging Area         | Sanjay Advani            |                | Retrieve from Storage     |
| JB14858-18.2            | Shirley Grzybowski           | Secured Storage          |                | Return to Storage         |
|                         | ole for custody transfer.    |                          |                |                           |
| JB14858-18.2            | Secured Storage              | Adam Scott               | 09/12/12 08:20 | Retrieve from Storage     |
| JB14858-18.2            | Adam Scott                   | Secured Staging Area     |                | Return to Storage         |
| JB14858-18.2            | Secured Staging Area         | Sarvadaman Tripathi      |                | Retrieve from Storage     |
| JB14858-18.2.1          | Sarvadaman Tripathi          | Vaidehi Amin             | 09/12/12 10:12 | Aliquot from JB14858-18.2 |





# General Chemistry

QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary



#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14858 Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                              | Batch ID                                      | RL    | MB<br>Result | Units                  | Spike<br>Amount  | BSP<br>Result       | BSP<br>%Recov         | QC<br>Limits                  |
|----------------------------------------------------------------------|-----------------------------------------------|-------|--------------|------------------------|------------------|---------------------|-----------------------|-------------------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent<br>Chromium, Hexavalent | GN71209<br>GP67051/GN71774<br>GP67051/GN71774 | 0.010 | 0.0          | mg/l<br>mg/kg<br>mg/kg | .15<br>40<br>985 | 0.15<br>37.3<br>950 | 100.0<br>93.3<br>96.4 | 90-110%<br>80-120%<br>80-120% |

Associated Samples:

Batch GN71209: JB14858-17

Batch GN/1203. 0B14030 1.
Batch GP67051: JB14858-1, JB14858-2, JB14858-3, JB14858-4, JB14858-5, JB14858-6, JB14858-7, JB14858-8, JB14858-9, JB14858-10, JB14858-11, JB14858-12, JB14858-13, JB14858-14, JB14858-15, JB14858-16, JB14858-18

(\*) Outside of QC limits



# DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14858
Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte               | Batch ID        | QC<br>Sample | Units | Original<br>Result | DUP<br>Result | RPD      | QC<br>Limits |
|-----------------------|-----------------|--------------|-------|--------------------|---------------|----------|--------------|
| Chromium, Hexavalent  | GN71209         | JB14205-78   | mg/l  | 0.0                | 0.0           | 0.0      | 0-20%        |
| Chromium, Hexavalent  | GP67051/GN71774 | JB14858-18   | mg/kg | 0.94               | 1.0           | 6.2      | 0-20%        |
| Redox Potential Vs H2 | GN71686         | JB14858-18   | mv    | 390                | 444           | 12.9     | 0-13%        |
| Redox Potential Vs H2 | GN71734         | JB14858-1    | mv    | 336                | 284           | 16.8*(a) | 0-13%        |
| рн                    | GN71685         | JB14858-18   | su    | 6.45               | 6.46          | 0.1      | 0-5%         |
| рН                    | GN71733         | JB14858-1    | su    | 8.63               | 8.33          | 3.5      | 0-5%         |

Associated Samples:

Batch GN71209: JB14858-17

Batch GN71685: JB14858-16, JB14858-18 Batch GN71686: JB14858-16, JB14858-18

Batch GN71733: JB14858-1, JB14858-2, JB14858-3, JB14858-4, JB14858-5, JB14858-6, JB14858-7, JB14858-8, JB14858-9, JB14858-10, JB14858-11, JB14858-12, JB14858-13, JB14858-14, JB14858-15

Batch GN71734: JB14858-1, JB14858-2, JB14858-3, JB14858-4, JB14858-5, JB14858-6, JB14858-7, JB14858-8, JB14858-9, JB14858-10, JB14858-11, JB14858-12, JB14858-13, JB14858-14, JB14858-15

Batch GP67051: JB14858-1, JB14858-2, JB14858-3, JB14858-4, JB14858-5, JB14858-6, JB14858-7, JB14858-8, JB14858-9, JB14858-10, JB14858-11, JB14858-12, JB14858-13, JB14858-14, JB14858-15, JB14858-16, JB14858-18

(\*) Outside of QC limits

(a) Outside of in house limits, but within reasonable method recovery limits.



# MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14858
Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec     | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|----------|--------------|
| Chromium, Hexavalent | GN71209         | JB14205-78   | mg/l  | 0.0                | .15             | 0.093        | 62.0N(a) | 85-115%      |
| Chromium, Hexavalent | GP67051/GN71774 | JB14858-18   | mg/kg | 0.94               | 989             | 813          | 82.1(b)  | 75-125%      |
| Chromium, Hexavalent | GP67051/GN71774 | JB14858-18   | mg/kg | 0.94               | 48.6            | 19.2         | 37.6N(c) | 75-125%      |

#### Associated Samples:

Batch GN71209: JB14858-17

Batch GP67051: JB14858-1, JB14858-2, JB14858-3, JB14858-4, JB14858-5, JB14858-6, JB14858-7, JB14858-8, JB14858-9, JB14858-10, JB14858-11, JB14858-12, JB14858-13, JB14858-14, JB14858-15, JB14858-16, JB14858-18

- (\*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
- (a) Spike recovery indicates possible matrix interference. Good recovery on pH adjsuted post spike (98%)
- (b) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.
- (c) Soluble XCR matrix spike recovery indicates possible matrix interference. Low post spike recovery (84\_%) on this sample.Low pH adjusted post spike (61%). Good agreement between the sample and 1:5 dilution.



# Percent Solids Raw Data Summary Job Number: JB14858

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| <b>Sample:</b> JB14858-1 <b>ClientID:</b> NSB-F2-21.5-22.0  | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
|-------------------------------------------------------------|-----------|-----------------|---------|------------|
| Wet Weight (Total)                                          | 36.74     | g               |         |            |
| Tare Weight                                                 | 29.03     | g               |         |            |
| Dry Weight (Total)                                          | 35.59     | g               |         |            |
| Solids, Percent                                             | 85.1      | %               |         |            |
| Sample: JB14858-2<br>ClientID: NSB-F2-17.8-18.3             | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 36.65     | g               |         |            |
| Tare Weight                                                 | 27.51     | g               |         |            |
| Dry Weight (Total)                                          | 35.59     | g               |         |            |
| Solids, Percent                                             | 88.4      | %               |         |            |
| <b>Sample:</b> JB14858-3 <b>ClientID:</b> NSB-F2-15.0-15.5  | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 31.3      | g               |         |            |
| Tare Weight                                                 | 22.68     | g               |         |            |
| Dry Weight (Total)                                          | 29.28     | g               |         |            |
| Solids, Percent                                             | 76.6      | %               |         |            |
| <b>Sample:</b> JB14858-4 <b>ClientID:</b> NSB-F2-10.5-11.02 |           | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 35.22     | g               |         |            |
| Tare Weight                                                 | 26.71     | g               |         |            |
| Dry Weight (Total)                                          | 33.12     | g               |         |            |
| Solids, Percent                                             | 75.3      | %               |         |            |
| Sample: JB14858-5<br>ClientID: NSB-F2-10.5-11.0             | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 29.95     | g               |         |            |
| Tare Weight                                                 | 21.56     | g               |         |            |
| Dry Weight (Total)                                          | 28.07     | g               |         |            |
| Solids, Percent                                             | 77.6      | %               |         |            |
| Sample: JB14858-6<br>ClientID: NSB-F2-4.0-4.5               | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 34.25     | g               |         |            |
| Tare Weight                                                 | 25.14     | g               |         |            |
| Dry Weight (Total)                                          | 33.12     | g               |         |            |
| Solids, Percent                                             | 87.6      | %               |         |            |
|                                                             |           |                 |         |            |



# Percent Solids Raw Data Summary Job Number: JB14858

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample: JB14858-7<br>ClientID: NSB-F2-1.0-1.5              | Analyzed: 07-SE    | P-12 by RO Mo | ethod: SM18 2540G |
|------------------------------------------------------------|--------------------|---------------|-------------------|
| Wet Weight (Total)                                         | 31.55 g            |               |                   |
| Tare Weight                                                | 31.55 g<br>25.98 g |               |                   |
| Dry Weight (Total)                                         | 30.61 g            |               |                   |
| Solids, Percent                                            | 83.1               |               |                   |
|                                                            |                    | -             |                   |
| <b>Sample:</b> JB14858-8 <b>ClientID:</b> NSB-F3-20.0-20.5 | Analyzed: 07-SE    | P-12 by RO Mo | ethod: SM18 2540G |
| Wet Weight (Total)                                         | 35.38 g            |               |                   |
| Tare Weight                                                | 26.17 g            |               |                   |
| Dry Weight (Total)                                         | 34.14 g            | 5             |                   |
| Solids, Percent                                            | 86.5               | 6             |                   |
| Sample: JB14858-9<br>ClientID: NSB-F3-15.0-15.5            | Analyzed: 07-SE    | P-12 by RO Mo | ethod: SM18 2540G |
| Wet Weight (Total)                                         | 32.97 g            | •             |                   |
| Tare Weight                                                | 25.14 g            |               |                   |
| Dry Weight (Total)                                         | 31.93 g            |               |                   |
| Solids, Percent                                            | 86.7               |               |                   |
| Sample: JB14858-10<br>ClientID: NSB-F3-10.0-10.5           | Analyzed: 07-SE    | P-12 by RO Mo | ethod: SM18 2540G |
| Wet Weight (Total)                                         | 28.2 g             | •             |                   |
| Tare Weight                                                | 23.07 g            |               |                   |
| Dry Weight (Total)                                         | 26.06 g            |               |                   |
| Solids, Percent                                            | 58.3               |               |                   |
| Sample: JB14858-11<br>ClientID: NSB-F4-20.0-20.5           | Analyzed: 07-SE    | P-12 by RO Mo | ethod: SM18 2540G |
| Wet Weight (Total)                                         | 27.78 g            | Į.            |                   |
| Tare Weight                                                | 19.28 g            |               |                   |
| Dry Weight (Total)                                         | 26.56 g            |               |                   |
| Solids, Percent                                            | 85.6               |               |                   |
| Sample: JB14858-12<br>ClientID: NSB-F4-16.0-16.5           | Analyzed: 07-SE    | P-12 by RO Mo | ethod: SM18 2540G |
| Wet Weight (Total)                                         | 27.92 g            |               |                   |
| Tare Weight                                                | 22.32 g            |               |                   |
| Dry Weight (Total)                                         | 26.6 g             |               |                   |
| Solids, Percent                                            | 76.4               |               |                   |
|                                                            |                    |               |                   |



Page 3 of 3

# Percent Solids Raw Data Summary Job Number: JB14858

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Analyzed: 07-SEP-12 by RO                                 | <b>Method:</b> SM18 2540G                                                                                                                                                      |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30.55 g                                                   |                                                                                                                                                                                |
| 8                                                         |                                                                                                                                                                                |
| E                                                         |                                                                                                                                                                                |
|                                                           |                                                                                                                                                                                |
|                                                           | Method: SM18 2540G                                                                                                                                                             |
| Alialyzed: 07-SEF-12 by KO                                | Method: SM18 2340G                                                                                                                                                             |
| 28.91 g                                                   |                                                                                                                                                                                |
| 22.02 g                                                   |                                                                                                                                                                                |
| 28.01 g                                                   |                                                                                                                                                                                |
| 86.9 %                                                    |                                                                                                                                                                                |
| Analyzed: 07-SEP-12 by RO                                 | <b>Method:</b> SM18 2540G                                                                                                                                                      |
| 25.88 g                                                   |                                                                                                                                                                                |
| 17.66 g                                                   |                                                                                                                                                                                |
| 22.7 g                                                    |                                                                                                                                                                                |
| 61.3 %                                                    |                                                                                                                                                                                |
| Analyzed: 07-SEP-12 by RO                                 | <b>Method:</b> SM18 2540G                                                                                                                                                      |
| 28.86 g                                                   |                                                                                                                                                                                |
| 20.00 g                                                   |                                                                                                                                                                                |
| 22.35 g                                                   |                                                                                                                                                                                |
| E                                                         |                                                                                                                                                                                |
| 22.35 g                                                   |                                                                                                                                                                                |
| 22.35 g<br>26.4 g                                         | <b>Method:</b> SM18 2540G                                                                                                                                                      |
| 22.35 g<br>26.4 g<br>62.2 %  Analyzed: 07-SEP-12 by RO    | Method: SM18 2540G                                                                                                                                                             |
| 22.35 g 26.4 g 62.2 %  Analyzed: 07-SEP-12 by RO  27.82 g | <b>Method:</b> SM18 2540G                                                                                                                                                      |
| 22.35 g 26.4 g 62.2 %  Analyzed: 07-SEP-12 by RO  27.82 g | <b>Method:</b> SM18 2540G                                                                                                                                                      |
|                                                           | 30.55 g 20.88 g 28.79 g 81.8 %  Analyzed: 07-SEP-12 by RO  28.91 g 22.02 g 28.01 g 86.9 %  Analyzed: 07-SEP-12 by RO  25.88 g 17.66 g 22.7 g 61.3 %  Analyzed: 07-SEP-12 by RO |





| General Chemistry |  |  |
|-------------------|--|--|
|                   |  |  |
| Raw Data          |  |  |
|                   |  |  |



# AC-Reports: GN71209 Hexavalent Chromium

| 3ottle |                                     | Sample         | BKGRD    | Analyzed       | Y Values Corr<br>Sample | X Values           | Final Vol.   | Sam Vol.          |             |                             |              |                  |       |
|--------|-------------------------------------|----------------|----------|----------------|-------------------------|--------------------|--------------|-------------------|-------------|-----------------------------|--------------|------------------|-------|
| D      | Sample #                            | Absorbance     | Abs      | Times          | Absorbance              | Conc(mg/l)         | (ml)         | (ml)              | Dilution    | Final Conc.                 | Units        | MDL              | RDL   |
|        | Test Title:                         | XCr            |          |                | 1                       |                    |              | Method:           | SW846 71    | 96A                         |              |                  |       |
|        | GN Batch:<br>Analyst:               | GN71209<br>MM  |          |                |                         |                    |              |                   |             |                             |              |                  |       |
|        | Prep Date:                          | NA NA          |          |                |                         | Note: Use          | 4 for CLE    | list poir         | nter. 1 for | reg. List pointer           | •            |                  |       |
|        | Analysis Date:                      | 8/28/2012      |          |                |                         |                    |              |                   | ,           |                             | •            |                  |       |
|        | Instrument ID:                      | Н              |          |                |                         |                    |              |                   |             |                             |              |                  |       |
|        | Cal. Blk,                           | 0.000          | NA       | 19:02          | 0.000                   | 0.0000             | 1            |                   |             | Corr. Coef:                 | 0.99998      |                  |       |
|        | STD1                                | 0.000          | NA NA    | NA NA          | 0.000                   | 0.0000             |              |                   |             | Slope:                      | 0.8831       |                  |       |
|        | STD2                                | 0.045          | NA       | NA             | 0.045                   | 0.0500             |              |                   |             | <del></del>                 | *            |                  |       |
|        | STD3                                | 0.091          | NA       | NA             | 0.091                   | 0.1000             |              |                   |             | Y intercept:                | 0.002        |                  |       |
|        | STD4                                | 0.271          | NA       | NA             | 0.271                   | 0.3000             |              |                   |             |                             |              |                  |       |
|        | STD5<br>STD6                        | 0.443          | NA<br>NA | NA<br>NA       | 0.443                   | 0.5000             | Final Val    | Com Vol           |             |                             |              |                  |       |
|        | STD7                                | 0.711<br>0.882 | NA<br>NA | 19:05          | 0.711<br>0.882          | 1.0000             | (ml)         | Sam, Vol.<br>(ml) | Dilution    | Final Conc.                 | Units        | MDL              | RDL   |
|        | ccv                                 | 0.441          | NA NA    | 19:47          | 0.441                   | 0.4972             | NA<br>NA     | NA                | NA NA       | NA NA                       | mg/l         | 0,001            | 0.010 |
|        | CCB                                 | 0.000          | NA       | 19:47          | 0.000                   | -0.0022            | NA           | NA                | NA          | NA                          | mg/l         | 0.0013           | 0.010 |
|        | GN71209-MB1                         | 0.000          | 0.000    | 19:54          | 0.000                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        | GN71209-B1                          | 0.134          | 0.000    | 19:54          | 0.134                   | 0.1495             | 50.0         | 50.0              | 1           | 0.150                       | mg/l         | 0.0014           | 0.010 |
|        | GN71209-S1<br>GN71209-D1            | 0.087<br>0.005 | 0.003    | 19:54<br>19:54 | 0.084                   | 0.0929             | 50.0<br>50.0 | 50.0<br>50.0      | 1           | 0.093                       | mg/l<br>mg/l | 0.0014<br>0.0014 | 0.010 |
| 5      | JB14205-68                          | 0.029          | 0.018    | 19:54          | 0.002                   | 0.0102             | 50.0         | 50.0              | 1           | 0.010                       | mg/l         | 0.0014           | 0.010 |
| 5      | JB14205-69                          | 0.003          | 0.001    | 19:54          | 0.002                   | 0.0000             | 50.0         | 50.0              | 1           | 0.000                       | mg/i         | 0.0014           | 0.010 |
| 5      | JB14205-70                          | 0.002          | 0.002    | 19:54          | 0.000                   | -0.0022            | 50.0         | 50.0              | t t         | -0.002                      | mg/l         | 0.0014           | 0.010 |
| 5      | JB14205-71                          | 0.002          | 0.001    | 19:54<br>19:54 | 0.001                   | -0.0011<br>0.0023  | 50.0         | 50.0<br>50.0      | 1           | -0.001                      | mg/l         | 0.0014           | 0.010 |
| 5      | JB14205-73<br>JB14205-74            | 0.004          | 0.016    | 19:54          | 0.004                   | 0.0023             | 50.0<br>50.0 | 50.0              | 1           | 0.002                       | mg/l<br>mg/l | 0.0014           | 0.010 |
|        | CCV                                 | 0.436          | NA NA    | 19:54          | 0.436                   | 0.4915             | NA           | NA                | NA.         | NA NA                       | mg/l         | 0.0013           | 0.010 |
|        | ССВ                                 | 0.000          | NA       | 19:54          | 0.000                   | -0.0022            | NA           | NA                | NA          | NA                          | mg/l         | 0.0013           | 0.010 |
| 5      | JB14205-75                          | 0.020          | 0.012    | 19:57          | 0.008                   | 0.0068             | 50.0         | 50.0              | 1           | 0.007                       | mg/l         | 0.0014           | 0.010 |
| 5      | JB14205-76                          | 0.004          | 0.002    | 19:57          | 0.002                   | 0.0000             | 50.0         | 50.0              | 1           | 0.000                       | mg/l         | 0.0014           | 0.010 |
| 5      | JB14205-77<br>JB14205-78            | 0.002          | 0.001    | 19:57          | 0.001<br>0.002          | -0.0011<br>0.0000  | 50.0<br>50.0 | 50.0<br>50.0      | 1 1         | -0,001<br>0.000             | mg/l         | 0.0014           | 0.010 |
| 13     | JB14205-78<br>JB14205-78<br>DILCONF |                | 0.003    | 19:57<br>19:57 | 0.002                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l<br>mg/l | 0.0014           | 0.010 |
| JB     | 14205-78PHADJPSC                    |                | 0.006    | 19:57          | 0.132                   | 0.1473             | 50.0         | 50.0              | 1           | 0.147                       | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        | ccv                                 | 0.430          | NA.      | 19:57          | 0.430                   | -0.0022<br>0.4847  | 50.0<br>NA   | 50.0<br>NA        | 1<br>NA     | -0.002<br>NA                | mg/l<br>mg/l | 0.0014           | 0.010 |
|        | CCB                                 | 0.000          | NA NA    | 19:57          | 0.000                   | -0.0022            | NA NA        | NA NA             | NA NA       | NA NA                       | mg/l         | 0.0013           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/i         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE<br>FALSE          | -0.0022<br>-0.0022 | 50.0<br>50.0 | 50.0<br>50.0      | 1           | -0.002<br>-0.002            | mg/l<br>mg/l | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        | ccv                                 | 0.427          | NA NA    | 20:18          | FALSE<br>0.427          | -0.0022<br>0.4813  | 50.0<br>NA   | 50.0<br>NA        | 1<br>NA     | -0.002<br>NA                | mg/l<br>mg/l | 0.0014           | 0.010 |
|        | ССВ                                 | 0.000          | NA NA    | 20:18          | 0.000                   | -0.0022            | NA NA        | NA NA             | NA NA       | NA NA                       | mg/l         | 0.0013           | 0.010 |
| 3      | JB14856-10                          | 0.000          | 0.000    | 20:20          | 0.000                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     | 1              |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        | 1                                   |                |          | <del> </del>   | FALSE<br>FALSE          | -0.0022            | 50.0<br>50.0 | 50.0<br>50.0      | 1 1         | -0.002<br>-0.002            | mg/i         | 0.0014           | 0.010 |
|        |                                     |                |          | <del> </del>   | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l<br>mg/l | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | 0.0022             | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
| ,      |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                | ļ        |                | FALSE                   | -0.0029            | 50.0         | 50.0              | 1           | -0.002                      | mg/L         | 0.0014           | 0.010 |
|        | -                                   |                |          | ļ              | FALSE                   | -0.0022            | 50.0         | 50.0              | Λ 1         | -0.002<br><del>0.0</del> 02 | mg/l         | 0.0014           | 0.010 |
|        | ccv                                 | 0.425          | NA       | 20:20          | FALSE<br>0.425          | -0.0022<br>0.4790  | 50.0         | 50.0<br>NÅ        | // NA       | 0.002<br>NA                 | mg/l<br>mg/l | 0.0014           | 0.010 |
|        | ССВ                                 | 0.000          | NA NA    | 20:20          | 0.000                   | -0.0022            | X            |                   | NA NA       | NA NA                       | mg/l         | 0.0013           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 0.0          | <b>5</b> 0.0      | 1           | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                | ļ        |                | FALSE                   | -0.0022            | 50.0         | $\nu_{\rm 5d,0}$  | 1 1         | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     |                |          |                | FALSE                   | -0.0022            | 50.0         | 50.0              | 1 1         | -0.002                      | mg/l         | 0.0014           | 0.010 |
|        |                                     | -              | +        | 1              | FALSE<br>FALSE          | -0.0022<br>-0.0022 | 50.0         | 50.0<br>50.0      | 1           | -0.002<br>-0.002            | mg/l<br>mg/l | 0.0014           | 0.010 |



| QÇ                | Reports:                                           | GN71209                                 |                                                  |                                                  |       | 1 1     |            |            | 1 1   |          |      | 1      | 1     |
|-------------------|----------------------------------------------------|-----------------------------------------|--------------------------------------------------|--------------------------------------------------|-------|---------|------------|------------|-------|----------|------|--------|-------|
|                   |                                                    | ļ                                       |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50,0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   | +                                                  |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| <u>`</u>          |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 11    | -0.002   | mg/l | 0.0014 | 0.010 |
| $\longrightarrow$ |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| $\rightarrow$     |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| $\longrightarrow$ | ccv                                                | 0.437                                   | NA                                               | 22:42                                            | 0.437 | 0.4926  | NA         | NA         | NA    | NA       | mg/l | 0.0013 | 0.010 |
|                   | CCB                                                | 0.000                                   | NA NA                                            | 22:42                                            | 0.000 | -0.0022 | NA         | NA         | NA    | NA       | mg/l | 0.0013 | 0.010 |
| 1                 | JB14858-17                                         | 0.000                                   | 0.000                                            |                                                  | 0.000 | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/i | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/i | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   | CCV                                                | 0.436                                   | NA                                               | 22:44                                            | 0.436 | 0.4915  | NA         | NA         | NA    | NA       | mg/l | 0.0013 | 0.010 |
|                   | ССВ                                                | 0.000                                   | NA                                               | 22:44                                            | 0.000 | -0.0022 | NA         | NA         | NA    | NA       | mg/l | 0.0013 | 0.010 |
|                   | 1.1.1 U. W. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | *************************************** |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| -                 |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| $\neg \neg$       |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| -+                |                                                    | 1                                       | <u> </u>                                         |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | <u> </u>                                |                                                  | <del>                                     </del> | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| -+                |                                                    | 1                                       |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| -                 |                                                    |                                         |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| $\overline{}$     |                                                    |                                         | <u> </u>                                         |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| $\overline{}$     |                                                    |                                         |                                                  | 1                                                | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   | CCV                                                | <del> </del>                            | NA                                               |                                                  | TALUL | #VALUE! | NA NA      | NA NA      | NA    | NA NA    | mg/l | 0.0013 | 0.010 |
|                   | CCB                                                | <b>!</b>                                | NA NA                                            | 1                                                |       | #VALUE! | NA NA      | NA NA      | NA NA | NA NA    | mg/l | 0.0013 | 0.010 |
| +                 | <u> </u>                                           | 1                                       | 19/4                                             |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | <del>                                     </del> |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | <u> </u>                                         | ******                                           | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   |      | 0.0014 | 0.010 |
|                   |                                                    |                                         | <del>                                     </del> |                                                  |       | +       |            | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | <del> </del>                                     |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | <del> </del>                                     | 1                                                | FALSE | -0.0022 | 50.0       |            | 1     |          | mg/l | +      | -     |
|                   |                                                    |                                         | <del> </del>                                     | 1                                                | FALSE | -0.0022 | 50.0       | 50.0       |       | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | ļ                                                |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l |        | -     |
|                   | ······································             | <del> </del>                            |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   | · · · · · · · · · · · · · · · · · · ·              | <u> </u>                                |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       |       | -0.002   | mg/l | •      | _     |
|                   | 201                                                |                                         | <b></b>                                          |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   | CCV                                                |                                         | NA<br>NA                                         | Late Contraction                                 |       | #VALUE! | NA NA      | NA NA      | NA    | NA<br>NA | mg/l | 0.0013 | 0.010 |
|                   | CCB                                                |                                         | NA                                               |                                                  |       | #VALUE! | NA .       | NA.        | NA NA | NA<br>NA | mg/l | 0.0013 | 0.010 |
|                   |                                                    |                                         | <u> </u>                                         |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | <u> </u>                                         |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
| -                 |                                                    | +                                       | -                                                | <del> </del>                                     | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | ļ                                       | <del> </del>                                     |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1 1   | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | <u> </u>                                | <del> </del>                                     |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | 1                                                | 1                                                | FALSE | -0.0022 | 50.0       | 50.0       | 1 1   | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | -                                       | -                                                | <del>                                     </del> | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | 1                                       | 1                                                |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | 1                                       | -                                                |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | <del> </del>                                     | 1.0000000000000000000000000000000000000          | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   | ccv                                                |                                         | NA                                               | - i.doli/A                                       |       | #VALUE! | NA         | NA         | NA NA | NA NA    | mg/l | 0.0013 | 0.010 |
|                   | ССВ                                                | ļ                                       | NA                                               | lenarenta f                                      |       | #VALUE! | NA<br>50.0 | NA<br>50.0 | NA NA | NA       | mg/l | 0.0013 | 0.010 |
|                   |                                                    | ļ                                       | 1                                                |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1 !   | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | ļ                                       |                                                  | <del> </del>                                     | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         | ļ                                                | ļ .                                              | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | 1                                       |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | ļ                                       |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | 1                                       |                                                  |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    |                                         |                                                  | ļ                                                | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | ļ                                       |                                                  | ļ                                                | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | ļ                                       | 1                                                |                                                  | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/l | 0.0014 | 0.010 |
|                   |                                                    | ļ                                       |                                                  | V280 x                                           | FALSE | -0.0022 | 50.0       | 50.0       | 1     | -0.002   | mg/t | 0.0014 | 0.010 |
|                   | CCV                                                | ļ                                       | NA                                               |                                                  |       | #VALUE! | NA         | NA         | NA    | NA       | mg/l | 0.0013 | 0.010 |
|                   | CCB                                                | 1                                       | NA                                               | 3.5                                              |       | #VALUE! | NA         | NA         | NA NA | NA       | mg/l | 0.0013 | 0.010 |

|     | Comments: |
|-----|-----------|
| ſ   |           |
| ı   |           |
| ŀ   |           |
| ١   |           |
| - 1 |           |
| -   |           |
| ١   |           |
| - 1 |           |



| Test: Hexavalent Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MDL = 0.0013 mg/l GNBatch ID. (1777)  RDL = 0.010 mg/l Date: (2) (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product: XCr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RDL = 0.010 mg/l Date: 2)25000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Method: SW846 7196A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Units = mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Digestion Batch QC Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Method Blank ID: 61770074MB Date: 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Result: AMOL RDL: O.CO <rdl: th="" we<=""></rdl:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Spike Blank ID: 4NN209-18 Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Result: 15 Spike: 15 %Rec.: 10000%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dunlingto ID: 64TV00-VN Samp Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O Dup. Result: O %RPD: \( \angle MDL \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MS in Cal TIOM of Same Boouts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MS Result: <u>. M3</u> Spike: <u>. \5</u> %Rec: \ <u>\0.0%</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| WIS 1D: AN TANA TO STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE | result: 0 Dil. Result: 0 %RPD: 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Diluted Sample ID: JDF7205 10 Samp. R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | esuit. O Dii. Resuit. O MA Saiker & & Roor OD Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| pH adj, pS ID: 4 Samp. Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>Ο</u> MS Result: 147 Spike: 15 %Rec: <u>ΩΘ .Θ</u> ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Analysis Batch QC Summary Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = mg/l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CCV: 90000 Result: 401 TV:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (S) %Rec.: 004%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCV: Result: AND TV:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CCV: Result: 495 TV:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | moo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CCV: Result: 46 TV:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (A) - (V2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| CCV: Result: 479 TV:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | √ %Rec.: <u>1/5.97</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CCV: EVENON Result: 400 TV:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4 98.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : <u>0.00</u> <rdl: <u="">UM2</rdl:>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CCB: Result: RDL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB: Result: RDL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB: Result: RDL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB: Result: RDL: CCB: PMP/DM Result: AMPL RDL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB: <u>Phanon</u> Result: <u>AMIL</u> RDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reaget Reference Numbers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | all all ad in the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |
| Sel_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | attacked                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1-14-0 11 11 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Initiatalibration Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Contuing Calibration Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2010 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Anal Date: 9290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>UU</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Contents:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 451 113.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |







### **Hexavalent Chromium pH Adjustment Log** Method: SW846 71964

| MIGHTON, OTTOM      |        | 1 1                             |
|---------------------|--------|---------------------------------|
| pH adj. start time: | 19:32  | pH Adjust. Date: <u>8</u> 28b02 |
| pH adj. end time;   | _\9.39 | <br>GN Batch ID: HN71209        |

| Sample   D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                 |                                                  |              | 1           |        |        |              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|--------------------------------------------------|--------------|-------------|--------|--------|--------------|
| CCV CCV CCV CCV CCB CCB CCB CCB CCB MSJRA705-78 A5 50 193 183 184 197 189 187 189 189 189 189 189 189 189 189 189 189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             | Comments        | Spike Info                                       | after        |             | Volume | Volume | Sample ID    |
| CCV CCV CCB CCB CCB CCB CCB CCB MSJR14705-78 45 50 193 193 193 194 195 177 186 197 198 197 198 197 198 197 198 197 198 198 197 198 198 198 198 198 198 198 198 198 198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>a</u>    |                 |                                                  |              | 101         | 70     | 45     |              |
| CCV CCB CCB CCB CCB CCB CCB MAJKA205-78 45 50 193 128 1ML 75 ppm Modulu DUP 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>    | 3 April Over IN | 71110                                            |              |             |        |        |              |
| CCV CCB CCB CCB CCB CCB CCB CCB MSJK4705-78 45 50 193 183 1ML 75 ppm Modulu DUP 191 180 181 171 180 181 171 181 181 181 181 181 181 181 181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                 |                                                  | .,           |             |        |        |              |
| CCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  |              |             |        |        |              |
| CCB CCB CCB MSJR4705-78 45 50 193 183 1ML 75 ppm 100140 DUP 191 190 191 190 191 191 191 191 191 191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  |              | 104         | 90     | 45     |              |
| CCB CCB MSJR4705-78 45 5D 193 193 1ML 75 ppm Modulu DUP SBB 197 196 1M1 75 ppm Modulu 1,184705-108 181 171 2109 187 171 310 187 176 411 196 187 176 573 190 185 674 196 181 775 188 199 199 199 11.184705010 45 5D 193 194 12.1847050-17 45 5D 193 194 13. 14. 15. 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                 |                                                  |              | <u> </u>    |        | A 100% |              |
| MSJBA205-78 A5 5D 193 183 1ML 75 ppm Mixibility  DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                 |                                                  |              | -           |        |        |              |
| MS/B/4205-78 45 50 193 198 IML 75 ppm Modulul  DUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                 | <del>                                     </del> |              |             |        |        |              |
| DUP + 101 182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1110        | 75 same Mrc/111 | Timi                                             | 102          | 192         | 5      | 45     |              |
| SBBI PBMBI 1.1184205-108 2109 370 471 573 674 775 870 1070 11.1184250-10 12.184250-10 1370 1471 1570 1670 1770 1870 1971 1070 11.1184250-10 12.184250-17 1370 1470 1570 1670 1770 1870 1971 1970 1971 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 1970 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vice.       | 1 > VIII TOCOLO | 1111                                             |              |             | 1      | 1      |              |
| PBMB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.1        | 75 mm XXXIII    | 1001                                             |              |             |        |        |              |
| 1.184205-108 269 370 471 573 674 775 100 171 870 100 11.184250-10 145 1573 1476 1678 180 180 180 180 180 180 180 180 180 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del> | 1. 3 VOINTINAMO | <del></del>                                      | 172          | <del></del> |        |        |              |
| 269 370 471 573 674 775 870 1070 11. BA959-7 45 50 1010 11. BA959-7 45 50 1010 11. BA959-7 45 50 1010 11. BA959-7 45 50 1010 11. BA959-7 45 50 1010 11. BA959-7 12. BA959-7 13. 14. 15. 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |                 |                                                  | Ta           |             |        |        | 1.184205-108 |
| 370   197   176   197   176   197   176   197   176   197   176   197   176   197   176   197   176   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197   197    |             |                 |                                                  | 7-11         |             |        |        |              |
| 4. — 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                 |                                                  | 176          |             |        |        |              |
| 573<br>614<br>775<br>870<br>977<br>1078<br>11. JBHQ5V V) A5<br>12. JBHQ5V-7 A5<br>13. 14. 15. 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                 |                                                  |              |             |        |        |              |
| 6. — 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                 |                                                  |              | 100         |        |        |              |
| 7. — 15<br>8. — 10<br>9. — 17<br>10. — 78<br>11. JBH959-17<br>12. JBH959-17<br>13. 14. 15. 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |                 |                                                  |              | 190         |        |        |              |
| 8. 76 977 1078 11. JBHQ56 10 12. JBHQ59-17 13. 14. 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                 |                                                  | 1-14         | 190         |        |        |              |
| 9. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10. — TO 10.  | •           |                 |                                                  | 190          |             |        |        |              |
| 1078 + 190 1.70<br>11. JBH059-17 45 50 193 194<br>12. JBH059-17 45 50 1.84 1.71<br>13.<br>14.<br>15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |                 |                                                  | 175          | 194         |        |        |              |
| 11. JBH 256 10 45 50 193 194<br>12. JBH 259-17 45 50 1.24 1.71<br>13.<br>14.<br>15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  | 1-10         | 100         | 4      | 4      |              |
| 12. JBH059-17 45 50 1.84 1.71<br>13.<br>14.<br>15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ··········  |                 |                                                  | <del> </del> |             | 4      | 45     |              |
| 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  | 171          |             | 45     |        | 12. BH959-17 |
| 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  | 17 1 1       | 1,5         |        |        |              |
| 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  |              |             |        |        |              |
| 16.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  |              |             |        |        |              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                 |                                                  |              |             |        |        |              |
| 17.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  |              |             |        |        | 17.          |
| 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  |              |             |        | 1      | 18.          |
| 19.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  |              | 1           |        |        |              |
| 20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                 |                                                  |              |             |        |        | 20.          |
| 9818420548 45 SD 196 173 047821WIN INLTS DOM TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 4700/11+  | 11N MI 75 mm 4  | 0118211                                          | 173          | 1.010       | 9)     | 45     | 9184205-40   |
| PSJBH20548 45 SD 186 173 pH821WIN INLTS ppm throng the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfer of the transfe | C THE W     | 15 dilubar      | 11                                               | 100          |             |        |        | OIL +        |
| DIL + + + 197 190 15 delection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | - vanaly l      |                                                  |              |             |        |        | DIL          |

| Date: <u>978700</u> QC Reviewer: | Date:                            |
|----------------------------------|----------------------------------|
|                                  | Date: <u>978700</u> QC Reviewer: |

Form: GN077-01





### Hexavalent Chromium pH Adjustment Log Method: SW846 7196A

| METHOR: CALCAC      |               | مده ما مراه                                                  |
|---------------------|---------------|--------------------------------------------------------------|
| pH adj. start time: | 1852          | pH Adjust. Date: <u>PPAPAL</u><br>GN Batch ID: <u>6</u> M12M |
| pri daji otani mino |               | <br>- WATTHM                                                 |
| pH adj. end time:   | <u> 10:55</u> | <br>GN Batch ID: 47 11/1/                                    |

| pH adj. end time:                     |                                                   | 18,27    |              | GN Batch ID: 2/19 11/2 | <u></u>                       |
|---------------------------------------|---------------------------------------------------|----------|--------------|------------------------|-------------------------------|
|                                       | Initial<br>Sample                                 | Final    |              |                        |                               |
|                                       | Volume                                            | Volume   | pH after     |                        |                               |
| Sample ID                             | (ml)                                              | (ml)     | H2SO4        | Comments               | Spike Info.                   |
| Calibration Blank                     | 145                                               | 9)       | 196          |                        |                               |
| 0.010 mg/l standard                   | 1                                                 |          | 193          | 5 ppm Mysluti          | 0.10 ml of 5 mg/l to 50 ml FV |
| 0.050 mg/l standard                   |                                                   |          | 19A          |                        | 0.50 ml of 5 mg/l to 50 mL FV |
| ).100 mg/l standard                   |                                                   |          | 15           |                        | 1.00 ml of 5 mg/l to 50 mL FV |
| 0.300 mg/l standard                   |                                                   |          | 193          |                        | 3.00 ml of 5 mg/l to 50 mL FV |
| 0.500 mg/l standard                   |                                                   |          | 1.01         |                        | 5.00 ml of 5 mg/l to 50 mL FV |
| 0.800 mg/l standard                   |                                                   |          | 1.99         |                        | 8.00 ml of 5 mg/l to 50 mL FV |
| 1.00 mg/l standard                    | 1                                                 | 1        | 178          | 4                      | 10.0 ml of 5 mg/l to 50 mL FV |
| 2.00 mg/l standard                    |                                                   |          |              |                        | 20.0 ml of 5 mg/l to 50 mL FV |
| 2.00 mg/r otalidate                   |                                                   |          |              |                        |                               |
|                                       | · · · · · · · · · · · · · · · · · · ·             |          |              |                        |                               |
|                                       | +                                                 |          |              |                        |                               |
|                                       | <del> </del>                                      |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       | -                                                 |          |              |                        |                               |
|                                       | <del>                                      </del> |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
| •                                     |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
| · · · · · · · · · · · · · · · · · · · |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       | ·   · · · · · · · · · · · · · · · · · ·           |          |              |                        |                               |
|                                       | <del>                                     </del>  |          |              |                        |                               |
|                                       |                                                   |          | <u> </u>     |                        |                               |
|                                       | -                                                 |          |              |                        |                               |
|                                       |                                                   | <u> </u> | <del> </del> |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       |                                                   |          |              |                        |                               |
|                                       | 1                                                 |          |              |                        |                               |
| •                                     |                                                   | <u> </u> |              |                        |                               |

| Reagen  | HINO | manoi   | <u></u> |
|---------|------|---------|---------|
| Daggani | Into | rmatior | ٠.      |

Analyst: Date: 8/28/2012

Form: GN078-01 Rev. Date: 1/10/11





### Reagent Information Log - XCR - water - 7196A

| Reagent                                  | Exp. Date | Reagent # or Manufacturer/Lot |
|------------------------------------------|-----------|-------------------------------|
| Calibration Source: Hexavalent Chromium, |           |                               |
| 1000 mg/L Stock                          | 1/12/2015 | Absolute Grade Lot# 011212    |
| Calibration Checks: Hexavalent Chromium, |           |                               |
| 1000 mg/L Stock                          | 5/31/2017 | Ultra Scientific Lot# L00439  |
| External Check                           | NA        | NA                            |
| Spiking Solution Source                  | 1/12/2015 | Absolute Grade Lot# 011212    |
| Diphenyl carbazide Solution              | appae     | ANTS 3389-XV                  |
| Sulfuric Acid, 10%                       | 2/2/20    | <u>ENTS-33380-XOV</u>         |
|                                          |           |                               |
|                                          |           |                               |
|                                          |           |                               |
|                                          |           |                               |

Form: GN087A-23 Rev. Date: 10/3/05





Test: pH, Corrosivity Method: SW846 9040B or SW846 9045C

Product: PH, CORR Analyst: **SANJAYA** GN Batch ID: GN71685

Thermometer ID: 6539
Correction Factor: 0

Analysis Date: 9/7/2012 pH Meter ID: 50

Uncorrected/

QC Summary

Duplicate ID: GN71685-D1 Dup Result: 6.46

Sample ID: JB14858-18 / 0 cowy Mb 09/10

|                  | Wt./Vol. used | Corrected Temp in                                 |                                       |             |                                                  |
|------------------|---------------|---------------------------------------------------|---------------------------------------|-------------|--------------------------------------------------|
| Sample ID        | for soilds    | Deg C.                                            | Result                                | Corrosivity | Read time                                        |
| Buffer Check: 4  |               | 25                                                | 4.01                                  |             | 15:25                                            |
| Buffer Check: 7  |               | 25                                                | 7                                     |             |                                                  |
| Buffer Check: 10 |               | 25                                                | 9.96                                  |             |                                                  |
| GN71685-D1       |               | 25                                                | 6.46                                  |             |                                                  |
| JB14858-16       |               | 25                                                | 9.21                                  |             |                                                  |
| JB14858-18       |               | 25                                                | 6.45                                  |             |                                                  |
| JB15520-1        |               | 25                                                | 8.20                                  |             |                                                  |
| JB15520-2        | ·             | 25                                                | 7.69                                  |             |                                                  |
| JB15520-3        |               | 25                                                | 7.73                                  |             |                                                  |
| JB15520-8        |               | 25                                                | 9.47                                  |             |                                                  |
| JB15520-9        |               | 25                                                | 9.15                                  |             |                                                  |
| JB15644-1        |               | 25                                                | 8.28                                  |             |                                                  |
| JB15644-2        |               | 25                                                | 8.40                                  |             |                                                  |
| Buffer Check: 4  |               | 25                                                | 4.01                                  |             |                                                  |
| Buffer Check: 10 |               | 25                                                | 10.03                                 |             | 16:13                                            |
|                  |               |                                                   |                                       |             |                                                  |
|                  |               |                                                   |                                       |             |                                                  |
|                  |               |                                                   |                                       |             |                                                  |
|                  |               |                                                   |                                       |             |                                                  |
|                  |               | ,                                                 |                                       |             |                                                  |
|                  |               |                                                   |                                       |             |                                                  |
|                  |               |                                                   |                                       |             |                                                  |
|                  |               |                                                   |                                       | <u> </u>    |                                                  |
|                  |               |                                                   |                                       | <u> </u>    |                                                  |
|                  |               | 1                                                 |                                       |             |                                                  |
| Buffer Check:    |               |                                                   | · · · · · · · · · · · · · · · · · · · | -           |                                                  |
| Buffer Check:    |               |                                                   |                                       |             |                                                  |
| Danier Gildon.   |               |                                                   |                                       |             | <u> </u>                                         |
|                  | <u> </u>      |                                                   |                                       |             | <u> </u>                                         |
|                  | <u> </u>      |                                                   |                                       |             | 1 "                                              |
|                  |               | <del>\                                    </del>  |                                       |             | ·                                                |
|                  |               |                                                   |                                       |             |                                                  |
|                  |               | <del>  \                                   </del> |                                       |             |                                                  |
|                  |               |                                                   |                                       |             | <del> </del>                                     |
|                  |               | <del>                                     </del>  |                                       |             |                                                  |
|                  |               |                                                   |                                       | -           | 1                                                |
|                  |               |                                                   |                                       | +           |                                                  |
| Buffer Check:    |               | <del>                                     </del>  |                                       |             | 1                                                |
| Buffer Check:    |               | <del> </del>                                      | <del>\ / -</del>                      |             | <del>                                     </del> |
| Duller Check.    |               | 1                                                 | $\overline{}$                         |             |                                                  |

Comments:

Validated By: \_

Nancy Cole

Validated Date:

8/7/2012

Document Control #: AGN-PH\_CORR-AQ-01





| Analyst S.A      |
|------------------|
| Method EH PI+    |
| Prep Date 9/7//2 |
| GP# GN 7685-PH   |
| GN71686- et      |

Sample Prep Log

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample i Tep Log | Final Volume      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sample Size      |                   |
| 3/5/5/20-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.25            | added SOuLN7/ko   |
| -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.66g           |                   |
| -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                   |
| -8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.39            | <b>1</b>          |
| -9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.243           | V                 |
| 3B14858-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50.91            | added 300 L Dope  |
| -18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30.865           | 1                 |
| -18Ry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30.03            | V                 |
| 3B15644-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50.169           | added 50 Mb DFHze |
| -2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 50.05            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 148            |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
| - Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Marie Mari |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                   |

| Form:  | GN1   | 66-02  |
|--------|-------|--------|
| Rev. D | Date: | 8/5/05 |

QC Review\_\_\_\_\_



| Reagent I   | nformation Log |
|-------------|----------------|
| Test Name:_ | pH             |

GN 71685

### Reagent

| pH 2 Buffer Solution  | FICHER LOT#115910 EXP 11/30/13   |
|-----------------------|----------------------------------|
| pH 4 Buffer Solution  | BDH LOT#2110255 EXP 9/30/13      |
| pH 7 Buffer Solution  | RICCA LOT#2111388 EXP 10/30/13   |
| pH 10 Buffer Solution | FISCHER LOT#105427 EXP 09/30/12  |
| pH 13 Buffer Solution | AQUA SOL. LOT#1080516 EXP 08/30/ |
|                       |                                  |

Form: GN087-01 Rev. Date:9/5/2012





| Test: Redox Potential | Test Code: REDOX           | Analyst:      | SANJAYA  |  |
|-----------------------|----------------------------|---------------|----------|--|
| Matrix: Aqueous       | Method: ASTM D1498-76      | Date:         | 09/07/12 |  |
| Matrix: Solid         | Method: ASTM D1498-76 Mod. | GN Batch ID:  | GN71686  |  |
|                       |                            | Temp (Deg C): | 25       |  |

| Quality Control Summary    |          |       |       |       |        |         |
|----------------------------|----------|-------|-------|-------|--------|---------|
| Sample ID: GN71686-D1      | Results: | 390.1 | Dup:  | 444.2 | % RPD: | 12.97%  |
| Ferrous-Ferric True: 675   | -        |       | Found | 654.3 | % Rec  | 96.93%  |
| pH 4 Quinhydrone True: 462 |          |       | Found | 496.5 | % Rec  | 107.47% |
| pH 4 Quinhydrone True: 462 |          |       | Found | 460.9 | % Rec  | 99.76%  |
| pH 4 Quinhydrone True: 462 |          |       | Found |       | % Rec  |         |
| pH 7 Quinhydrone True: 285 |          |       | Found | 272.8 | % Rec  | 95.72%  |
| pH 7 Quinhydrone True: 285 |          |       | Found | 266.1 | % Rec  | 93.37%  |
| pH 7 Quinhydrone True: 285 |          |       | Found |       | % Rec  |         |

| Sample #:               | mv vs. Ag/AgCl<br>Electrode            | Corrected results (mv<br>vs. Hydrogen electrode) *** |
|-------------------------|----------------------------------------|------------------------------------------------------|
| Ferrous-Ferric Solution | 470.6                                  | 654.3                                                |
| pH 4 Quinhydrone        | 312.8                                  | 496.5                                                |
| pH 7 Quinhydrone        | 89                                     | 272.8                                                |
| Dup GN71686-D1          | 260.1                                  | 444.2                                                |
| 1. JB14858-16           | 47.4                                   | 231.1                                                |
| 2. JB14858-18           | 205.7                                  | 390.1                                                |
| 3. JB15520-1            | 68.8                                   | 252.6                                                |
| 4. JB15520-2            | 64.9                                   | 248.7                                                |
| 5. JB15520-3            | -51.8                                  | 131.9                                                |
| 6. JB15520-8            | -48                                    | 134.7                                                |
| 7. JB15520-9            | -25.7                                  | 158                                                  |
| 8. JB15644-1            | 127                                    | 310.7                                                |
| 9. JB15644-2            | 172.6                                  | 356.4                                                |
| pH 4 Quinhydrone        | 277.2                                  | 460.9                                                |
| pH 7 Quinhydrone        | 82.4                                   | 266.1                                                |
| 10.                     | <del></del>                            |                                                      |
| 11.                     |                                        |                                                      |
| 12.                     |                                        |                                                      |
| 13.                     |                                        |                                                      |
| 14.                     |                                        |                                                      |
| 15.                     |                                        |                                                      |
| 16.                     | · · · · · · · · · · · · · · · · · · ·  |                                                      |
| 17.                     |                                        |                                                      |
| 18.                     |                                        |                                                      |
| 19.                     |                                        |                                                      |
| pH 4 Quinhydrone        | ************************************** |                                                      |
| pH 7 Quinhydrone        | 11. 1-11. 10.1                         |                                                      |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers: | Redox Standard: GNE-31 | 456-ORP Exp:9/15/12 |         |       |                                        |
|------------------|------------------------|---------------------|---------|-------|----------------------------------------|
|                  |                        |                     | 11      | O /   | ************************************** |
| Comments:        |                        |                     | $H_{i}$ | (1) [ |                                        |
|                  |                        |                     |         | 711/  |                                        |
| Analyst: S.A.    | Date: 09/07/12         | QC Reviewer:        |         | TIV   | Date:                                  |

F/N GN141.DOC

Rev. Date: 3/27/2007



| . 4                       | ,   |      |   |          |
|---------------------------|-----|------|---|----------|
| EV:                       |     |      |   |          |
| 1/1 1/2<br>and the second | 1.1 |      |   |          |
|                           | AC  |      | ~ | CT       |
| ~~~                       |     | ساسا |   | ه ا الله |

|           |   | ζ | X        |   |
|-----------|---|---|----------|---|
| Balance # | # | _ | <u>ں</u> | _ |

| Analyst S.A      |
|------------------|
| Method EH PIF    |
| Prep Date 9/7/12 |
| GP# GN7685-PH    |
| GN7/686-RH       |

Sample Prep Log

| Sample ID                             | Sample Size                           | Final Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       | I                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3/3/5520-1                            | 50.25g<br>50.66g                      | added SOuLN7/1/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -2                                    | 20.66g                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -3                                    | 50.735                                | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -8                                    | 50.39                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -1                                    | 50.24,                                | ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3B14858-16                            | 50.91c                                | added 300 L Dollac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -18                                   | 30.865                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -18A.                                 | 30.03                                 | √ √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5B15644-)                             | 50.162                                | added 50 MLDFItze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -2                                    | SD.053                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | - 10 Marian                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                       | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                       |                                       | Add to the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of |
|                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| · · · · · · · · · · · · · · · · · · · | <u> </u>                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Form:  | GN1   | 66-02  |
|--------|-------|--------|
| Rev. D | Date: | 8/5/05 |

QC Review\_





Test: PH, Corrosivity Method: SW846 9040B or SW846 9045C Product PH CORR
Analyst: SANJAYA

 GN Batch ID:
 GN71733

 Thermometer ID: 6539
 Analysis Date:
 9/8/2012

 Correction Factor: 0
 pH Meter ID:
 50

Duplicate ID: GN71733-D1
Dup Result: 8.33

Sample ID: JB14858-1

RPD: 3.54%

Cowly 160 09/10

|                  | Wt./Vol. used | Uncorrected/<br>Corrected Temp in |        |             |              |
|------------------|---------------|-----------------------------------|--------|-------------|--------------|
| Sample ID        | for soilds    | Deg C.                            | Result | Corrosivity | Read time    |
| Buffer Check: 4  | 10: 00:100    | 25                                | 4.02   | I           | 12:33        |
| Buffer Check: 7  |               | 25                                | 6.99   |             | 12.00        |
| Buffer Check: 10 |               | 25                                | 9.99   |             |              |
| GN71733-D1       |               | 25                                | 8.33   |             |              |
| JB14805-4        |               | 25                                | 6.55   |             | <u> </u>     |
| JB14844-6        |               | 25                                | 8.32   |             | <del> </del> |
| JB14850-12       |               | 25                                | 8.21   |             |              |
| JB14850-6        |               | 25                                | 8.01   |             |              |
| JB14858-1        |               | 25                                | 8.63   |             |              |
| JB14858-10       |               | 25                                | 7.84   |             | 1            |
| JB14858-11       |               | 25                                | 7.91   |             | -            |
| JB14858-12       |               | 25                                | 7.89   |             |              |
| JB14858-13       |               | 25                                | 8.17   |             | <u> </u>     |
| Buffer Check: 4  |               | 25                                | 4.04   |             |              |
| Buffer Check: 10 |               | 25                                | 10.00  |             |              |
| JB14858-14       |               | 25                                | 8.25   |             |              |
| JB14858-15       |               | 25                                | 9.69   |             |              |
| JB14858-2        |               | 25                                | 8.52   |             |              |
| JB14858-3        |               | 25                                | 7.93   |             |              |
| JB14858-4        |               | 25                                | 7.46   |             | 1            |
| JB14858-5        |               | 25                                | 7.36   |             |              |
| JB14858-6        |               | 25                                | 8.04   |             |              |
| JB14858-7        |               | 25                                | 8.15   |             |              |
| JB14858-8        |               | 25                                | 9.20   |             |              |
| JB14858-9        |               | 25                                | 9.51   |             |              |
| Buffer Check: 7  |               | 25                                | 7.03   |             |              |
| Buffer Check: 10 |               | 25                                | 10.02  |             | 13:11        |
|                  | ·             |                                   |        |             |              |
|                  |               |                                   |        |             |              |
|                  |               |                                   |        |             |              |
|                  |               |                                   |        |             |              |
|                  |               |                                   |        |             |              |
|                  |               |                                   |        |             |              |
|                  |               |                                   |        |             |              |
|                  |               |                                   |        |             |              |
|                  |               |                                   |        |             |              |
|                  |               |                                   |        |             |              |
| Buffer Check:    |               |                                   |        |             |              |
| Buffer Check:    |               |                                   | 1      |             |              |
| Comm             | nente:        |                                   | XII    | 9/          |              |

Comments:

Validated By: Nancy Cole

Document Control #: AGN-PH CORR-AQ-01

Validated Date: 8/7/2012





Balance #\_\_\_\_\_\_\_\_\_

| Analyst A         |
|-------------------|
| Method = HP/+     |
| Prep Date 9/7/1 2 |
| GP# (J-W71733-pH  |
| GN71734eH         |

Sample Prep Log

|            | Sample Frep L | .09             |
|------------|---------------|-----------------|
| Sample ID  | Sample Size   | Final Volume    |
| 3/312844-6 | 50.68         | added SONLPFIRE |
| 3B14850-6  | 50.932        | Γ .             |
| -12        | 50.25         |                 |
| 3/314858-1 | 50.32         |                 |
| -1Rp.      | 50.79x        |                 |
| - 2 !      | 5U.55g        |                 |
| -3         | 50663         |                 |
| -4         | 50.535        |                 |
| -5         | 50945         | ·               |
| -6         | 56.135        |                 |
| 7          | 50375         |                 |
| -8         | 50313         | ·               |
| -9         | 50.08         |                 |
| -10        | 50259         |                 |
| -1)        | 50.25         |                 |
| -12        | 570 1702      |                 |
| -3         | 5000          |                 |
| -14        | SD-94x        |                 |
| -15        | 500/5         |                 |
| 7/3/4805-4 | 50818         | <u> </u>        |
|            |               |                 |
|            |               |                 |
|            |               |                 |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_\_



| Reagent    | Information Log |
|------------|-----------------|
| Гest Name։ | pH              |

GN 71733

### Reagent

| pH 2 Buffer Solution  | FICHER LOT#115910 EXP 11/30/13  |
|-----------------------|---------------------------------|
| pH 4 Buffer Solution  | BDH LOT#2110255 EXP 9/30/13     |
| pH 7 Buffer Solution  | RICCA LOT#2111388 EXP 10/30/13  |
| pH 10 Buffer Solution | FISCHER LOT#105427 EXP 09/30/12 |
| pH 13 Buffer Solution | AQUA SOL. LOT#1080516 EXP 08/30 |
|                       |                                 |

Form: GN087-01 Rev. Date:9/5/2012





Test: Redox Potential

Matrix: Aqueous ○

Matrix: Solid ●

Test Code: REDOX Method: ASTM D1498-76 Method: ASTM D1498-76 Mod. 
 Analyst:
 SANJAYA

 Date:
 09/08/12

 GN Batch ID:
 GN71734

Temp (Deg C): \_\_\_\_\_\_25\_\_

| Quality Contr |                 | _        |       |       |       |        |         |
|---------------|-----------------|----------|-------|-------|-------|--------|---------|
| Sample ID:    | GN71734-D1      | Results: | 335.7 | Dup:  | 284.4 | % RPD: | 16.55%  |
| Ferrous-Ferri | c True: 675     | -        |       | Found | 648.7 | % Rec  | 96.10%  |
|               | Irone True: 462 |          |       | Found | 499.2 | % Rec  | 108.05% |
|               | Irone True: 462 |          |       | Found | 468.8 | % Rec  | 101.47% |
|               | Irone True: 462 |          |       | Found | 469.3 | % Rec  | 101.58% |
|               | Irone True: 285 |          |       | Found | 297.9 | % Rec  | 104.53% |
| ,             | Irone True: 285 |          |       | Found | 275   | % Rec  | 96.49%  |
|               | Irone True: 285 |          |       | Found | 275   | % Rec  | 96.49%  |

| Sample #:               | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv<br>vs. Hydrogen electrode)<br>*** |
|-------------------------|-----------------------------|---------------------------------------------------------|
| Ferrous-Ferric Solution | 452.1                       | 648.7                                                   |
| pH 4 Quinhydrone        | 302.6                       | 499.2                                                   |
| pH 7 Quinhydrone        | 101.3                       | 297.9                                                   |
| Dup GN71734-D1          | 87.7                        | 284.4                                                   |
| 1. JB14844-6            | 146.4                       | 343                                                     |
| 2. JB14850-12           | 161.7                       | 358.2                                                   |
| 3. JB14850-6            | 167.7                       | 364.3                                                   |
| 4. JB14858-1            | 139                         | 335.7                                                   |
| 5. JB14858-10           | 52                          | 248.6                                                   |
| 6. JB14858-11           | 85                          | 281.6                                                   |
| 7. JB14858-12           | -38.2                       | 158.4                                                   |
| 8. JB14858-13           | 137.9                       | 344.5                                                   |
| 9. JB14858-14           | 137                         | 333.6                                                   |
| pH 4 Quinhydrone        | 272.3                       | 468.8                                                   |
| pH 7 Quinhydrone        | 78.4                        | 275                                                     |
| 10. JB14858-15          | 37                          | 233.6                                                   |
| 11. JB14858-2           | 71.7                        | 268.2                                                   |
| 12. JB14858-3           | 74.4                        | 271                                                     |
| 13. JB14858-4           | 42                          | 238.6                                                   |
| 14. JB14858-5           | 20.4                        | 217                                                     |
| 15. JB14858-6           | 134.7                       | 331.2                                                   |
| 16. JB14858-7           | 194.4                       | 346                                                     |
| 17. JB14858-8           | 70                          | 266.6                                                   |
| 18. JB14858-9           | 48.5                        | 245.1                                                   |
| 19.                     |                             |                                                         |
| pH 4 Quinhydrone        | 272.8                       | 469.3                                                   |
| pH 7 Quinhydrone        | 78.4                        | 275                                                     |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers: | Redox Standard: GNE-31 | 456-ORP Exp:9/15/12 |      |       |  |
|------------------|------------------------|---------------------|------|-------|--|
| Comments:        |                        |                     | 1110 |       |  |
| Analyst: S.A.    | Date: <u>09/08/12</u>  | QC Reviewer:        | M    | Date: |  |

F/N GN141.DOC

Rev. Date: 3/27/2007



| MA AND      |       |      |
|-------------|-------|------|
|             |       |      |
|             |       | •—   |
|             | J I 💻 | 3 I. |
|             |       | - 8  |
| <b>ACCU</b> | JTES  | šΤ.  |

Balance # 3 5

Analyst S. A.

Method = 14/1/1

Prep Date 9/7/12

GP# G-W7/733-PH

GN 7/734-EH

Sample Prep Log

| Sample ID        | Sample Size    | Final                                 | Volume   |
|------------------|----------------|---------------------------------------|----------|
| 3B14850-6<br>-12 | 50.68          | added So                              | NLPHEN   |
| 31514850-6       | 50.932         |                                       |          |
| -12              | \$10.25        |                                       |          |
| 3/314858-1       | 5.0.32g        |                                       | -        |
| -Inp.            | 50.798         |                                       |          |
| -2 '             | 50.553         |                                       | ·        |
| -3               | 50.663         |                                       |          |
| -4               | 50.5.38        |                                       |          |
| -5               | 50945          |                                       |          |
| -6               | <u>56.15g</u>  |                                       |          |
| 7                | <u>50375</u>   |                                       |          |
| -8               | 50313          |                                       |          |
|                  | 50.0g          |                                       |          |
| -10              | 5025           | · · · · · · · · · · · · · · · · · · · |          |
| 450              | \$0.25         |                                       |          |
| -(2              | 50.5%          |                                       |          |
|                  |                |                                       |          |
| -14              | <u>50.94</u> y |                                       |          |
| (5)              | 50,619         |                                       |          |
| 7/3/4805-4       | 50.81g         |                                       | <u> </u> |
|                  |                |                                       |          |
| ***              |                |                                       |          |
|                  |                | ·                                     |          |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_\_\_\_\_



### **Hexavalent Chromium**

| Analyses   Detect   First   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart   Cart    | R   | MDL                | Units   | Final Conc.<br>60A, 7196A                        |           | (g)<br>Method: |                   | X Values<br>Conc(mg/l)                  | Sample<br>Absorbance | Analysis<br>Times                       | BKGRD Abs    | Sample Absorbance XCRA GN71774 MM     | Sample # Test Title: GN Batch: Analyst: |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|---------|--------------------------------------------------|-----------|----------------|-------------------|-----------------------------------------|----------------------|-----------------------------------------|--------------|---------------------------------------|-----------------------------------------|
| Call Bilk   0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                    | •       | vet weight basis                                 | wn on a v | elow sno       | results be        | Note: All I                             |                      |                                         |              |                                       |                                         |
| STD 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                    | 0.99986 | Corr. Coef:                                      |           |                | 1                 | 0.0000                                  | 0.000                | l :                                     |              | 0.000                                 | 100 p.                                  |
| STD 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                    | 0.9199  | Slope:                                           |           |                |                   |                                         |                      |                                         |              |                                       | +                                       |
| STD 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                    |         |                                                  |           |                |                   | *************************************** |                      |                                         |              |                                       |                                         |
| STD 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                    | -0.0007 | Y intercept:                                     |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| STO 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                    |         |                                                  |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| CCV 0.433 NA 115.84 0.433 0.435 NA NA NA NA NA NA NA NA MPG 0.00 CCB 0.000 NA 15.844 0.000 0.0000 NA NA NA NA NA NA NA MPG 0.00 GPEYS1.481 0.806 0.000 1.000 0.000 1.000 0.0000 1.00.0 1.0000 1.00.0 1.0000 1.00.0 1.0000 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 1.00.0 |     |                    |         |                                                  |           | Sam. Wt.       | <u>Final Vol.</u> |                                         |                      | <del></del>                             |              |                                       | _                                       |
| CCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RI  | MDL                |         |                                                  |           |                |                   | -                                       |                      |                                         |              |                                       |                                         |
| GP87051-MBI   0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0 | 0.003              |         | · · · · · · · · · · · · · · · · · · ·            |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| GPR7051-S1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.5 | 0.147              |         | <del>                                     </del> |           |                |                   |                                         |                      |                                         |              |                                       | GP67051-MB1                             |
| GPP7051-DP   0.035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.4 | 0.117              |         | <del></del>                                      |           |                |                   |                                         |                      | <del></del>                             |              |                                       | +                                       |
| BH488-18   0.043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.3 | 0.116<br>0.114     |         | <del></del>                                      |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| GPR7051-B2   2   3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.4 | 0.117              |         | _                                                |           |                |                   |                                         |                      |                                         |              | <del></del>                           |                                         |
| GP67051-S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0 | 0.234              | mg/kg   | <del></del>                                      |           |                |                   |                                         |                      | 16:00                                   |              | · ·                                   |                                         |
| GP67051-B2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.4 | 0.117              |         |                                                  |           |                | _                 |                                         |                      |                                         |              | <del></del>                           |                                         |
| CPP7051-S2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20. | 5.860              |         |                                                  |           |                |                   |                                         |                      | 16:00                                   |              | -                                     | <del>-  </del>                          |
| CCB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19. | 5.837              |         | <del></del>                                      |           |                |                   |                                         |                      |                                         |              |                                       | GP67051-S2                              |
| Bit 4856-18DILCONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0 | 0.003              |         |                                                  |           |                |                   |                                         |                      | 300 A 100 W 7: 50 A 10                  |              |                                       |                                         |
| A858-18PHADJPSC    0.313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.0 | 0.003              |         | -                                                |           |                |                   |                                         |                      |                                         |              | -                                     |                                         |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8 | 0.386              |         |                                                  |           |                |                   |                                         |                      | -                                       |              |                                       |                                         |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #DI | #DIV/0!            |         |                                                  |           |                |                   |                                         | FALSE                |                                         |              |                                       |                                         |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _   | #DIV/01            |         |                                                  |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _   | #DIV/0!            |         | +                                                |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _   | #DIV/0!            |         |                                                  |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| CCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #DI | #DIV/0!            |         | #DIV/0!                                          | 1         |                | 100.0             | 0.0008                                  | FALSE                |                                         |              |                                       |                                         |
| CCV         0.429         NA         16:13         0.429         0.4672         NA         NDIVIOI         mg/kg         #DIVIOI         Mg/kg </td <td>_</td> <td>#DIV/0!</td> <td></td> <td><del>                                     </del></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   | #DIV/0!            |         | <del>                                     </del> |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| CCB         0.000         NA         IIII 8:13         0.000         0.0008         NA         NA         NA         NA         MA         mg/ft         ⊕DIV/01           FALSE         0.0008         100.0         1         #DIV/01         mg/ftg         #DIV/01           CCV         0.435         NA         16:37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | #DI | 0.003              |         |                                                  |           | NA NA          |                   |                                         |                      | 16.13                                   | NA NA        | 0.429                                 | ccv                                     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0 | 0.003              |         | <del> </del>                                     |           |                |                   |                                         |                      | 111111111111111111111111111111111111111 |              |                                       | ССВ                                     |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _   | #DIV/0!            |         |                                                  |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | #DIV/0!            |         | <del></del>                                      |           |                |                   |                                         |                      |                                         |              |                                       | -                                       |
| FALSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _   | #DIV/0!            |         | <del>                                     </del> |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV CCV 0.435 NA 16:37 0.435 0.4737 NA NA NA NA NA MA MA MG/kg #DIV CCB 0.000 NA 16:37 0.000 0.0008 NA NA NA NA NA MA MA MG/kg #DIV JB14848-1 0.020 0.006 16:44 0.014 0.0160 100.0 2.5300 1 0.633 mg/kg 0.11 JB14848-2 0.006 0.006 16:44 0.000 0.0008 NA NA NA NA NA MG/kg 0.11 JB14848-3 0.089 0.059 16:44 0.030 0.0334 100.0 2.5000 1 0.031 mg/kg 0.11 JB14848-5 0.034 0.024 16:44 0.016 0.0182 100.0 2.5700 1 0.708 mg/kg 0.11 JB14848-6 0.062 0.009 16:44 0.010 0.0117 100.0 2.5200 1 0.463 mg/kg 0.11 JB14848-7 0.067 0.014 16:44 0.053 0.0584 100.0 2.5500 1 2.291 mg/kg 0.11 JB14848-8 0.062 0.009 16:44 0.053 0.0584 100.0 2.5500 1 2.291 mg/kg 0.11 JB14848-9 0.018 0.000 16:44 0.053 0.0584 100.0 2.5500 1 2.291 mg/kg 0.11 JB14848-9 0.018 0.000 16:44 0.053 0.0584 100.0 2.5500 1 0.030 mg/kg 0.11 JB14848-9 0.018 0.000 16:44 0.053 0.0584 100.0 2.5500 1 0.030 mg/kg 0.11 JB14848-9 0.018 0.000 16:44 0.053 0.0584 100.0 2.5500 1 0.0796 mg/kg 0.11 JB14848-9 0.018 0.000 16:44 0.058 0.0291 100.0 2.5000 1 1.163 mg/kg 0.11 JB14848-9 0.018 0.000 16:44 0.018 0.0204 100.0 2.5600 1 0.0796 mg/kg 0.11 JB14848-9 0.018 0.000 16:44 0.018 0.0204 100.0 2.5600 1 0.032 mg/kg 0.11 JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5600 1 0.032 mg/kg 0.11 JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5600 1 0.032 mg/kg 0.11 JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5600 1 0.032 mg/kg 0.11 JB14848-10 0.006 0.006 16:44 0.000 0.0008 100.0 1 1 #DIV/0! mg/kg #DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                               | #DI | #DIV/0!            |         |                                                  | 1         |                |                   |                                         | FALŞE                |                                         |              |                                       |                                         |
| FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV  FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV  CCV 0.435 NA 16:37 0.435 0.4737 NA NA NA NA NA MA MA mg/l 0.00  JB14848-1 0.020 0.006 16:44 0.014 0.0160 100.0 2.5300 1 0.833 mg/kg 0.11  JB14848-2 0.008 0.006 16:44 0.000 0.0008 100.0 2.5000 1 0.031 mg/kg 0.11  JB14848-3 0.089 0.059 16:44 0.030 0.0334 100.0 2.5000 1 0.708 mg/kg 0.11  JB14848-4 0.042 0.026 16:44 0.016 0.0182 100.0 2.5700 1 0.708 mg/kg 0.11  JB14848-5 0.034 0.024 16:44 0.010 0.0117 100.0 2.5200 1 0.463 mg/kg 0.11  JB14848-6 0.062 0.009 16:44 0.053 0.0584 100.0 2.5500 1 2.291 mg/kg 0.11  JB14848-8 0.062 0.009 16:44 0.053 0.0584 100.0 2.5000 1 2.309 mg/kg 0.11  JB14848-8 0.062 0.009 16:44 0.053 0.0584 100.0 2.5000 1 1.163 mg/kg 0.11  JB14848-9 0.018 0.000 16:44 0.053 0.0584 100.0 2.5000 1 0.463 mg/kg 0.11  JB14848-9 0.018 0.000 16:44 0.053 0.0584 100.0 2.5000 1 0.796 mg/kg 0.11  JB14848-9 0.018 0.000 16:44 0.026 0.0291 100.0 2.5000 1 0.796 mg/kg 0.11  JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5000 1 0.796 mg/kg 0.11  JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5000 1 0.796 mg/kg 0.11  JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5000 1 0.796 mg/kg 0.11  JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5000 1 0.032 mg/kg 0.11  JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5000 1 0.032 mg/kg 0.11  JB14848-10 0.006 0.006 16:44 0.018 0.0204 100.0 2.5000 1 0.032 mg/kg 0.11  JB14848-10 0.000 16:44 0.018 0.0204 100.0 2.5000 1 0.032 mg/kg 0.11  JB14848-10 0.000 0.006 16:44 0.018 0.0204 100.0 2.5000 1 0.032 mg/kg 0.11  JB14848-10 0.000 0.006 16:44 0.018 0.0204 100.0 1.1 #DIV/0! mg/kg #DIV  FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV                                                                                                                                                                                                                                                                                                                                                                                            | _   | #DIV/0!            |         | <del> </del>                                     |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV  CCV 0.435 NA 16:37 0.435 0.4737 NA NA NA NA NA MA mg/l 0.00  JB14B48-1 0.020 0.006 16:44 0.014 0.0160 100.0 2.5300 1 0.633 mg/kg 0.11  JB14B48-2 0.006 0.008 16:44 0.000 0.0008 100.0 2.5500 1 0.031 mg/kg 0.11  JB14B48-3 0.089 0.059 16:44 0.030 0.0334 100.0 2.4900 1 1.342 mg/kg 0.11  JB14B48-4 0.042 0.026 16:44 0.016 0.0182 100.0 2.5700 1 0.708 mg/kg 0.11  JB14B48-5 0.034 0.024 16:44 0.010 0.0117 100.0 2.5200 1 0.463 mg/kg 0.11  JB14B48-6 0.062 0.009 16:44 0.053 0.0584 100.0 2.5500 1 2.291 mg/kg 0.11  JB14B48-7 0.067 0.014 16:44 0.053 0.0584 100.0 2.5500 1 2.291 mg/kg 0.11  JB14B48-8 0.026 0.000 16:44 0.053 0.0584 100.0 2.5500 1 2.291 mg/kg 0.11  JB14B48-9 0.018 0.000 16:44 0.053 0.0584 100.0 2.5500 1 2.309 mg/kg 0.11  JB14B48-9 0.018 0.000 16:44 0.026 0.0291 100.0 2.5000 1 1.163 mg/kg 0.11  JB14B48-9 0.018 0.000 16:44 0.026 0.0291 100.0 2.5000 1 1.163 mg/kg 0.11  JB14B48-1 0.006 0.006 16:44 0.018 0.0204 100.0 2.5000 1 0.032 mg/kg 0.11  JB14B48-1 0.006 0.006 16:44 0.007 0.0008 NA NA NA NA MA MA MA MA MA MA MA MA MA MA MA MA MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     | #DIV/0!<br>#DIV/0! |         | <del></del>                                      |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| CCV         0.435         NA         16:37         0.435         0.4737         NA         NA         NA         NA         NA         MA         NA         NA         NA         MA         NA         MA         NA         MA         NA         MA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _   | #DIV/0!            |         | <del> </del>                                     |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| CCB         0.000         NA         18:37         0.000         0.0008         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | #DIV/0!            |         |                                                  |           |                |                   |                                         |                      |                                         |              | 0.105                                 | 000                                     |
| JB14848-1         0.020         0.066         16:44         0.014         0.0160         100.0         2.5300         1         0.633         mg/kg         0.11           JB14848-2         0.006         0.008         16:44         0.000         0.0008         100.0         2.5600         1         0.031         mg/kg         0.11           JB14848-3         0.089         0.059         16:44         0.030         0.0334         100.0         2.4900         1         1.342         mg/kg         0.11           JB14848-4         0.042         0.026         16:44         0.016         0.0182         100.0         2.5700         1         0.708         mg/kg         0.11           JB14848-5         0.034         0.024         16:44         0.010         0.0117         100.0         2.5200         1         0.463         mg/kg         0.11           JB14848-6         0.062         0.009         16:44         0.053         0.0584         100.0         2.5500         1         2.291         mg/kg         0.11           JB14848-7         0.067         0.014         16:44         0.053         0.0584         100.0         2.5000         1         1.163         mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0 | 0.003              |         |                                                  |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| JB14848-2         0.006         0.006         16:44         0.000         0.0008         100.0         2.5600         1         0.031         mg/kg         0.11           JB14848-3         0.089         0.059         16:44         0.030         0.0334         100.0         2.4900         1         1.342         mg/kg         0.11           JB14848-4         0.042         0.026         16:44         0.016         0.0182         100.0         2.5700         1         0.708         mg/kg         0.11           JB14848-5         0.034         0.024         16:44         0.010         0.0117         100.0         2.5200         1         0.483         mg/kg         0.11           JB14848-6         0.062         0.009         16:44         0.053         0.0584         100.0         2.5300         1         2.291         mg/kg         0.11           JB14848-8         0.067         0.014         16:44         0.053         0.0584         100.0         2.5300         1         2.309         mg/kg         0.11           JB14848-9         0.026         0.020         100.0         2.5000         1         1.163         mg/kg         0.11           JB14848-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 | 0.003              |         | <del></del>                                      |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| JB14848-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.3 | 0.114              |         | 0.031                                            |           |                |                   | 8,000.0                                 | 0.000                |                                         | <del></del>  | 0.006                                 | JB14848-2                               |
| JB14848-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4 | 0.118              |         |                                                  |           |                |                   |                                         |                      |                                         |              | <del> </del>                          |                                         |
| JB14848-6   0.062   0.009   16:44   0.053   0.0584   100.0   2.5500   1   2.291   mg/kg   0.11     JB14848-7   0.067   0.014   16:44   0.053   0.0584   100.0   2.5300   1   2.309   mg/kg   0.11     JB14848-8   0.026   0.000   16:44   0.026   0.0291   100.0   2.5000   1   1.163   mg/kg   0.11     JB14848-9   0.018   0.000   16:44   0.018   0.0204   100.0   2.5600   1   0.796   mg/kg   0.11     JB14848-10   0.006   0.006   16:44   0.000   0.0008   100.0   2.4800   1   0.032   mg/kg   0.11     CCV   0.432   NA   16:44   0.432   0.4704   NA   NA   NA   NA   mg/l   0.00     CCB   0.000   NA   16:45   0.000   0.0008   100.0   1   #DIV/0!   mg/kg   #DIV     FALSE   0.0008   100.0   1   #DIV/0!   mg/kg   #DIV     FALSE   0.0008   100.0   1   #DIV/0!   mg/kg   #DIV     FALSE   0.0008   100.0   1   #DIV/0!   mg/kg   #DIV     FALSE   0.0008   100.0   1   #DIV/0!   mg/kg   #DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.3 | 0.114              |         |                                                  |           |                |                   |                                         |                      |                                         |              |                                       | _                                       |
| JB14848-8         0.026         0.000         16:44         0.026         0.0291         100.0         2.5000         1         1.163         mg/kg         0.11           JB14848-9         0.018         0.000         16:44         0.018         0.0204         100.0         2.5600         1         0.796         mg/kg         0.11           JB14848-10         0.006         0.006         16:44         0.000         0.0008         100.0         2.4800         1         0.032         mg/kg         0.11           CCV         0.432         NA         16:44         0.432         0.4704         NA         NA         NA         NA         mg/kg         0.00           CCB         0.000         NA         16:45         0.000         0.0008         NA         NA         NA         NA         NA         mg/kg         #DIV/o!         mg/kg         #DIV/o!           FALSE         0.0008         100.0         1         #DIV/o!         mg/kg         #DIV/o!           FALSE         0.0008         100.0         1         #DIV/o!         mg/kg         #DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.3 | 0.115              |         | <del> </del>                                     |           |                |                   |                                         |                      |                                         |              | · · · · · · · · · · · · · · · · · · · |                                         |
| JB14848-9         0.018         0.000         16.44         0.018         0.0204         100.0         2.5600         1         0.796         mg/kg         0.11           JB14848-10         0.006         0.006         16:44         0.000         0.0008         100.0         2.4800         1         0.032         mg/kg         0.11           CCV         0.432         NA         16:44         0.432         0.4704*         NA         NA         NA         NA         NA         MA         NA         NA         MA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.3 | 0.116              |         | 1                                                |           |                |                   |                                         |                      |                                         | <del> </del> |                                       |                                         |
| JB14848-10   0.006   0.006   16:44   0.000   0.0008   100.0   2.4800   1   0.032   mg/kg   0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.4 | 0.117              |         | +                                                |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| CCV         0.432         NA         16:44         0.432         0.4704         NA         NA         NA         NA         NA         MA         MA         MA         MA         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0 | 0.114              |         | <del></del>                                      |           |                |                   |                                         |                      |                                         |              |                                       |                                         |
| FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 | 0.003              |         |                                                  |           |                |                   |                                         |                      | -                                       | <del></del>  |                                       | CCV                                     |
| FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 | 0.003              |         |                                                  |           | NA             |                   |                                         | •                    | 16:45                                   | NA NA        | 0.000                                 | ССВ                                     |
| FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | #DIV/0!            |         |                                                  |           |                |                   |                                         |                      |                                         |              |                                       | -                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   | #DIV/0!            |         |                                                  |           |                |                   |                                         |                      |                                         |              |                                       | <u> </u>                                |
| FALSE 0.0008 100.0 1 #DIV/0! mg/kg #DIV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   | #DIV/0!            | mg/kg   | #DIV/0!                                          | 1         |                | 100.0             | 0.0008                                  | FAL\$E               |                                         |              |                                       |                                         |

| QC       | Reports:   |                                                  |              |                                                    |                |                   |                |                  |          | GN71774        |                |         |                  |
|----------|------------|--------------------------------------------------|--------------|----------------------------------------------------|----------------|-------------------|----------------|------------------|----------|----------------|----------------|---------|------------------|
|          | -          | 1                                                |              | ,                                                  | FALSE          | 0.0008            | 100.0          |                  | 1        | #DIV/0!        | mg/kg          | #DIV/0! | #DIV/0!          |
|          | 1          |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          |                  | 1        | #DIV/0!        | mg/kg          | #DIV/01 | #DIV/0!          |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          |                  | 11       | #DIV/01        | mg/kg          | #DIV/0! | #DIV/0!          |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          |                  | 1        | #DIV/0!        | mg/kg          | #DIV/0! | #DIV/0!          |
|          | 001/       |                                                  | <u> </u>     | 10 March 2 N 2                                     | FALSE          | 0.0008            | 100.0          | 414              | 1        | #DIV/01        | mg/kg          | #DIV/0! | #DIV/01<br>0.010 |
|          | CCV        | 0.434                                            | NA<br>NA     | 17:06                                              | 0.434          | 0.4726            | NA<br>NA       | NA<br>NA         | NA<br>NA | NA<br>NA       | mg/l<br>mg/l   | 0.003   | 0.010            |
| $\vdash$ | JB14848-11 | 0.000                                            | 0.004        | 1 <b>7:06</b><br>17:10                             | 0.000          | 0.0008            | 100.0          | 2.5000           | 1        | 0.510          | mg/kg          | 0.003   | 0.400            |
|          | JB14848-12 | 0.019                                            | 0.004        | 17:10                                              | 0.006          | 0.0073            | 100.0          | 2.5600           | 1        | 0.286          | mg/kg          | 0.117   | 0.391            |
|          | JB14848-13 | 0.079                                            | 0.014        | 17:10                                              | 0.065          | 0.0715            | 100.0          | 2.5000           | 1        | 2.858          | mg/kg          | 0.117   | 0.400            |
| 1        | JB14848-14 | 0.030                                            | 0.007        | 17:10                                              | 0.023          | 0.0258            | 100.0          | 2.5200           | 1        | 1.024          | mg/kg          | 0.116   | 0.397            |
|          | JB14848-15 | 0.015                                            | 0.001        | 17:10                                              | 0.014          | 0.0160            | 100.0          | 2.5500           | 1        | 0.628          | mg/kg          | 0.115   | 0.392            |
|          | JB14848-16 | 0.008                                            | 0.001        | 17:10                                              | 0.007          | 0.0084            | 100.0          |                  | 1        | #DIV/0!        | mg/kg          | #DIV/0! | #DIV/0!          |
|          |            |                                                  |              |                                                    | FALSE          | 8000.0            | 100.0          |                  | 1        | #DIV/0!        | mg/kg          | #DIV/0! | #DIV/0!          |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          |                  | 1        | #DIV/0!        | mg/kg          | #DIV/0! | #DIV/0!          |
|          |            | <u> </u>                                         |              |                                                    | FALSE          | 8000.0            | 100.0          |                  | 1        | #DIV/0!        | mg/kg          | #DIV/0! | #DIV/0!          |
|          | 001        |                                                  |              | 811 11:00 <b>2</b> 2:00 <b>2</b> 2:00 0            | FALSE          | 0.0008            | 100.0          |                  | 1        | #DIV/0!        | mg/kg          | #DIV/0! | #DIV/0!<br>0.010 |
|          | CCV        | 0.433                                            | NA<br>NA     | 17:10<br>17:10                                     | 0.433          | 0.4715            | NA<br>NA       | NA<br>NA         | NA<br>NA | NA<br>NA       | mg/l           | 0.003   | 0.010            |
| -        | CCB        | 0.000                                            | NA.          | 17:10                                              | 0.000<br>FALSE | 0.0008 /          | NA<br>100.0    | 2.5000           | 1        | 0.032          | mg/l<br>mg/kg  | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            | 1                                                |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0,032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            | ļ                                                | ļ            | - 198W.2 -                                         | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
| -        | CCV        |                                                  | NA NA        | 5. 17. 22.                                         |                | #VALUE!           | NA<br>NA       | NA<br>NA         | NA NA    | NA<br>NA       | mg/l           | 0.003   | 0.010            |
|          | ССВ        | <u> </u>                                         | NA NA        | FOR 18 (1989) 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | FALSE          | #VALUÉ!<br>0.0008 | NA<br>100.0    | NA<br>2.5000     | NA<br>1  | NA<br>0.032    | mg/l<br>mg/kg  | 0.003   | 0.400            |
| -        |            |                                                  | <del> </del> |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            | 1                                                |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            | 1                                                |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 8000.0            | 100.0          | 2.5000           | . 1      | 0.032          | mg/kg          | 0.117   | 0.400            |
| ļ        |            | ļ                                                |              |                                                    | FALŞE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              | 200000000000000000000000000000000000000            | FALSE          | 0.0008            | 100.0          | 2,5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          | ccv        | 1                                                | NA           |                                                    |                | #VALUE!           | NA NA          | NA               | NA<br>NA | NA NA          | mg/l           | 0.003   | 0.010            |
|          | ССВ        |                                                  | NA NA        |                                                    | EALGE          | #VALUE!<br>0.0008 | NA<br>100.0    | NA<br>2.5000     | NA<br>1  | NA<br>0.032    | mg/l           | 0.003   | 0.010            |
|          |            | +                                                |              |                                                    | FALSE<br>FALSE | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg<br>mg/kg | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          | <u> </u>   | 1                                                |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0,117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 11       | 0.032          | mg/kg          | 0.117   | 0.400            |
| <u> </u> |            | <u> </u>                                         |              | ļ                                                  | FALSE          | 8000.0            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
| <u> </u> |            | -                                                | 1            |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 11       | 0.032          | mg/kg          | 0.117   | 0.400            |
| <u> </u> | CCV        | <del> </del>                                     | NA NA        | . azeriet al liĝosis                               |                | #VALUE!           | NA<br>NA       | NA<br>NA         | NA<br>NA | NA<br>NA       | mg/l           | 0.003   | 0.010            |
| -        | ССВ        | +                                                | NA NA        | <u> </u>                                           | EVICE          | #VALUE!           | NA 100.0       | NA<br>2 5000     | NA<br>1  | NA<br>0.032    | mg/l           | 0.003   | 0.010            |
| <u> </u> |            | <del>                                     </del> | <del> </del> | <del> </del>                                       | FALSE          | 0.0008            | 100.0<br>100.0 | 2.5000<br>2.5000 | 1        | 0.032<br>0.032 | mg/kg<br>mg/kg | 0.117   | 0.400            |
| -        |            | +                                                |              |                                                    | FALSE<br>FALSE | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            | 1                                                |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            | 1                                                | ·            |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 8000.0            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
|          |            |                                                  |              |                                                    | FALSE          | 0.0008            | 100.0          | 2.5000           | 1        | 0.032          | mg/kg          | 0.117   | 0.400            |
| -        | CCV        | <del>                                     </del> | NA           |                                                    |                | #VALUE!           | NA             | NA NA            | NA NA    | NA NA          | mg/l           | 0.005   | 0.010            |
| L        | CCB        |                                                  | NA NA        | 41.5                                               |                | #VALUE!           | NA             | NA               | NA NA    | NA NA          | mg/l           | 0.005   | 0.010            |

revised 4/25/11 Comments:





| Test: Hexavalent Chro                        | omium                                                                           |                | 0.117 mg/kg                        | GNBatch ID: GNTTA                       |  |  |  |  |  |
|----------------------------------------------|---------------------------------------------------------------------------------|----------------|------------------------------------|-----------------------------------------|--|--|--|--|--|
| Product: XCr                                 | RDL = (                                                                         | 0.40 mg/kg     | Date: 410000                       |                                         |  |  |  |  |  |
| Method: SW846 3060A                          |                                                                                 | 11             |                                    |                                         |  |  |  |  |  |
| Digestion Batch QC St                        | •                                                                               | Units =        | • •                                | 0.40                                    |  |  |  |  |  |
| l 'A.                                        |                                                                                 | MODOR R        |                                    | RDL: 0.40 <rdl: m<="" th=""></rdl:>     |  |  |  |  |  |
| Sol. Spike Blank ID:                         | Sol. Spike Blank ID: 40.00 %Rec. 003.1%                                         |                |                                    |                                         |  |  |  |  |  |
| Insol. Spike Blank ID: 41                    | Insol. Spike Blank ID: 400 051-82 Date: 4 Result: 049 54 Spike 024 USRec.: 0490 |                |                                    |                                         |  |  |  |  |  |
| Duplicate ID: GW 1051                        | <u>⊏∭</u> Samp. Re                                                              | esult:;        | Dup. Result:_                      | <u>9755</u> %RPD: <u><b>9,</b>09</u> 6  |  |  |  |  |  |
| Soi. MS ID: G 20105                          | <u>≀−∫∫</u> Samp. Resu                                                          | ilt:           | IS Result: <u>\ 5.\ 0</u>          | 5 Spike 3168 %Rec: 31.5%                |  |  |  |  |  |
| Insol. MS ID: 490705                         | 1- <u>S2</u> Samp, Res                                                          | sult:          | MS Result:\004                     | -24-Spike:9071.0102.Rec: <u>82.1</u> 96 |  |  |  |  |  |
| Post Spike ID: UBV495                        | - 18 Samp. R                                                                    | esult:         | PS Result: 35                      | 11 Spike 40 89 %Rec: 94.0%              |  |  |  |  |  |
| Diluted Sample ID:                           | Sar                                                                             | np. Result:    | Dil. Res                           | ult: <u>.613</u> %RPD: <u>5.39</u> 6    |  |  |  |  |  |
| pH adj. PS ID:                               | Samp. R                                                                         | esult: 4       | MS Result:25                       | .72 Spike: 4009%Rectol 096              |  |  |  |  |  |
| ,                                            |                                                                                 |                |                                    |                                         |  |  |  |  |  |
| Analysis Batch QC Sumr                       | mary l                                                                          | Jnits = mg/l   |                                    |                                         |  |  |  |  |  |
| alialana                                     | 200                                                                             |                | <b>A</b> A A                       |                                         |  |  |  |  |  |
| ccv: Mood                                    | Result: 472                                                                     |                | %Rec.: 04-44                       |                                         |  |  |  |  |  |
| ccv:                                         | Result: 40                                                                      | TV: _0.500     | %Rec.: 03.4                        |                                         |  |  |  |  |  |
| CCV :                                        | Result: At                                                                      | TV: _0.500     | 4.0                                |                                         |  |  |  |  |  |
| ccv:                                         |                                                                                 | TV: _0.500     | %Rec.: 04-02                       |                                         |  |  |  |  |  |
| ccv:                                         | Result:                                                                         | TV: _0.500     | %Rec.:                             | _                                       |  |  |  |  |  |
| CCV:                                         | Result:                                                                         | TV: _0.500     | %Rec.:                             | =                                       |  |  |  |  |  |
| ccv:                                         | Result:                                                                         | TV: _0.500     | %Rec.:                             | _                                       |  |  |  |  |  |
| ccv:                                         | Result:                                                                         | TV: _0.500     | %Rec.:                             | _                                       |  |  |  |  |  |
| مارماء                                       | . 2.4.0                                                                         |                | lon                                |                                         |  |  |  |  |  |
| CCB: <u>(1)(0)(2)(2)</u>                     |                                                                                 | RDL:_0.010     | _ <rdl:<u>\</rdl:<u>               |                                         |  |  |  |  |  |
| CCB:                                         | Result:                                                                         | RDL:_0.010     | - <rdl:\< th=""><th></th></rdl:\<> |                                         |  |  |  |  |  |
| CCB:                                         | Result:                                                                         | RDL:_0.010     | _ <rdl:< th=""><th></th></rdl:<>   |                                         |  |  |  |  |  |
| CCB:                                         | Result:                                                                         | RDL:_0.010     |                                    |                                         |  |  |  |  |  |
| CCB:                                         | Result:                                                                         | RDL:_0.010     |                                    |                                         |  |  |  |  |  |
| CCB:                                         | Result:                                                                         | RDL:_0.010     | _ <rdl:< th=""><th></th></rdl:<>   |                                         |  |  |  |  |  |
| CCB:                                         |                                                                                 |                |                                    |                                         |  |  |  |  |  |
| CCB:                                         | Result:                                                                         |                |                                    |                                         |  |  |  |  |  |
| CCB:                                         | Result:                                                                         | RDL:_0.010     | _ <rdl:< th=""><th></th></rdl:<>   |                                         |  |  |  |  |  |
| 10.00                                        |                                                                                 |                |                                    |                                         |  |  |  |  |  |
| Reagent Reference In                         | formation - refe                                                                | to attached r  | eagent referen                     | ce information page(s).                 |  |  |  |  |  |
| Insoluble spike = PbCr                       |                                                                                 |                | .2 g/mol Cr = 5                    |                                         |  |  |  |  |  |
| {1000000 ug/g x Insolul                      | ble spike wt(g) x                                                               | 52/323.2}/ms s | ample wt(g) = Ir                   | soluble spike amount                    |  |  |  |  |  |
| Analyst!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | Date:(                                                                          | `              |                                    |                                         |  |  |  |  |  |

Form: GN066-01 Rev. Date: 4/25/11

Comments:\_\_\_\_



7

16:4] 16:57 16:52 16:59

### Hexavalent Chromium pH Adjustment Log Method Sw846 3060A/7196A

|                        |              |                     |          |            |                                         | Digestion Date                        | <u>. 21                                    </u>    | <del>3/2/15</del>                     |
|------------------------|--------------|---------------------|----------|------------|-----------------------------------------|---------------------------------------|----------------------------------------------------|---------------------------------------|
| pH adj. start time:    |              | 15:31               | 16:15    | 15:43      | 110:210                                 | pH adj. Date:                         |                                                    | 91101200_                             |
| pH adj. end time:      |              | 15:37               | 10.20    | 15:46      | 10:29                                   | GN Batch ID:                          | auth                                               | 7414                                  |
|                        | Sample       |                     | Final    |            | bkg pH                                  | 1                                     |                                                    |                                       |
| GP6705                 | Weight in    | pH after            | Volume   | pH after   | after                                   | Spike                                 | Spike                                              | Digestate                             |
| Sample ID              | g            | HNO3                | (ml)     | H2SO4      | H2SO4                                   | Amounts                               | Solution                                           | Description/Comments                  |
| CCV                    |              | 736                 | 100      | 196        | *************************************** | 5.cml 10                              | DOM WHO                                            | ta .                                  |
| CCV                    |              | 740                 | l        | 202        |                                         |                                       |                                                    |                                       |
| CCV                    |              | 7.92                | ₹        | 1,96       |                                         |                                       | V                                                  |                                       |
| CCV                    |              |                     |          |            |                                         | <b>Y</b>                              |                                                    |                                       |
| ССВ                    |              | 791                 | 100      | 100        |                                         |                                       |                                                    |                                       |
| ССВ                    |              | 789                 |          | 174-       |                                         |                                       |                                                    |                                       |
| ССВ                    |              | 773                 | 4        | 199        |                                         |                                       |                                                    |                                       |
| ССВ                    |              |                     |          |            |                                         | ļ                                     |                                                    |                                       |
| MS (SOI) JB14858-18    | 252          | 790                 | 160      | 213        | 196                                     |                                       | ppm abs                                            |                                       |
| MS (Insol.)            | 251          | 780                 |          | 190        |                                         | 0,0126 PI                             | <u> ماکت کم                                   </u> |                                       |
| DUP $oldsymbol{}$      | 2.57         | 173                 |          | 193        | 1.82                                    | 0 .                                   | )                                                  |                                       |
| SB (Sol)               | 25           | 714                 |          | 105        | 172                                     | 1.07 10                               | pomabs.                                            |                                       |
| SB (Insol)             | 1            | 721                 |          | 101        | av-                                     | 0.01339                               | · Piccoly                                          |                                       |
| МВ                     | +_           | 793                 |          | 194        | 185                                     | U                                     | <u> </u>                                           |                                       |
| 1JB14858-1             | 2.53         | 743                 |          | 17/1       | 108                                     |                                       |                                                    | Clear                                 |
| 2 <b>, -)</b>          | 256          | 791                 |          | 1900       | 172                                     | ļ.                                    |                                                    | Cear                                  |
| 3 - 3                  | 2.49         | 784                 |          | 20)        | 191                                     |                                       |                                                    | yery dukmum                           |
| 4 -4                   | 2.57         | 773                 |          | 1991       | 195                                     |                                       |                                                    | Dark Golden                           |
| 5 -5                   | 252          | 709                 |          | 104        | 102                                     |                                       | ·                                                  | Dark golden                           |
| 6 1 -6                 | 255          | 1.87                |          | 105        | _173_                                   |                                       |                                                    | galden                                |
| 7 -7                   | <u> 253</u>  | 743                 |          | 1.82       | 1.79                                    |                                       |                                                    | golden                                |
| 8 -8                   | 2.56         | -1.20               |          | 193        | 1.84                                    |                                       |                                                    | Cleely                                |
|                        | 2,56         | 7.88                |          | 1910       | 185                                     |                                       | *                                                  | dely                                  |
| 0 - 0                  | 2.48         | 790                 |          | 184        | 170                                     |                                       |                                                    | golden                                |
| 11 -1                  | 2.50         | 794                 |          | 1001       | 186                                     |                                       |                                                    | Clear                                 |
|                        | 256          | 787                 |          | 190        | 1.82                                    |                                       |                                                    | golden                                |
|                        | 2.50         |                     |          | 195        | <u> 1-73</u> _                          |                                       |                                                    | dark golden.                          |
| 14 <i>-14</i>          | 2.5)         | 7.61                |          | 1991       | 174                                     | · · · · · · · · · · · · · · · · · · · | ······                                             | golden                                |
| 15 75                  | 3-22         | 794                 |          | 101        | 1:16                                    |                                       |                                                    | Cheer                                 |
| 16 76                  | 2.56         | 720.                | <u> </u> | 182        | 179                                     |                                       |                                                    | Cheen                                 |
| 17 1 -18               | 250          | 741                 | 4        | 1:97       | 18A                                     | ·                                     |                                                    | Bram                                  |
| 18                     |              |                     |          |            | A                                       |                                       | A                                                  |                                       |
| 19 <b>* SOUMA</b>      | e htteu      | 001 W1.7            | 5,M. J   | Nymx a     | pur a                                   | lev war a                             | ullapia                                            |                                       |
| 20                     | , v          |                     | 115      | 100        | <u> </u>                                |                                       | ```                                                | 21 - 6 - 7 M                          |
| SB (Insol)             | 250          | 721                 | 100      | 1.80       | <u> [ ]b</u>                            |                                       | ·                                                  | dilution t                            |
| MS (Insol.)            | 251          | 7920                |          | 192        | 1.89                                    | <u> </u>                              | 187                                                | dilution (5)                          |
| PS                     | 250          | 741                 | 4        | 20)        | 1933_                                   | 23mL 100                              | ppor Moss                                          |                                       |
| pH adjusted PS         | 250          | 702                 | 700      | 151        | 13                                      | 917832WIN                             | 2,55MT 10                                          |                                       |
| 1:5 dil.               | 250          | -192                | 1        | 192        | 105                                     |                                       |                                                    | 15 delustran                          |
| EATÁ                   | 3.20         | 702                 | 7        |            | -                                       |                                       |                                                    |                                       |
| Reagent Reference Ir   | formation    | - refer to          | attached | reagent re | Terence II                              | ntormation pa                         | ge(s).                                             |                                       |
| {1000000 ug/g x Insolu | ible spike v | $vt(g) \times 52/3$ | 23.2}/ms | sample wt( | g) = insoli                             | ubie spike amo                        | untui PDCIO                                        | · · · · · · · · · · · · · · · · · · · |

Form: GN-067

2nd analyst check:

ACCUTEST LABS
DAYTON, NJ
GNTITTA

## 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

|                                                |                                                         |                                                         |          |             |                                                                                                                 |                                                                                                                 | Actual ml                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|----------|-------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                         |                                                         |          |             |                                                                                                                 | Suggested                                                                                                       | of 100                                                                                                                                                                                                     |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PS Aliquot                                     |                                                         | Amount in                                               |          |             |                                                                                                                 | ml of 100                                                                                                       | ppm to                                                                                                                                                                                                     | ppm to   Est. Read-   Calculated                                                                                                                                                                           | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Weight in g                                    |                                                         | ml to add                                               |          | Suggested   | Actual                                                                                                          | ppm to spike                                                                                                    | spike on                                                                                                                                                                                                   | back on                                                                                                                                                                                                    | Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Digested in   Weight in 45   Results in   of 1 | Results in                                              | 00 ppm                                                  | Dilution | Dilution to | Dilution to                                                                                                     | Dilution to on dilution of dilution of                                                                          | dilution of                                                                                                                                                                                                | curve in                                                                                                                                                                                                   | Amount in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Use calculated or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100 ml                                         | mg/kg.                                                  | solution                                                | needed   | esn         | pe nsed                                                                                                         | sample.                                                                                                         | sample.                                                                                                                                                                                                    | l/gm                                                                                                                                                                                                       | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | default spike?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.5 1.125                                      |                                                         | 0.450                                                   | yes      | 0           | 2                                                                                                               | 0.225                                                                                                           | 0.23                                                                                                                                                                                                       | 0.511                                                                                                                                                                                                      | 40.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | efault (40 mg/kg) spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.5 1.125                                      |                                                         | 0.450                                                   | yes      | 0           | 2                                                                                                               | 0.225                                                                                                           | 0.23                                                                                                                                                                                                       | 0.511                                                                                                                                                                                                      | 40.889                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fault (40 mg/kg) spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | catculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| #VALUE!                                        |                                                         | #VALUE!                                                 | #VALUE!  | #VALUE!     |                                                                                                                 | #VALUE!                                                                                                         |                                                                                                                                                                                                            | #VALUE!                                                                                                                                                                                                    | #VALUE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | calculated spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                | #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! | #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! |          |             | #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! | #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! | #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE! | #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE!  #VALUE! #VALUE! | #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE | #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! #VALUE! |

### 3060A/7196A INSOLUBLE SPIKE CALCULATION

| Weight of | Weight of | Amount  |
|-----------|-----------|---------|
| PbCr04    | Sample    | Spiked  |
| 0.0153    | 2.5       | 984.653 |
| 0.0126    | 2.51      | 807.660 |
|           |           | #VALUE! |
|           |           | #VALUE! |
|           |           | #VALUE! |
|           |           | #VALUE! |
|           |           | #VALUE! |
|           |           | #VALUE! |
|           |           | #VALUE! |



### Hexavalent Chromium pH Adjustment Log

Method: SW846 3060A/7196A

| metrou.             | 011070 |          |     |   |
|---------------------|--------|----------|-----|---|
| pH adj. start time: |        |          | 23  | ١ |
| pH adj. end time:   |        | <u> </u> | ~3F | - |

9-36 9-4

pH adjustment Date: GN Batch ID: <u>GN</u>

9-10-2012

|                     |           |      |          |          |          |                                       | • • •              |
|---------------------|-----------|------|----------|----------|----------|---------------------------------------|--------------------|
|                     | Sample    |      | Final    |          |          |                                       |                    |
|                     | Weight in |      | Volume   | pH after |          |                                       |                    |
| Sample ID           | g         | HNO3 | (ml)     | H2SO4    | Comments |                                       | Spike Info.        |
| Calibration Blank   | NA        | 7,69 | 00       | 1.98     | 0        |                                       |                    |
| 0.010 mg/l standard | NA        | 7.77 |          | 1.95     | John     | Absolute                              | 0.10 ml of 10 mg/l |
| 0.050 mg/l standard | NA        | 7.82 |          | 2.04     |          |                                       | 0.50 ml of 10 mg/l |
| 0.100 mg/l standard | NA        | 7.34 |          | 1-99     |          |                                       | 1.00 ml of 10 mg/l |
| 0.300 mg/l standard | NA        | 7.49 |          | 2001     |          |                                       | 3.00 ml of 10 mg/l |
| 0.500 mg/l standard | NA        | 7.86 |          | 1.98     |          |                                       | 5.00 ml of 10 mg/l |
| 0.800 mg/l standard | NA        | 7.81 |          | 2/4      |          |                                       | 8.00 ml of 10 mg/l |
| 1.00 mg/l standard  | NA        | 4.63 | <b>V</b> | 1.88     | V        |                                       | 10.0 ml of 10 mg/l |
|                     |           |      |          | •        |          |                                       |                    |
| -                   |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          | •        |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     | ·         |      |          |          |          | · · · · · · · · · · · · · · · · · · · |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          | <u> </u> |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
| -                   |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       | (                  |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
| -                   |           |      |          |          |          |                                       |                    |
|                     | <u> </u>  |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          |                                       |                    |
|                     |           |      |          |          |          | •                                     |                    |
| <u></u>             | <u> </u>  |      |          |          |          |                                       | <u> </u>           |

Reagent Reference Information - refer to attached reagent reference information page(s).

{1000000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

Anayst: 72
Date: 9-(0-)/2

Form: GN068-01 Rev. Date:5/22/06





### HEXAVALENT CHROMIUM STANDARD PREPARATION LOG

GN or GP Number:

|              |                                |               |              |         |          | Final Conc.  |            |               |         |
|--------------|--------------------------------|---------------|--------------|---------|----------|--------------|------------|---------------|---------|
| Intermediate |                                |               | Stock        |         |          | oţ           |            |               |         |
| Standard     |                                | Stock         | volume       |         | Final    | Intermediate | Expiration |               |         |
| Description  | Stock used to prepare standard | concentration | used in ml   | Diluent | Volume   | (mg/l)       | Date       | Analyst       | Date    |
| 10 ppm       | Absolute Grade Lot # 041215    | 1000 ppm      | 1.0 ml       | D       | 100 mls  | 10 mg/l      | 4/12/2015  | á             | 9-10-12 |
| 100 ppm      |                                | 1000 ppm      | 10 ml        | D       | 100 mls  | 100 mg/l     |            | _             | -       |
| 5 ppm        |                                | 1000 ppm      | 1.0 ml       | ΙQ      | 200 mg/l | l/gm 3       |            |               |         |
| 7.5 ppm      |                                | 1000 ppm      | 1.5 ml       | DI      | 200 mg/l | 7.5 mg/l     |            |               |         |
| 10 ppm       | Ultra lot L00439               | 1000 ppm      | 1.0 mi       | DI      | 100 mg/l | 10 mg/l      | 5/31/2017  |               |         |
|              |                                |               | Intermediate |         |          |              |            |               |         |
|              |                                | Intermediate  | or Stock     |         |          | Final Conc.  |            |               |         |
| Standard     | Intermediate or Stock used to  | or Stock      | volume       |         | Final    | Of Standard  | Expiration |               |         |
| Description  | prepare standard               | concentration | used in ml   | Diluent | Volume   | (mg/l)       | Date       | Analyst       | Date    |
| .010 ppm     | 10.0 ppm abs                   | 10.0 ppm      | 0.1 ppm      | IO      | 100 mls  | 0.01 mg/l    | 2)-11-6    | 4             | 4-0-6   |
| .050 ppm     |                                |               | 0.5 ppm      | Ы       |          | 0.05 mg/l    |            |               | -       |
| .10 ppm      |                                |               | 1.0 ppm      | DI      |          | 0.10 mg/l    |            |               |         |
| .30 ppm      |                                |               | 3.0 ppm      | DI      |          | 0.30 mg/l    |            |               |         |
| .50 ppm      |                                |               | 5.0 ppm      | IO      |          | 0.50 mg/l    |            |               |         |
| .80 ppm      |                                |               | 8.0 ppm      | D       |          | 0.80 mg/l    |            |               |         |
| 1.00 ppm     | ر.<br>ا                        | À             | 10.0 ppm     | DI      | 7        | 1.0 mg/l     | 7          | <del>-}</del> | ->      |
|              |                                |               |              |         |          |              |            |               |         |
|              |                                |               |              |         |          |              |            |               |         |
|              |                                |               |              |         |          |              |            |               |         |
|              |                                |               |              |         |          |              |            |               |         |
|              |                                |               |              |         |          |              |            |               |         |
|              |                                |               |              |         |          |              |            |               |         |

Form: GN205-02 Rev. Date:10/16/09



Date:

ACCUTEST

# HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 38/1 Thermometer Correction factor:

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

|           |               |               |                 | .                |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|-----------|---------------|---------------|-----------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|           |               |               | Temp. in deg. C | ပ                | Temp, in deg. C     | Temp. in deg. C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Temp, in deg. C                   |
| Digestion |               |               | Uncorrected/Col | Tec (            | Incorrected/Correct | Uncorrected/Correct Uncorrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corrected/Corr | ריב # של-  <br>Uncorrected/Correc |
| Batch ID  | Description   | Time          | ted             |                  | ted                 | ted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | fed                               |
| •         | Starting Time | 13:05         | 96/016          | ( ,              | 94°/62°             | do. 1ds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 910/6/6                           |
|           | Time 1        | 13:35         | 900 g           | 90,              | 940/92              | 10./92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/6/16                            |
|           | Ending Time   | 14:05         | 96,16           | 90°              | 94 92.              | 90/92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0/6/0/6                           |
|           |               |               |                 |                  | •                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|           | Starting Time | α: <u>μ</u> ] | 06/.06          |                  | 944 95              | , 16/0b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |
|           | Time 1        | αςίμι         | 90, 90          | } <sub>5</sub> ( | 95-193.             | 16/ Ob                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |
|           | Ending Time   | 15:20         | 90/90           | ъ                | ,56/256             | 25/00b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |
|           |               |               | -               |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|           | Starting Time |               |                 |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|           | Time 1        |               |                 |                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
|           | Ending Time   | -             |                 |                  |                     | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |
|           |               | MJ            |                 |                  |                     | ( //\&/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |

Rev. Date: 8/08/12 Form: GN074-02

Analyst: 2nd Analyst Check:

**■ △ □ JB14858** 



|                 | 61/10/051         |                  |             |   |
|-----------------|-------------------|------------------|-------------|---|
| GN/GP Batch ID: | <u>ELT WIO SI</u> | <del>- : -</del> | <del></del> | _ |

### Reagent Information Log - XCRA (soil 3060A/7196)

| Reagent                                                  | Exp. Date       | Reagent # or Manufacturer/Lot |
|----------------------------------------------------------|-----------------|-------------------------------|
| Calibration Source: Hexavalent Chromium, 1000 mg/L Stock | 4/12/2015       | Absolute Grade Lot # 041212   |
| Calibration Checks: Hexavalent Chromium, 1000 mg/L Stock | 5/31/2017       | Ultra lot # L00439            |
| Spiking Solution Source                                  | 4/12/2015       | - Absolute Grade Lot # 041212 |
| Lead Chromate (Insoluble Hexavalent<br>Chromium Spike)   | 7/26/2017       | Sigma Aldrich Lot # BCBG0578V |
| Magnesium Chloride, Anhydrous                            | 7/11/2016       | Alfa Aesar Lot # B17X012      |
| 1N NaOH                                                  | apropore        | ENES-31400-1999N              |
| Digestion Solution                                       | 10/1/2          | GNE9-33443-4CR                |
| Phosphate Buffer Solution                                | <u> 2/14/13</u> | GNE 8-33573-YCLA              |
| 5.0 M Nitric Acid                                        | <u>3/4/208</u>  | ENE9-33450-XC19               |
| Diphenylcarbazide Solution                               | 10/5/paz        | 6NE9-33408-XCV                |
| Sulfuric Acid, 10%                                       | <u>3/16/208</u> | GNE9-33-402-10V               |
| Filter                                                   |                 | F2 AA 50 593                  |
| Teflon Chips                                             | <u>NA</u>       | 919120                        |

Form: GN087A-21B Rev. Date: 2/18/10





| Test: Redox Pote | ential  | Test Code: REDOX           |
|------------------|---------|----------------------------|
| Matrix: Aqueous  | $\odot$ | Method: ASTM D1498-76      |
| Matrix: Solid    | 0       | Method: ASTM D1498-76 Mod. |

Analyst: JAREDO
Date: 09/11/12
GN Batch ID: GN71842
Temp (Deg C): 25

| Quality Contro | Summary       | _        |    |       |       |                     |
|----------------|---------------|----------|----|-------|-------|---------------------|
| Sample ID:     | NA            | Results: | NA | Dup:  | NA    | % RPD:              |
| Ferrous-Ferric | True: 675     |          |    | Found | 675.4 | % Rec 100.06%       |
| pH 4 Quinhydre | one True: 462 |          |    | Found | 458.1 | % Rec 99.16%        |
| pH 4 Quinhydre | one True: 462 |          |    | Found | 471.2 | % Rec 101.99%       |
| pH 4 Quinhydro | one True: 462 |          |    | Found |       | % Rec               |
| pH 7 Quinhydro | one True: 285 |          |    | Found | 268.8 | % Rec <b>94.32%</b> |
| pH 7 Quinhydro | one True: 285 |          |    | Found | 296.1 | % Rec 103.89%       |
| pH 7 Quinhydro | one True: 285 |          |    | Found |       | % Rec               |

| Sample #:               | mv vs. Ag/AgCl<br>Electrode | Corrected results (mv<br>vs. Hydrogen<br>electrode) *** |
|-------------------------|-----------------------------|---------------------------------------------------------|
| Ferrous-Ferric Solution | 487.9                       | 675.4                                                   |
| pH 4 Quinhydrone        | 270.5                       | 458.1                                                   |
| pH 7 Quinhydrone        | 81.3                        | 268.8                                                   |
| Dup JB14858-17 1. 2.    | 212.5                       | 399.9                                                   |
| 3.                      |                             |                                                         |
| 4.                      |                             |                                                         |
| 5.                      |                             |                                                         |
| 6.                      |                             |                                                         |
| 7                       |                             |                                                         |
| 8.                      |                             |                                                         |
| 9.                      |                             |                                                         |
| pH 4 Quinhydrone        | 274.3                       | 471.2                                                   |
| pH 7 Quinhydrone        | 96.7                        | 296.1                                                   |
| 10.                     |                             |                                                         |
| 11                      |                             |                                                         |
| 12.                     |                             |                                                         |
| 13.                     |                             |                                                         |
| 14. <u> </u>            | •                           |                                                         |
| 15.                     | •                           |                                                         |
| 16                      |                             |                                                         |
| 17                      |                             |                                                         |
| 18. <u> </u>            |                             |                                                         |
| 19.                     |                             |                                                         |
| oH 4 Quinhydrone        |                             |                                                         |
| pH 7 Quinhydrone        |                             |                                                         |

<sup>\*\*\*</sup> Note: Results vs Ag/AgCl electrode are converted to corrected results automatically at the instrument by changing to the relative mv scale. This conversion is done by adding about 200 mV to the Ag/AgCl reading.

| Reagent Numbers:     | REDOX STD GNE3-31456-ORP XP 9/15/12, QUINHYDRONE ACROS A0282816 | XF |
|----------------------|-----------------------------------------------------------------|----|
| 11/1/16, PH 4 BUFFER | VWR 2110255 XP 9/13, PH BUFFER 7 RICCA 2111388 XP OCT 13        |    |
| Comments:            |                                                                 |    |





|                   | Hd   | eH (MV) |
|-------------------|------|---------|
| Phase Change Line | 0    | 1027.7  |
|                   | 14   | -105.6  |
|                   |      |         |
| Sample Number     | Hd   | eH (mv) |
| JB14858-6         | 8.04 | 331     |
| JB14858-7         | 8.15 | 346     |
| JB14858-8         | 9.2  | 267     |
| JB14858-9         | 9.51 | 245     |
| JB14858-10        | 7.84 | 249     |
| JB14858-11        | 7.91 | 282     |
| JB14858-1         | 8.63 | 336     |
| JB14858-2         | 8.52 | 268     |
| JB14858-3         | 7.93 | 271     |
| JB14858-4         | 7.46 | 239     |

|               |          |          |          |          |           |        |               |          |          |               | $\sim$   |   |         |       |   |        |   |   |   |
|---------------|----------|----------|----------|----------|-----------|--------|---------------|----------|----------|---------------|----------|---|---------|-------|---|--------|---|---|---|
|               |          |          | +        | _        |           |        | _             |          | /        | 1             | $\cup$   |   | +       |       | _ | -      |   |   |   |
|               |          |          | +        | $\dashv$ |           | _      | $\dashv$      |          | 4        | _             | ^_       |   | +       |       | _ | <br>+  |   |   | _ |
|               |          |          |          |          |           |        |               |          | 1        | <             | <b>S</b> |   |         |       |   |        |   |   |   |
| -             |          |          | +        |          |           |        |               |          |          | -             |          |   | +       |       |   |        |   |   |   |
| _             |          |          |          |          |           |        |               |          |          | _             |          |   | +       |       |   |        |   |   | H |
|               |          |          |          |          |           |        |               |          |          |               |          |   |         |       |   |        |   |   |   |
| _             |          |          | +        |          |           | 4      | _             |          | -        | _             |          |   | +       | _     | _ | +      |   |   |   |
| -             |          |          | +        |          | <b>/</b>  |        | -             |          |          |               |          |   | +       |       |   | +      |   |   | - |
|               |          |          | Τ.       |          |           |        |               |          |          |               |          |   | $\top$  |       |   |        |   |   |   |
|               |          |          |          |          |           |        |               |          |          |               |          |   | $\perp$ |       |   |        |   |   |   |
| -             |          |          | -        |          |           |        | $\rightarrow$ |          | -        | -             |          |   | +       |       |   | +      |   |   |   |
| $\rightarrow$ |          |          | +        |          |           |        | $\rightarrow$ |          | +        | $\rightarrow$ |          |   | +       |       |   | +      |   |   |   |
|               |          |          |          |          |           |        |               |          |          |               |          |   |         |       |   |        |   |   |   |
| _             |          |          | $\perp$  |          |           |        | _             |          |          | _             |          |   | $\perp$ |       |   |        |   |   |   |
|               |          |          | +        |          |           |        | $\rightarrow$ |          | +        | -             |          |   | +       |       | _ | +      |   |   |   |
|               |          |          | +        |          |           |        |               |          |          |               |          |   | $\top$  |       |   | $\top$ |   |   |   |
|               |          |          |          |          |           |        |               |          |          |               |          |   |         |       |   |        |   |   |   |
| -             |          |          | +        |          |           |        | -             |          |          | -             |          |   | +       |       |   |        |   |   |   |
| $\rightarrow$ |          |          | +        |          |           |        | $\rightarrow$ |          |          | _             |          |   | +       |       |   |        |   |   |   |
|               |          |          |          |          |           |        |               |          |          |               |          |   |         |       |   |        |   |   |   |
| _             |          |          | +        |          |           |        | $\rightarrow$ |          | _        | _             |          |   | +       |       | _ | -      |   |   |   |
|               |          |          | +        |          |           | +      |               |          | +        | -             |          | - | +       | <br>+ |   | <br>+  |   |   | - |
| 650           | 909      | 3        | 220      |          |           |        |               |          |          |               | fere     |   |         |       |   | 20     | 0 | 2 | 2 |
|               |          |          |          |          |           |        |               | (/       | \w       | uị            | ) ų      | 3 | _,      |       |   |        |   |   |   |
| PH (mv)       | 331      | 346      | 267      | 245      | 249       | 282    | 336           | 268      | 271      | 239           |          |   |         |       |   |        |   |   |   |
| Hu            | ٦        | 8.15     | 9.5      | 9.51     | 7.84      | 7.91   | 8.63          | 8.52     | 7.93     | 7.46          |          |   |         |       |   |        |   |   |   |
| ample Number  | 314858-6 | 314858-7 | 314858-8 | 1858-9   | 314858-10 | 858-11 | 314858-1      | 314858-2 | 314858-3 | 314858-4      |          |   |         |       |   |        |   |   |   |

--- JB14858-10

-\*- JB14858-9

JB14858-8

-+- JB14858-6

Eh pH Phase Diagram
Phase Diagram based on the HCrO<sub>4</sub>/Cr(OH)<sub>3</sub> ratio
Below phase change line indicates reducing environment.
Above phase change line indicates oxidizing environment

→ JB14858-7

→ JB14858-11

--- JB14858-2

<del>---</del> JB14858-1

→ JB14858-3

→ JB14858-4

Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

■Phase Change Line

4

13

12

7

9

0

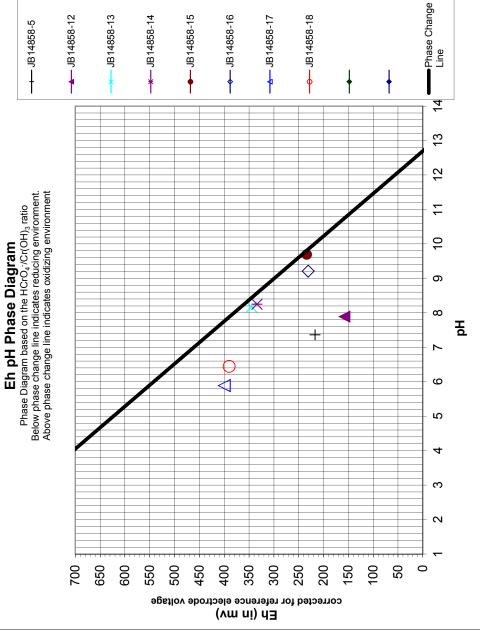
ω

ဖ

2

4

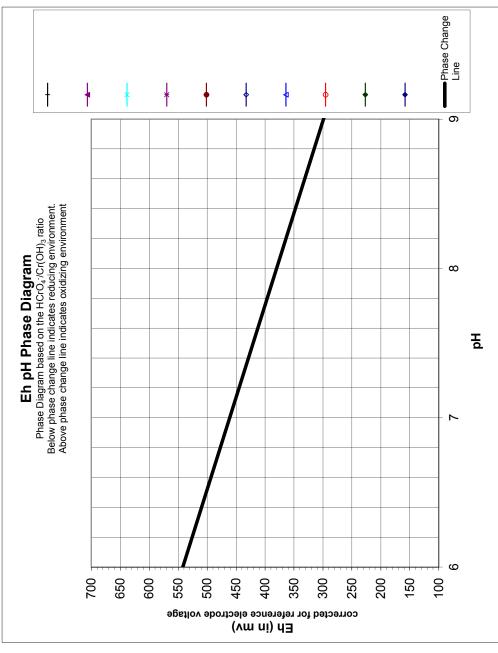
-100


된

Reference for graph: SW846 method 3060A



| H eH (MV) | 1027.7            | 105.6 | H eH (mv)     | 7.36 217  | 7.89 158   | 8.17 345   | 8.25 334   | 9.69 234   | 9.21 231   | 5.89 400   | 6.45 390   |
|-----------|-------------------|-------|---------------|-----------|------------|------------|------------|------------|------------|------------|------------|
| ㅁ         | 0                 | 14    | ㅁ             | 7.        | 7          | œ          | œ          | <u>ග</u>   | <u>ග</u>   | 5          | 9          |
|           | Phase Change Line |       | Sample Number | JB14858-5 | JB14858-12 | JB14858-13 | JB14858-14 | JB14858-15 | JB14858-16 | JB14858-17 | JB14858-18 |

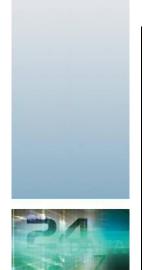

| ) | 650           |           | 009        | 550        |            | 500        |            | 420        | 00         | 5        |
|---|---------------|-----------|------------|------------|------------|------------|------------|------------|------------|----------|
|   |               |           |            |            | aGe        | silo       | ΛĐ         | rod        | (V<br>GCt  | lə<br>VU |
|   | eH (mv)       | 217       | 158        | 345        | 334        | 234        | 231        | 400        | 390        |          |
|   | PH e          | 7.36      | 7.89       | 8.17       | 8.25       | 69.6       | 9.21       | 5.89       | 6.45       |          |
|   | Sample Number | JB14858-5 | JB14858-12 | JB14858-13 | JB14858-14 | JB14858-15 | JB14858-16 | JB14858-17 | JB14858-18 |          |



Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A

-+- JB14858-5




Note that the Eh values plotted on this diagram are corrected for the reference electrode voltage and the values shown are versus the standard hydrogen electrode

Reference for graph: SW846 method 3060A



09/19/12



### Technical Report for

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

60213772.5.A

Accutest Job Number: JB14858R

Sampling Date: 08/28/12

### Report to:

AECOM, INC.

30 Knightsbridge Road Suite 520

Piscataway, NJ 08854

NJlabdata@aecom.com; Lisa.Krowitz@aecom.com;

Justin. Webster@aecom.com

ATTN: Lisa Krowitz

Total number of pages in report: 102



Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Ioannidis Lab Director

Client Service contact: Matt Cordova 732-329-0200

Certifications: NJ(12129), NY(10983), CA, CT, DE, FL, IL, IN, KS, KY, LA, MA, MD, MI, MT, NC, OH VAP (CL0056), PA, RI, SC, TN, VA, WV

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.



### **Sections:**

### **Table of Contents**

-1-

| Section 1: Sample Summary                          | 3         |
|----------------------------------------------------|-----------|
| Section 2: Case Narrative/Conformance Summary      | 5         |
| Section 3: Summary of Hits                         | 7         |
| Section 4: Sample Results                          | 9         |
| <b>4.1:</b> JB14858-1R: NSB-F2-21.5-22.0           | 10        |
| <b>4.2:</b> JB14858-2R: NSB-F2-17.8-18.3           | 11        |
| <b>4.3:</b> JB14858-3R: NSB-F2-15.0-15.5           | 12        |
| <b>4.4:</b> JB14858-4R: NSB-F2-10.5-11.0X          | 13        |
| <b>4.5:</b> JB14858-5R: NSB-F2-10.5-11.0           | 14        |
| <b>4.6:</b> JB14858-6R: NSB-F2-4.0-4.5             | 15        |
| <b>4.7:</b> JB14858-7R: NSB-F2-1.0-1.5             | 16        |
| <b>4.8:</b> JB14858-8R: NSB-F3-20.0-20.5           | 17        |
| <b>4.9:</b> JB14858-9R: NSB-F3-15.0-15.5           | 18        |
| <b>4.10:</b> JB14858-10R: NSB-F3-10.0-10.5         | 19        |
| <b>4.11:</b> JB14858-11R: NSB-F4-20.0-20.5         | 20        |
| <b>4.12:</b> JB14858-12R: NSB-F4-16.0-16.5         | 21        |
| <b>4.13:</b> JB14858-13R: NSB-F3-4.0-4.5           | 22        |
| <b>4.14:</b> JB14858-14R: NSB-F3-1.0-1.5           | 23        |
| <b>4.15:</b> JB14858-15R: NSB-F4-10.0-10.5         |           |
| <b>4.16:</b> JB14858-16R: NSB-F4-6.0-6.5           |           |
| <b>4.17:</b> JB14858-18R: NSB-F4-0.0-0.5           | 26        |
| Section 5: Misc. Forms                             |           |
| 5.1: Chain of Custody                              |           |
| 5.2: Sample Tracking Chronicle                     | 32        |
| <b>5.3:</b> Internal Chain of Custody              |           |
| Section 6: General Chemistry - QC Data Summaries   | <b>40</b> |
| 6.1: Method Blank and Spike Results Summary        |           |
| 6.2: Duplicate Results Summary                     |           |
| 6.3: Matrix Spike Results Summary                  |           |
| 6.4: Inst QC GN71899: Total Organic Carbon         |           |
| 6.5: XCR 3rd Tier Analyses                         |           |
| 6.6: Percent Solids Raw Data Summary               |           |
| Section 7: General Chemistry - Raw Data            |           |
| <b>7.1:</b> Raw Data GN71899: Total Organic Carbon |           |
| 7.2: Raw Data GN71909: Iron, Ferrous               |           |
| 7.3: Raw Data GN71910: Sulfide Screen              | 93        |
| 7.4: Raw Data GN71967: Chromium, Hexavalent        | 94        |



4.5

റ





### **Sample Summary**

Job No:

JB14858R

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number | Collected<br>Date | Time By  | Received | Matri<br>Code |      | Client<br>Sample ID |
|------------------|-------------------|----------|----------|---------------|------|---------------------|
| JB14858-1R       | 08/28/12          | 14:15 CM | 08/28/12 | SO            | Soil | NSB-F2-21.5-22.0    |
| JB14858-2R       | 08/28/12          | 14:10 CM | 08/28/12 | SO            | Soil | NSB-F2-17.8-18.3    |
| JB14858-3R       | 08/28/12          | 14:00 CM | 08/28/12 | SO            | Soil | NSB-F2-15.0-15.5    |
| JB14858-4R       | 08/28/12          | 13:55 CM | 08/28/12 | SO            | Soil | NSB-F2-10.5-11.0X   |
| JB14858-5R       | 08/28/12          | 13:50 CM | 08/28/12 | SO            | Soil | NSB-F2-10.5-11.0    |
| JB14858-6R       | 08/28/12          | 13:30 CM | 08/28/12 | SO            | Soil | NSB-F2-4.0-4.5      |
| JB14858-7R       | 08/28/12          | 13:10 CM | 08/28/12 | SO            | Soil | NSB-F2-1.0-1.5      |
| JB14858-8R       | 08/28/12          | 12:05 CM | 08/28/12 | SO            | Soil | NSB-F3-20.0-20.5    |
| JB14858-9R       | 08/28/12          | 12:00 CM | 08/28/12 | SO            | Soil | NSB-F3-15.0-15.5    |
| JB14858-10R      | 08/28/12          | 11:50 CM | 08/28/12 | SO            | Soil | NSB-F3-10.0-10.5    |
| JB14858-11R      | 08/28/12          | 11:25 CM | 08/28/12 | SO            | Soil | NSB-F4-20.0-20.5    |
| JB14858-12R      | 08/28/12          | 11:00 CM | 08/28/12 | SO            | Soil | NSB-F4-16.0-16.5    |
| JB14858-13R      | 08/28/12          | 10:40 CM | 08/28/12 | SO            | Soil | NSB-F3-4.0-4.5      |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





### Sample Summary (continued)

Job No:

JB14858R

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ

Project No: 60213772.5.A

| Sample       | Collected |          |          | Matri | ix                | Client           |
|--------------|-----------|----------|----------|-------|-------------------|------------------|
| Number       | Date      | Time By  | Received | Code  | Type              | Sample ID        |
| JB14858-14R  | 08/28/12  | 10:35 CM | 08/28/12 | SO    | Soil              | NSB-F3-1.0-1.5   |
|              |           |          |          |       |                   |                  |
| JB14858-15R  | 08/28/12  | 10:20 CM | 08/28/12 | SO    | Soil              | NSB-F4-10.0-10.5 |
|              |           |          |          |       |                   |                  |
| JB14858-16R  | 08/28/12  | 10:10 CM | 08/28/12 | SO    | Soil              | NSB-F4-6.0-6.5   |
|              |           |          |          |       |                   |                  |
| JB14858-18D  | R08/28/12 | 09:15 CM | 08/28/12 | SO    | Soil Dup/MSD      | NSB-F4-0.0-0.5   |
|              |           |          |          |       |                   |                  |
| JB14858-18R  | 08/28/12  | 09:15 CM | 08/28/12 | SO    | Soil              | NSB-F4-0.0-0.5   |
|              |           |          |          |       |                   |                  |
| JB14858-18SF | 208/28/12 | 09:15 CM | 08/28/12 | SO    | Soil Matrix Spike | NSB-F4-0.0-0.5   |

Soil samples reported on a dry weight basis unless otherwise indicated on result page.





### CASE NARRATIVE / CONFORMANCE SUMMARY

Client: AECOM, INC. Job No JB14858R

Site: PPG Northern Canal Borings, Jersey City, NJ Report Date 9/19/2012 11:37:15 A

On 08/28/2012, 18 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were received at Accutest Laboratories at a temperature of 6 C. Samples were intact and chemically preserved, unless noted below. An Accutest Job Number of JB14858R was assigned to the project. Laboratory sample ID, client sample ID and dates of sample collection are detailed in the report's Results Summary Section. 17 Samples were active for this report.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

### Wet Chemistry By Method ASTM D3872-86

Matrix: SO Batch ID: GN71909

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB15353-1RDUP, JB15353-1RMS were used as the QC samples for Iron, Ferrous.
- The following samples were run outside of holding time for method ASTM D3872-86: JB14858-18R The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

### Wet Chemistry By Method LLOYD KAHN 1988 MOD

Matrix: SO Batch ID: GP67107

- All method blanks for this batch meet method specific criteria.
- Sample(s) JB15129-18MS, JB15129-18DUP were used as the QC samples for Total Organic Carbon.
- The following samples were prepared outside of holding time for method LLOYD KAHN 1988 MOD: JB14858-18R Received and analyzed out of holding time.

### Wet Chemistry By Method SM18 4500S2-A

Matrix: SO Batch ID: GN71910

- All method blanks for this batch meet method specific criteria.
- The following samples were run outside of holding time for method SM18 4500S2-A: JB14858-18R The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.

### Wet Chemistry By Method SW846 3060A/7196A

Matrix: SO Batch ID: GP67127

- All samples were prepared within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) JB14858-18RMS, JB14858-18RDUP were used as the QC samples for Chromium, Hexavalent.
- Matrix Spike Recovery(s) for Chromium, Hexavalent are outside control limits. Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (86.3%) on this sample.
- RPD(s) for Duplicate for Chromium, Hexavalent are outside control limits. High RPD due to possible sample nonhomogeneity.
- GP67127-S2 for Chromium, Hexavalent: Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.



Accutest certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting Accutest's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

Accutest Laboratories is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. Data release is authorized by Accutest Laboratories indicated via signature on the report cover

### **Summary of Hits Job Number:** JB14858R

Job Number: JB14858R Account: AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

**Collected:** 08/28/12

| Lab Sample ID<br>Analyte | Client Sample ID | Result/<br>Qual | RL   | MDL  | Units | Method            |
|--------------------------|------------------|-----------------|------|------|-------|-------------------|
| JB14858-1R               | NSB-F2-21.5-22.0 |                 |      |      |       |                   |
| No hits reported         | in this sample.  |                 |      |      |       |                   |
| JB14858-2R               | NSB-F2-17.8-18.3 | i               |      |      |       |                   |
| No hits reported         | in this sample.  |                 |      |      |       |                   |
| JB14858-3R               | NSB-F2-15.0-15.5 |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.55            | 0.52 | 0.15 | mg/kg | SW846 3060A/7196A |
| JB14858-4R               | NSB-F2-10.5-11.0 | X               |      |      |       |                   |
| Chromium, Hexa           | avalent          | 3.3             | 0.53 | 0.16 | mg/kg | SW846 3060A/7196A |
| JB14858-5R               | NSB-F2-10.5-11.0 | 1               |      |      |       |                   |
| No hits reported         | in this sample.  |                 |      |      |       |                   |
| JB14858-6R               | NSB-F2-4.0-4.5   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.74            | 0.46 | 0.13 | mg/kg | SW846 3060A/7196A |
| JB14858-7R               | NSB-F2-1.0-1.5   |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 2.3             | 0.48 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14858-8R               | NSB-F3-20.0-20.5 |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 3.8             | 0.46 | 0.14 | mg/kg | SW846 3060A/7196A |
| JB14858-9R               | NSB-F3-15.0-15.5 |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 1.8             | 0.46 | 0.13 | mg/kg | SW846 3060A/7196A |
| JB14858-10R              | NSB-F3-10.0-10.5 |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 1.3             | 0.69 | 0.20 | mg/kg | SW846 3060A/7196A |
| JB14858-11R              | NSB-F4-20.0-20.5 |                 |      |      |       |                   |
| Chromium, Hexa           | avalent          | 0.55            | 0.47 | 0.14 | mg/kg | SW846 3060A/7196A |



### **Summary of Hits**

Job Number: JB14858R Account: AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

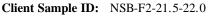
**Collected:** 08/28/12

| Lab Sample ID<br>Analyte                    | Client Sample ID   | Result/<br>Qual | RL          | MDL  | Units      | Method                               |
|---------------------------------------------|--------------------|-----------------|-------------|------|------------|--------------------------------------|
| JB14858-12R                                 | NSB-F4-16.0-16.5   | :               |             |      |            |                                      |
| Chromium, Hexa                              | avalent            | 0.72            | 0.52        | 0.15 | mg/kg      | SW846 3060A/7196A                    |
| JB14858-13R                                 | NSB-F3-4.0-4.5     |                 |             |      |            |                                      |
| Chromium, Hexa                              | avalent            | 7.7             | 0.49        | 0.14 | mg/kg      | SW846 3060A/7196A                    |
| JB14858-14R                                 | NSB-F3-1.0-1.5     |                 |             |      |            |                                      |
| Chromium, Hexa                              | avalent            | 1.3             | 0.46        | 0.13 | mg/kg      | SW846 3060A/7196A                    |
| JB14858-15R                                 | NSB-F4-10.0-10.5   |                 |             |      |            |                                      |
| Chromium, Hexa                              | avalent            | 2.0             | 0.65        | 0.19 | mg/kg      | SW846 3060A/7196A                    |
| JB14858-16R                                 | NSB-F4-6.0-6.5     |                 |             |      |            |                                      |
| No hits reported                            | in this sample.    |                 |             |      |            |                                      |
| JB14858-18R                                 | NSB-F4-0.0-0.5     |                 |             |      |            |                                      |
| Chromium, Hexa                              | avalent            | 3.1             | 0.49        | 0.14 | mg/kg      | SW846 3060A/7196A                    |
| Iron, Ferrous <sup>a</sup> Total Organic Ca | ırbon <sup>b</sup> | 0.62<br>118000  | 0.20<br>120 | 59   | %<br>mg/kg | ASTM D3872-86<br>LLOYD KAHN 1988 MOD |

<sup>(</sup>a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.



<sup>(</sup>b) Received and analyzed out of holding time.




| Sample Results     |  |
|--------------------|--|
| Report of Analysis |  |



**General Chemistry** 

Page 1 of 1



Lab Sample ID: JB14858-1R **Date Sampled:** 08/28/12 Matrix: SO - Soil **Date Received:** 08/28/12 Percent Solids: 85.1

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte             | Result  | RL   | MDL  | Units | DF | Analyzed By Method                     |
|---------------------|---------|------|------|-------|----|----------------------------------------|
| Chromium Heyavalent | 0.14 II | 0.47 | 0.14 | ma/ka | 1  | 00/13/12 12:47 MD SW846 2060 A /7106 A |

**Report of Analysis** 

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



# **Report of Analysis**

Client Sample ID: NSB-F2-17.8-18.3

 Lab Sample ID:
 JB14858-2R
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 88.4

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.13 U | 0.45 | 0.13 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit

B = Indicates a result > = MDL but < RL



4

# **Report of Analysis**

Client Sample ID: NSB-F2-15.0-15.5

Lab Sample ID: JB14858-3R **Date Sampled:** 08/28/12 Matrix: SO - Soil **Date Received:** 08/28/12 **Percent Solids:** 76.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.55   | 0.52 | 0.15 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F2-10.5-11.0X

 Lab Sample ID:
 JB14858-4R
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 75.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 3.3    | 0.53 | 0.16 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F2-10.5-11.0
Lab Sample ID: IB14858-5R

 Lab Sample ID:
 JB14858-5R
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 77.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.15 U | 0.52 | 0.15 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F2-4.0-4.5
Lab Sample ID: JB14858-6R
Matrix: SO - Soil

Date Sampled: 08/28/12 Date Received: 08/28/12 Percent Solids: 87.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.74   | 0.46 | 0.13 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F2-1.0-1.5 Lab Sample ID: JB14858-7R Matrix: SO - Soil

**Date Sampled:** 08/28/12 **Date Received:** 08/28/12

Project: PPG Northern Canal Borings, Jersey City, NJ Percent Solids: 83.1

#### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 2.3    | 0.48 | 0.14 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



# **Report of Analysis**

Client Sample ID: NSB-F3-20.0-20.5

Lab Sample ID: JB14858-8R **Date Sampled:** 08/28/12 Matrix: SO - Soil **Date Received:** 08/28/12 **Percent Solids:** 86.5

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 3.8    | 0.46 | 0.14 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL

U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F3-15.0-15.5

 Lab Sample ID:
 JB14858-9R
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 86.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 1.8    | 0.46 | 0.13 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F3-10.0-10.5 Lab Sample ID: JB14858-10R

Matrix: SO - Soil

**Date Sampled:** 08/28/12 **Date Received:** 08/28/12 **Percent Solids:** 58.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 1.3    | 0.69 | 0.20 | mg/kg | 1  | 09/13/12 12:47 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



1

# 4

# **Report of Analysis**

Client Sample ID: NSB-F4-20.0-20.5

Lab Sample ID: JB14858-11R Matrix: SO - Soil **Date Sampled:** 08/28/12 **Date Received:** 08/28/12 **Percent Solids:** 85.6

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.55   | 0.47 | 0.14 | mg/kg | 1  | 09/13/12 13:35 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

 Client Sample ID:
 NSB-F4-16.0-16.5

 Lab Sample ID:
 JB14858-12R
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

**Percent Solids:** 76.4

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.72   | 0.52 | 0.15 | mg/kg | 1  | 09/13/12 13:35 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F3-4.0-4.5 Lab Sample ID: JB14858-13R Matrix: SO - Soil

Date Sampled: 08/28/12Date Received: 08/28/12Percent Solids: 81.8

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 7.7    | 0.49 | 0.14 | mg/kg | 1  | 09/13/12 13:35 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



4

# **Report of Analysis**

 Client Sample ID:
 NSB-F3-1.0-1.5

 Lab Sample ID:
 JB14858-14R
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

**Percent Solids:** 86.9

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 1.3    | 0.46 | 0.13 | mg/kg | 1  | 09/13/12 13:35 MP SW846 3060A/7196A |

RL = Reporting Limit U = Indicates a result < MDL



# **Report of Analysis**

Client Sample ID: NSB-F4-10.0-10.5

 Lab Sample ID:
 JB14858-15R
 Date Sampled:
 08/28/12

 Matrix:
 SO - Soil
 Date Received:
 08/28/12

 Percent Solids:
 61.3

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 2.0    | 0.65 | 0.19 | mg/kg | 1  | 09/13/12 13:35 MP SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



# **Report of Analysis**

Client Sample ID: NSB-F4-6.0-6.5
Lab Sample ID: JB14858-16R
Matrix: SO - Soil

**Date Sampled:** 08/28/12 **Date Received:** 08/28/12 **Percent Solids:** 62.2

**Project:** PPG Northern Canal Borings, Jersey City, NJ

### **General Chemistry**

| Analyte              | Result | RL   | MDL  | Units | DF | Analyzed By Method                  |
|----------------------|--------|------|------|-------|----|-------------------------------------|
| Chromium, Hexavalent | 0.19 U | 0.64 | 0.19 | mg/kg | 1  | 09/13/12 13:35 MP SW846 3060A/7196A |

RL = Reporting Limit

MDL = Method Detection Limit

U = Indicates a result < MDL

B = Indicates a result > = MDL but < RL



### **Report of Analysis**

Client Sample ID: NSB-F4-0.0-0.5 Lab Sample ID: JB14858-18R **Matrix:** SO - Soil

**Date Sampled:** 08/28/12 **Date Received:** 08/28/12 Percent Solids: 81.7

PPG Northern Canal Borings, Jersey City, NJ **Project:** 

#### **General Chemistry**

| Analyte                                                                                                                | Result                            | RL                  | MDL  | Units               | DF               | Analyzed By Method                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------|------|---------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Chromium, Hexavalent<br>Iron, Ferrous <sup>a</sup><br>Sulfide Screen <sup>b</sup><br>Total Organic Carbon <sup>c</sup> | 3.1<br>0.62<br>NEGATIVE<br>118000 | 0.49<br>0.20<br>120 | 0.14 | mg/kg<br>%<br>mg/kg | 1<br>1<br>1<br>1 | 09/13/12 11:37 MP SW846 3060A/7196A<br>09/12/12 ST ASTM D3872-86<br>09/12/12 ST SM18 4500S2-A<br>09/12/12 15:55 SJG LLOYD KAHN 1988 MOD |

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (b) The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (c) Received and analyzed out of holding time.

RL = Reporting Limit U = Indicates a result < MDL





Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- · Chain of Custody
- Sample Tracking Chronicle
- Internal Chain of Custody



AECOM

# CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-28\_RI\_ACCUTEST\_COC\_NSB

Tracking #:

Task: GARIS- Northern Canal Borings
Total # of Samples: 18 The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed and accurate Project Information:

Site ID #: PPG Garfield Ave

Project #: 60213772.5.A Lab Information: Other Information: TAT see Spec. Instructions Rush
Notes: F= Field Filtered , H= Hold Send Invoice to: Lisa Krowitz Address: 250 Apollo Drive Address: 2235 Route 130 , Dayton NJ 08810 70 Carteret Avenue City/State. Chelmsford, MA 01824 | Phone #: 978-905-2278 Address: JB14858 PO #: 40256ACM
Send EDD to: NJLABDATA@secom.com
CC Hardcopy to Erin Farrell, AECOM, Piscataway, NJ Lab PM: Matt Cordova Phone/Fax: 732-329-0200/ PM email: City Jersey City State, Zip NJ
PM Name: Chris Martell
Phone/Fax: 732-564-3633 PM Email: Christopher.Martell@aecom.com C=COMP CONTAINERS SAMPLE DATE MATRIX CODE GARA-HexChrom Comment Field Sample No. /Identification G=GRAB #0F NSB-F2-21.5-22.0 so G 08/28/2012 14:15 Х Х - Z NSB-F2-17.8-18.3 so G 08/28/2012 14:10 Х Х 39 ME NSB-F2-15.0-15.5 - 3 so G 08/28/2012 14:00 Х Х 41 NSB-F2-10.5-11.0X -- 4 so 08/28/2012 13:55 1 Х Χ WC 47 NSB-F2-10.5-11.0 - 5 G 08/28/2012 13:50 1 Х Х NSB-F2-4.0-4.5 - 6 so G 08/28/2012 13:30 1 Х Х NSB-F2-1.0-1.5 -7 so G 08/28/2012 13:10 1 Х Χ NSB-F3-20.0-20.5 -8 so G 08/28/2012 12:05 1 Х Χ NSB-F3-15.0-15.5 -9 so G 08/28/2012 12:00 Х Х NSB-F3-10.0-10.5 -10 so G 08/28/2012 11:50 Х Х NSB-F4-20.0-20.5 -11 so G 08/28/2012 11:25 Х Х Additional Comments/Special Instructions: DATE TIME /450 8/28/12 1920 Standard TAT 7-12- 5-28-12 192 Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N Y/N

DATE/TIME

Custody Seal(s)

] (

6.0-

JB14858R: Chain of Custody

Page 1 of 4



# CHAIN-OF-CUSTODY / Analytical Request Document 2012-08-28\_RI\_ACCUTEST\_COC\_NSB

| l ab Infe | ormation:                   | Project Info    |                    | The Chain-of- | Custody is a  | LEGAL DOCUMENT | . All relevant                          |                                         |                | curate.                   | Tas      |               |             | Northe      | rn Cana | l Boring   | js              |                |             |
|-----------|-----------------------------|-----------------|--------------------|---------------|---------------|----------------|-----------------------------------------|-----------------------------------------|----------------|---------------------------|----------|---------------|-------------|-------------|---------|------------|-----------------|----------------|-------------|
| Lab:      | ACCUTEST                    |                 | PPG Garfield Ave   |               |               | Other Infor    |                                         |                                         | -              |                           | ╀        | TAT           |             | Spec. Insti |         |            | <del></del>     |                |             |
|           | 2235 Route 130 , Dayton NJ  |                 | 60213772.5.A       |               |               | Address:       |                                         | ollo Drive                              |                |                           | 2000     |               |             | iltered .   |         | Rus        | in              |                |             |
|           | 08810                       | Site            | 70 Carteret Avenue | ρ             |               | City/State.    |                                         | nsford, MA                              | 01824          | Phone #: 978-905-2278     | -        | Notes: 1      | - Fleid F   | -iiterea ,  | H= HOIG |            |                 |                |             |
| 1         | 1                           | Address:        | TO GUILDIGITATIONS | •             |               | Oity/Otate.    | One                                     | noiora, wir                             | 01024          | 7 Holle #:   970-903-2276 | ag I     |               |             |             |         | a          | ~=              |                |             |
| Lab PM:   | Matt Cordova                | City Jersey     | City State, Zip    | N.I           | 07304         | PO #:          | 40256                                   | ACM.                                    |                |                           | 9        |               |             | 21          | B14     | 853        | ś               |                |             |
|           | ax: 732-329-0200/           | PM Name:        | Chris Martell      |               | 10.00.        | Send EDD       |                                         | NJLABDATA                               | Daecom c       | m                         | 131      |               | Г           | т           | т       | Т          |                 | Т              | T           |
| PM ema    |                             | Phone/Fax:      | 732-564-3633       |               |               | CC Hardco      |                                         | Erin Farre                              | II, AECC       | M, Piscataway, NJ         | 1 🛊      |               | ĺ           |             | l       | İ          |                 |                |             |
|           |                             | PM Email:       | Christopher.Marte  | ell@aeco      | m.com         |                |                                         |                                         |                |                           | Preserv  |               |             |             |         |            |                 |                |             |
| ITEM #    | Field Sample N              | lo. /Identifica | tion               | MATRIX CODE   | G=GRAB C=COMP |                | SAMPLE DATE                             |                                         | #OF CONTAINERS | Comment                   | Analysis | GARA-HexChrom | GARA-pH-ORP |             |         |            |                 |                |             |
| 12        | NSB-F4-16.0-16.5            |                 | -12                | so            | G             | 08/28          | 3/2012 1                                | 1:00                                    | 1              |                           |          | X             | X           |             |         |            |                 |                |             |
| 13        | NSB-F3- 4.0-4.5             |                 | - (3               | so            | G             | 08/28          | 3/2012 1                                | 0:40                                    | 1              |                           |          | X             | х           |             |         |            |                 |                |             |
| 14        | NSB-F3-1.0-1.5              |                 | -14                | so            | G             | 08/28          | 3/2012 1                                | 0:35                                    | 1              |                           |          | X             | х           |             |         |            |                 |                |             |
| 15        | NSB-F4-10.0-10.5            |                 | -15                | so            | G             | 08/28          | 3/2012 1                                | 0:20                                    | 1              |                           |          | ×             | х           |             |         |            |                 | <b>†</b>       |             |
| 16        | NSB-F4-6.0-6.5              |                 | - 16               | so            | G             | 08/28          | 3/2012 1                                | 0:10                                    | 1              |                           |          | ×             | ×           |             |         |            |                 |                |             |
| 17        | NSB-EB20120828              | ***             | -17                | WQ            | G             | 08/28          | 3/2012 1                                | 4:45                                    | 2              | Preserved: None           |          | Х             | Х           |             | <b></b> |            |                 |                |             |
| 18        | NSB-F4-0.0-0.5              |                 | -18                | so            | G             | 08/28          | 3/2012 0                                | 9:15                                    | 2              | 1 Jar for MS/MSD          |          | X             | Х           |             |         |            | <del> </del>    | ļ              |             |
|           |                             |                 |                    |               |               |                |                                         | *************************************** |                |                           | -        |               |             |             |         |            |                 |                |             |
|           |                             |                 |                    |               |               |                | *************************************** | *************************************** |                |                           |          |               |             | -           |         |            | -               |                |             |
| -         |                             |                 |                    |               |               |                |                                         |                                         |                |                           |          |               |             |             | _       |            | <del> </del>    | <b> </b>       |             |
| Addition  | nal Comments/Special Instru | ctions:         |                    | RELINO        | JISHEDI       | BY / ASSILIATI | ON                                      | DATE                                    | - TATE         | ACCEPTED BY / AFFILIATION |          |               | DATE        | TIME        | - C     | nnla D     | eipt Cond       | <u></u>        | L           |
| 04        | JTAT                        |                 |                    | 3             | X             | BY/AFFILIATI   |                                         | 8/2×11                                  | 11:00          | MAD メストワ                  |          |               |             | 163         |         |            |                 |                | T           |
| l         | 11 - 6 8                    | 9 n             | al dis             | 77            | 17.4          | 28-28          | >-17                                    | 10011                                   | 920            | , ,                       |          |               |             | 700         |         |            | (/N             | Y/N<br>Y/N     | Y/N<br>Y/N  |
| A         | DH = 210                    | ′ 🐠             | 8/28/16            |               |               |                |                                         |                                         |                |                           |          |               |             |             | -       |            | //N             | Y/N            | Y/N         |
| 130       | PH = 5, 8                   | •               | '                  |               |               |                |                                         |                                         |                |                           |          |               |             |             | _       |            | (/N             | Y/N            | Y/N         |
| Ι `       | 1                           |                 |                    |               |               |                |                                         |                                         |                |                           |          |               |             | MANGE       |         |            | -               |                | 1           |
| 1         |                             |                 |                    |               | Shippi        | er:            |                                         |                                         |                | DATE/TIME:                |          |               |             |             | - 3     | 8          | 은               | fact           | ž.          |
|           |                             |                 |                    |               | Trackin       | g#:            |                                         |                                         |                | Custody Seal(s):          |          |               |             |             |         | Temp in 0C | Samples on Ice? | Sample intact? | Trip Blank? |

6.0L

JB14858R: Chain of Custody Page 2 of 4







### **Accutest Laboratories Sample Receipt Summary**

| Accutest Job Number: JE                                                                  | 314858          |           | Client:  | t: Project:        |        |         |                                                                                                                     |              |      |                                        |
|------------------------------------------------------------------------------------------|-----------------|-----------|----------|--------------------|--------|---------|---------------------------------------------------------------------------------------------------------------------|--------------|------|----------------------------------------|
| Date / Time Received: 8/                                                                 | 28/2012         |           |          | Delivery I         | Method | :       | Airbill #'s:                                                                                                        |              |      |                                        |
| Cooler Temps (Initial/Adjus                                                              | sted): <u>#</u> | 1: (6/6); | 0        |                    |        |         |                                                                                                                     |              |      |                                        |
| Custody Seals Present:                                                                   |                 | 3.        | COC Pre  | esent:<br>/Time OK | Y 01   | r N     | Sample Integrity - Documentation  1. Sample labels present on bottles:  2. Container labeling complete:             | <u>Y</u>     | or N |                                        |
| Cooler Temperature                                                                       | Υ               | or N      |          |                    |        |         | 3. Sample container label / COC agree:                                                                              | $\checkmark$ |      |                                        |
| Temp criteria achieved:     Cooler temp verification:     Cooler media:     No. Coolers: | <b>V</b>        | ce (Bag)  |          |                    |        |         | Sample Integrity - Condition  1. Sample recvd within HT:  2. All containers accounted for:  3. Condition of sample: | <u>Y</u>     | or N |                                        |
| Quality Control Preservati                                                               | on Y            | or N      | N/A      |                    |        |         | Sample Integrity - Instructions                                                                                     | Υ            | or N | N/A                                    |
| <ol> <li>Trip Blank present / cooler:</li> <li>Trip Blank listed on COC:</li> </ol>      |                 |           | <b>✓</b> |                    |        |         | Analysis requested is clear:     Bottles received for unspecified tests                                             | <u>'</u>     | □    | <u>N/A</u>                             |
| Samples preserved properl     VOCs headspace free:                                       | y: 🔽            |           | <b>✓</b> |                    |        |         | Sufficient volume recvd for analysis:     Compositing instructions clear:     Filtering instructions clear:         |              |      | <b>&gt;</b>                            |
| Accutest Laboratories                                                                    |                 |           |          |                    |        | 2235 US | s Highway 130                                                                                                       |              |      | Dayton, New Jersey                     |
| Accutest Laboratories<br>V:732.329.0200                                                  |                 |           |          |                    |        |         | 6 Highway 130<br>2.329.3499                                                                                         |              |      | Dayton, New Jersey<br>www/accutest.com |

JB14858R: Chain of Custody

Page 3 of 4



Job Change Order:

JB14858 9/11/2012

8/28/2012 9/11/2012

FULT1

Received Date: Deliverable: TAT (Days): Due Date: PPG Northern Canal Borings, Jersey City, NJ AECOM, INC. 9/11/2012 Requested Date: Account Name: Project CSR:

Change: Æ Sample #: JB14858-1 thru -16, -18

Please relog for XXCRAR

Please relog MS/MSD for XXCRAR; please relog sample for FE2/7, SULFS, TOCLK

Change:

Sample #: JB14858-18

NSB-F4-0.0-0.5

Sample #: JB14858-

Change:

Above Changes Per:

JB14858R: Chain of Custody

Page 4 of 4

Client

**Date:** 9/11/2012

To Client: This Change Order is confirmation of the revisions, previously discussed with the Accutest Client Service

Page 1 of 1

Job No:

JB14858R

# **Internal Sample Tracking Chronicle**

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                             | Analyzed        | Ву     | Prepped     | Ву      | Test Codes |
|--------------------------|------------------------------------|-----------------|--------|-------------|---------|------------|
| JB14858-1I<br>NSB-F2-21  | R Collected: 28-AUG-12 .5-22.0     | 14:15 By: CM    | Receiv | ved: 28-AUG | -12 By  | : SC       |
| JB14858-1I               | R SW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12   | MD      | XCRA       |
| JB14858-2I<br>NSB-F2-17  | R Collected: 28-AUG-12<br>.8-18.3  | 14:10 By: CM    | Receiv | ved: 28-AUG | -12 By  | : SC       |
| JB14858-2I               | R SW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12   | MD      | XCRA       |
| JB14858-3I<br>NSB-F2-15  | R Collected: 28-AUG-12<br>.0-15.5  | 14:00 By: CM    | Receiv | ved: 28-AUG | -12 By: | : SC       |
| JB14858-3I               | R SW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12   | MD      | XCRA       |
| JB14858-4I<br>NSB-F2-10  | R Collected: 28-AUG-12<br>.5-11.0X | 13:55 By: CM    | Receiv | ved: 28-AUG | -12 By: | : SC       |
| JB14858-4I               | R SW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12   | MD      | XCRA       |
| JB14858-5I<br>NSB-F2-10  | R Collected: 28-AUG-12<br>.5-11.0  | 13:50 By: CM    | Receiv | ved: 28-AUG | -12 By  | : SC       |
| JB14858-5H               | R SW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12   | MD      | XCRA       |
| JB14858-6I<br>NSB-F2-4.0 | R Collected: 28-AUG-12<br>0-4.5    | 13:30 By: CM    | Receiv | ved: 28-AUG | -12 By  | : SC       |
| JB14858-6I               | R SW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12   | MD      | XCRA       |
| JB14858-7I<br>NSB-F2-1.0 | R Collected: 28-AUG-12<br>0-1.5    | 13:10 By: CM    | Receiv | ved: 28-AUG | -12 By  | : SC       |
| JB14858-7I               | R SW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12   | MD      | XCRA       |
| JB14858-8I<br>NSB-F3-20  | R Collected: 28-AUG-12<br>.0-20.5  | 12:05 By: CM    | Receiv | ved: 28-AUG | -12 By  | : SC       |
| JB14858-8I               | R SW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12   | MD      | XCRA       |

Job No:

JB14858R

# **Internal Sample Tracking Chronicle**

AECOM, INC.

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number         | Method                            | Analyzed        | Ву     | Prepped    | Ву     | Test Codes |
|--------------------------|-----------------------------------|-----------------|--------|------------|--------|------------|
| JB14858-9R<br>NSB-F3-15. | R Collected: 28-AUG-12<br>.0-15.5 | 12:00 By: CM    | Receiv | ed: 28-AUG | -12 By | : SC       |
| JB14858-9R               | R SW846 3060A/7196A               | 13-SEP-12 12:47 | MP     | 12-SEP-12  | MD     | XCRA       |
| JB14858-10<br>NSB-F3-10. | PCollected: 28-AUG-12<br>.0-10.5  | 11:50 By: CM    | Receiv | ed: 28-AUG | -12 By | : SC       |
| JB14858-10               | RSW846 3060A/7196A                | 13-SEP-12 12:47 | MP     | 12-SEP-12  | MD     | XCRA       |
| JB14858-11<br>NSB-F4-20. | RCollected: 28-AUG-12<br>.0-20.5  | 11:25 By: CM    | Receiv | ed: 28-AUG | -12 By | : SC       |
| JB14858-11               | RSW846 3060A/7196A                | 13-SEP-12 13:35 | MP     | 12-SEP-12  | MD     | XCRA       |
| JB14858-12<br>NSB-F4-16. | RCollected: 28-AUG-12<br>.0-16.5  | 11:00 By: CM    | Receiv | ed: 28-AUG | -12 By | : SC       |
| JB14858-12               | RSW846 3060A/7196A                | 13-SEP-12 13:35 | MP     | 12-SEP-12  | MD     | XCRA       |
| JB14858-13<br>NSB-F3-4.0 | RCollected: 28-AUG-12<br>0-4.5    | 10:40 By: CM    | Receiv | ed: 28-AUG | -12 By | : SC       |
| JB14858-13               | RSW846 3060A/7196A                | 13-SEP-12 13:35 | MP     | 12-SEP-12  | MD     | XCRA       |
| JB14858-14<br>NSB-F3-1.0 | RCollected: 28-AUG-12<br>0-1.5    | 10:35 By: CM    | Receiv | ed: 28-AUG | -12 By | : SC       |
| JB14858-14               | RSW846 3060A/7196A                | 13-SEP-12 13:35 | MP     | 12-SEP-12  | MD     | XCRA       |
| JB14858-15<br>NSB-F4-10. | RCollected: 28-AUG-12<br>.0-10.5  | 10:20 By: CM    | Receiv | ed: 28-AUG | -12 By | : SC       |
| JB14858-15               | RSW846 3060A/7196A                | 13-SEP-12 13:35 | MP     | 12-SEP-12  | MD     | XCRA       |
| JB14858-16<br>NSB-F4-6.0 | RCollected: 28-AUG-12<br>0-6.5    | 10:10 By: CM    | Receiv | ed: 28-AUG | -12 By | : SC       |
| JB14858-16               | RSW846 3060A/7196A                | 13-SEP-12 13:35 | MP     | 12-SEP-12  | MD     | XCRA       |

# **Internal Sample Tracking Chronicle**

AECOM, INC.

Job No: JB14858R

PPG Northern Canal Borings, Jersey City, NJ Project No: 60213772.5.A

| Sample<br>Number        | Method                                                       | Analyzed                            | Ву        | Prepped                | Ву      | Test Codes     |
|-------------------------|--------------------------------------------------------------|-------------------------------------|-----------|------------------------|---------|----------------|
| JB14858-18<br>NSB-F4-0. | BRCollected: 28-AUG-12<br>0-0.5                              | 09:15 By: CM                        | Receiv    | ved: 28-AUG            | 6-12 By | v: SC          |
|                         | 8RASTM D3872-86<br>8RSM18 4500S2-A                           | 12-SEP-12<br>12-SEP-12              | ST<br>ST  |                        |         | FE2/7<br>SULFS |
|                         | B <b>rl</b> loyd Kahn 1988 I<br>B <b>rs</b> W846 3060A/7196A | MODESEP-12 15:55<br>13-SEP-12 11:37 | SJG<br>MP | 12-SEP-12<br>12-SEP-12 |         | TOCLK<br>XCRA  |

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| B14858-1.1   Secured Storage   Adam Scott   O9/07/12 08:18   Retrieve from Storage   B14858-1.1   Secured Staging Area   Sanjay Advani   O9/07/12 08:35   Retrieve from Storage   O9/07/12 08:35   Retrieve from Storage   O9/07/12 08:35   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:42   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 12:21   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retrieve from Storage   O9/08/12 06:41   Retr   | Sample.Bottle<br>Number | Transfer<br>FROM             | Transfer<br>TO           | Date/Time      | Reason                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|--------------------------|----------------|-----------------------|
| JB14858-1.1   Adam Scott   Secured Staging Area   O9/07/12 08:18   Return to Storage   JB14858-1.1   Secured Staging Area   Adam Scott   O9/08/12 06:41   Retrieve from Storage   BI14858-1.1   Adam Scott   Secured Staging Area   Ching Wong   O9/08/12 06:42   Return to Storage   D14858-1.1   Secured Staging Area   Ching Wong   O9/08/12 12:21   Retrieve from Storage   B14858-1.1   Secured Storage   Brian Racin   O9/12/12 16:28   Return to Storage   B14858-1.1   Brian Racin   Matt Del Ciello   O9/12/12 16:29   Custody Transfer   D14858-1.1   Brian Racin   Matt Del Ciello   O9/12/12 18:26   Return to Storage   D14858-1.1   Secured Storage   Brian Racin   O9/12/12 16:29   Custody Transfer   D14858-1.1   Secured Storage   Adam Scott   O9/07/12 08:18   Retrieve from Storage   D14858-1.1   Secured Storage   Adam Scott   O9/07/12 08:18   Retrieve from Storage   D14858-1.1   Secured Staging Area   O9/07/12 08:18   Retrieve from Storage   D14858-1.1   Secured Staging Area   O9/07/12 08:18   Retrieve from Storage   D14858-1.1   Secured Staging Area   O9/07/12 08:18   Retrieve from Storage   D14858-1.1   Secured Staging Area   O9/07/12 08:18   Retrieve from Storage   D14858-1.1   Secured Staging Area   O9/07/12 08:18   Retrieve from Storage   D14858-1.1   Secured Staging Area   O9/08/12 06:41   Retrieve from Storage   D14858-1.1   Secured Staging Area   O9/08/12 06:41   Retrieve from Storage   D14858-1.1   Secured Staging Area   O9/08/12 06:41   Retrieve from Storage   D14858-1.1   Ching Wong   Secured Storage   O9/08/12 17:18   Return to Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secured Storage   D14858-1.1   Secur   | Number                  | TROWI                        | 10                       | Date/Time      | Reason                |
| JB14858-1.1   Secured Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JB14858-1.1             | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| Bottle was returned to secured Storage   Adam Scott   O9/08/12 06:41   Retrieve from Storage   Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | JB14858-1.1             | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-1.1 Adam Scott Secured Staging Area JB14858-1.1 Secured Staging Area Ching Wong JB14858-1.1 Ching Wong Secured Storage JB14858-1.1 Secured Storage Brian Racin JB14858-1.1 Brian Racin Matt Del Ciello Secured Storage JB14858-1.1 Brian Racin Matt Del Ciello Secured Storage JB14858-1.1 Matt Del Ciello Secured Storage JB14858-1.1 Matt Del Ciello Secured Storage JB14858-1.1 Secured Storage JB14858-1.1 Matt Del Ciello Secured Storage JB14858-1.1 Secured Storage JB14858-1.1 Secured Storage Adam Scott JB14858-1.1 Secured Storage JB14858-1.1 Secured Storage JB14858-1.1 Secured Storage JB14858-1.1 Secured Storage Adam Scott JB14858-1.1 Secured Storage Adam Scott JB14858-1.1 Secured Storage JB14858-1 Secured Storage Socured Staging Area JB14858-1 Secured Storage Secured Staging Area JB14858-1 Secured Storage Secured Storage Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 Secured Storage JB14858-1 | JB14858-1.1             | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-1.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/08/15 12:21 Retrieve from Storage O9/07/12 O8:18 Retrieve from Storage O9/07/12 O8:18 Retrieve from Storage O9/07/12 O8:18 Retrieve from Storage O9/07/12 O8:35 Retrieve from Storage O9/07/12 O8:35 Retrieve from Storage O9/08/12 O6:41 Retrieve from Storage O9/08/12 O6:41 Retrieve from Storage O9/08/12 O6:41 Retrieve from Storage O9/08/12 O6:41 Retrieve from Storage O9/08/12 O6:41 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:42 Retrieve from Storage O9/08/12 O6:43 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 O6:44 Retrieve from Storage O9/08/12 | JB14858-1.1             | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| JB14858-1.1 Secured Staging Area Ching Wong Secured Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 16:29 Custody Transfer O9/12/12 16:29 Custody Transfer O9/12/12 18:26 Return to Storage O9/12/12 18:26 Return to Storage O9/08/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:42 Retrieve from Storage O9/08/12 06:42 Retrieve from Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 18:25 Retrieve from Storage O9/08/12 18:25 Retrieve from Storage O9/08/12 18:25 Retrieve from Storage O9/08/12 18:25 Retrieve from Storage O9/08/12 18:25 Retrieve from Storage O9/08/12 18:25 Retrieve from Storage O9/08/12 18:25 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage O9/08/12 06:44 Retrieve from Storage | Bottle was return       | ed to secure storage, but in | advertently not scanned. |                |                       |
| JB14858-1.1 Ching Wong Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-1.1 Brian Racin Matt Del Ciello O9/12/12 18:26 Return to Storage JB14858-1.1 Matt Del Ciello Secured Storage O9/12/12 18:26 Return to Storage JB14858-1.1 Matt Del Ciello Secured Storage O9/12/12 18:26 Return to Storage JB14858-2.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage JB14858-2.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage B184858-2.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage B184858-2.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage B184858-2.1 Secured Staging Area Sonjay Advani O9/08/12 06:42 Return to Storage B184858-2.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage D9/08/12 16:28 Retrieve from Storage D9/08/12 16:28 Retrieve from Storage D9/08/12 16:28 Retrieve from Storage D9/08/12 16:28 Retrieve from Storage D9/08/12 16:29 Custody Transfer D9/12/12 16:29 Custody Transfer D9/12/12 16:29 Custody Transfer D9/12/12 18:26 Return to Storage D9/12/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:42 Return to Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:41 Retrieve from Stor | JB14858-1.1             | Adam Scott                   | Secured Staging Area     | 09/08/12 06:42 | Return to Storage     |
| BI4858-1.1   Secured Storage   Brian Racin   Matt Del Ciello   O9/12/12 16:29   Custody Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JB14858-1.1             | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-1.1 Brian Racin Matt Del Ciello Secured Storage 09/12/12 16:29 Custody Transfer JB14858-1.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-2.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-2.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-2.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage BI4858-2.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage BI4858-2.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage BI4858-2.1 Secured Storage Secured Storage 09/08/12 12:21 Retrieve from Storage JB14858-2.1 Secured Storage Brian Racin 09/12/12 16:29 Retrieve from Storage JB14858-2.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-2.1 Brian Racin Matt Del Ciello 09/12/12 18:26 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09 | JB14858-1.1             | Ching Wong                   | Secured Storage          |                |                       |
| JB14858-2.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-2.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-2.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-2.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-2.1 Secured Storage, but inadvertently not scanned.  JB14858-2.1 Adam Scott Secured Staging Area Ohing Wong O9/08/12 12:21 Retrieve from Storage JB14858-2.1 Secured Storage Brian Racin 09/08/12 12:21 Retrieve from Storage JB14858-2.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-2.1 Brian Racin Matt Del Ciello 09/12/12 18:26 Return to Storage JB14858-2.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 17:18 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 17:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott Secured Staging Area 0 | JB14858-1.1             | Secured Storage              | Brian Racin              | 09/12/12 16:28 | Retrieve from Storage |
| JB14858-2.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-2.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-2.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-2.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-2.1 Secured Storage Ching Wong 09/08/12 17:18 Return to Storage D9/08/12 12 16:29 Custody Transfer D9/09/12/12 16:29 Custody Transfer D9/09/12/12 16:29 Custody Transfer D9/09/12/12 18:26 Return to Storage D9/09/12/12 18:26 Return to Storage D9/09/12/12 18:26 Return to Storage D9/09/12/12 18:26 Return to Storage D9/09/12/12 18:26 Return to Storage D9/09/12/12 08:18 Return to Storage D9/09/12/12 08:18 Return to Storage D9/09/12/12 08:18 Return to Storage D9/09/12/12 08:18 Return to Storage D9/09/12/12 08:18 Return to Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06:42 Return to Storage D9/08/12 06: | JB14858-1.1             | Brian Racin                  | Matt Del Ciello          | 09/12/12 16:29 | Custody Transfer      |
| JB14858-2.1 Adam Scott Secured Staging Area Sanjay Advani 09/07/12 08:18 Return to Storage O9/07/12 08:35 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-2.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage O9/08/12 06:42 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage JB14858-2.1 Secured Staging Area O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage JB14858-2.1 Secured Storage O9/08/12 12:21 Retrieve from Storage JB14858-2.1 Brian Racin Matt Del Ciello O9/12/12 16:28 Retrieve from Storage JB14858-2.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-2.1 Matt Del Ciello Secured Storage O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:42 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:42 Retrieve from | JB14858-1.1             | Matt Del Ciello              | Secured Storage          | 09/12/12 18:26 | Return to Storage     |
| JB14858-2.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-2.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-2.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-2.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-2.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-2.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-2.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-2.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 06:42 Retrieve from Storage JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 17:18 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 06:42 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 17:18 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 17:18 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 17:18 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 17:18 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 18:26 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 18:26 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 08:41 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 08:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 08:42 Retrieve from S |                         | Secured Storage              | Adam Scott               | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-2.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-2.1 Adam Scott Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-2.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-2.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-2.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-2.1 Matt Del Ciello Secured Storage 09/08/12 18:26 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-3.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage B14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage B14858-3.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:29 Custody Transfer JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Brian Racin Matt Del Ciello 90/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage JB14858-4 | JB14858-2.1             |                              | Secured Staging Area     |                |                       |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-2.1 Adam Scott Secured Staging Area  JB14858-2.1 Secured Staging Area  Ching Wong  JB14858-2.1 Ching Wong  JB14858-2.1 Ching Wong  JB14858-2.1 Ching Wong  JB14858-2.1 Ching Wong  JB14858-2.1 Ching Wong  JB14858-2.1 Secured Storage  JB14858-2.1 Brian Racin  Matt Del Ciello  JB14858-2.1 Brian Racin  Matt Del Ciello  JB14858-2.1 Brian Racin  Matt Del Ciello  JB14858-2.1 Matt Del Ciello  Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  JB14858-3.1 Secured Storage  Adam Scott  JB14858-4.1 Secured Storage  JB14858-4.1 Secured Storage  JB14858-4.1 Secured Storage  Adam Scott  JB14858-4.1 Secured Storage  JB14858-4.1 Secured Storage  JB | JB14858-2.1             | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-2.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage JB14858-2.1 Ching Wong Secured Storage O9/08/12 12:21 Retrieve from Storage JB14858-2.1 Ching Wong Secured Storage O9/08/12 17:18 Return to Storage JB14858-2.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-2.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-2.1 Matt Del Ciello Secured Storage O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Staging Area Sanjay Advani O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-3.1 Secured Staging Area Sanjay Advani O9/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin O9/12/12 16:28 Return to Storage JB14858-3.1 Secured Storage Brian Racin O9/12/12 16:29 Custody Transfer JB14858-3.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage JB14858-4.1 Secured Stor | JB14858-2.1             | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| JB14858-2.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-2.1 Ching Wong Secured Storage O9/08/12 17:18 Return to Storage JB14858-2.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-2.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-2.1 Matt Del Ciello Secured Storage O9/07/12 18:26 Return to Storage JB14858-3.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage JB14858-3.1 Secured Storage Secured Staging Area O9/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin O9/12/12 16:29 Custody Transfer JB14858-3.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage O9/07/12 08:18 Retrieve from Storage JB14858-3.1 Matt Del Ciello Secured Storage O9/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Staging Area Sanjay Advani O9/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/ | Bottle was return       | ed to secure storage, but in |                          |                |                       |
| JB14858-2.1 Ching Wong Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-2.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-2.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-2.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/08/12 16:28 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/08/12 08:18 Retrieve from Storage JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage BI4858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage BI4858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage BI4858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage BI4858-4.1 Secured Storage Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage BI4858-4.1 Secured Storage Adam Scott Se | JB14858-2.1             |                              |                          | 09/08/12 06:42 | Return to Storage     |
| JB14858-2.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-2.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-2.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Return to Storage JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage B14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage B14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage B14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage B14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage B14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage B14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage B14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage B14858-4.1 Secured Storage Adam Scott Secured Storage 09/08/12 06:42 | JB14858-2.1             | Secured Staging Area         | Ching Wong               | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-2.1 Brian Racin Matt Del Ciello Secured Storage 09/12/12 16:29 Custody Transfer JB14858-2.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Return to Storage JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Re | JB14858-2.1             |                              | Secured Storage          |                |                       |
| JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-3.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Return to Storage JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 06:42 Return to Storage Returned from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrie | JB14858-2.1             | Secured Storage              | Brian Racin              |                |                       |
| JB14858-3.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-3.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-3.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Secured Staging Area Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom Storage Ohom O | JB14858-2.1             | Brian Racin                  | Matt Del Ciello          | 09/12/12 16:29 | Custody Transfer      |
| JB14858-3.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Return to Storage  JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                    | JB14858-2.1             | Matt Del Ciello              | Secured Storage          | 09/12/12 18:26 | Return to Storage     |
| JB14858-3.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-3.1 Secured Staging Area O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-3.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-3.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage O9/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage JB14858-4.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/08/12 12:21 Retrieve from Storage O9/08/08/08/08/08/08/08/08/09 | JB14858-3.1             |                              |                          |                |                       |
| JB14858-3.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-3.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage GP/08/12 12:21 Retrieve from Storage OP/08/12 12:21 Retri | JB14858-3.1             | Adam Scott                   | Secured Staging Area     | 09/07/12 08:18 | Return to Storage     |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-3.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-3.1 Ching Wong Secured Storage O9/08/12 17:18 Return to Storage JB14858-3.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage O9/07/12 08:18 Retrieve from Storage  JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage JB14858-4.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14858-3.1             | Secured Staging Area         | Sanjay Advani            | 09/07/12 08:35 | Retrieve from Storage |
| JB14858-3.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage JB14858-3.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-3.1 Ching Wong Secured Storage O9/08/12 17:18 Return to Storage JB14858-3.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage O9/07/12 18:26 Return to Storage  JB14858-4.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | JB14858-3.1             | Secured Storage              | Adam Scott               | 09/08/12 06:41 | Retrieve from Storage |
| JB14858-3.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-3.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage  JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Bottle was return       | ed to secure storage, but in |                          |                |                       |
| JB14858-3.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage  JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JB14858-3.1             |                              |                          |                |                       |
| JB14858-3.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JB14858-3.1             |                              |                          |                |                       |
| JB14858-3.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-3.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage  JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JB14858-3.1             |                              | Secured Storage          |                |                       |
| JB14858-3.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage  JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | JB14858-3.1             | · ·                          | Brian Racin              |                |                       |
| JB14858-4.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-4.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | Brian Racin                  |                          |                |                       |
| JB14858-4.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | JB14858-3.1             | Matt Del Ciello              | Secured Storage          | 09/12/12 18:26 | Return to Storage     |
| JB14858-4.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | JB14858-4.1             |                              |                          |                |                       |
| JB14858-4.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | JB14858-4.1             |                              |                          |                |                       |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-4.1 Adam Scott Secured Staging Area JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |                              |                          |                |                       |
| JB14858-4.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | _                            |                          | 09/08/12 06:41 | Retrieve from Storage |
| JB14858-4.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |                              |                          |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                              |                          |                |                       |
| JB14858-4.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | JB14858-4.1             |                              |                          |                |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JB14858-4.1             | Ching Wong                   | Secured Storage          | 09/08/12 17:18 | Return to Storage     |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number | Transfer<br>FROM                     | Transfer<br>TO                 | Date/Time                               | Reason                 |
|-------------------------|--------------------------------------|--------------------------------|-----------------------------------------|------------------------|
| ID14050 4 1             | Commad Chamaga                       | Duian Danin                    | 00/12/12 16:29                          | Dataiana franc Stancas |
| JB14858-4.1             | Secured Storage<br>Brian Racin       | Brian Racin<br>Matt Del Ciello |                                         | Retrieve from Storage  |
| JB14858-4.1             |                                      |                                |                                         | Custody Transfer       |
| JB14858-4.1             | Matt Del Ciello                      | Secured Storage                | 09/12/12 18:26                          | Return to Storage      |
| JB14858-5.1             | Secured Storage                      | Adam Scott                     |                                         | Retrieve from Storage  |
| JB14858-5.1             | Adam Scott                           | Secured Staging Area           |                                         | Return to Storage      |
| JB14858-5.1             | Secured Staging Area                 | Sanjay Advani                  |                                         | Retrieve from Storage  |
| JB14858-5.1             | Secured Storage                      | Adam Scott                     | 09/08/12 06:41                          | Retrieve from Storage  |
| Bottle was returned     | ed to secure storage, but ina        |                                |                                         |                        |
| JB14858-5.1             | Adam Scott                           | Secured Staging Area           |                                         | Return to Storage      |
| JB14858-5.1             | Secured Staging Area                 | Ching Wong                     | 09/08/12 12:21                          | Retrieve from Storage  |
| JB14858-5.1             | Ching Wong                           | Secured Storage                | 09/08/12 17:18                          | Return to Storage      |
| JB14858-5.1             | Secured Storage                      | Brian Racin                    | 09/12/12 16:28                          | Retrieve from Storage  |
| JB14858-5.1             | Brian Racin                          | Matt Del Ciello                | 09/12/12 16:29                          | Custody Transfer       |
| JB14858-5.1             | Matt Del Ciello                      | Secured Storage                | 09/12/12 18:26                          | Return to Storage      |
| JB14858-6.1             | Secured Storage                      | Adam Scott                     | 09/07/12 08:18                          | Retrieve from Storage  |
| JB14858-6.1             | Adam Scott                           | Secured Staging Area           |                                         | Return to Storage      |
| JB14858-6.1             | Secured Staging Area                 | Sanjay Advani                  |                                         | Retrieve from Storage  |
| JB14858-6.1             | Secured Storage                      | Adam Scott                     |                                         | Retrieve from Storage  |
|                         | ed to secure storage, but ina        | advertently not scanned.       |                                         | 8                      |
| JB14858-6.1             | Adam Scott                           | Secured Staging Area           | 09/08/12 06:42                          | Return to Storage      |
| JB14858-6.1             | Secured Staging Area                 | Ching Wong                     |                                         | Retrieve from Storage  |
| JB14858-6.1             | Ching Wong                           | Secured Storage                |                                         | Return to Storage      |
| JB14858-6.1             | Secured Storage                      | Brian Racin                    |                                         | Retrieve from Storage  |
| JB14858-6.1             | Brian Racin                          | Matt Del Ciello                |                                         | Custody Transfer       |
| JB14858-6.1             | Matt Del Ciello                      | Secured Storage                |                                         | Return to Storage      |
| JB14858-7.1             | Secured Storage                      | Adam Scott                     | 09/07/12 08:18                          | Retrieve from Storage  |
| JB14858-7.1             | Adam Scott                           | Secured Staging Area           |                                         | Return to Storage      |
| JB14858-7.1             | Secured Staging Area                 | Sanjay Advani                  |                                         | Retrieve from Storage  |
| JB14858-7.1             | Secured Storage                      | Adam Scott                     |                                         | Retrieve from Storage  |
|                         | ed to secure storage, but ina        |                                | *************************************** |                        |
| JB14858-7.1             | Adam Scott                           | Secured Staging Area           | 09/08/12 06:42                          | Return to Storage      |
| JB14858-7.1             | Secured Staging Area                 | Ching Wong                     |                                         | Retrieve from Storage  |
| JB14858-7.1             | Ching Wong                           | Secured Storage                |                                         | Return to Storage      |
| JB14858-7.1             | Secured Storage                      | Brian Racin                    |                                         | Retrieve from Storage  |
| JB14858-7.1             | Brian Racin                          | Matt Del Ciello                |                                         | Custody Transfer       |
| JB14858-7.1             | Matt Del Ciello                      | Secured Storage                |                                         | Return to Storage      |
| JB14858-8.1             | Secured Storage                      | Adam Scott                     | 09/07/12 08:18                          | Retrieve from Storage  |
| JB14858-8.1             | Adam Scott                           | Secured Staging Area           |                                         | Return to Storage      |
| JB14858-8.1             | Secured Staging Area                 | Sanjay Advani                  |                                         | Retrieve from Storage  |
| JB14858-8.1             | Secured Staging Area Secured Storage | Adam Scott                     |                                         | Retrieve from Storage  |
| 3D17030-0.1             | Secured Storage                      | radiii beott                   | 07/00/12 00.41                          | Realeve from Storage   |



ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample.Bottle<br>Number      | <del>-</del>                  |                      | Date/Time      | Reason                |
|------------------------------|-------------------------------|----------------------|----------------|-----------------------|
|                              |                               |                      |                |                       |
|                              | ed to secure storage, but ina |                      |                |                       |
| JB14858-8.1                  | Adam Scott                    | Secured Staging Area |                | Return to Storage     |
| JB14858-8.1                  | Secured Staging Area          | Ching Wong           |                | Retrieve from Storage |
| JB14858-8.1                  | Ching Wong                    | Secured Storage      |                | Return to Storage     |
| JB14858-8.1                  | Secured Storage               | Brian Racin          |                | Retrieve from Storage |
| JB14858-8.1                  | Brian Racin                   | Matt Del Ciello      |                | Custody Transfer      |
| JB14858-8.1                  | Matt Del Ciello               | Secured Storage      | 09/12/12 18:26 | Return to Storage     |
| JB14858-9.1                  | Secured Storage               | Adam Scott           | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-9.1                  | Adam Scott                    | Secured Staging Area |                | Return to Storage     |
| JB14858-9.1                  | Secured Staging Area          | Sanjay Advani        |                | Retrieve from Storage |
| JB14858-9.1                  | Secured Storage               | Adam Scott           |                | Retrieve from Storage |
|                              | ed to secure storage, but ina |                      |                |                       |
| JB14858-9.1                  | Adam Scott                    | Secured Staging Area | 09/08/12 06:42 | Return to Storage     |
| JB14858-9.1                  | Secured Staging Area          | Ching Wong           |                | Retrieve from Storage |
| JB14858-9.1                  | Ching Wong                    | Secured Storage      |                | Return to Storage     |
| JB14858-9.1                  | Secured Storage               | Brian Racin          |                | Retrieve from Storage |
| JB14858-9.1                  | Brian Racin                   | Matt Del Ciello      |                | Custody Transfer      |
| JB14858-9.1                  | Matt Del Ciello               | Secured Storage      |                | Return to Storage     |
| JD14030-7.1                  | Watt Der Cieno                | Secured Storage      | 0)/12/12 16.20 | Return to Storage     |
| JB14858-10.1                 | Secured Storage               | Adam Scott           |                | Retrieve from Storage |
| JB14858-10.1                 | Adam Scott                    | Secured Staging Area |                | Return to Storage     |
| JB14858-10.1                 | Secured Staging Area          | Sanjay Advani        |                | Retrieve from Storage |
| JB14858-10.1                 | Secured Storage               | Adam Scott           | 09/08/12 06:41 | Retrieve from Storage |
| Bottle was returned          | ed to secure storage, but ina |                      |                |                       |
| JB14858-10.1                 | Adam Scott                    | Secured Staging Area | 09/08/12 06:42 | Return to Storage     |
| JB14858-10.1                 | Secured Staging Area          | Ching Wong           | 09/08/12 12:21 | Retrieve from Storage |
| JB14858-10.1                 | Ching Wong                    | Secured Storage      | 09/08/12 17:18 | Return to Storage     |
| JB14858-10.1                 | Secured Storage               | Brian Racin          | 09/12/12 16:28 | Retrieve from Storage |
| JB14858-10.1                 | Brian Racin                   | Matt Del Ciello      | 09/12/12 16:29 | Custody Transfer      |
| JB14858-10.1                 | Matt Del Ciello               | Secured Storage      | 09/12/12 18:26 | Return to Storage     |
| JB14858-11.1                 | Secured Storage               | Adam Scott           | 09/07/12 08:18 | Retrieve from Storage |
| JB14858-11.1                 | Adam Scott                    | Secured Staging Area |                | Return to Storage     |
| JB14858-11.1                 | Secured Staging Area          | Sanjay Advani        |                | Retrieve from Storage |
| JB14858-11.1                 | Secured Storage               | Adam Scott           |                | Retrieve from Storage |
|                              | ed to secure storage, but in  |                      | 07/00/12 00.41 | Retrieve from Storage |
| JB14858-11.1                 | Adam Scott                    | Secured Staging Area | 00/08/12 06:42 | Return to Storage     |
| JB14858-11.1                 | Secured Staging Area          | Ching Wong           |                | Retrieve from Storage |
| JB14858-11.1                 | Ching Wong                    | Secured Storage      |                | Return to Storage     |
| JB14858-11.1<br>JB14858-11.1 | Secured Storage               | Brian Racin          |                | Retrieve from Storage |
|                              | Brian Racin                   | Matt Del Ciello      |                | Custody Transfer      |
| JB14858-11.1<br>JB14858-11.1 | Matt Del Ciello               | Secured Storage      |                | •                     |
| JD14030-11.1                 | iviali Dei Ciello             | secured storage      | 09/12/12 18:20 | Return to Storage     |



**Account:** ENSRNJ AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Number   FROM   TO   Date/Time   Reason                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JB14858-12.1 Adam Scott Secured Staging Area JB14858-12.1 Secured Storage Adam Scott JB14858-12.1 Secured Storage Adam Scott JB14858-12.1 Secured Storage, but inadvertently not scanned. JB14858-12.1 Secured Staging Area JB14858-12.1 Adam Scott JB14858-12.1 Secured Staging Area JB14858-12.1 Secured Staging Area Ching Wong JB14858-12.1 Ching Wong JB14858-12.1 Ching Wong JB14858-12.1 Ching Wong JB14858-12.1 Secured Storage JB14858-12.1 Secured Storage JB14858-12.1 Secured Storage JB14858-12.1 Brian Racin Matt Del Ciello JB14858-12.1 Brian Racin Matt Del Ciello JB14858-12.1 Matt Del Ciello Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage, but inadvertently not scanned. JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage, but inadvertently not scanned. JB14858-13.1 Secured Storage, but inadvertently not scanned. JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage Adam Scott JB14858-14.1 Secured Stor |
| JB14858-12.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-12.1 Adam Scott Secured Staging Area Ching Wong O9/08/12 06:42 Return to Storage JB14858-12.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-12.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-12.1 Brian Racin Matt Del Ciello Secured Storage O9/08/12 12:21 Retrieve from Storage JB14858-12.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-13.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage JB14858-13.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-13.1 Secured Storage Brian Racin O9/08/12 12:21 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:42 Return to Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:28 Retrieve from Storage O9/08/12 12:28 Retrieve from Storage O9/08/12 12:28 Retrieve from Storage O9/08/12 18:26 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Ret |
| Bottle was returned to secure Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-12.1 Adam Scott Secured Staging Area O9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Secured Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Secured Storage O9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Secured Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 12:21 Retrieve from Storage D9/08/12 16:28 Retrieve from Storage D9/08/12 16:29 Custody Transfer D9/12/12 16:29 Custody Transfer D9/12/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/07/12 08:18 Retrieve from Storage D9/07/12 08:18 Retrieve from Storage D9/07/12 08:18 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 17:18 Return to Storage D9/08/12 17:18 Return to Storage D9/08/12 17:18 Return to Storage D9/08/12 17:18 Return to Storage D9/08/12 17:18 Return to Storage D9/08/12 17:18 Return to Storage D9/08/12 17:18 Return to Storage D9/08/12 17:18 Return to Storage D9/08/12 16:29 Retrieve from Storage D9/08/12 16:29 Retrieve from Storage D9/08/12 16:29 Retrieve from Storage D9/08/12 16:29 Retrieve from Storage D9/08/12 16:29 Retrieve from Storage D9/08/12 16:29 Retrieve from Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 18:26 Return to Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from Storage D9/08/12 06:41 Retrieve from |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-12.1 Adam Scott Secured Staging Area  JB14858-12.1 Secured Staging Area  Ching Wong  Secured Storage  JB14858-12.1 Ching Wong  JB14858-12.1 Secured Storage  JB14858-12.1 Secured Storage  JB14858-12.1 Secured Storage  JB14858-12.1 Brian Racin  Matt Del Ciello  Secured Storage  JB14858-12.1 Matt Del Ciello  Secured Storage  JB14858-12.1 Matt Del Ciello  Secured Storage  JB14858-13.1 Secured Storage  JB14858-13.1 Secured Storage  JB14858-13.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-13.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-13.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-13.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-13.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-13.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-13.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-13.1 Secured Staging Area  Secured Staging Area  JB14858-13.1 Secured Staging Area  JB14858-13.1 Secured Staging Area  JB14858-13.1 Secured Staging Area  JB14858-13.1 Secured Storage  JB14858-13.1 Secured Storage  JB14858-13.1 Secured Storage  JB14858-13.1 Secured Storage  JB14858-13.1 Secured Storage  JB14858-13.1 Secured Storage  JB14858-13.1 Secured Storage  JB14858-14.1 Secured Storage  JB14858-15.1 Secured Storage  JB14858-16.1 Secured Storage  JB14858-17.1 Secured Storage  JB14858-18.1 Secured Storage  Adam Scott  Secured Storage  JB14858-14.1 Secured Storage  Adam Scott  Secured Storage  JB14858-14.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-14.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-14.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-14.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-14.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-14.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-14.1 Secured Storage  Adam Scott  Secured Staging Area  JB14858-14.1 Secured Storage   |
| JB14858-12.1 Adam Scott Secured Staging Area JB14858-12.1 Secured Staging Area JB14858-12.1 Ching Wong Secured Storage JB14858-12.1 Secured Storage JB14858-12.1 Secured Storage JB14858-12.1 Brian Racin JB14858-12.1 Brian Racin JB14858-12.1 Brian Racin JB14858-12.1 Brian Racin JB14858-12.1 Matt Del Ciello Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage Adam Scott JB14858-13.1 Secured Storage Adam Scott JB14858-13.1 Secured Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-13.1 Secured Staging Area JB14858-13.1 Secured Staging Area JB14858-13.1 Secured Storage Adam Scott JB14858-13.1 Secured Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-13.1 Secured Staging Area JB14858-13.1 Secured Staging Area JB14858-13.1 Secured Staging Area JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-13.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-15.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secured Storage JB14858-14.1 Secur |
| JB14858-12.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-12.1 Ching Wong Secured Storage O9/08/12 17:18 Return to Storage JB14858-12.1 Brian Racin Matt Del Ciello O9/12/12 16:28 Retrieve from Storage JB14858-12.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-13.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Staging Area Sanjay Advani O9/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Staging Area Sanjay Advani O9/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-13.1 Secured Staging Area Ching Wong O9/08/12 06:42 Return to Storage JB14858-13.1 Secured Storage Brian Racin O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage JB14858-13.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 17:18 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 18:26 Return to Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Stor |
| JB14858-12.1 Ching Wong Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-12.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage B14858-13.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage B14858-13.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-13.1 Secured Staging Area Ching Wong 09/08/12 17:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:42 Return to Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 12:21 Retrieve from Storage O9/08/12 17:18 Return to Storage O9/08/12 16:28 Retrieve from Storage O9/08/12 16:29 Retrieve from Storage O9/08/12 16:29 Custody Transfer JB14858-13.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-13.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage O9/12/12 18:26 Return to Storage O9/12/12 18:26 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage D814858-14.1 Secured Storage Adam Scott O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/07/12 08:18 Return to Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:41 Retrieve from Storage O9/08/12 06:42 |
| JB14858-12.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-12.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott 09/07/12 08:18 Return to Storage JB14858-13.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-13.1 Secured Staging Area Ching Wong 09/08/12 06:42 Return to Storage JB14858-13.1 Secured Storage Brian Racin 09/08/12 12:21 Retrieve from Storage JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                       |
| JB14858-12.1 Brian Racin Matt Del Ciello Secured Storage 09/12/12 16:29 Custody Transfer JB14858-12.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-13.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Staging Area Sanjay Advani O9/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-13.1 Secured Staging Area Ching Wong O9/08/12 06:42 Return to Storage JB14858-13.1 Secured Staging Area Ching Wong O9/08/12 12:21 Retrieve from Storage JB14858-13.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage O9/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage Rottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| JB14858-13.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-13.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-13.1 Secured Staging Area Ching Wong 09/08/12 06:42 Return to Storage JB14858-13.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                   |
| JB14858-13.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-13.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-13.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-13.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage JB14858-13.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| JB14858-13.1 Adam Scott Secured Staging Area Sanjay Advani O9/07/12 08:18 Return to Storage JB14858-13.1 Secured Staging Area Sanjay Advani O9/07/12 08:35 Retrieve from Storage JB14858-13.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-13.1 Adam Scott Secured Staging Area Ohing Wong O9/08/12 06:42 Return to Storage JB14858-13.1 Secured Staging Area Ohing Wong O9/08/12 12:21 Retrieve from Storage JB14858-13.1 Secured Storage Brian Racin O9/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello O9/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage O9/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott O9/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-14.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage O9/08/12 06:42 Return to Storage Rottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| JB14858-13.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-13.1 Adam Scott Secured Staging Area O9/08/12 06:42 Return to Storage B14858-13.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-13.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage Retrieve from Storage O9/08/12 06:42 Return to Storage Retrieve from Storage O9/08/12 06:41 Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Storage Retrieve from Stor |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-13.1 Adam Scott Secured Staging Area  JB14858-13.1 Secured Staging Area  Ching Wong 09/08/12 12:21 Retrieve from Storage  JB14858-13.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage  JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage  JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer  JB14858-13.1 Matt Del Ciello Secured Storage 09/07/12 08:18 Retrieve from Storage  JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage  JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage  JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage  JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage  JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage  Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-13.1 Adam Scott Secured Staging Area  JB14858-13.1 Secured Staging Area  Ching Wong 09/08/12 12:21 Retrieve from Storage  JB14858-13.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage  JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage  JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer  JB14858-13.1 Matt Del Ciello Secured Storage 09/07/12 18:26 Return to Storage  JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage  JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage  JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage  JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage  JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage  JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage  JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:42 Return to Storage  Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| JB14858-13.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-13.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/07/12 18:26 Return to Storage  JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| JB14858-13.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage JB14858-13.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB14858-13.1 Ching Wong Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB14858-13.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Return to Storage JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JB14858-13.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer JB14858-13.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage  JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JB14858-13.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage  JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB14858-14.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage JB14858-14.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| JB14858-14.1 Adam Scott Secured Staging Area JB14858-14.1 Secured Staging Area JB14858-14.1 Secured Storage Adam Scott Secured Storage Adam Scott Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott JB14858-14.1 Adam Scott Secured Staging Area O9/07/12 08:18 Return to Storage 09/08/12 06:41 Retrieve from Storage 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| JB14858-14.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned. JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| JB14858-14.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Bottle was returned to secure storage, but inadvertently not scanned.  JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| JB14858-14.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB14858-14.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| JB14858-14.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| JB14858-14.1 Secured Storage Brian Racin 09/12/12 16:28 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| JB14858-14.1 Brian Racin Matt Del Ciello 09/12/12 16:29 Custody Transfer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| JB14858-14.1 Matt Del Ciello Secured Storage 09/12/12 18:26 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| JB14858-15.1 Secured Storage Adam Scott 09/07/12 08:18 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| JB14858-15.1 Adam Scott Secured Staging Area 09/07/12 08:18 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| JB14858-15.1 Secured Staging Area Sanjay Advani 09/07/12 08:35 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| JB14858-15.1 Secured Storage Adam Scott 09/08/12 06:41 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Bottle was returned to secure storage, but inadvertently not scanned.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| JB14858-15.1 Adam Scott Secured Staging Area 09/08/12 06:42 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| JB14858-15.1 Secured Staging Area Ching Wong 09/08/12 12:21 Retrieve from Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| JB14858-15.1 Ching Wong Secured Storage 09/08/12 17:18 Return to Storage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| Sample. Bottle          | Transfer                      | Transfer                | D 4 /m²        | _                         |
|-------------------------|-------------------------------|-------------------------|----------------|---------------------------|
| Number                  | FROM                          | ТО                      | Date/Time      | Reason                    |
| JB14858-15.1            | Secured Storage               | Brian Racin             | 09/12/12 16:28 | Retrieve from Storage     |
| JB14858-15.1            | Brian Racin                   | Matt Del Ciello         | 09/12/12 16:29 | Custody Transfer          |
| JB14858-15.1            | Matt Del Ciello               | Secured Storage         | 09/12/12 18:26 | Return to Storage         |
| JB14858-16.1            | Secured Storage               | Adam Scott              | 09/07/12 08:18 | Retrieve from Storage     |
| JB14858-16.1            | Adam Scott                    | Secured Staging Area    |                | Return to Storage         |
| JB14858-16.1            | Secured Staging Area          | Sanjay Advani           | 09/07/12 08:35 | Retrieve from Storage     |
| JB14858-16.1            | Secured Storage               | Adam Scott              | 09/08/12 06:41 | Retrieve from Storage     |
| Bottle was returned     | ed to secure storage, but ina | dvertently not scanned. |                |                           |
| JB14858-16.1            | Adam Scott                    | Secured Staging Area    | 09/08/12 06:42 | Return to Storage         |
| JB14858-16.1            | Secured Staging Area          | Ching Wong              |                | Retrieve from Storage     |
| JB14858-16.1            | Ching Wong                    | Secured Storage         | 09/08/12 17:18 | Return to Storage         |
| JB14858-16.1            | Secured Storage               | Brian Racin             | 09/12/12 16:28 | Retrieve from Storage     |
| JB14858-16.1            | Brian Racin                   | Matt Del Ciello         | 09/12/12 16:29 | Custody Transfer          |
| JB14858-16.1            | Matt Del Ciello               | Secured Storage         | 09/12/12 18:26 | Return to Storage         |
| JB14858-18.1            | Secured Storage               | Adam Scott              | 09/07/12 08:18 | Retrieve from Storage     |
| JB14858-18.1            | Adam Scott                    | Secured Staging Area    | 09/07/12 08:18 | Return to Storage         |
| JB14858-18.1            | Secured Staging Area          | Sanjay Advani           | 09/07/12 08:35 | Retrieve from Storage     |
| JB14858-18.1            | Secured Storage               | Adam Scott              | 09/08/12 06:41 | Retrieve from Storage     |
| Bottle was returned     | ed to secure storage, but ina | dvertently not scanned. |                |                           |
| JB14858-18.1 Adam Scott |                               | Secured Staging Area    | 09/08/12 06:42 | Return to Storage         |
| JB14858-18.1            | Secured Staging Area          | Ching Wong              |                | Retrieve from Storage     |
| JB14858-18.1            | Ching Wong                    | Secured Storage         |                | Return to Storage         |
| JB14858-18.1            | Secured Storage               | Brian Racin             |                | Retrieve from Storage     |
| JB14858-18.1            | Brian Racin                   | Matt Del Ciello         | 09/12/12 16:29 | Custody Transfer          |
| JB14858-18.1            | Matt Del Ciello               | Secured Storage         | 09/12/12 18:26 | Return to Storage         |
| JB14858-18.2            | Secured Storage               | Adam Scott              |                | Retrieve from Storage     |
| JB14858-18.2            | Adam Scott                    | Secured Staging Area    |                | Return to Storage         |
| JB14858-18.2            | Secured Staging Area          | Sanjay Advani           | 09/07/12 08:35 | Retrieve from Storage     |
| JB14858-18.2            | Shirley Grzybowski            | Secured Storage         | 09/08/12 07:02 | Return to Storage         |
| Analyst unavailab       | le for custody transfer.      |                         |                |                           |
| JB14858-18.2            | Secured Storage               | Adam Scott              | 09/12/12 08:20 | Retrieve from Storage     |
| JB14858-18.2            | Adam Scott                    | Secured Staging Area    | 09/12/12 08:20 | Return to Storage         |
| JB14858-18.2            | Secured Staging Area          | Sarvadaman Tripathi     | 09/12/12 09:47 | Retrieve from Storage     |
| JB14858-18.2            | Sarvadaman Tripathi           | Secured Storage         |                | Return to Storage         |
| JB14858-18.2.1          | Sarvadaman Tripathi           | Vaidehi Amin            |                | Aliquot from JB14858-18.2 |
| JB14858-18.2.1          | Vaidehi Amin                  |                         | 09/12/12 16:12 | Depleted                  |





# General Chemistry

QC Data Summaries

### Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries
- Instrument Runlogs/QC
- Percent Solids Raw Data Summary



#### METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14858R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                      | Batch ID                           | RL   | MB<br>Result      | Units          | Spike<br>Amount | BSP<br>Result | BSP<br>%Recov | QC<br>Limits       |
|----------------------------------------------|------------------------------------|------|-------------------|----------------|-----------------|---------------|---------------|--------------------|
| Chromium, Hexavalent<br>Chromium, Hexavalent | GP67127/GN71967<br>GP67127/GN71967 | 0.40 | 0.0               | mg/kg<br>mg/kg | 720.79<br>40.0  | 668<br>38.8   | 92.7<br>97.0  | 80-120%<br>80-120% |
| Iron, Ferrous<br>Sulfide Screen              | GN71909<br>GN71910                 | 0.20 | <0.20<br>NEGATIVE | 왕              |                 |               |               |                    |
| Total Organic Carbon                         | GP67107/GN71899                    | 100  | 0.0               | mg/kg          | 2000            | 1950          | 97.5          | 80-120%            |

Associated Samples:

Batch GN71909: JB14858-18R Batch GN71910: JB14858-18R Batch GP67107: JB14858-18R

Batch GP67127: JB14858-1R, JB14858-2R, JB14858-3R, JB14858-4R, JB14858-5R, JB14858-6R, JB14858-7R, JB14858-8R, JB14858-9R,

JB14858-10R, JB14858-11R, JB14858-12R, JB14858-13R, JB14858-14R, JB14858-15R, JB14858-16R, JB14858-18R

(\*) Outside of QC limits



# DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14858R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte                                                                         | Batch ID                                                 | QC<br>Sample                                          | Units               | Original<br>Result               | DUP<br>Result                    | RPD                    | QC<br>Limits                   |
|---------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|---------------------|----------------------------------|----------------------------------|------------------------|--------------------------------|
| Chromium, Hexavalent<br>Iron, Ferrous<br>Sulfide Screen<br>Total Organic Carbon | GP67127/GN71967<br>GN71909<br>GN71910<br>GP67107/GN71899 | JB14858-18R<br>JB15353-1R<br>JB15353-1R<br>JB15129-18 | mg/kg<br>%<br>mg/kg | 3.1<br>0.87<br>NEGATIVE<br>31700 | 4.5<br>0.88<br>NEGATIVE<br>30900 | 36.8*(a)<br>1.1<br>2.6 | 0-20%<br>0-26%<br>0-%<br>0-37% |

Associated Samples:

Batch GN71909: JB14858-18R Batch GN71910: JB14858-18R Batch GP67107: JB14858-18R

Batch GP67127: JB14858-1R, JB14858-2R, JB14858-3R, JB14858-4R, JB14858-5R, JB14858-6R, JB14858-7R, JB14858-8R, JB14858-9R, JB14858-10R, JB14858-11R, JB14858-12R, JB14858-13R, JB14858-14R, JB14858-15R, JB14858-16R, JB14858-18R

- (\*) Outside of QC limits
- (a) High RPD due to possible sample nonhomogeneity.



6.3

#### MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: JB14858R Account: ENSRNJ - AECOM, INC.

Project: PPG Northern Canal Borings, Jersey City, NJ

| Analyte              | Batch ID        | QC<br>Sample | Units | Original<br>Result | Spike<br>Amount | MS<br>Result | %Rec     | QC<br>Limits |
|----------------------|-----------------|--------------|-------|--------------------|-----------------|--------------|----------|--------------|
| Chromium, Hexavalent | GP67127/GN71967 | JB14858-18R  | 5. 5  | 3.1                | 1320            | 1160         | 87.4(a)  | 75-125%      |
| Chromium, Hexavalent | GP67127/GN71967 | JB14858-18R  |       | 3.1                | 49.4            | 33.5         | 61.6N(b) | 75-125%      |
| Iron, Ferrous        | GN71909         | JB15353-1R   | %     | 0.87               | 55.6            | 56.0         | 99.1     | 62-130%      |
| Total Organic Carbon | GP67107/GN71899 | JB15129-18   | mg/kg | 31700              | 44000           | 75700        | 99.9     | 46-113%      |

Associated Samples:

Batch GN71909: JB14858-18R Batch GP67107: JB14858-18R

Batch GP67127: JB14858-1R, JB14858-2R, JB14858-3R, JB14858-4R, JB14858-5R, JB14858-6R, JB14858-7R, JB14858-8R, JB14858-9R,  $\tt JB14858-10R,\ JB14858-11R,\ JB14858-12R,\ JB14858-13R,\ JB14858-14R,\ JB14858-15R,\ JB14858-16R,\ JB14858-18R$ 

- (\*) Outside of QC limits
- (N) Matrix Spike Rec. outside of QC limits
  (a) Good recovery on insoluble XCR matrix spike. See additional comments on soluble matrix spike recovery.
- (b) Soluble XCR matrix spike recovery indicates possible matrix interference. Good post spike recovery (86.3%) on this sample.



#### Accutest Laboratories Instrument Runlog Inorganics Analyses

# Login Number: JB14858R Account: ENSRNJ - AECOM, INC. Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20912S1.TXT Analyst: SJG

Parameters: Total Organic Carbon

Date Analyzed: 09/12/12 Run ID: GN71899

Methods: LLOYD KAHN 1988 MOD

| Time  | Sample<br>Description | Dilution PS<br>Factor Recov | Comments                                               |
|-------|-----------------------|-----------------------------|--------------------------------------------------------|
| 12:28 | GN71899-STD1          | 1                           | STDA                                                   |
| 12:53 | GN71899-STD2          | 1                           | STDB                                                   |
| 13:02 | GN71899-STD3          | 1                           | STDC                                                   |
| 13:22 | GN71899-STD4          | 1                           | STDD                                                   |
| 13:38 | GN71899-STD5          | 1                           | STDE                                                   |
| 13:51 | GN71899-STD6          | 1                           | STDF                                                   |
| 14:00 | GN71899-STD7          | 1                           | STDG                                                   |
| 08:52 | GN71899-CRI1          | 1                           |                                                        |
| 09:06 | GN71899-HSTD1         | 1                           |                                                        |
| 09:21 | GN71899-ICV1          | 1                           |                                                        |
| 09:38 | GN71899-ICB1          | 1                           |                                                        |
| 09:52 | GN71899-CCV1          | 1                           |                                                        |
| 10:06 | GN71899-CCB1          | 1                           |                                                        |
| 10:30 | GP67057-MB2           | 1                           |                                                        |
| 10:30 | GP67107-MB1           | 1                           | Sample shown for QC tracking purposes only.            |
| 10:42 | GP67057-B2            | 1                           |                                                        |
| 10:42 | GP67107-B1            | 1                           | Sample shown for QC tracking purposes only.            |
| 10:47 | ZZZZZZ                | 1                           |                                                        |
| 11:00 | JB15129-18            | 1                           | (sample used for QC only; not part of login JB14858R)  |
| 11:06 | ZZZZZZ                | 1                           |                                                        |
| 11:22 | ZZZZZZ                | 1                           |                                                        |
| 11:33 | JB14858-18R           | 1                           | Overrange. See rerun at 0.025g                         |
| 11:53 | GP67107-D1            | 1                           | Results averaged with two boats at the end of the run. |
| 12:15 | ZZZZZZ                | 1                           |                                                        |
| 12:32 | GP67107-S1            | 1                           |                                                        |
| 12:43 | GN71899-CCV2          | 1                           |                                                        |
| 13:03 | GN71899-CCB2          | 1                           |                                                        |
| 13:15 | ZZZZZZ                | 1                           |                                                        |
|       | ZZZZZZ                | 1                           |                                                        |
|       | ZZZZZZ                | 1                           |                                                        |
|       |                       | 1                           |                                                        |
|       | ZZZZZZ                | 1                           |                                                        |
| 14:46 | ZZZZZZ                | 1                           |                                                        |
|       |                       |                             |                                                        |



# Login Number: JB14858R Account: ENSRNJ - AECOM, INC. Project: PPG Northern Canal Borings, Jersey City, NJ

Date Analyzed: 09/12/12 File ID: B20912S1.TXT Methods: LLOYD KAHN 1988 MOD Run ID: GN71899

Analyst: SJG Parameters: Total Organic Carbon

| Time  | Sample<br>Description | Dilution PS<br>Factor Recov | Comments                               |
|-------|-----------------------|-----------------------------|----------------------------------------|
| 14:58 | ZZZZZZ                | 1                           |                                        |
| 15:24 | ZZZZZZ                | 1                           |                                        |
| 15:55 | JB14858-18R           | 1                           |                                        |
| 16:07 | GP67107-D1            | 1                           | Results averaged with prior two boats. |
| 16:19 | GN71899-CCV3          | 1                           |                                        |
| 17:08 | GN71899-CCB3          | 1                           |                                        |

Refer to raw data for calibration curve and standards.

# Login Number: JB14858R Account: ENSRNJ - AECOM, INC. Project: PPG Northern Canal Borings, Jersey City, NJ

File ID: B20912S1.TXT

Run ID: GN71899

Date Analyzed: 09/12/12 Methods: LLOYD KAHN 1988 MOD

Units: mg/l

| Sample Number | Parameter            | Result | RL  | IDL/MDL | True<br>Value | % Recov. | QC<br>Limits |
|---------------|----------------------|--------|-----|---------|---------------|----------|--------------|
| GN71899-CRI1  | Total Organic Carbon | 106    | 100 | 49      | 100           | 106.0    | 70-130       |
| GN71899-HSTD1 | Total Organic Carbon | 5150   | 100 | 49      | 5000          | 103.0    | 90-110       |
| GN71899-ICV1  | Total Organic Carbon | 1850   | 100 | 49      | 2000          | 92.5     | 90-110       |
| GN71899-ICB1  | Total Organic Carbon | 49 U   | 100 | 49      |               |          |              |
| GN71899-CCV1  | Total Organic Carbon | 2660   | 100 | 49      | 2500          | 106.4    | 90-110       |
| GN71899-CCB1  | Total Organic Carbon | 49 U   | 100 | 49      |               |          |              |
| GN71899-CCV2  | Total Organic Carbon | 2720   | 100 | 49      | 2500          | 108.8    | 90-110       |
| GN71899-CCB2  | Total Organic Carbon | 49 U   | 100 | 49      |               |          |              |
| GN71899-CCV3  | Total Organic Carbon | 2700   | 100 | 49      | 2500          | 108.0    | 90-110       |
| GN71899-CCB3  | Total Organic Carbon | 49 U   | 100 | 49      |               |          |              |

(!) Outside of QC limits

Client Sample ID: NSB-F4-0.0-0.5 Lab Sample ID: JB14858-18R Matrix: SO - Soil

Date Sampled: 08/28/12 Date Received: 08/28/12 Percent Solids: 81.7

**Project:** PPG Northern Canal Borings, Jersey City, NJ

#### **General Chemistry**

| Analyte                           | Result   | RL   | MDL  | Units | DF | Analyzed       | Ву  | Method            | <b>o</b> |
|-----------------------------------|----------|------|------|-------|----|----------------|-----|-------------------|----------|
| Chromium, Hexavalent              | 3.1      | 0.49 | 0.14 | mg/kg | 1  | 09/13/12 11:37 | MP  | SW846 3060A/7196A |          |
| Iron, Ferrous <sup>a</sup>        | 0.62     | 0.20 |      | %     | 1  | 09/12/12       | ST  | ASTM D3872-86     |          |
| Sulfide Screen b                  | NEGATIVE |      |      |       | 1  | 09/12/12       | ST  | SM18 4500S2-A     |          |
| Total Organic Carbon <sup>c</sup> | 118000   | 120  | 59   | mg/kg | 1  | 09/12/12 15:55 | SJG | LLOYD KAHN 1988 N | MOD      |

- (a) The ferrous iron test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (b) The sulfide screen test was analyzed after completion of Cr6 testing (outside of normal hold times for this parameter) in order to provide more information about the possible impact of the sample matrix on Cr6 recoveries.
- (c) Received and analyzed out of holding time.

RL = Reporting Limit U = Indicates a result < MDL

MDL = Method Detection Limit B = Indicates a result > = MDL but < RL



5.1



Page 1 of 3

# Percent Solids Raw Data Summary Job Number: JB14858R

ENSRNJ AECOM, INC. Account:

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| <b>Sample:</b> JB14858-1 <b>ClientID:</b> NSB-F2-21.5-22.0  | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
|-------------------------------------------------------------|-----------|-----------------|---------|------------|
| Wet Weight (Total)                                          | 36.74     | g               |         |            |
| Tare Weight                                                 | 29.03     | g               |         |            |
| Dry Weight (Total)                                          | 35.59     | g               |         |            |
| Solids, Percent                                             | 85.1      | %               |         |            |
| Sample: JB14858-2<br>ClientID: NSB-F2-17.8-18.3             | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 36.65     | g               |         |            |
| Tare Weight                                                 | 27.51     | g               |         |            |
| Dry Weight (Total)                                          | 35.59     | g               |         |            |
| Solids, Percent                                             | 88.4      | %               |         |            |
| <b>Sample:</b> JB14858-3 <b>ClientID:</b> NSB-F2-15.0-15.5  | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 31.3      | g               |         |            |
| Tare Weight                                                 | 22.68     | g               |         |            |
| Dry Weight (Total)                                          | 29.28     | g               |         |            |
| Solids, Percent                                             | 76.6      | %               |         |            |
| <b>Sample:</b> JB14858-4 <b>ClientID:</b> NSB-F2-10.5-11.02 |           | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 35.22     | g               |         |            |
| Tare Weight                                                 | 26.71     | g               |         |            |
| Dry Weight (Total)                                          | 33.12     | g               |         |            |
| Solids, Percent                                             | 75.3      | %               |         |            |
| Sample: JB14858-5<br>ClientID: NSB-F2-10.5-11.0             | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 29.95     | g               |         |            |
| Tare Weight                                                 | 21.56     | g               |         |            |
| Dry Weight (Total)                                          | 28.07     | g               |         |            |
| Solids, Percent                                             | 77.6      | %               |         |            |
| Sample: JB14858-6<br>ClientID: NSB-F2-4.0-4.5               | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                          | 34.25     | g               |         |            |
| Tare Weight                                                 | 25.14     | g               |         |            |
| Dry Weight (Total)                                          | 33.12     | g               |         |            |
| Solids, Percent                                             | 87.6      | %               |         |            |
|                                                             |           |                 |         |            |



6.6

### Page 2 of 3

**Job Number:** JB14858R

**Account:** ENSRNJ AECOM, INC.

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| <b>Sample:</b> JB14858-7 <b>ClientID:</b> NSB-F2-1.0-1.5    | Analyzed: 07-SEP-12 by RO        | <b>Method:</b> SM18 2540G |
|-------------------------------------------------------------|----------------------------------|---------------------------|
| Wet Weight (Total)                                          | 31.55 g                          |                           |
| Tare Weight                                                 | 25.98 g                          |                           |
| Dry Weight (Total)                                          | 30.61 g                          |                           |
| Solids, Percent                                             | 83.1 %                           |                           |
| Sample: JB14858-8<br>ClientID: NSB-F3-20.0-20.5             | <b>Analyzed:</b> 07-SEP-12 by RO | <b>Method:</b> SM18 2540G |
| Wet Weight (Total)                                          | 35.38 g                          |                           |
| Tare Weight                                                 | 26.17 g                          |                           |
| Dry Weight (Total)                                          | 34.14 g                          |                           |
| Solids, Percent                                             | 86.5 %                           |                           |
| Sample: JB14858-9<br>ClientID: NSB-F3-15.0-15.5             | Analyzed: 07-SEP-12 by RO        | <b>Method:</b> SM18 2540G |
| Wet Weight (Total)                                          | 32.97 g                          |                           |
| Tare Weight                                                 | 25.14 g                          |                           |
| Dry Weight (Total)                                          | 31.93 g                          |                           |
| Solids, Percent                                             | 86.7 %                           |                           |
| <b>Sample:</b> JB14858-10 <b>ClientID:</b> NSB-F3-10.0-10.5 | <b>Analyzed:</b> 07-SEP-12 by RO | <b>Method:</b> SM18 2540G |
| Wet Weight (Total)                                          | 28.2 g                           |                           |
| Tare Weight                                                 | 23.07 g                          |                           |
| Dry Weight (Total)                                          | 26.06 g                          |                           |
| Solids, Percent                                             | 58.3 %                           |                           |
| Sample: JB14858-11<br>ClientID: NSB-F4-20.0-20.5            | Analyzed: 07-SEP-12 by RO        | <b>Method:</b> SM18 2540G |
| Wet Weight (Total)                                          | 27.78 g                          |                           |
| Tare Weight                                                 | 19.28 g                          |                           |
| Dry Weight (Total)                                          | 26.56 g                          |                           |
| Solids, Percent                                             | 85.6 %                           |                           |
| Sample: JB14858-12<br>ClientID: NSB-F4-16.0-16.5            | Analyzed: 07-SEP-12 by RO        | <b>Method:</b> SM18 2540G |
| Wet Weight (Total)                                          | 27.92 g                          |                           |
| Tare Weight                                                 | 22.32 g                          |                           |
| Dry Weight (Total)                                          | 26.6 g                           |                           |
| Solids, Percent                                             | 76.4 %                           |                           |



Page 3 of 3

# Percent Solids Raw Data Summary Job Number: JB14858R

ENSRNJ AECOM, INC. **Account:** 

**Project:** PPG Northern Canal Borings, Jersey City, NJ

| <b>Sample:</b> JB14858-13 <b>ClientID:</b> NSB-F3-4.0-4.5 | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
|-----------------------------------------------------------|-----------|-----------------|---------|------------|
| Wet Weight (Total)                                        | 30.55     | g               |         |            |
| Tare Weight                                               | 20.88     | g               |         |            |
| Dry Weight (Total)                                        | 28.79     | g               |         |            |
| Solids, Percent                                           | 81.8      | %               |         |            |
| Sample: JB14858-14<br>ClientID: NSB-F3-1.0-1.5            | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                        | 28.91     | g               |         |            |
| Tare Weight                                               | 22.02     | g               |         |            |
| Dry Weight (Total)                                        | 28.01     | g               |         |            |
| Solids, Percent                                           | 86.9      | %               |         |            |
| Sample: JB14858-15<br>ClientID: NSB-F4-10.0-10.5          | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                        | 25.88     | g               |         |            |
| Tare Weight                                               | 17.66     | g               |         |            |
| Dry Weight (Total)                                        | 22.7      | g               |         |            |
| Solids, Percent                                           | 61.3      | %               |         |            |
| Sample: JB14858-16<br>ClientID: NSB-F4-6.0-6.5            | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                        | 28.86     | g               |         |            |
| Tare Weight                                               | 22.35     | g               |         |            |
| Dry Weight (Total)                                        | 26.4      | g               |         |            |
| Solids, Percent                                           | 62.2      | %               |         |            |
| Sample: JB14858-18<br>ClientID: NSB-F4-0.0-0.5            | Analyzed: | 07-SEP-12 by RO | Method: | SM18 2540G |
| Wet Weight (Total)                                        | 27.82     | g               |         |            |
| Tare Weight                                               | 21.25     | g               |         |            |
| Dry Weight (Total)                                        | 26.62     | g               |         |            |
| Solids, Percent                                           | 81.7      | %               |         |            |





| General Chemistry |  |
|-------------------|--|
| Raw Data          |  |



| 14 GP6705 15 GP6705 16 GP6705 17 JB1512 18 JB1512 19 JB1512 20 JB1550 23 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                          | 57-MB GP67107-M 57-MB GP67107-M 57-B2 GP67107-B 157-B2 GP | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met                                                    | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                                                                 | Date / Time  09/12/12 08:5  09/12/12 09:0  09/12/12 09:0  09/12/12 09:2  09/12/12 09:3  09/12/12 09:5  09/12/12 09:5  09/12/12 10:0  09/12/12 10:3  09/12/12 10:4  09/12/12 11:0  09/12/12 11:0  09/12/12 11:0  09/12/12 11:0  09/12/12 11:0  09/12/12 11:0 | Conc.  0.1061 %  0.1061 %  5.148 %  5.148 %  1.848 %  0.000 %  2.656 %  0.000 %  0.000 %  0.000 %  0.000 %  0.1948 %  0.1948 %  5.332 %  2.856 % | Mean Area  441  441  19496  19496  6883  6883  0  0  9709  9709  0  0  7231  7231  7231  22973  15999  15999 | 1.84%                                                                                             | overrange Revun at            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------|
| 2 CRI 3 HSTD 4 HSTD 5 ICV 6 ICV 7 ICB 8 ICB 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512 38 JB1512     | KHP  57-MB GP67107-N  57-MB GP67107-N  57-B2 GP67107-B  57-B2 GP67107-B  29-17 (2)  29-18 (4)  29-19 (2)  00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown | 09/12/12 08:5 09/12/12 09:0 09/12/12 09:0 09/12/12 09:2 09/12/12 09:3 09/12/12 09:3 09/12/12 09:5 09/12/12 09:5 09/12/12 10:0 09/12/12 10:0 09/12/12 10:3 09/12/12 10:4 09/12/12 10:4 09/12/12 11:0 09/12/12 11:0 09/12/12 11:0                             | 0.1061 % 5.148 % 5.148 % 1.848 % 0.000 % 0.000 % 2.656 % 0.000 % 0.000 % 0.000 % 0.000 % 0.1948 % 5.332 % 2.856 % 2.856 %                        | 441 19496 19496 6883 6883 0 0 9709 9709 0 0 7231 7231 7231 22973 15999                                       | 7.21% 0.417% 0.417% 2.25% 2.25% 0.00% 0.00% 2.72% 2.72% 0.00% 0.00% 0.00% 1.43% 1.43% 0.00% 1.84% | overrange Rorum at<br>Oss     |
| 2 CRI 3 HSTD 4 HSTD 5 ICV 6 ICV 7 ICB 8 ICB 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512 38 JB1512     | KHP  57-MB GP67107-N  57-MB GP67107-N  57-B2 GP67107-B  57-B2 GP67107-B  29-17 (2)  29-18 (4)  29-19 (2)  00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocss.met 1 tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met             | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                 | 09/12/12 09:0 09/12/12 09:0 09/12/12 09:2 09/12/12 09:3 09/12/12 09:3 09/12/12 09:5 09/12/12 09:5 09/12/12 10:0 09/12/12 10:0 09/12/12 10:3 09/12/12 10:4 09/12/12 10:4 09/12/12 11:0 09/12/12 11:0 09/12/12 11:0                                           | 5.148 % 5.148 % 1.848 % 0.000 % 0.000 % 2.656 % 0.000 % 0.000 % 0.000 % 0.1948 % 0.1948 % 5.332 % 2.856 %                                        | 19496 19496 6883 6883 0 0 9709 9709 0 0 7231 7231 22973 15999                                                | 0.417% 0.417% 2.25% 2.25% 0.00% 0.00% 2.72% 0.00% 0.00% 0.00% 1.43% 0.00% 1.43% 1.43%             | overrange Rorum at<br>0.059   |
| 3 HSTD 4 HSTD 5 ICV 6 ICV 7 ICB 8 ICB 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 20 JB1512 21 JB1550 22 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512 38 JB1512 | KHP  57-MB GP67107-N  57-MB GP67107-N  57-B2 GP67107-B  57-B2 GP67107-B  29-17 (2)  29-18 (4)  29-19 (2)  00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                           | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                         | 09/12/12 09:0 09/12/12 09:2 09/12/12 09:2 09/12/12 09:3 09/12/12 09:5 09/12/12 09:5 09/12/12 10:0 09/12/12 10:0 09/12/12 10:3 09/12/12 10:4 09/12/12 10:4 09/12/12 11:0 09/12/12 11:0 09/12/12 11:0                                                         | 5.148 % 1.848 % 0.000 % 0.000 % 2.656 % 0.000 % 0.000 % 0.000 % 0.000 % 0.1948 % 5.332 % 2.856 % 2.856 %                                         | 19496<br>6883<br>6883<br>0<br>0<br>9709<br>9709<br>0<br>0<br>0<br>7231<br>7231<br>7231<br>22973<br>15999     | 0.417% 2.25% 0.00% 0.00% 2.72% 2.72% 0.00% 0.00% 0.00% 1.43% 0.00% 1.43% 1.43%                    | overrange Rorum at            |
| 4 HSTD 5 ICV 6 ICV 7 ICB 8 ICB 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 29 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                | KHP  57-MB GP67107-N  57-MB GP67107-N  57-B2 GP67107-B  57-B2 GP67107-B  29-17 (2)  29-18 (4)  29-19 (2)  00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocss.met tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                         | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                 | 09/12/12 09:2<br>09/12/12 09:2<br>09/12/12 09:3<br>09/12/12 09:5<br>09/12/12 09:5<br>09/12/12 10:0<br>09/12/12 10:0<br>09/12/12 10:3<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                  | 1.848 % 1.848 % 0.000 % 0.000 % 2.656 % 0.000 % 0.000 % 0.000 % 0.1948 % 0.1948 % 5.332 % 2.856 % 2.856 %                                        | 6883<br>6883<br>0<br>0<br>9709<br>9709<br>0<br>0<br>0<br>7231<br>7231<br>7231<br>22973<br>15999              | 2.25% 2.25% 0.00% 0.00% 2.72% 2.72% 0.00% 0.00% 1.43% 1.43% 0.00% 1.84%                           | overrange Rorum at            |
| 5 ICV 6 ICV 7 ICB 8 ICB 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 18 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 29 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512 38 JB1512                                   | KHP  57-MB GP67107-N  57-MB GP67107-N  57-B2 GP67107-B  57-B2 GP67107-B  29-17 (2)  29-18 (4)  29-19 (2)  00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocss.met lb tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                             | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                 | 09/12/12 09:2<br>09/12/12 09:3<br>09/12/12 09:3<br>09/12/12 09:5<br>09/12/12 10:0<br>09/12/12 10:0<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                   | 1.848 % 0.000 % 0.000 % 2.656 % 2.656 % 0.000 % 0.000 % 0.000 % 0.1948 % 0.1948 % 5.332 % 2.856 %                                                | 6883<br>0<br>9709<br>9709<br>0<br>0<br>0<br>7231<br>7231<br>7231<br>22973<br>15999<br>15999                  | 2.25% 0.00% 0.00% 2.72% 2.72% 0.00% 0.00% 0.00% 1.43% 1.43% 0.00% 1.84%                           | overrange Rown at             |
| 6 ICV 7 ICB 8 ICB 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                         | 57-MB GP67107-M<br>57-MB GP67107-B<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>00-2R (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocss.met lB tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                             | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                 | 09/12/12 09:3<br>09/12/12 09:3<br>09/12/12 09:5<br>09/12/12 09:5<br>09/12/12 10:0<br>09/12/12 10:0<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                    | 0.000 % 0.000 % 2.656 % 0.000 % 0.000 % 0.000 % 0.1948 % 0.1948 % 5.332 % 2.856 %                                                                | 0<br>9709<br>9709<br>0<br>0<br>0<br>7231<br>7231<br>22973<br>15999                                           | 0.00%<br>0.00%<br>2.72%<br>0.00%<br>0.00%<br>0.00%<br>1.43%<br>0.00%<br>1.84%                     | overrange Rorum at<br>0.05g   |
| 7 ICB 8 ICB 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 29 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                         | 57-MB GP67107-N<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>29-19 (2)<br>00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                               | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                                 | 09/12/12 09:3<br>09/12/12 09:5<br>09/12/12 09:5<br>09/12/12 10:0<br>09/12/12 10:3<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                     | 0.000 % 2.656 % 2.656 % 0.000 % 0.000 % 0.000 % 0.1948 % 0.1948 % 5.332 % 2.856 %                                                                | 9709<br>9709<br>0<br>0<br>0<br>0<br>7231<br>7231<br>7231<br>22973<br>15999<br>15999                          | 0.00%<br>2.72%<br>2.72%<br>0.00%<br>0.00%<br>0.00%<br>1.43%<br>0.00%<br>1.84%                     | overrange Rorum at<br>0.059   |
| 8 ICB 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 29 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                         | 57-MB GP67107-N<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>29-19 (2)<br>00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tocsscal.met tocsscal.met tocsscal.met tocsscal.met tocsscal.met lB tocss.met 1 tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                                               | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                                         | 09/12/12 09:5<br>09/12/12 09:5<br>09/12/12 10:0<br>09/12/12 10:0<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                     | 2.656 % 2.656 % 0.000 % 0.000 % 0.000 % 0.1948 % 0.1948 % 5.332 % 2.856 %                                                                        | 9709<br>9709<br>0<br>0<br>0<br>0<br>7231<br>7231<br>7231<br>22973<br>15999<br>15999                          | 2.72% 2.72% 0.00% 0.00% 0.00% 1.43% 1.43% 0.00% 1.84%                                             | overranje Roman at<br>Osog    |
| 9 CCV 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 18 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 29 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                     | 57-MB GP67107-N<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>29-19 (2)<br>00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tocsscal.met tocsscal.met tocsscal.met tocsscal.met lb tocss.met 1 tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                                                                      | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                                                 | 09/12/12 09:5<br>09/12/12 10:0<br>09/12/12 10:0<br>09/12/12 10:3<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                      | 2.656 % 0.000 % 0.000 % 0.000 % 0.000 % 0.1948 % 0.1948 % 5.332 % 2.856 %                                                                        | 9709<br>0<br>0<br>0<br>7231<br>7231<br>22973<br>15999                                                        | 2.72%<br>0.00%<br>0.00%<br>0.00%<br>0.00%<br>1.43%<br>0.00%<br>1.84%                              | overrange Rorum at            |
| 10 CCV 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                           | 57-MB GP67107-N<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>29-19 (2)<br>00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tocsscal.met tocsscal.met tocsscal.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                                                                                | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                                                         | 09/12/12 10:0<br>09/12/12 10:0<br>09/12/12 10:3<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                       | 0.000 % 0.000 % 0.000 % 0.000 % 0.1948 % 0.1948 % 5.332 % 2.856 %                                                                                | 0<br>0<br>0<br>0<br>7231<br>7231<br>22973<br>15999<br>15999                                                  | 0.00%<br>0.00%<br>0.00%<br>0.00%<br>1.43%<br>0.00%<br>1.84%<br>1.84%                              | overrange Rorum at<br>0.059   |
| 11 CCB 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 18 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                        | 57-MB GP67107-N<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>29-19 (2)<br>00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tocsscal.met IB tocss.met IB tocss.met 1 tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                                                                                                          | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                                                                 | 09/12/12 10:0<br>09/12/12 10:3<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                                        | 0.000 %<br>0.000 %<br>0.000 %<br>0.1948 %<br>0.1948 %<br>5.332 %<br>2.856 %                                                                      | 0<br>0<br>7231<br>7231<br>22973<br>15999                                                                     | 0.00%<br>0.00%<br>0.00%<br>1.43%<br>0.00%<br>1.84%                                                | overrange Rorum at<br>Ossg    |
| 12 CCB 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 18 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                   | 57-MB GP67107-N<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>29-19 (2)<br>00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IB tocss.met IB tocss.met 1 tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                                                                                                                       | Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                                                                 | 09/12/12 10:3<br>09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                                        | 0.000 %<br>0.000 %<br>0.1948 %<br>0.1948 %<br>5.332 %<br>2.856 %<br>2.856 %                                                                      | 0<br>7231<br>7231<br>22973<br>15999                                                                          | 0.00%<br>0.00%<br>1.43%<br>1.43%<br>0.00%<br>1.84%                                                | ovenanje Rovun at<br>Osog     |
| 13 GP6705 14 GP6705 15 GP6705 16 GP6705 17 JB1512 18 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 29 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512 38 JB1512                                                                                      | 57-MB GP67107-N<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>29-19 (2)<br>00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IB tocss.met IB tocss.met 1 tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                                                                                                                       | Unknown Unknown Unknown Unknown Unknown Unknown Unknown                                                                                                                                                 | 09/12/12 10:3<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                                                         | 0.000 %<br>0.1948 %<br>0.1948 %<br>5.332 %<br>2.856 %<br>2.856 %                                                                                 | 0<br>7231<br>7231<br>22973<br>15999<br>15999                                                                 | 0.00%<br>1.43%<br>1.43%<br>0.00%<br>1.84%                                                         | -overronge Revun at<br>0.059  |
| 14 GP6705 15 GP6705 16 GP6705 17 JB1512 18 JB1512 19 JB1512 20 JB1550 23 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                          | 57-MB GP67107-N<br>57-B2 GP67107-B<br>157-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (2)<br>29-19 (2)<br>00-2R (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B tocss.met 1 tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                                                                                                                           | Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown                                                                                                                                          | 09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                                                                          | 0.1948 %<br>0.1948 %<br>5.332 %<br>2.856 %<br>2.856 %                                                                                            | 7231<br>7231<br>22973<br>15999<br>15999                                                                      | 1.43%<br>1.43%<br>0.00%<br>1.84%                                                                  | overrange Rorum at<br>0.059   |
| 15 GP6705 16 GP6705 17 JB1512 18 JB1512 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                          | 957-B2 GP67107-B<br>157-B2 GP67107-B<br>157-B2 GP67107-B<br>159-17 (2)<br>159-18 (4)<br>159-19 (2)<br>159-19 (2)<br>159-19 (2)<br>159-19 (2)<br>159-19 (2)<br>159-19 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 tocss.met 1 tocss.met tocss.met tocss.met tocss.met tocss.met tocss.met                                                                                                                                                                                                                                 | Unknown<br>Unknown<br>Unknown<br>Unknown<br>Unknown                                                                                                                                                     | 09/12/12 10:4<br>09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                                                                                           | 0.1948 %<br>5.332 %<br>2.856 %<br>2.856 %                                                                                                        | 7231<br>22973<br>15999<br>15999                                                                              | 1.43%<br>0.00%<br>1.84%                                                                           | overranje Roman at<br>Oseg    |
| 16 GP6705 17 JB1512 18 JB1512 19 JB1512 20 JB1550 21 JB1550 22 JB1550 23 JB1484 24 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512 38 JB1512                                                                                                                    | 957-B2 GP67107-B<br>29-17 (2)<br>29-18 (4)<br>29-18 (1)<br>29-19 (2)<br>00-2R (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 tocss.met<br>tocss.met<br>tocss.met<br>tocss.met<br>tocss.met<br>tocss.met                                                                                                                                                                                                                              | Unknown<br>Unknown<br>Unknown<br>Unknown                                                                                                                                                                | 09/12/12 10:4<br>09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                                                                                                            | 5.332 %<br>2.856 %<br>2.856 %                                                                                                                    | 22973<br>15999<br>15999                                                                                      | 0.00%<br>1.84%                                                                                    | -overrange Rozun at<br>0.000  |
| 17 JB1512 18 JB1512 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512 38 JB1512                                                                                                                    | 29-17 (2)<br>29-18 (A)<br>29-18 (J)<br>29-19 (D)<br>00-2R (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tocss.met<br>tocss.met<br>tocss.met<br>tocss.met<br>tocss.met                                                                                                                                                                                                                                             | Unknown<br>Unknown<br>Unknown<br>Unknown                                                                                                                                                                | 09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                                                                                                                             | 2.856 %<br>2.856 %                                                                                                                               | 15999<br>15999                                                                                               | 1.84%                                                                                             | -overrange. Korun at<br>0.059 |
| 18 JB1512 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                        | 29-18 <b>(4)</b><br>29-18 <b>(1)</b><br>29-19 <b>(2)</b><br>00-2R <b>(1)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tocss.met tocss.met tocss.met tocss.met                                                                                                                                                                                                                                                                   | Unknown<br>Unknown<br>Unknown                                                                                                                                                                           | 09/12/12 11:0<br>09/12/12 11:0<br>09/12/12 11:0                                                                                                                                                                                                             | 2.856 %<br>2.856 %                                                                                                                               | 15999                                                                                                        | 1.84%                                                                                             | · 0.039                       |
| 19 JB1512 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                  | 29-18 <b>J</b><br>29-19 <b>2</b><br>00-2R <b>H</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tocss.met<br>tocss.met<br>tocss.met                                                                                                                                                                                                                                                                       | Unknown<br>Unknown                                                                                                                                                                                      | 09/12/12 11:0<br>09/12/12 11:0                                                                                                                                                                                                                              | 2.856 %                                                                                                                                          |                                                                                                              | 1.84%                                                                                             |                               |
| 20 JB1512 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                            | 29-19 <b>②</b><br>00-2R <b>孙</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tocss.met<br>tocss.met                                                                                                                                                                                                                                                                                    | Unknown                                                                                                                                                                                                 | 09/12/12 11:0                                                                                                                                                                                                                                               |                                                                                                                                                  |                                                                                                              |                                                                                                   |                               |
| 21 JB1550 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                                      | 00-2R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tocss.met                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                         |                                                                                                                                                                                                                                                             | 9.851 %                                                                                                                                          | 43311                                                                                                        | 0.00%                                                                                             | Overraye Rerun at             |
| 22 JB1550 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                         | 109/12/12 11:2                                                                                                                                                                                                                                              | 1.583 %                                                                                                                                          | 6145                                                                                                         | 13.0%                                                                                             | 7.5                           |
| 23 JB1484 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                                                          | ∂052R I I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                                                 | 09/12/12 11:2                                                                                                                                                                                                                                               | 1.583 %                                                                                                                                          | 6145                                                                                                         | 13.0%                                                                                             |                               |
| 24 GP6710 25 GP6710 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 11:3                                                                                                                                                                                                                                               | 10.82 %                                                                                                                                          | 20878                                                                                                        | 0.00%                                                                                             | -Ovenary ferm of              |
| 25 GP6710 26 JB1512 27 JB1512 28 GP6710 29 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                                                                              | 107-D1 JB15129-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                                                 | 09/12/12 11:5                                                                                                                                                                                                                                               | 2.584/%                                                                                                                                          | <b>181</b> 14074                                                                                             | 7.00%                                                                                             | Bestes Averaged               |
| 26 JB1512 27 JB1512 28 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                                                                                        | 107-D1 JB15129-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                                                 |                                                                                                                                                                                                                                                             | 2.584 %                                                                                                                                          | 14074                                                                                                        | 7.00%                                                                                             | 1/2 boots of                  |
| 27 JB1512<br>28 GP6710<br>29 GP6710<br>30 GP6710<br>31 CCV<br>32 CCV<br>33 CCB<br>34 CCB<br>35 JB1512<br>36 JB1512<br>37 JB1512<br>38 JB1512                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 11:5<br>09/12/12 12:1                                                                                                                                                                                                                              | 9.146 %                                                                                                                                          | 6833                                                                                                         | 0.970%                                                                                            |                               |
| 28 GP6710 29 GP6710 30 GP6710 31 CCV 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 12:1                                                                                                                                                                                                                                               | 9.146 %                                                                                                                                          | 6833                                                                                                         | 0.970%                                                                                            |                               |
| 29 GP6710<br>30 GP6710<br>31 CCV<br>32 CCV<br>33 CCB<br>34 CCB<br>35 JB1512<br>36 JB1512<br>37 JB1512                                                                                                                                                                                                                              | 107-S1 JB15129-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                                                 | 09/12/12 12:3                                                                                                                                                                                                                                               | 6.825 %                                                                                                                                          | 12465                                                                                                        | 3.90%                                                                                             |                               |
| 30 GP6710<br>31 CCV<br>32 CCV<br>33 CCB<br>34 CCB<br>35 JB1512<br>36 JB1512<br>37 JB1512<br>38 JB1512                                                                                                                                                                                                                              | 107-S1 JB15129-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                                                 | 09/12/12 12:3                                                                                                                                                                                                                                               | 6.825 %                                                                                                                                          | 12465                                                                                                        | 3.90%                                                                                             | Exceed                        |
| 31 CCV<br>32 CCV<br>33 CCB<br>34 CCB<br>35 JB1512<br>36 JB1512<br>37 JB1512<br>38 JB1512                                                                                                                                                                                                                                           | 107-S1 JB15129-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                                                 | 09/12/12 12:3                                                                                                                                                                                                                                               | 6.825 %                                                                                                                                          | 12465                                                                                                        | 3.90%                                                                                             |                               |
| 32 CCV 33 CCB 34 CCB 35 JB1512 36 JB1512 37 JB1512 38 JB1512                                                                                                                                                                                                                                                                       | <b>B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tocsscal.met                                                                                                                                                                                                                                                                                              | Unknown                                                                                                                                                                                                 | 09/12/12 12:4                                                                                                                                                                                                                                               | 2.720 %                                                                                                                                          | 9937                                                                                                         | 1.42%                                                                                             |                               |
| 33 CCB<br>34 CCB<br>35 JB1512<br>36 JB1512<br>37 JB1512<br>38 JB1512                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocsscal.met                                                                                                                                                                                                                                                                                              | b                                                                                                                                                                                                       | 09/12/12 12:4                                                                                                                                                                                                                                               | 2.720 %                                                                                                                                          | 9937                                                                                                         | 1.42%                                                                                             |                               |
| 34 CCB<br>35 JB1512<br>36 JB1512<br>37 JB1512<br>38 JB1512                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocsscal.met                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | 09/12/12 13:0                                                                                                                                                                                                                                               | 0.000 %                                                                                                                                          | 0                                                                                                            | 0.00%                                                                                             |                               |
| 35 JB1512<br>36 JB1512<br>37 JB1512<br>38 JB1512                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocsscal.met                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                         | 09/12/12 13:0                                                                                                                                                                                                                                               | 0.000 %                                                                                                                                          | 0                                                                                                            | 0.00%                                                                                             |                               |
| 36 JB1512<br>37 JB1512<br>38 JB1512                                                                                                                                                                                                                                                                                                | 29-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 13:1                                                                                                                                                                                                                                               | 0.1534 %                                                                                                                                         | 5929                                                                                                         | 3.94%                                                                                             |                               |
| 37 JB1512<br>38 JB1512                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 13:1                                                                                                                                                                                                                                               | 0.1534 %                                                                                                                                         | 5929                                                                                                         | 3.94%                                                                                             |                               |
| 38 JB1512                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 13:2                                                                                                                                                                                                                                               | 4.998 %                                                                                                                                          | 12926                                                                                                        | 1.73%                                                                                             |                               |
|                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 13:2                                                                                                                                                                                                                                               | 4.998 %                                                                                                                                          | 12926                                                                                                        | 1.73%                                                                                             |                               |
| 39  JB1512                                                                                                                                                                                                                                                                                                                         | 29-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 13:5                                                                                                                                                                                                                                               | 6.665 %                                                                                                                                          | 5146                                                                                                         | 4.30%                                                                                             | ſ                             |
| 40 JB1512                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 13:5                                                                                                                                                                                                                                               | 6.665 %                                                                                                                                          | 5146                                                                                                         | 4.30%                                                                                             | 1                             |
| 41 JB1512                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 13:5                                                                                                                                                                                                                                               | 6.665 %                                                                                                                                          |                                                                                                              | 4.30%                                                                                             |                               |
| 42 JB1512                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 13:5                                                                                                                                                                                                                                               | 6.665 %                                                                                                                                          | 5146                                                                                                         | 4.30%                                                                                             |                               |
| 43 JB1512                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 14:1                                                                                                                                                                                                                                               | 5.269 %                                                                                                                                          | 4161                                                                                                         | 28.7%                                                                                             |                               |
| 44 JB1512                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 14:1                                                                                                                                                                                                                                               | 5.269 %                                                                                                                                          | 4161                                                                                                         | 28.7%                                                                                             | 1                             |
| 45 JB1512                                                                                                                                                                                                                                                                                                                          | 29-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 14:1                                                                                                                                                                                                                                               | 5.269 %                                                                                                                                          | 4161                                                                                                         | 28.7%                                                                                             | .1                            |
| 46 JB1512                                                                                                                                                                                                                                                                                                                          | 29-11<br>  29-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 14:1                                                                                                                                                                                                                                               | 5.269 %                                                                                                                                          | 4161                                                                                                         | 28.7%                                                                                             |                               |
|                                                                                                                                                                                                                                                                                                                                    | 29-11<br>  29-11<br>  29-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           | Unknown                                                                                                                                                                                                 | 09/12/12 14:2                                                                                                                                                                                                                                               | 5.631 %                                                                                                                                          | 10364                                                                                                        | 1.79%                                                                                             |                               |
|                                                                                                                                                                                                                                                                                                                                    | 29-11<br>129-11<br>129-11<br>129-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tocss.met                                                                                                                                                                                                                                                                                                 | Unknown                                                                                                                                                                                                 | 09/12/12 14:2                                                                                                                                                                                                                                               | 5.631 %                                                                                                                                          | 10364                                                                                                        | 1.79%                                                                                             |                               |
| 49 JB1512                                                                                                                                                                                                                                                                                                                          | 29-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                         | 09/12/12 14:4                                                                                                                                                                                                                                               | 8.711 %                                                                                                                                          | 16185                                                                                                        | 1.13%                                                                                             | -Cxcluded                     |
| b 209125                                                                                                                                                                                                                                                                                                                           | 29-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tocss.met<br>tocss.met                                                                                                                                                                                                                                                                                    | Unknown                                                                                                                                                                                                 |                                                                                                                                                                                                                                                             | 1                                                                                                                                                | ·                                                                                                            | VH399                                                                                             | _                             |

10091251-10C 10CLK

VA 9/12/m

| JC K | eports: GN     | 71899                                            | <del></del>  |         |               |         | ·         |         |
|------|----------------|--------------------------------------------------|--------------|---------|---------------|---------|-----------|---------|
|      | Sample<br>Name | Sample ID                                        | Method       | Type    | Date / Time   | Conc.   | Mean Area | CV Area |
| 50   | JB15129-15 (   | R)                                               | tocss.met    | Unknown | 09/12/12 14:4 | 8.711 % | 16185     | 1.13%   |
| 51   | JB15129-15     | Ĭ                                                | tocss.met    | Unknown | 09/12/12 14:4 | 8.711 % | 16185     | 1.13%   |
| 52   | JB15129-17     | ,,,,,,                                           | tocss.met    | Unknown | 09/12/12 14:5 | 5.941 % | 11186     | 3.91%   |
| 53   | JB15129-17     |                                                  | tocss.met    | Unknown | 09/12/12 14:5 | 5.941 % | 11186     | 3.91%   |
| 54   | JB15129-19     |                                                  | tocss.met    | Unknown | 09/12/12 15:2 | 10.73 % | 8028      | 2.31%   |
| 55   | JB15129-19     | <u> </u>                                         | tocss.met    | Unknown | 09/12/12 15:2 | 10.73 % | 8028      | 2.31%   |
| 56   | JB15129-19     |                                                  | tocss.met    | Unknown | 09/12/12 15:2 | 10.73 % | 8028      | 2.31%   |
| 57   | JB15129-19     |                                                  | tocss.met    | Unknown | 09/12/12 15:2 | 10.73 % | 8028      | 2.31%   |
| 58   | JB14858-18R    |                                                  | tocss.met    | Unknown | 09/12/12 15:5 | 9.641 % | 8934      | 27.9%   |
| 59   | JB14858-18R    | <del>                                     </del> | tocss.met    | Unknown | 09/12/12 15:5 | 9.641 % | 8934      | 27.9%   |
| 60   | JB14858-18R    | <u> </u>                                         | tocss.met    | Unknown | 09/12/12 15:5 | 9.641 % | 8934      | 27.9%   |
| 61   | JB14858-18R    | <del> </del>                                     | tocss.met    | Unknown | 09/12/12 15:5 | 9.641 % | 8934      | 27.9%   |
| 62   | GP67107-D1     | W/                                               | tocss.met    | Unknown | 09/12/12 16:0 | 2.990 % | 16586     | 0.775%  |
| 63   | GP67107-D1     | J                                                | tocss.met    | Unknown | 09/12/12 16:0 | 2.990 % | 16586     | 0.775%  |
| 64   |                | <b>1</b> 80                                      | tocsscal.met | Unknown | 09/12/12 16:1 | 2.696 % | 9850      | 2.02%   |
| 65   | ccv            | Ψ                                                | tocsscal.met | Unknown | 09/12/12 16:1 | 2.696 % | 9850      | 2.02%   |
| 66   | ССВ            |                                                  | tocsscal.met | Unknown | 09/12/12 17:0 | 0.000 % | 0         | 0.00%   |
| 67   | CCB            | <b>↓</b>                                         | tocsscal.met | Unknown | 09/12/12 17:0 | 0.000 % | 0         | 0.00%   |

Results Ave. wl

62091251.TDC POCK GNH399 VA 9/12/12

#### General Information

Organization:

**Accutest Laboratories** 

User:

Title:

Instrument ID:

TOC2

Filename:

C:\TOCCNTR\DATA\B20912S1.TOC

Comment:

Instrument Conditions

Instrument Attachments:

TOC-5000 + SSM 5000

Calibration Curves

Filename:

b20829s1.cal

Title:

b20829s1.cal

Calculation method:

Point to point without zero shift

| Analysis | Unit | Range | Density |
|----------|------|-------|---------|
| SSM-TC   | %    | 5     | 1.000   |

| Sample Name | Sample ID | Conc.  | No. of<br>Inj. | Mean Area | Volume   | CNV   | lbs C [μg | SD  | CV     |
|-------------|-----------|--------|----------------|-----------|----------|-------|-----------|-----|--------|
| STDA        | 0.0       | 0.000  | 2              | 0         | 0.00000  | 0     | 0.000     | 0   | 0.00%  |
| STDB        | 0.1       | 0.1000 | 2              | 417       | 0.00000  | 417   | 100.0     | 73  | 17.6%  |
| STDC        | 0.5       | 0.5000 | 2              | 2013      | 0.00000  | 2012  | 500.0     | 111 | 5.52%  |
| STDD        | 1.0       | 1.000  | 2              | 3920      | 0.1833   | 3920  | 1000      | 202 | 5.16%  |
| STDE        | 2.5       | 2.500  | 2              | 9161      | 100.0    | 9160  | 2500      | 557 | 6.09%  |
| STDF        | 4.0       | 4.000  | 2              | 14454     | 0.00000  | 14454 | 4000      | 328 | 2.27%  |
| STDG        | 5.0       | 5.000  | 2              | 18847     | 66639420 | 18846 | 5000      | 146 | 0.777% |

Slope:

4.1700

Intercept:

0.0000

R^2:

0.00000

Accutest Laboratories,

#### Samples

Sample Name:

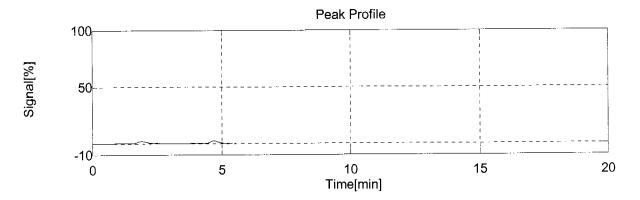
CRI

Sample ID: Remark:

Comment:

Method:

tocsscal.met


1: h20829s1 cal

| Cal Curve: | 1: | b20829s1.cal |
|------------|----|--------------|
|            |    |              |

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 08:52:38 |

| Mean Area | Conc    | Result | SD      | CV    | Modified |
|-----------|---------|--------|---------|-------|----------|
| 441       | 0.1061% | 4-00   | 0.00798 | 7.52% |          |

| No. | Range | Area | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 464  | 0.11178 |       | ***** | 09/12/2012 08:47:29 | b20829s1.cal |
| 2   | 5     | 419  | 0.10050 |       | ***** | 09/12/2012 08:52:38 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

**HSTD** 

Sample ID: Remark: Comment:

Method:

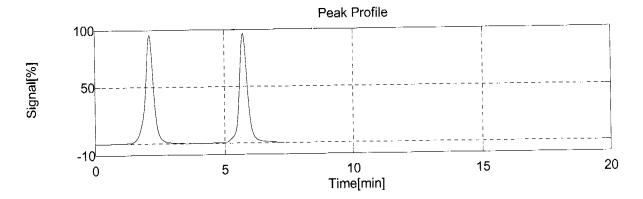
tocsscal.met

Accutest Laboratories,

09/13/2012 08:31:39

Page 2 / 31




Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 09:06:03 |

| Mean Area | Conc   | Result | SD      | CV     | Modified |
|-----------|--------|--------|---------|--------|----------|
| 19496     | 5.148% |        | 0.01851 | 0.360% |          |

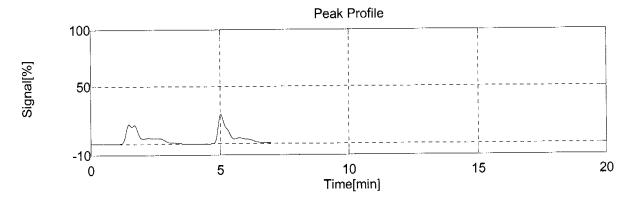
| No. | Range | Area  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 19554 | 5.1611 |       | ****  | 09/12/2012 08:59:14 | b20829s1.cal |
| 2   | 5     | 19439 | 5.1349 |       | ***** | 09/12/2012 09:06:03 | b20829s1.cal |



#### Samples 5

ICV Sample Name: KHP Sample ID:

Remark: Comment:


tocsscal.met Method: 1: b20829s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 09:21:10 |

Accutest Laboratories,

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 6883      | 1.848% |        | 0.04432 | 2.40% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Çal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 6774 | 1.8169 |       | ****  | 09/12/2012 09:12:51 | b20829s1.cal |
| 2   | 5     | 6993 | 1.8796 |       | ***** | 09/12/2012 09:21:10 | b20829s1.cal |



#### <u>Samples</u>

Sample Name:

ICB

Sample ID:

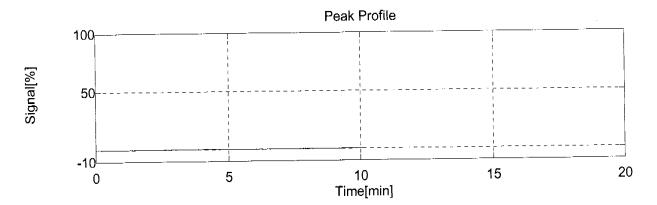
Remark:

Comment: Method:

tocsscal.met

Cal Curve:

1: b20829s1.cal


| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 09:38:04 |

| Mean Area | Conc   | Result | SD    | CV    | Modified |
|-----------|--------|--------|-------|-------|----------|
| 0         | 0.000% |        | 0.000 | 0.00% |          |

Accutest Laboratories,



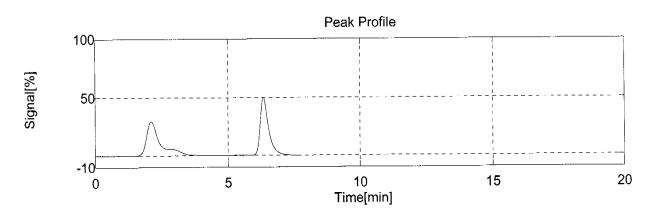
| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | . 0  | 0.0000 |       | ****  | 09/12/2012 09:29:39 | b20829s1.cal |
| 2   | 5     | 0    | 0.0000 |       | ***** | 09/12/2012 09:38:04 | b20829s1.cal |



#### <u>Samples</u>

Sample Name: CCV

Sample ID: Remark: Comment:


Method: tocsscal.met
Cal Curve: 1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 09:52:47 |

|   | Mean Area | Conc   | Result | SD      | cv    | Modified |
|---|-----------|--------|--------|---------|-------|----------|
| 1 | 9709      | 2.656% |        | 0.07474 | 2.81% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9523 | 2.6027 |       | ****  | 09/12/2012 09:46:11 | b20829s1.cal |
| 2   | 5     | 9896 | 2.7084 |       | ***** | 09/12/2012 09:52:47 | b20829s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

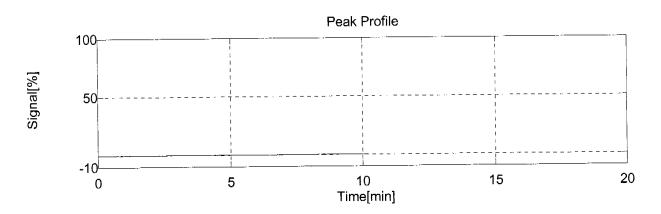
CCB

Sample ID:

Remark: Comment:

Method:

tocsscal.met


Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 10:06:59 |

| Mean Area | Conc   | Result | SD    | CV    | Modified |
|-----------|--------|--------|-------|-------|----------|
| 0         | 0.000% |        | 0.000 | 0.00% |          |

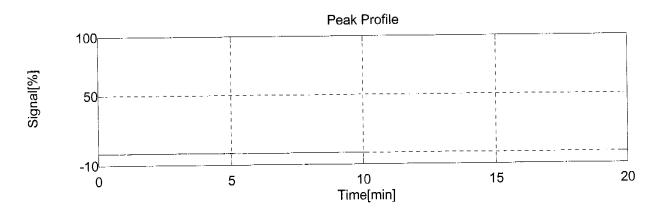
| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 0.0000 |       | ****  | 09/12/2012 10:00:10 | b20829s1.cal |
| 2   | 5     | 0    | 0.0000 |       | ***** | 09/12/2012 10:06:59 | b20829s1.cal |



#### <u>Samples</u>

GP67057-MB2 Sample Name: GP67107-MB1 Sample ID:

Remark: Comment:


tocss.met Method:

1: b20829s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 10:30:57 |

| Mean Area |   | Conc   | Result | SD    | CV    | Weight | Modified |
|-----------|---|--------|--------|-------|-------|--------|----------|
|           | 0 | 0.000% | %      | 0.000 | 0.00% | 1000   |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 1000   | 0.0000 |       | ***** | 09/12/2012 10:23:56 | b20829s1.cal |
| 2   | 5     | 0    | 1000   | 0.0000 |       | ***** | 09/12/2012 10:30:57 | b20829s1.cal |



### Samples

Sample Name: GP67057-B2 Sample ID: GP67107-B1

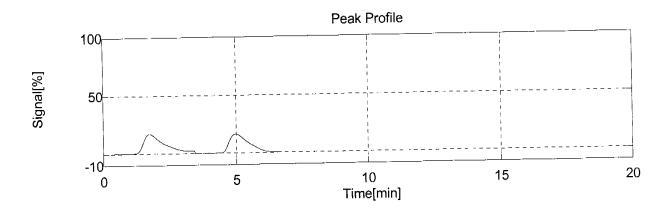
Remark: Comment:

Method: tocss.met

Cal Curve: 1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 10:42:17 |

| Mean Area | Conc    | Result | SD      | cv    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 7231      | 0.1948% |        | 0.00295 | 1.52% | 1000   |          |


| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 7158 | 1000   | 0.19268 | :     | ***** | 09/12/2012 10:36:11 | b20829s1.cal |
| 2   | 5     | 7304 | 1000   | 0.19686 |       | ****  | 09/12/2012 10:42:17 | b20829s1.cal |

Accutest Laboratories, 09/13/2012 08:31:39
Page 8 / 31

### 7.

### 7

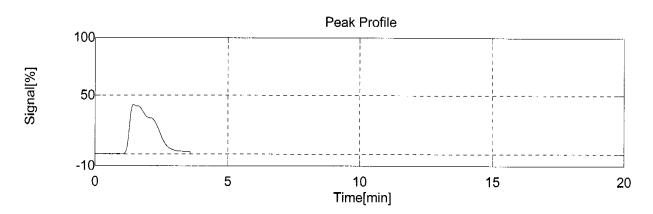
## **TOC-Control**



### Samples

Sample Name: JB15129-17

Sample ID: Remark: Comment:


Method: tocss.met

Cal Curve: 1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |
|---------|----------|----------|---------------------|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 10:47:56 |  |

| Mean Area | Conc   | Result | SD    | cv    | Weight | Modified |
|-----------|--------|--------|-------|-------|--------|----------|
| 22973     | 5.332% |        | 0.000 | 0.00% | 111.4  |          |

| N | 0. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|---|----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1 | -  | 5     | 22973 | 111.4  | 5.3316 |       | ***** | 09/12/2012 10:47:56 | b20829s1.cal |



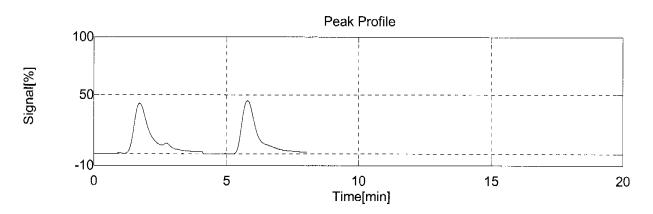
#### <u>Samples</u>

Sample Name: JB15129-18

Sample ID: Remark: Comment:

Method: tocss.met

1: b20829s1.cal Cal Curve:


| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 11:00:19 |  |  |

| Mean Area | Conc   | Result | SD      | cv    | Weight | Modified |
|-----------|--------|--------|---------|-------|--------|----------|
| 15999     | 2.856% |        | 0.05940 | 2.08% | 152.5  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 16163 | 156.0  | 2.8135 |       | ***** | 09/12/2012 10:54:32 | b20829s1.cal |
| 2   | 5     | 15835 | 148.9  | 2.8975 |       | ***** | 09/12/2012 11:00:19 | b20829s1.cal |

Accutest Laboratories,





### <u>Samples</u>

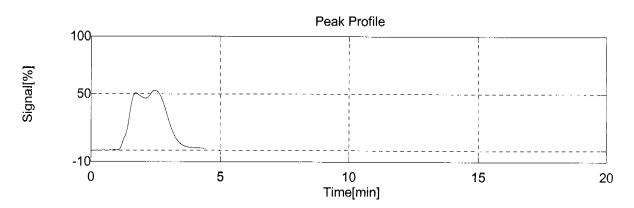
Sample Name:

JB15129-19

Sample ID: Remark: Comment:

Method:

tocss.met


Cal Curve: 1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |
|---------|----------|----------|---------------------|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 11:06:58 |  |

| Mean Area | Conc   | Result | SD    | cv | Weight | Modified |
|-----------|--------|--------|-------|----|--------|----------|
| 43311     | 9.851% |        | 0.000 |    | 107.3  |          |

| [ | No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|---|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1 |     | 5     | 43311 |        | 9.8505 |       | ***** | 09/12/2012 11:06:58 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

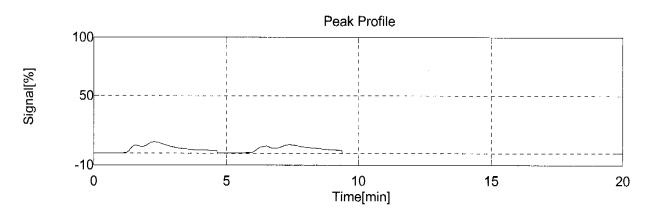
JB15500-2R

Sample ID:

Remark: Comment:

Method:

tocss.met


1: b20829s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |  |
|---------|----------|----------|---------------------|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 11:22:36 |  |

| Mean Area | Conc   | Result | SD     | cv    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 6145      | 1.583% |        | 0.2217 | 14.0% | 103.4  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 6742 | 103.9  | 1.7399 |       | ***** | 09/12/2012 11:15:08 | b20829s1.cal |
| 2   | 5     | 5549 | 102.8  | 1.4263 |       | ***** | 09/12/2012 11:22:36 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB14848-18R

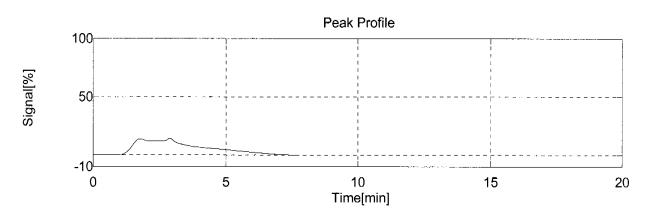
Sample ID:

Remark:

Comment:

Method:

tocss.met


Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 11:33:20 |

| Mean Area | Conc   | Result | SD    | cv    | Weight | Modified |
|-----------|--------|--------|-------|-------|--------|----------|
| 20878     | 10.82% |        | 0.000 | 0.00% | 50.50  |          |

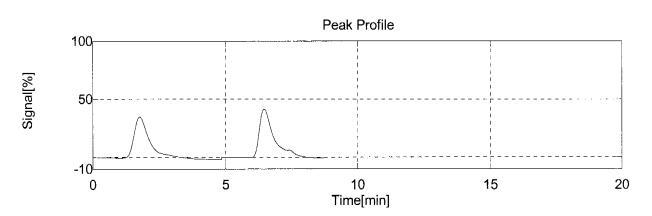
| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 20878 | 50.50  | 10.817 |       | ****  | 09/12/2012 11:33:20 | b20829s1.cal |



#### <u>Samples</u>

Sample Name: GP67107-D1 Sample ID: JB15129-18

Remark: Comment:


Method: tocss.met

1: b20829s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 11:53:54 |

| Mean Area | Conc        | Result | SD     | CV    | Weight | Modified |
|-----------|-------------|--------|--------|-------|--------|----------|
| 14074     | 2.787 2584% |        | 0.1807 | 6.99% |        |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 13550 | 152.4  | 2.4566 |       | ***** | 09/12/2012 11:47:00 | b20829s1.cal |
| 2   | 5     | 14599 | 148.7  | 2.7122 | Ì     |       | 09/12/2012 11:53:54 | b20829s1.cal |



### <u>Samples</u>

Sample Name:

JB15129-16

Sample ID: Remark:

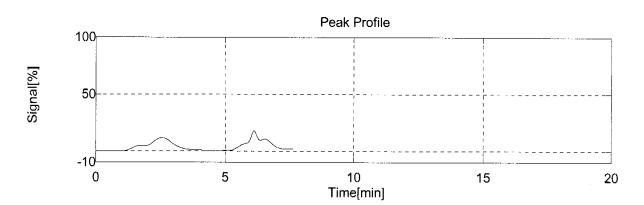
Comment:

Method:

tocss.met

1: b20829s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 12:15:25 |


| Mean Area | Conc   | Result | SD      | cv    | Weight | Modified |
|-----------|--------|--------|---------|-------|--------|----------|
| 6833      | 9.146% |        | 0.09696 | 1.06% | 20.05  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Çal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 6897 | 20.10  | 9.2145 |       | ***** | 09/12/2012 12:10:16 | b20829s1.cal |
| 2   | 5     | 6769 | 20.00  | 9.0774 |       | ***** | 09/12/2012 12:15:25 | b20829s1.cal |

68 of 102

JB14858R

ACCUTEST



#### <u>Samples</u>

Sample Name: GP67107-S1 Sample ID: JB15129-18

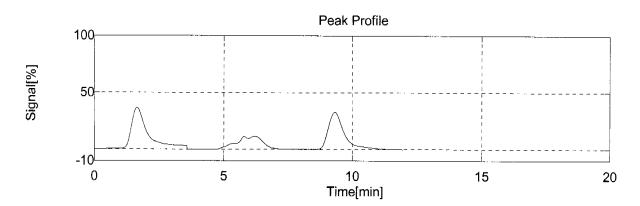
Remark: Comment:

Method: tocss.met

1: b20829s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 12:32:38 |

| Mean Area | Conc   | Result | SD     | cv    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 12465     | 6.825% |        | 0.2749 | 4.03% | 50.35  |          |


| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 12084 | 50.20  | 6.6303 |       | ***** | 09/12/2012 12:22:01 | b20829s1.cal |
| 2   | 5     | 6938  | 50.50  | 3.6908 | E     | ***** | 09/12/2012 12:27:10 | b20829s1.cal |
| 3   | 5     | 12847 | 50.50  | 7.0191 |       | ***** | 09/12/2012 12:32:38 | b20829s1.cal |

Excrubed wrong boat put in

9 9/13/12

Accutest Laboratories,





### <u>Samples</u>

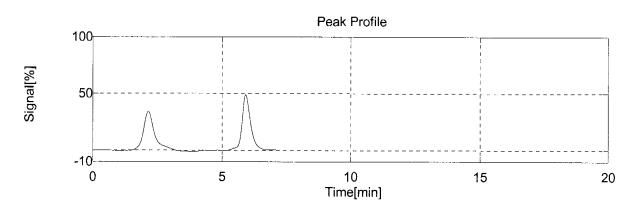
Sample Name:

CCV

Sample ID: Remark:

Comment:

Method: Cal Curve: tocsscal.met


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 12:43:14 |

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 9937      | 2.720% | *      | 0.04007 | 1.47% |          |

| No. | Range | Area  | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9837  | 2.6917 |       | ***** | 09/12/2012 12:39:05 | b20829s1.cal |
| 2   | 5     | 10037 | 2.7484 | ·     | ***** | 09/12/2012 12:43:14 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

CCB

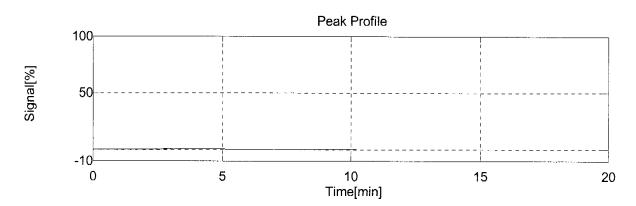
Sample ID:

Remark:

Comment:

tocsscal.met

Method: Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 13:03:17 |

| Mean Area | Conc   | Result | SD    | cv    | Modified |
|-----------|--------|--------|-------|-------|----------|
| 0         | 0.000% |        | 0.000 | 0.00% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 0.0000 |       | ***** | 09/12/2012 12:56:32 | b20829s1.cal |
| 2   | 5     | 0    | 0.0000 |       | ***** | 09/12/2012 13:03:17 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB15129-2

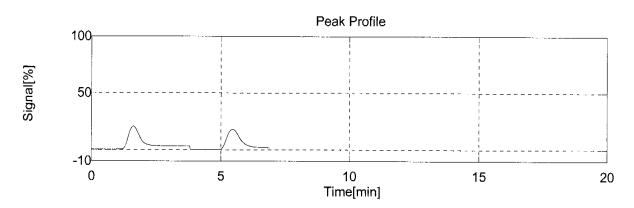
Sample ID:

Remark: Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 13:15:57 |

| Mean Area | Conc    | Result | SD      | CV    | Weight | Modified |
|-----------|---------|--------|---------|-------|--------|----------|
| 5929      | 0.1534% |        | 0.00670 | 4.36% | 1026   |          |

| No. | Range | Area | Weight | Conc    | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|---------|-------|-------|---------------------|--------------|
| 1   | 5     | 6158 | 1037   | 0.15817 |       | ***** | 09/12/2012 13:10:04 | b20829s1.cai |
| 2   | 5     | 5700 | 1015   | 0.14870 |       | ***** | 09/12/2012 13:15:57 | b20829s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

JB15129-5

Sample ID:

Remark: Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 13:28:08 |

|   | Mean Area | Conc   | Result | SD      | CV    | Weight | Modified |
|---|-----------|--------|--------|---------|-------|--------|----------|
| I | 12926     | 4.998% |        | 0.09184 | 1.84% | 71.35  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 13310 | 72.60  | 5.0631 |       | ***** | 09/12/2012 13:22:35 | b20829s1.cal |
| 2   | 5     | 12542 | 70.10  | 4.9332 |       | ***** | 09/12/2012 13:28:08 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB15129-10

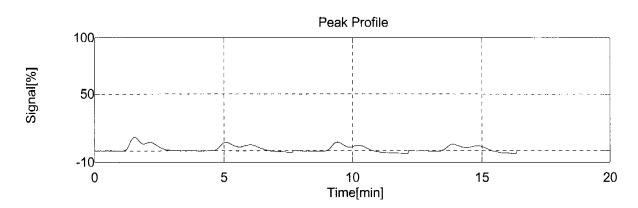
Sample ID: Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 13:53:04 |

| Mean Area | Conc   | Result | SD     | CV    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 5146      | 6.665% |        | 0.3079 | 4.62% | 20.28  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 5280 | 20.10  | 6.9118 |       | ***** | 09/12/2012 13:33:40 | b20829s1.cal |
| 2   | 5     | 5240 | 20.10  | 6.8549 |       | ***** | 09/12/2012 13:39:55 | b20829s1.cal |
| 3   | 5     | 5196 | 20.50  | 6.6597 |       | ***** | 09/12/2012 13:46:52 | b20829s1.cal |
| 4   | 5     | 4868 | 20.40  | 6.2321 |       | ***** | 09/12/2012 13:53:04 | b20829s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

JB15129-11

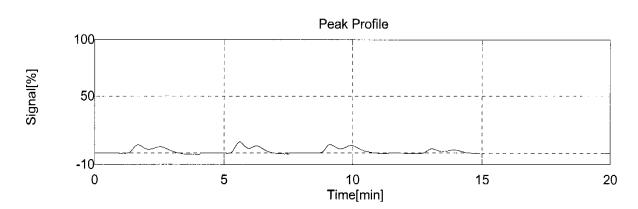
Sample ID: Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 14:15:45 |

| Mean Area | Conc   | Result | SD    | CV    | Weight | Modified |
|-----------|--------|--------|-------|-------|--------|----------|
| 4161      | 5.269% |        | 1.583 | 30.0% | 20.43  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 4863 | 20.80  | 6.1054 |       | ***** | 09/12/2012 13:59:59 | b20829s1.cal |
| 2   | 5     | 4565 | 20.50  | 5.7786 |       | ***** | 09/12/2012 14:04:54 | b20829s1.cal |
| 3   | 5     | 4878 | 20.30  | 6.2769 |       | ****  | 09/12/2012 14:10:14 | b20829s1.cal |
| 4   | 5     | 2340 | 20.10  | 2.9147 |       | ***** | 09/12/2012 14:15:45 | b20829s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

JB15129-12

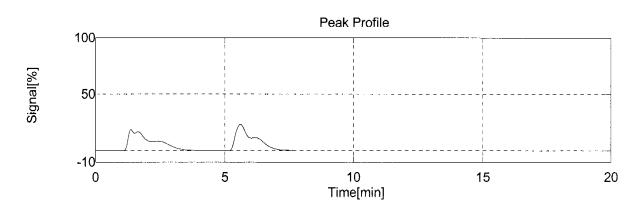
Sample ID: Remark:

Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 14:29:01 |  |  |

| Mean Area | Conc   | Result | SD     | cv    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 10364     | 5.631% |        | 0.1069 | 1.90% | 50.45  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 10588 | 50.90  | 5.7063 |       | ***** | 09/12/2012 14:21:55 | b20829s1.cal |
| 2   | 5     | 10140 | 50.00  | 5.5551 |       | ***** | 09/12/2012 14:29:01 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB15129-15

Sample ID: Remark:

Comment:

Method:

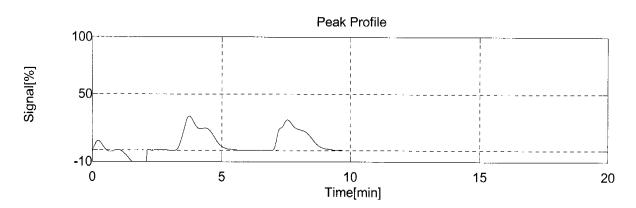
tocss.met

Cal Curve:

1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 14:46:38 |

| Mean Area | Conc | Result | SD      | cv    | Weight | Modified |
|-----------|------|--------|---------|-------|--------|----------|
| 16185     |      |        | 0.09999 | 1.15% | 50,45  |          |


| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 3419  | 50.50  | 1.7202 | E     |       | 09/12/2012 14:35:37 | b20829s1.cal |
| 2   | 5     | 16170 | 50.00  | 8.7813 |       | ***** | 09/12/2012 14:41:27 | b20829s1.cal |
| 3   | 5     | 16201 | 50.90  | 8.6399 |       | \     | 09/12/2012 14:46:38 | b20829s1.cal |

Exchuded Hit button too late 35913/1

Accutest Laboratories,

09/13/2012 08:31:40

Page 24 / 31

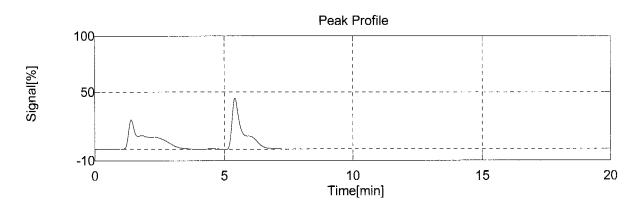


#### <u>Samples</u>

Sample Name: JB15129-17

Sample ID: Remark: Comment:

Method: tocss.met


Cal Curve: 1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |
|---------|----------|----------|---------------------|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 14:58:34 |  |

| Mean Area | Conc   | Result | SD     | CV    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 11186     | 5.941% |        | 0.2392 | 4.03% | 51.75  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 10909 | 51.90  | 5.7716 |       | ***** | 09/12/2012 14:53:33 | b20829s1.cal |
| 2   | 5     | 11464 | 51.60  | 6.1100 |       | ***** | 09/12/2012 14:58:34 | b20829s1.cal |

Accutest Laboratories,

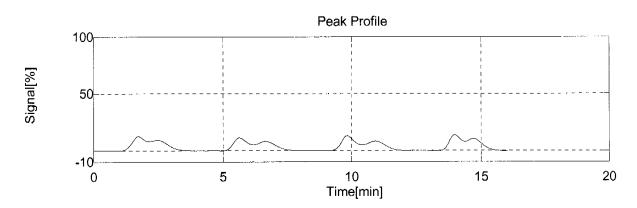


#### Samples

Sample Name: JB15129-19

Sample ID: Remark: Comment:

Method: tocss.met


1: b20829s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 15:24:35 |  |  |

| Mean Area | Conc   | Result | SD     | CV    | Weight | Modified |
|-----------|--------|--------|--------|-------|--------|----------|
| 8028      | 10.73% |        | 0.2623 | 2.44% | 20.28  |          |

| No. | Range | Area | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 7908 | 20.50  | 10.446 |       | ***** | 09/12/2012 15:05:04 | b20829s1.cal |
| 2   | 5     | 7814 | 20.00  | 10.573 |       | ***** | 09/12/2012 15:10:55 | b20829s1.cal |
| 3   | 5     | 8323 | 20.60  | 10.972 |       | ***** | 09/12/2012 15:18:40 | b20829s1.cal |
| 4   | 5     | 8068 | 20.00  | 10.936 |       | ***** | 09/12/2012 15:24:35 | b20829s1.cal |

Accutest Laboratories,



#### <u>Samples</u>

Sample Name:

JB14858-18R

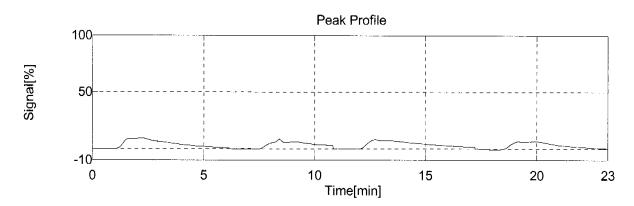
Sample ID:

Remark:

Comment: Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |
|---------|----------|----------|---------------------|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 15:55:23 |  |

|   | Mean Area | Conc   | Result | \$D   | CV    | Weight | Modified |
|---|-----------|--------|--------|-------|-------|--------|----------|
| l | 8934      | 9.641% |        | 2.814 | 29.2% | 25.23  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 11325 | 25.10  | 12.404 |       | ***** | 09/12/2012 15:32:24 | b20829s1.cal |
| 2   | 5     | 5484  | 25.00  | 5.7907 |       | ****  | 09/12/2012 15:39:05 | b20829s1.cal |
| 3   | 5     | 9927  | 25.20  | 10.783 |       | ***** | 09/12/2012 15:47:48 | b20829s1.cal |
| 4   | 5     | 9002  | 25.60  | 9.5884 |       | ****  | 09/12/2012 15:55:23 | b20829s1.cal |

Accutest Laboratories,



#### Samples

Sample Name:

GP67107-D1

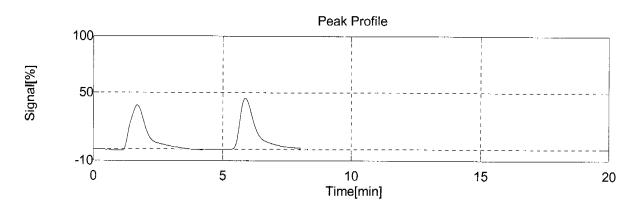
Sample ID:

Remark: Comment:

Method:

tocss.met

Cal Curve:


1: b20829s1.cal

| Туре    | Analysis | Dilution | Date/Time           |  |  |
|---------|----------|----------|---------------------|--|--|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 16:07:24 |  |  |

| Mean Area | Conc   | Result | SD      | CV     | Weight | Modified |
|-----------|--------|--------|---------|--------|--------|----------|
| 16586     | 2.990% |        | 0.01851 | 0.619% | 150.0  |          |

| No. | Range | Area  | Weight | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|-------|--------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 16699 | 150.2  | 3.0034 | •     | ***** | 09/12/2012 16:01:22 | b20829s1.cal |
| 2   | 5     | 16474 | 149.8  | 2.9772 |       | ***** | 09/12/2012 16:07:24 | b20829s1.cal |

Accutest Laboratories,

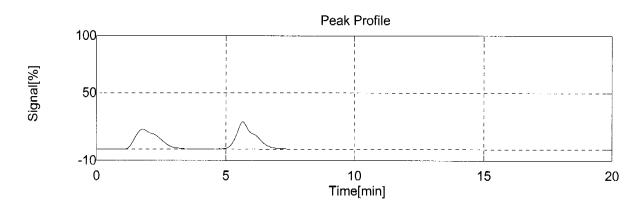


#### Samples

Sample Name: CCV

Sample ID: Remark: Comment:

Method: tocsscal.met
Cal Curve: 1: b20829s1.cal


|     | Туре | Analysis | Dilution | Date/Time           |  |  |
|-----|------|----------|----------|---------------------|--|--|
| Unk | nown | SSM-TC   | 1.000    | 09/12/2012 16:19:14 |  |  |

| Mean Area | Conc   | Result | SD      | cv    | Modified |
|-----------|--------|--------|---------|-------|----------|
| 9850      | 2.696% |        | 0.05630 | 2.09% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 9710 | 2.6557 |       | ***** | 09/12/2012 16:13:57 | b20829s1.cal |
| 2   | 5     | 9991 | 2.7353 |       | ***** | 09/12/2012 16:19:14 | b20829s1.cal |

Accutest Laboratories,

### **TOC-Control**



### **Samples**

Sample Name:

CCB

Sample ID: Remark:

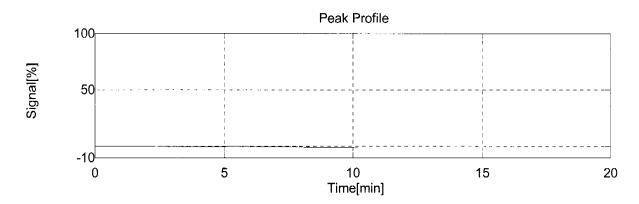
Comment:

Method:

tocsscal.met

1: b20829s1.cal Cal Curve:

| Туре    | Analysis | Dilution | Date/Time           |
|---------|----------|----------|---------------------|
| Unknown | SSM-TC   | 1.000    | 09/12/2012 17:08:13 |


| Mean Area | Conc   | Result | SD    | CV    | Modified |
|-----------|--------|--------|-------|-------|----------|
| 0         | 0.000% |        | 0.000 | 0.00% |          |

| No. | Range | Area | Conc   | Excl. | Notes | Date/Time           | Cal Curve    |
|-----|-------|------|--------|-------|-------|---------------------|--------------|
| 1   | 5     | 0    | 0.0000 |       | ***** | 09/12/2012 16:26:50 | b20829s1.cal |
| 2   | 5     | 0    | 0.0000 |       | ***** | 09/12/2012 17:08:13 | b20829s1.cal |

Accutest Laboratories,

09/13/2012 08:31:40

### **TOC-Control**



### Statistics / Summary

| Sample Name | Analysis | Conc.    | Abs C [µg] |
|-------------|----------|----------|------------|
| CRI         | SSM-TC   | 0.1061 % | 106        |
| HSTD        | SSM-TC   | 5.148 %  | 5147       |
| ICV         | SSM-TC   | 1.848 %  | 1848       |
| ICB         | SSM-TC   | 0.000 %  | 0          |
| ccv         | SSM-TC   | 2.690 %  | 2690       |
| ССВ         | SSM-TC   | 0.000 %  | 0          |
| GP67057-MB2 | SSM-TC   | 0.000 %  | 0          |
| GP67057-B2  | SSM-TC   | 0.1948 % | 1947       |
| JB15129-17  | SSM-TC   | 5.636 %  | 4506       |
| JB15129-18  | SSM-TC   | 2.856 %  | 4351       |
| JB15129-19  | SSM-TC   | 10.29 %  | 6372       |
| JB15500-2R  | SSM-TC   | 1.583 %  | 1637       |
| JB14848-18R | SSM-TC   | 10.82 %  | 5462       |
| GP67107-D1  | SSM-TC   | 2.787 %  | 4186       |
| JB15129-16  | SSM-TC   | 9.146 %  | 1833       |
| GP67107-S1  | SSM-TC   | 6.825 %  | 3436       |
| JB15129-2   | SSM-TC   | 0.1534 % | 1575       |
| JB15129-5   | SSM-TC   | 4.998 %  | 3567       |
| JB15129-10  | SSM-TC   | 6.665 %  | 1350       |
| JB15129-11  | SSM-TC   | 5.269 %  | 1078       |
| JB15129-12  | SSM-TC   | 5.631 %  | 2841       |
| JB15129-15  | SSM-TC   | 8.711 %  | 4394       |
| JB14858-18R | SSM-TC   | 9.641 %  | 2433       |

Accutest Laboratories,

09/13/2012 08:31:40



### Tour

**Fest: Total Organic Carbon** 

Units = mg/kg

Product: **TOC** 

Balance ID: 3-39 Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

B2091251. TOC

GN Batch ID GW71899

Date 9/12/12

| Analyst | VA |  |
|---------|----|--|
|         |    |  |

| Sample ID          | Sample Weight    | Bottle #     | Sample Description & comments |
|--------------------|------------------|--------------|-------------------------------|
| CLI                |                  |              |                               |
| HSTD               |                  |              |                               |
| ICVITCE            |                  |              |                               |
| CCV ICCB           |                  |              |                               |
| 6967057 -MB2       | 1.0090           |              | (3P67107 - MB1                |
|                    | 1.0000           |              |                               |
| 6167057 -32        | 1.000            | 2,94,000,000 | 6967107 - 31                  |
|                    | 1.0000           |              |                               |
| JB 15129- 17       | 0.1114           |              | Overrange Rerun at 0.050      |
|                    | 0.1064           |              | 9                             |
| <u>-</u> .         | 0.1034           |              |                               |
|                    | 0.1070           |              |                               |
| 1615129-18         | 0.1560           |              |                               |
|                    | 0.1489           |              |                               |
|                    | 0.1462           |              |                               |
|                    | 0.1517           |              |                               |
| 1815129 - 19       | 0.1073           |              | Overrange · Kenin al- 0.029   |
|                    | 0.1045           |              | 9                             |
|                    | 0.1002           |              |                               |
|                    | 0.1012           |              |                               |
| 1615300 - 12K      | 0.1039           |              |                               |
|                    | 01029            |              |                               |
|                    | 0.1022           |              |                               |
|                    | 0.1067           |              |                               |
| lanager Review:    |                  |              |                               |
| MS + BSP = 100 111 | of 20,000 mg/1 - | s 1.000 g 97 | silia Sand TV = 2000 myly     |
|                    | Taran Sara       |              |                               |







Fest: Total Organic Carbon

Product: TOC

Units = mg/kg

Balance ID: B-39

Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

GN Batch ID (2) 71 999 Date 9/12/12

Analyst\_\_\_\_\_\_\_\_

| 0.0505<br>0.0503<br>0.0500<br>0.0503 | 2-1                                  | Overrange. Fern at 0.025g                      |
|--------------------------------------|--------------------------------------|------------------------------------------------|
| 0.0500                               |                                      | <i>y y</i>                                     |
|                                      |                                      |                                                |
| 0.0503                               |                                      |                                                |
|                                      |                                      |                                                |
| 0.1524                               | <u> </u>                             | JB5129-18                                      |
| 0.1437                               |                                      |                                                |
| 0.1489                               | processor and the second             |                                                |
| 0.1462                               | • .                                  |                                                |
| 17. 9516                             |                                      | JB15129-18. Overcay & 9/12/12                  |
| 0.0502                               |                                      | TV= 039721                                     |
| 0.0520                               |                                      |                                                |
| 0 0505. @                            |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      |                                      |                                                |
|                                      | 0.1462<br>0.0516<br>0.0502<br>0.0520 | 0.1489<br>0.1462<br>0.9516<br>0.0502<br>0.0520 |







Fest: Total Organic Carbon

Units = mg/kg

GN Batch ID\_

Product: **TOC** 

Balance ID: Method: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one) Date 9/12/12

RDL = 1000 mg/kg or 100 mg/kg (circle one)

Analyst\_\_\_\_\_\_\_

|            | Sample Weight    | Bottle #                                       | Sample Descripti | on & comments |
|------------|------------------|------------------------------------------------|------------------|---------------|
| JB15129-16 | 0:0201           | 4                                              | 6167057-m32      | middle        |
|            | 0.0200           |                                                |                  |               |
|            | 0.0203           |                                                |                  |               |
| ccvlees    | 0.0207           |                                                |                  |               |
| J615129-2  | 1:0372           | 3                                              |                  |               |
|            | 1-0151           |                                                |                  |               |
|            | 1.0527           | 1 COSTAN AND AND AND AND AND AND AND AND AND A |                  |               |
|            | 1.0734           | •                                              |                  |               |
| JB15129-5  | 0.0726           | 3                                              |                  |               |
|            | 0.0701           |                                                |                  |               |
|            | 0.0710           |                                                |                  |               |
|            | 0.0700           | ·                                              |                  |               |
| 1815129-10 | 0.0201           | 3.                                             | ·                |               |
|            | 0.0.201          |                                                |                  |               |
|            | 0.0205           |                                                |                  |               |
|            | 0:0204           | '                                              | ·                |               |
| 1B15129-11 | O 0208           | 3                                              |                  | Top           |
|            | 0.0205           |                                                |                  |               |
|            | 0.0203           |                                                |                  |               |
|            | 0.0201           |                                                |                  |               |
| 1815129-12 | 0.0509           | 3                                              |                  |               |
|            | The 0.500 0-0500 |                                                |                  |               |
|            | 0.0505           |                                                |                  |               |
|            | 0.0501           |                                                |                  |               |



### ACCUTEST.

Fest: Total Organic Carbon

Balance ID:

Units = mg/kg 3-39. GN Batch ID 6N7 1899 Date 9/12/12

Product: **TOC** 

/lethod: Corp. Eng. 81 M/SW846 9060 M or EPA Region 2 Lloyd Kahn (circle one)

RDL = 1000 mg/kg or 100 mg/kg (circle one)

Analyst\_\_\_

| Sample ID        | Sample Weight         | Bottle #        | Sample Description & comments  |
|------------------|-----------------------|-----------------|--------------------------------|
| JB 15129 - 15    | 0.0505                | 3               | . 1st boat excluded hit button |
|                  | 0.9500                |                 | too late                       |
|                  | 0.0509                |                 |                                |
|                  | 0.0505                |                 |                                |
| JB15500-2R       | 0.1039                |                 | moved.                         |
| JA O             | 0.1628                |                 |                                |
| alian            | 0.1022                | g garanta Maria |                                |
|                  | 0.1067                |                 |                                |
| JB1512129-17     | 0.0519                | 3               |                                |
|                  | 0.0516                |                 |                                |
| * .              | 0.0504                |                 |                                |
|                  | 0.0504                |                 |                                |
| JB15 129 - 19.   | 0.0205                | 3.              |                                |
|                  | 0.0200                |                 |                                |
|                  | 0.0206                |                 |                                |
|                  | 0.0200                |                 |                                |
| JB 14858 -188.   | 0.0251                | 2.1             |                                |
|                  | 0.0250                |                 |                                |
|                  | 0.0252                |                 |                                |
|                  | 0:0256                |                 |                                |
| GP67407-181      | 0:1502                | 3               | IB15129 - 18                   |
|                  | 0.1498                |                 |                                |
| CCVICEB          |                       |                 |                                |
|                  |                       |                 |                                |
| nalyst: VA       | Date: 4/12/12 QCRevie | DWOF.           | Date:                          |
| /lanager Review: | Date: Date:           | SVVOI           |                                |
| Comments:        |                       |                 |                                |





## GENERAL CHEMISTRY STANDARD PREPARATION LOG

Product: TRによ GN or GP Number: <u>らいみ</u>の94

|                               |                       |               |              |         |         |              |            |             | •       |
|-------------------------------|-----------------------|---------------|--------------|---------|---------|--------------|------------|-------------|---------|
|                               | -                     |               |              |         |         | Final Conc.  |            |             |         |
| :                             |                       |               | Stock        |         |         | jo           |            |             |         |
| Intermediate                  | Stock used to         | Stock         | volume used  |         | Final   | Intermediate | Expiration |             |         |
| Standard Description          | prepare standard      | concentration | in mi        | Diluent | Volume  | (mg/l)       |            | Analyst     | Date    |
| 6NEB-33597-PE                 | Emp 14000cl15         | Surase        | 47.59        | DIH.    | 10001   | CHOCKEC      | 91021.0    | V           | 011-112 |
|                               |                       |               | 7            |         | -       | AND 187      | 41.1C21.   | 1           | 12/12   |
| CANEB-33398-TOC FISHON 120314 | Fisher 120314         | Glycose       | 12.59        |         | -       | 50.00        | -          | \<br>\<br>\ | }       |
|                               |                       |               | ,            |         |         |              |            | >           | >       |
|                               |                       |               |              |         | -       |              |            |             |         |
|                               |                       |               | Intermediate |         |         |              |            |             |         |
|                               | Intermediate or Stock | <u></u>       | or Stock     |         |         | Final Conc.  |            |             |         |
|                               | used to prepare       | or Stock      | volume used  | ,       | Final   | of Standard  | Expiration |             |         |
| Standard Description          | standard              | concentration | in mi        | Diluent | Volume  | (ma/l)       | Date       | Analyst     | ata     |
| Survove STDS                  |                       |               |              |         |         |              |            | 50 (10)     | 2       |
| 6NEB-33399-10C                | 6266-8354 -10c        | 200000        | 0.5          | DI H.C  | 100 300 | 000          | 9/2/12     | 9           | 11.10   |
| GNE8-33400-10c                |                       |               | 2.5          | -       | -       | 0009         | 1,07/16    | M           | 4112112 |
| 6NE8-33401-1DC                |                       |               | 2.0          | _       |         | 0000         |            |             |         |
| 6NEB-33402-70C                |                       |               | 12.5         |         |         | 24000        |            |             |         |
| ( - 33 403- TOC               |                       |               | 20-02        |         |         | 00007        |            |             |         |
| 6NEB - 33 404- TOC            | ->                    | >             | 0.52         | >       |         | 60000        | >          | -           |         |
|                               |                       |               |              |         |         |              |            |             |         |
| 6 ivege STD                   |                       |               |              |         |         |              |            |             |         |
| 6NE8-35408-70c                | 6NE8-33598-10C        | 50000         | 0.07         | ひれっ     | 100001  | 50002        | 912512     | ā           | 9/11/11 |
| 6-158-33409-100               | ゔ                     | ->            |              | >       | ->      | 25000        |            | 7           | 1       |
|                               |                       |               |              |         |         |              |            |             |         |
|                               | •                     |               |              |         |         |              |            |             |         |
|                               |                       |               |              |         |         |              |            |             |         |

Form: GN121 Rev, Date:2/26/03



3-39 Balance blass Pilets class A.



### Reagent Information Log - TOC - Soil

|                                     | Reagent # or Manufacturer | /Lot                                  |
|-------------------------------------|---------------------------|---------------------------------------|
| Sucrose Stock Solution, 200000 mg/L | ENE8-33397-70C            | <u>xp</u><br>9/25/12                  |
| Glucose Stock Solution, 50000 ug/L  | GNEE- 33398-TOC           | 9/25/12                               |
| Glucose Check Solution, 25000 ug/L  | GNES- 33409 - TOC         | 9/25/12                               |
| Nitric Acid, Reagent Grade          | K50030 Baken              | 2/7/17                                |
| Glucose Stock Solution, 2000 mg/L   | GNEF- 33408-TOC           | 9/25/12                               |
| KHP, 20, ao y m                     | GNSTK -863-TOC            | 11/14/12                              |
|                                     |                           |                                       |
| •                                   |                           | · · · · · · · · · · · · · · · · · · · |
|                                     |                           |                                       |
|                                     |                           | · .                                   |
|                                     |                           | <del></del>                           |

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN-087 1-66 Rev. Date: 4/26/01





TEST: Ferrous Iron (FE2/7) METHOD: ASTM D3872-86 RDL: 0.20 %

F = Weight of Iron in g Vol. Of Dichomate in mL

| ANALYST: | J. | R   | · ~ | In | hory. |
|----------|----|-----|-----|----|-------|
| DATE:    | 91 | 12/ | 1   | U  |       |

REAGENT ID's: See attached page

%Fe2/7 = ml Dichromate x F x 100 sample wt in g x (%sol/100)

|                            |                        |                                    |                                                     | ,     | Within limits? |    |
|----------------------------|------------------------|------------------------------------|-----------------------------------------------------|-------|----------------|----|
| QC Summary                 | • • •                  | - 0-8/                             | 1.11.                                               | Units | (Y/N)          |    |
| Dup. Sample ID: Driginal:  | Original: Amt. Spiked: | Duplicate: 0 88<br>ST-69 MS: 57:01 | RPD: 119                                            |       |                |    |
| MB ID and prep date: / MBI | Result: <0.2           | RDL: / 0-2                         | <rdl? <="" td=""><td></td><td></td><td></td></rdl?> |       |                |    |
| SB ID and prep date:       | Amt. Spiked:           | Result:                            | REC:                                                |       |                | ٠. |
| External ID:               | Known:                 | Result:                            | REC:                                                |       |                |    |
|                            |                        |                                    |                                                     |       | ··········     |    |

Spike prep:

|         |                    | Sample Weight |                     | Titrant Start in | Titrant End in | Titrant Total |                | Final Result in |          | · .   |
|---------|--------------------|---------------|---------------------|------------------|----------------|---------------|----------------|-----------------|----------|-------|
| ottle # | Sample Description | ing           | Start Time/End Time | mi               | ml             | · (ml)        | Result in mg/l | mg/l            | RDL      | Uni   |
|         | GNMB               |               | 10-00               | 0.00             | 0.10           | 0.0           | 0.1099         | <0.2            | 0,2      | %     |
|         | GNB                |               |                     | 0.27             | 45.50          | 45.53         |                | andordiza       | from on  | 17%   |
|         | 1 JB 15 353-1R     | 054           |                     | 0.22             | 0.75           | 0.75          | 0.8662         | 0.87            | <i></i>  | / %   |
|         | GND                | 053           |                     | 0.00             | 550            | 0.75          | 0.8826         | 0.88            |          | 9     |
|         | GNS                | 051           |                     | 0.00             | 45.80          | 45.80         | 56.0127        | 56.0            |          | 9     |
|         | 2 1B 13560-18T     | 0-54          |                     | 000              | 1.00           | 1.00          | 1.186          | 1.19            |          | %     |
|         | 3 JB 15354-1R      |               |                     | 0-00             | 0.40           | 0:40          | 1.0016         | 1.00            |          | %     |
|         |                    | 0.53          |                     | 0-00             | 0.40           | 0-40          | 1.083          | 1.08            | <i>T</i> | 9     |
| 1       | 5 M 15257 - 1R     | 0-60          | ·                   | 0-00             | 0.60           | 0-60          | 1.194          | 1.19            |          | .9    |
| - 1     | 6 M 15500-2R       | 0.54          | · = · **            | 9-22             | 0.95           | 0.95          | 1.0777         | 1.08            | T        | 9     |
|         | 7 1B14858-18R      | 054           |                     | 0-00             | 0.50           | 0.50          | 0.6227         | 062             |          | 9     |
| `.      | 8 TB 15 (35-1 R    | 0-61          | 13-40               | 0,00             | 1.00           | 1.00          | 0.9562         | 0.96            | 1        | 9     |
|         | 9                  | ,             |                     |                  |                |               |                |                 |          | 9     |
|         | 10. 9, John        | 8             |                     |                  |                | \$            | _              |                 |          | 9     |
|         | 11 TR 157 13-12    | 288.1         |                     | * t 1            | 0.20           |               | 1              |                 |          | 9     |
|         | 12/13/3560-1PF     | 85.8          |                     | MS 2             |                | x1007.        | 1 , 8          | 5.64            |          | 9     |
|         | 13 TRK 354-1R-     | 42,2          |                     |                  | 0-81           | A 100 /       | - 68/          |                 |          | . 9   |
|         | 14013 15355 -18->  | 36-9          |                     |                  |                |               | **/            |                 |          | 9     |
|         | 15 TB 15356 - 1R-  |               |                     |                  |                |               |                |                 |          | 9     |
|         | 16 OB 15500-2R-    | 89.7          |                     |                  |                |               |                |                 |          | 9     |
|         | 17-18 14858-18R    | 81,7          | ,                   |                  |                |               | -              |                 |          | 9     |
| -       | 18 15635-1R-5      | 94,2          |                     |                  |                |               |                |                 |          | 9     |
|         | 19                 |               |                     |                  |                |               | 1.             |                 |          | 1 . 9 |
|         | 20                 |               |                     | <u> </u>         | <del> </del>   |               |                |                 |          | -     |

| Reason codes for data corrections: | 1 - reviewer error correction: 2 - tra | anscription error; 3-computer error; 4- analyst error |
|------------------------------------|----------------------------------------|-------------------------------------------------------|
|                                    |                                        |                                                       |

| ANALYST: J- | RITM | haltu | DATE:_ | 9/12/17 | QC REVIEW:_ | DATE: | *** |
|-------------|------|-------|--------|---------|-------------|-------|-----|
| COMMENTS:   |      |       | , *    | ι .     |             | <br>  |     |
|             |      |       |        |         |             |       |     |

Form: GN-198 Rev. Date: 6/16/06





### Reagent Information Log Fe2/7

Work Group #\_\_\_\_

| Reagent                           |               |    | Reagent # or Manufacturer/Lot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
|-----------------------------------|---------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Iron Wire Std                     | · ·           |    | Aldorch # MKBH 5978V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | NA    |
| HCL (1:1)                         |               |    | me4-31822- Fez/7 11/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2/12  |
| 60% Sulfuric Acid/Phosphoric Acid |               |    | me6-32705-Fez/7 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 126/1 |
| Potassium Dichromate Solution     |               |    | Ine 6-32673- Fee/7 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22/1: |
| Diphenyl Amino Indicator          |               |    | gne4-31960- Fez/7 10/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| •                                 | <del></del>   | .* |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                   |               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                   | <del></del>   |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                   | • _           |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                   |               |    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
|                                   | <del></del> . |    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |       |

All standards and stocks were made as described in the SOP for this method (circle one): Y or N If no (N), see attached page for standards prep.

Form: GN087-01
Rev Date: 12/19/2011





Sample Prep Log

|                | Sample Flep Log    |                             |
|----------------|--------------------|-----------------------------|
| Sample ID      | Sample Size        | Final Volume                |
| MBI            |                    | Negetil                     |
| JB15353-1R     | 10.42 8m +102 pJHs | Nogetine                    |
| JA15353-1R DVD | 10.39 gm           | Negtru                      |
| JBB580-1RT     | 10.74 gm           | Regetive                    |
| JB 15354-1R    | 10.79 gm           | Redie                       |
| JB15355-1R     | 10.15 gm           | Reget ve                    |
| JB15257-1R     | 10.34 gm           | Kegetun                     |
| JB15500 2R     | 10.57 8m           | Wegetow                     |
| JB14818-18R    | 10.44 gm           | Megetil                     |
| JB15635-1R     | 10.92 gm           | Nogetive.                   |
|                |                    | $\mathcal{O}_{\mathcal{A}}$ |
|                |                    |                             |
|                |                    |                             |
|                |                    |                             |
|                |                    |                             |
|                |                    |                             |
| ****           |                    |                             |
|                |                    |                             |
|                |                    |                             |
|                |                    |                             |
|                |                    |                             |
|                |                    |                             |
|                |                    |                             |

Form: GN166-02 Rev. Date: 8/5/05

QC Review\_



### Hexavalent Chromium

Y Values Corr X Values Final Vol. Sam Wt. Bottle Sample BKGRD Analysis Sample Dilution Final Conc. Units Times Conc(mg/l) (ml) (g) Sample # Absorbance Abs Absorbance Method: SW846 3060A, 7196A

> 0.0000 0.0100

XCRA Test Title: GN Batch: GN71967 Analyst: MP Prep Date: 9/12/2012 9/13/2012 Analysis Date: Instrument ID: Н

0.000

0.011

NA

NA

8:59

Cal. Blk.

STD 1

Note: All results below shown on a wet weight basis.

0.99980 Corr. Coef:

> 0.8686 Slope:

| STD 2         0.045         NA         NA         0.045         0.0500           STD 3         0.089         NA         NA         0.089         0.1000         Y intercept:           STD 4         0.280         NA         NA         0.280         0.3000 |       |       |    |    |       |        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|----|----|-------|--------|
| STD 3         0.089         NA         NA         0.089         0.1000         Y intercept:           STD 4         0.280         NA         NA         0.280         0.3000                                                                                  | STD 2 | 0.045 |    | NA | 0.045 | 0.0500 |
| STD 4 0,280 NA NA 0,280 0,3000                                                                                                                                                                                                                                | STD 3 |       |    | NA |       | 0.1000 |
|                                                                                                                                                                                                                                                               |       |       | NA | NA |       | 0.3000 |

0.000

0.011

|          | STD 2                      | 0.045          | NA                                      | NA NA                                            | 0.045          | 0.0500    |                   |                                                  |          |              |                |         |         |
|----------|----------------------------|----------------|-----------------------------------------|--------------------------------------------------|----------------|-----------|-------------------|--------------------------------------------------|----------|--------------|----------------|---------|---------|
|          | STD 3                      | 0.089          | NA                                      | NA                                               | 0.089          | 0.1000    |                   |                                                  |          | Y intercept: | 0.0047         |         |         |
|          | STD 4                      | 0.280          | NA                                      | NA NA                                            | 0.280          | 0.3000    |                   |                                                  |          |              |                |         |         |
|          | STD 5                      | 0.443          | NA                                      | NA                                               | 0.443          | 0.5000    |                   |                                                  |          |              |                |         |         |
|          | STD 6                      | 0.700          | NA                                      | NA NA                                            | 0,700          | 0.8000    | <u>Final Vol.</u> | Şam. Wt.                                         |          |              |                |         |         |
|          | STD 7                      | 0.867          | NA                                      | 9:02                                             | 0.867          | 1.0000    | (ml)              | (g)                                              | Dilution | Final Conc.  | <u>Units</u>   | MDL     | RDL     |
|          | CCV                        | 0.440          | NA                                      | 11:28                                            | 0.440          | 0.5011 🗸  | NA                | NA                                               | NA       | NA           | mg/l           | 0.003   | 0.010   |
|          | ССВ                        | 0.001          | NA                                      | 11:28                                            | 0.001          | -0.0043   | NA                | NA                                               | NA       | NA           | mg/l           | 0.003   | 0.010   |
|          | GP67127-MB1                | 0.001          | 0.000                                   | 11:37                                            | 0.001          | -0.0043   | 100.0             | 2.5000                                           | 1        | -0.171       | mg/kg          | 0.117   | 0.400   |
|          | GP67127-B1                 | 0.848          | 0.000                                   | 11:37                                            | 0.848          | 0.9709    | 100.0             | 2.5000                                           | 1        | 38.835       | mg/kg          | 0.117   | 0.400   |
|          | GP67127-S1                 | 0.712          | 0.117                                   | 11:37                                            | 0.595          | 0.6796    | 100.0             | 2.4800                                           | 1        | 27.403       | mg/kg          | 0.118   | 0.403   |
|          | GP67127-D1                 | 0.197          | 0.111                                   | 11:37                                            | 0.086          | 0.0936    | 100.0             | 2.5200                                           | 1        | 3.714        | mg/kg          | 0.116   | 0.397   |
|          | JB14858-18R                | 0.150          | 0.091                                   | 11:37                                            | 0.059          | 0.0625    | 100.0             | 2.4300                                           | 1        | 2.572        | mg/kg          | 0.121   | 0.412   |
|          | B14858-18RPSCON            |                | *************************************** | · ·                                              | FALSE          | -0.0054   | 100.0             | 2.4300                                           | 2        | -0.446       | mg/kg          | 0.241   | 0.823   |
|          | GP67127-B2                 | >3             | OVR                                     |                                                  | FALSE          | -0.0054   | 100.0             | 2,5000                                           | 1        | -0.217       | mg/kg          | 0.117   | 0.400   |
|          | GP67127-S2                 | √ >3           | OVR                                     |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 1        | -0.217       | mg/kg          | 0.117   | 0.400   |
|          | GP67127-B2                 | 0.295          | 0.000                                   | 11:37                                            | 0.295          | 0.3342    | 100.0             | 2.5000                                           | 50       | 668.413      | mg/kg          | 5.860   | 20.000  |
|          | GP67127-S2                 | 0.417          | 0.000                                   | 11:37                                            | 0.417          | 0.4747    | 100.0             | 2.5000                                           | 50       | 949.327      | mg/kg          | 5.860   | 20.000  |
|          | CCV                        | 0.438          | NA NA                                   | 11:37                                            | 0.438          | 0.4988    | NA                | NA                                               | NA       | NA           | mg/l           | 0.003   | 0.010   |
| ·        | CCB                        | 0.001          | NA NA                                   | 11:37                                            | 0.001          | -0.0043   | NA                | NA                                               | NA NA    | NA NA        | mg/l           | 0.003   | 0.010   |
|          | CCD                        | 0.001          | 1975                                    | 1,,,,,                                           | FALSE          | -0.0054   | 100.0             | · · · · ·                                        | 1        | #DIV/0!      | mg/kg          | #DIV/0! | #DIV/0! |
|          |                            |                | <del></del>                             |                                                  | FALSE          | -0.0054   | 100.0             | <b>!</b> "                                       | 1        | #DIV/0!      | mg/kg          | #DIV/0! | #DIV/0! |
|          |                            |                | <del> </del>                            | <del>                                     </del> | FALSE          | -0.0054   | 100.0             |                                                  | 1        | #DIV/0!      | mg/kg          | #DIV/0! | #DIV/0! |
|          |                            |                |                                         | <del>                                     </del> | FALSE          | -0.0054   | 100.0             |                                                  | 1        | #DIV/0!      | mg/kg          | #DIV/0! | #DIV/01 |
|          |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             |                                                  | 1        | #DIV/0!      | mg/kg          | #DIV/01 | #DIV/0! |
|          | <del></del>                |                |                                         |                                                  |                | -0.0054   | 100.0             |                                                  | 1        | #DIV/0!      | mg/kg          | #DIV/0! | #DIV/0! |
|          |                            |                |                                         | -                                                | FALSE          | -0.0054   | 100.0             |                                                  | 1        | #DIV/0!      | mg/kg          | #DIV/0! | #DIV/0! |
|          |                            |                |                                         | <del> </del>                                     | FALSE          |           |                   |                                                  | 1        | #DIV/0I      | mg/kg          | #DIV/0! | #DIV/0! |
|          |                            |                | *************************************** | -                                                | FALSE          | -0.0054   | 100.0             |                                                  | 1        | #DIV/0!      |                | #DIV/0! | #DIV/0! |
|          |                            |                |                                         | <u> </u>                                         | FALSE          | -0.0054   | 100.0             | <del>                                     </del> | 1        | #DIV/0!      | mg/kg          | #DIV/0! | #DIV/0! |
|          |                            |                |                                         | 1722 - 1220                                      | FALSE          | -0.0054   | 100.0             | N/A                                              | _        | NA NA        | mg/kg          | 0.003   | 0.010   |
|          | CCV                        | 0.422          | NA                                      | 12:28                                            | 0.422          | 0.4804    | NA<br>NA          | NA NA                                            | NA NA    |              | mg/l           | 0.003   | 0.010   |
|          | CCB                        | 0.000          | NA .                                    | 12:28                                            | 0.000          | -0.0054 - | NA<br>100.0       | NA<br>0.5500                                     | NA .     | NA<br>0.403  | mg/l           | 0.003   | 0.392   |
|          | JB14858-1R                 | 0.007          | 0.000                                   | 12:47                                            | 0.007          | 0.0026    | 100.0             | 2.5500                                           | 11       | 0.103        | mg/kg          | 0.116   | 0.395   |
|          | JB14858-2R                 | 0.001          | 0.000                                   | 12:47                                            | 0.001          | -0.0043   | 100.0             | 2.5300                                           | 1        | -0.169       | mg/kg          |         |         |
|          | JB14858-3R                 | 0.084          | 0.070                                   | 12:47                                            | 0.014          | 0.0107    | 100,0             | 2.5600                                           | 1        | 0.418        | mg/kg_         | 0.114   | 0.391   |
|          | JB14858-4R                 | 0.083          | 0.023                                   | 12:47                                            | 0.060          | 0,0637    | 100.0             | 2.5700                                           | 1        | 2.477        | mg/kg          | 0.114   | 0.389   |
|          | JB14858-5R                 | 0.101          | 0.096                                   | 12:47                                            | 0.005          | 0.0003    | 100.0             | 2.5400                                           | 1 1      | 0.013        | mg/kg          | 0.115   | 0.394   |
| <u> </u> | JB14858-6R                 | 0.036          | 0.017                                   | 12:47                                            | 0.019          | 0.0165    | 100.0             | 2.5400                                           | 1        | 0.648        | mg/kg          | 0.115   | 0.394   |
|          | JB14858-7R                 | 0.156          | 0.108                                   | 12:47                                            | 0.048          | 0.0498    | 100.0             | 2.5600                                           | 1        | 1.947        | mg/kg          | 0.114   | 0.391   |
|          | JB14858-8R                 | 0.075          | 0.000                                   | 12:47                                            | 0.075          | 0.0809    | 100.0             | 2.4600                                           | 1 1      | 3.290        | mg/kg          | 0.119   | 0.407   |
|          | JB14858-9R                 | 0.039          | 0.001                                   | 12:47                                            | 0.038          | 0.0383    | 100.0             | 2.5100                                           | 11       | 1.527        | mg/kg          | 0.117   | 0.398   |
| Щ_       | JB14858-10R                | 0.078          | 0.057                                   | 12:47                                            | 0.021          | 0.0188    | 100.0             | 2.5400                                           | 1        | 0.738        | mg/kg          | 0.115   | 0.394   |
|          | CCV                        | 0.422          | NA                                      | 12:47                                            | 0.422          | 0.4804    | NA NA             | NA NA                                            | NA NA    | NA NA        | mg/l           | 0.003   | 0.010   |
| <u> </u> | CCB                        | 0.000          | NA NA                                   | 12:47                                            | 0.000          | -0.0054 / | NA NA             | NA NA                                            | NA NA    | NA NA        | mg/l           | 0.003   | 0.010   |
|          |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 1        | -0.217       | mg/kg          | 0.117   | 0.400   |
| <u> </u> |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 1        | -0.217       | mg/kg          | 0.117   | 0.400   |
|          |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 11       | -0.217       | mg/kg          | 0.117   | 0.400   |
|          |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 1        | -0.217       | mg/kg          | 0.117   | 0,400   |
|          |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 1        | -0.217       | mg/kg          | 0.117   | 0.400   |
|          |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 1        | -0.217       | mg/kg          | 0.117   | 0.400   |
|          |                            |                |                                         | 1                                                | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 1        | -0.217       | rng/kg         | 0.117   | 0.400   |
|          |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 11       | -0.217       | mg/kg          | 0.117   | 0.400   |
|          |                            |                |                                         |                                                  | FALSE          | -0.0054   | 100.0             | 2.5000                                           | 1        | -0.217       | mg/kg          | 0.117   | 0.400   |
|          |                            |                |                                         |                                                  | FALSE          | -0,0054   | 100.0             | 2.5000                                           | 11       | -0.217       | mg/kg          | 0.117   | 0.400   |
|          | CCV                        | 0.430          | NA                                      | 13:28                                            | 0,430          | 0.4896 🗸  | NA                | NA                                               | NA.      | NA NA        | mg/l           | 0.003   | 0.010   |
|          |                            | 0.000          | NA                                      | 13:28                                            | 0.000          | -0.0054   | NA                | NA                                               | NA       | NA           | mg/l           | 0.003   | 0.010   |
|          | ССВ                        | 0.000          |                                         |                                                  |                |           |                   |                                                  | 1        | 1 5.400      | 1              | 0.116   | 0.395   |
|          | CCB<br>JB14858-11R         | 0.000          | 0.000                                   | 13:35                                            | 0.015          | 0.0118    | 100.0             | 2.5300                                           | 1        | 0.468        | mg/kg          | 0.110   | 0.393   |
|          | <del>'</del>               | <del></del>    |                                         | 13:35<br>13:35                                   | 0.015<br>0.017 | 0.0118    | 100.0             | 2.5700                                           | 1        | 0.468        | mg/kg<br>mg/kg | 0.116   | 0.389   |
|          | JB14858-11R<br>JB14858-12R | 0.015          | 0.000                                   | <del></del>                                      | -              |           | _                 | +                                                |          |              | *              | •       | 0.389   |
|          | JB14858-11R                | 0.015<br>0.169 | 0.000<br>0.152                          | 13:35                                            | 0.017          | 0.0141    | 100.0             | 2.5700                                           | 1        | 0.551        | mg/kg          | 0.114   | 0.389   |

| Reports:                                         |       |                                                   |                                                  |       | GN719              | 67    |        |       |         |       |         |       |
|--------------------------------------------------|-------|---------------------------------------------------|--------------------------------------------------|-------|--------------------|-------|--------|-------|---------|-------|---------|-------|
| JB14858-16R                                      | 0.000 | 0.000                                             | 13:35                                            | 0.000 | -0.0054            | 100.0 | 2.4400 | 1     | -0.222  | mg/kg | 0.120   | 0.410 |
| JB14858-18RPSCON                                 | 0.453 | 0.038                                             | 13:35                                            | 0.415 | 0.4724             | 100.0 | 2.4300 | 2     | 38.877  | mg/kg | 0.241   | 0.823 |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 |        | 1     | #DIV/0! | mg/kg | #DIV/0! | #DIV/ |
| -                                                | Lucas | 1                                                 |                                                  | FALSE | -0.0054            | 100.0 |        | 1     | #DIV/0! | mg/kg | #DIV/0! | #DIV/ |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 |        | 1     | #DIV/0! | mg/kg | #DIV/0! | #DIV/ |
| ccv                                              | 0.430 | NA                                                | 43:35                                            | 0.430 | 0.4896             | , NA  | NA     | NA    | NA      | mg/l  | 0.003   | 0.010 |
| CCB                                              | 0.000 | NA.                                               | 13:35                                            | 0.000 | -0.0054            | NA    | NA     | NA    | NA NA   | mg/l  | 0.003   | 0.010 |
| 1 000                                            | 0.000 | 197                                               | 10,00                                            | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.400 |
| <del>                                     </del> |       | <del></del>                                       | 1                                                | FALSE | -0.0054            | 100.0 | 2,5000 | 1     | -0.217  | mg/kg | 0.117   | 0.400 |
| +                                                |       |                                                   | <del> </del>                                     | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.400 |
|                                                  |       | <del>                                     </del>  | 1                                                | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.400 |
| 1                                                |       | <b>†</b>                                          | <del>                                     </del> | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.400 |
|                                                  |       | <del>                                      </del> | 1                                                | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.400 |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       | +                                                 | <del>                                     </del> | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
| <del>-</del>                                     |       | + .                                               | <del> </del>                                     | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       | +                                                 | <del>l i</del>                                   | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
| COV                                              | -     | NA                                                | 58 - 88 <del>-</del> 88                          | FALSE | #VALUE!            | NA    | NA NA  | NA NA | NA NA   | mg/l  | 0.003   | 0.01  |
| CCV                                              |       | NA NA                                             |                                                  |       | #VALUE!            | NA NA | NA NA  | NA NA | NA NA   | mg/l  | 0.003   | 0.01  |
| ССВ                                              | ·     | NA                                                | (F1125) - 215981                                 | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       | +                                                 |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       | <del></del>                                       | <del>                                     </del> |       |                    |       | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
| 4                                                |       | +                                                 | -                                                | FALSE | -0.0054<br>-0.0054 | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
| <u> </u>                                         |       | <del> </del>                                      |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       | <del> </del>                                      |                                                  | FALSE |                    |       | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       | -                                                 | <u> </u>                                         | FALSE | -0.0054            | 100.0 |        | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       | 1                                                 | <del> </del>                                     | FALSE | -0.0054            | 100.0 | 2,5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       | <del></del>                                       |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 |       | -0.217  | mg/kg | 0.117   | 0.40  |
| <u> </u>                                         |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     |         |       | 0.117   | 0.40  |
|                                                  |       |                                                   | OUSE CONTRACTOR OF THE                           | FALSE | -0.0054            | 100.0 | 2.5000 |       | -0.217  | mg/kg | 0.003   | 0.01  |
| CCV                                              |       | NA                                                |                                                  |       | #VALUE!            | NA    | NA     | NA NA | NA      | mg/l  | 0.003   | 0.01  |
| CCB                                              |       | NA NA                                             | 1600 160                                         |       | #VALUE!            | NA    | NA     | NA .  | NA NA   | mg/l  | +       | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2,5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 |       | -0.217  | mg/kg | 0.117   | _     |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   | 1                                                | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0,117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
| CCV                                              |       | NA NA                                             |                                                  |       | #VALUE!            | NA    | NA.    | NA NA | NA NA   | mg/l_ | 0.003   | 0.0   |
| CCB                                              |       | NA.                                               | A 19 11 68                                       |       | #VALUE!            | NA _  | NA NA  | NA .  | NA NA   | mg/l  | 0.003   | 0.0   |
|                                                  |       |                                                   | 1                                                | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   | <u> </u>                                         | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.40  |
|                                                  |       |                                                   | 1                                                | FALSE | -0.0054            | 100.0 | 2.5000 | 11    | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | . 1   | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
| CCV                                              |       | NA NA                                             |                                                  |       | #VALUE!            | NA    | NA     | NA NA | NA NA   | mg/l  | 0.003   | 0.0   |
| CCB                                              |       | NA                                                | W 32878                                          |       | #VALUE!            | NA    | NA     | NA NA | NA .    | mg/l  | 0.003   | 0.0   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0,0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.    |
|                                                  |       | -1                                                |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  | •     |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
| 1                                                |       | 1                                                 |                                                  | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   | T                                                | FALSE | -0.0054            | 100.0 | 2.5000 | 1     | -0.217  | mg/kg | 0.117   | 0.4   |
|                                                  |       |                                                   |                                                  |       | <del></del>        |       |        |       | · · · · |       |         | 1     |
| ccv                                              |       | NA                                                | The same of the                                  | 1     | #VALUE!            | NA NA | NA .   | NA NA | NA NA   | mg/l  | 0.005   | 0.0   |

| revised | 4/25/1 | 1 |
|---------|--------|---|
|         |        |   |

Comments:



### ACCUTEST LABS DAYTON, NJ

# 3060A/7196A POST-DIGEST SPIKE LEVEL CALCULATION SPREADSHEET

45 mt alignot of the diluted post-spike and add the spike amount.

| _                                                           |          |           |                              |              |                                | ,              | <u>e</u> .             | ş.                              |                  |                  |                  |                  |                  |                  |                  | т                |                  |
|-------------------------------------------------------------|----------|-----------|------------------------------|--------------|--------------------------------|----------------|------------------------|---------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
|                                                             |          |           |                              |              | Use calculated or              | default spike? | fault (40 mg/kg) spike | #DIV/0! spault (40 mg/kg) spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike | calculated spike |
|                                                             |          |           | Calculated                   | Spike        | Amount in                      | mg/kg          | 42.067                 | #DIV/0i                         | #VALUE!          |
|                                                             |          |           | ppm to Est. Read- Calculated | back on      | curve in                       | l/gm           | 0.542                  | #DIV/0!                         | #VALUE!          |
|                                                             | Actual m | of 100    | op mdd                       | spike on     | dilution of                    | sample.        | 0.23                   |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| INC ALLIOURIE.                                              |          | Suggested | ml of 100                    | ppm to spike | on dilution of                 | sample.        | 0.219                  | #DIV/0i                         | #VALUE!          |
| iduot or the diluted post-spike and and the spike announce  |          |           |                              | Actual       | Dilution to                    | pe nsed        | 2                      |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| DOSI-SDIVE OIL                                              |          |           |                              | Suggested    | Dilution to                    | nse            | -                      | 0                               | #VALUE!          |
| me minien                                                   |          |           |                              |              | 00 ppm Dilution                | needed         | ves                    | 2                               | ALUE! #VALUE!    | ALUE! #VALUE!    | #VALUE!  #VALUE! | ALUE! #VALUE!    | ALUE! #VALUE!    | ALUE! #VALUE!    | #VALUE! #VALUE!  | #VALUE! #VALUE!  | #VALUE! #VALUE!  |
| mi aliquot or                                               |          |           | Amount in                    | m to add     | of 100 ppm                     | solution       | 0.437                  | 0000                            | #VALUE!          |
| n take a 45                                                 |          |           |                              |              | Results in                     | ma/ka.         | 2 572                  |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| NOTE: Always dilute post-spike first, then take a 45 mil al |          |           |                              |              | Weight in 45   Results in of 1 |                | 1 0935                 |                                 | #\/A   F         | #VALUE:          | #VALUE!          | #VAI UF!         | #VAI UEI         | #VALUE!          | #VALUE!          | #VA! UF!         | #VALUE!          |
| tys dilute post                                             |          |           | PS Alignot                   | Weight in a  |                                | 100 m          |                        |                                 |                  |                  |                  |                  |                  |                  |                  |                  |                  |
| NOTE: Alwa                                                  |          |           |                              |              |                                | Clelunes       | 1014858 18D            | 101-000-101                     |                  |                  |                  |                  |                  |                  |                  |                  |                  |

## 3060A/7196A INSOLUBLE SPIKE

|             |           |        |         |          | _       |         | _       |         | _       |         | _       |
|-------------|-----------|--------|---------|----------|---------|---------|---------|---------|---------|---------|---------|
| 2           | Amount    | Spiked | 720.792 | 1081.188 | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! | #VALUE! |
| CALCULATION | Weight of | Sample | 2.5     | 2.5      |         |         |         |         |         |         |         |
| ٠           | Weight of | PbCr04 | 0.0112  | 0.0168   |         |         |         |         |         |         |         |



| Test: I | lexavalent Chromium |
|---------|---------------------|
| Produc  | t: XCr              |

MDL = 0.117 mg/kgRDL = 0.40 mg/kg

GNBatch ID: GN 71967 Date: 9/13/14

| Distriction Databack OC C      |                              |                                                 | Ä                                                |              |                            |                               |
|--------------------------------|------------------------------|-------------------------------------------------|--------------------------------------------------|--------------|----------------------------|-------------------------------|
| Digestion Batch QC S           |                              |                                                 | = mg/kg                                          |              |                            |                               |
| Method Blank ID: <u>년년 6구1</u> | 67 - MB Date: 9/1            | <u>3/14                                    </u> |                                                  |              |                            |                               |
| Sol. Spike Blank ID:           | <u>-β)</u> Date:_            |                                                 | Result: <u>3<i>8.1</i>94</u>                     | Spike: 40    | <u>)</u> %Rec.: <u>9≯.</u> | <u>1</u>                      |
| Insol. Spike Blank ID:         | Date:                        | <u> </u>                                        | _Result: 668.41                                  | Spike: 720-7 | 9%Rec.: 9d.                | 73                            |
| Duplicate ID:                  | Samp. Resu                   | ma.57                                           | Dup Result: 3.                                   | 71 %         | RPD: <u>36.3</u> 1         |                               |
| Sol. MS ID:                    | - <u>SI</u> Samp. Result:    | - 1 ,                                           | MS Result: みチ. 40 ~                              | Spike: 40.3  | 2 %Rec: 57                 | <del>-96</del> 61.6           |
| Insol. MS ID:                  | ∽∫ð Samp. Resulf             | . [                                             | MS Result: 94933                                 | Spike:108/   |                            | <del>.80</del> 87.            |
| Post Spike ID: <u>7814858</u>  |                              |                                                 | PS Result: 38.88                                 | Spike 4      | <br>∂.0∃ %Rec 4            | 4,42 86                       |
| Diluted Sample ID:             |                              |                                                 |                                                  |              | %RPD:                      | - AC                          |
|                                |                              |                                                 |                                                  |              |                            | . /                           |
| pH adj. PS ID:                 | Samp. Resu                   | ılt:                                            | MS Result:                                       | Sріке:       | %Rec:                      | <sup>94</sup> 13 <sub>1</sub> |
| Analysis Betch OC S            | many Uni                     | ts = mg/l                                       |                                                  | •            | <del> </del>               | <del>- (4</del>               |
| Analysis Batch QC Sum          | mary On                      | is – my/i                                       |                                                  |              |                            |                               |
| CCV: 9/13/12                   | Result: . 50   T             | V; _0.500                                       | %Rec.:                                           |              |                            |                               |
| ccv:                           | ·                            | V: _0.500                                       | %Rec.: <u></u>                                   | -            |                            |                               |
| CCV:                           | _ Result: <u>,480</u> _ T    | v: _0.500                                       | %Rec.: 96                                        | •            |                            |                               |
| ccv:                           | Result: <u>,4<i>8</i>0</u> T | V: _0.500                                       |                                                  |              |                            |                               |
| ccv:                           | Result: .439 T               | V: _0.500                                       | _ %Rec.:_ <u>91.8</u>                            |              |                            |                               |
| ccv:                           | . 00                         | V: _0.500                                       | _ %Rec.: <u>97.8</u>                             |              |                            |                               |
| CCV:                           | _ Result: T                  | V: _0.500                                       | _ %Rec.:                                         |              |                            |                               |
| CCV:                           | _ Result: T                  | V: _0.500                                       | %Rec.:                                           |              |                            |                               |
| ccv :                          | _ Result: T                  | V: _0.500                                       | _ %Rec.:                                         |              |                            |                               |
| <b>A</b>                       | 4.                           |                                                 |                                                  |              |                            |                               |
| CCB: 9/13/14                   | Result: <u> </u>             | **                                              | <i>U</i> 1                                       |              |                            |                               |
| CCB:                           |                              | DL:_0.010                                       | 1                                                |              |                            |                               |
| CCB:                           |                              | DL:_0.010                                       |                                                  |              |                            | •                             |
| CCB:                           | _ Result: RI                 | DL:_0.010                                       |                                                  |              |                            |                               |
| ССВ:                           | Result: R                    | DL:_0.010                                       | <rdl:< td=""><td></td><td></td><td></td></rdl:<> |              |                            |                               |
| ССВ:                           | Result: R                    | DL:_0.010                                       | <rdl:< td=""><td></td><td></td><td></td></rdl:<> |              |                            |                               |
| CCB:                           | Result: Ri                   | DL:_0.010                                       | <rdl:< td=""><td></td><td></td><td></td></rdl:<> |              |                            |                               |
| CCB:                           | Result:R                     | DL:_0.010                                       | <rdl:< td=""><td></td><td></td><td></td></rdl:<> |              |                            |                               |
| ссв:                           | Result: R                    | DL:_0.010                                       | <rdl:< td=""><td></td><td></td><td></td></rdl:<> |              |                            |                               |

| Reagent Reference Informa            | tion - refer to attached reagent reference information page(s). |  |
|--------------------------------------|-----------------------------------------------------------------|--|
| Insoluble spike = PbCrO <sub>4</sub> | Molecular weight = 323.2 g/mol Cr = 52.0 g/mol                  |  |
| {1000000 ug/g x Insoluble sp         | ike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount  |  |

Date: 3/ 9/13/12 Analyst:\_

Comments: Post Spike was ran in last batch.

MB, BI, BA, JB14858-4R & JB14858-5R WE

Form: GN066-01 Rev. Date: 4/25/11



| ACCUTES                                                    |              | Hexa         |                                                  |                             |                                                  | justment Lo        | g                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------|--------------|--------------|--------------------------------------------------|-----------------------------|--------------------------------------------------|--------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SACCUTES                                                   | Τ.           |              | Metho                                            | d Sw846                     |                                                  | 7196A              | 4.1                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                            |              | 13:00        |                                                  | 13:10 -                     | 13:18                                            | pH Meter ID:       | 4                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                            |              | 13:25        |                                                  |                             | 13:171                                           | Digestion Date     | : 4/13/12                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pH adj. start time:                                        |              | 11.02        | Bind                                             | 11:18                       | 12:14                                            | pH adj. Date:      | 911                                    | 3/11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| pH adj. end time:                                          |              | 11:09        | 12:08                                            | 11-23                       | 12:20                                            | GN Batch ID:       | 9/1<br>6N 7191                         | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                            | Sample       |              | Final                                            | T .                         | bkg pH                                           |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6967127                                                    | Weight in    | pH after     | Volume                                           | pH after                    | after                                            | Spike              | Spike                                  | Digestate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sample ID                                                  | g            | НИОЗ         | (ml)                                             | H2SO4                       | H2SO4                                            | Amounts            | Solution                               | Description/Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| CCV                                                        |              | 7636         | 100                                              | 1.964                       |                                                  | 5.0 NL             | 10 000                                 | 7-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CCV                                                        |              | 7.519        | 100                                              | 1.307                       |                                                  | 4                  | <u> </u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCV                                                        |              |              |                                                  |                             |                                                  |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCV                                                        |              |              | · · · · · · · · · · · · · · · · · · ·            |                             |                                                  |                    | ·                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ССВ                                                        |              |              |                                                  |                             |                                                  |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ССВ                                                        |              |              |                                                  |                             |                                                  |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB                                                        |              | 7.318        | 100                                              | 1-731                       |                                                  |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CCB                                                        |              | 7708         | 1                                                | 1.711                       | *                                                |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MS (SOI <b>) SI4858 - 18</b> 8                             | 2.48         | 7.710        |                                                  | 1.969                       | 2.121                                            | 1.0 ~L             | 100 pe ~ A                             | <b>.</b> s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MS (Insol.)                                                | 2.50         | 7.558        |                                                  | 2198                        | OUR                                              | 0.0(68             | 100 gg - A                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DUP                                                        | 2.52         | 7.855        |                                                  | 1.907                       | 2113                                             | -                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                            | 2.50         | 7.881        | <del></del>                                      | 1.670                       | 2.989                                            | 1.0 ~L             | 180 pom A                              | * Literal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SB (Sol)                                                   | 250          | 7-240        |                                                  | 2.181                       | OVR                                              | 0.0112             | 1 2.0,                                 | F 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SB (Insol)                                                 | 2.50         | 7.401        |                                                  | 1.650                       | 2.051                                            |                    |                                        | * .5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MB                                                         | 2.43         | 7.718        |                                                  | 2-035                       | 1.750                                            |                    |                                        | anlar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1 7814858 - 18R                                            | 2 55         | 7.100        |                                                  | 2.108                       | 2.336                                            | l -                |                                        | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{c c} 2 & -1R \\ \hline 3 & -2R \end{array}$ |              | 7.100        |                                                  | 1.868                       | 2.108                                            |                    |                                        | Clear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                            | 2.53         |              |                                                  | 1.829                       | 2.172                                            |                    |                                        | black & Liverage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4 -32                                                      | 2.57<br>2.57 | 7260         |                                                  | 1.603                       | 1.852                                            |                    | · Liamo-ma                             | Unck to Haral                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5 <u>-4R</u>                                               |              | 7.648        |                                                  | 1848                        | 2.041                                            |                    |                                        | anler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6 -57                                                      | 2.54         | 7 416        |                                                  | 1.000                       |                                                  |                    |                                        | yelle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7 -62                                                      | 2.576        | 2.38         |                                                  | 1311                        | 2.354                                            |                    |                                        | Kaler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 8 -72                                                      |              | 7.540        |                                                  | 2.103                       |                                                  |                    |                                        | De gelo-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9 - 8R                                                     | 2.46         | 7.683        | <b></b>                                          | 1.757                       | 1953                                             |                    |                                        | yallow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 10 - 10                                                    | 3.51         | 7.864        |                                                  | 1.784                       | 2.200                                            |                    |                                        | Gdb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11 -10R                                                    | 2.54         | 7427         |                                                  | 1. 744                      |                                                  |                    |                                        | P-10 1010-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 12 -112                                                    | 2.53         | 7 862        |                                                  |                             | 2,135                                            |                    |                                        | 5-12 7010-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 13 -136                                                    | 2.57         | 7.915        |                                                  | 1.904                       | 1 (2/                                            |                    |                                        | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |
| 14 -138                                                    | 2.55         | 7.847        |                                                  | 1.891                       | 1 686                                            |                    |                                        | 7/11-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 15 -148                                                    | 2.55         | 7.389        | <del>                                     </del> | 1.801                       | 1.815                                            |                    |                                        | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 16 -158                                                    | 2.51         | 7 475        | <del>                                     </del> | 1.701                       | 2.195                                            |                    |                                        | c/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17 V -167                                                  | 2.44         | 7.340        | <u> </u>                                         | 1-8.30                      | α, 1 5                                           |                    |                                        | - C - C - C - C - C - C - C - C - C - C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 18                                                         |              |              |                                                  |                             | ļ                                                |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19                                                         |              |              |                                                  |                             | ļ                                                |                    |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20                                                         | 3 -          | 7 34         |                                                  | 10 224                      | 2:62                                             |                    |                                        | dilution 1.50 Stuff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SB (Insol)                                                 | d-50         | 7 240        | 106                                              | 2 224                       | 2,197                                            |                    |                                        | dilution 150 dilute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MS (Insol.)                                                | 2.50         | 7558         |                                                  | 2.137                       | 11,654                                           | 0 21-7 26 12       | 0.000                                  | 1:2 Nution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PS                                                         | 2.43         | 7.718        | V                                                | 1.643                       | 2.046                                            | 0.23ml at 10       | rem                                    | 1.4124000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| pH adjusted PS                                             |              | ļ            | ļ                                                | <u></u>                     | <del>                                     </del> | P3501-             |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1:5 dil.                                                   |              |              |                                                  |                             |                                                  |                    | ······································ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7B14858-18R                                                | 2.46         | L            | <u> </u>                                         |                             |                                                  | ]<br> nfarmatian== | an(e)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Reagent Reference Ir                                       | nformation   | n - refer to | attached                                         | reagent r                   | eterence i                                       | information pa     | ge(s).                                 | N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| {1000000 ug/g x Insolu                                     | ıble spike ı | wt(g) x 52/  | 323.2}/ms                                        | s sample w                  | g(g) = Inso                                      | iubie spike amo    | unt of PDCFC                           | <i>7</i> +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                            | OM           | 9.11         | 140                                              | A                           | ris.                                             | MP                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2nd analyst check:                                         | 47           | 9.13,        | <u>u</u>                                         | Anayst:_•<br>Date: <b>•</b> | 1/3/10                                           | 8/1                | W.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                            | Ţ            |              |                                                  | Date:                       | 11711                                            | 0/1                | <u>/ ^ </u>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Form: GN-067

Day Date: 08/8/12





GN/GP Batch ID: しゃしついつ

6N71967

### Reagent Information Log - XCRA (soil 3060A/7196)

| Reagent                                             | Exp. Date  | Reagent # or Manufacturer/Lot |
|-----------------------------------------------------|------------|-------------------------------|
| Calibration Source: Hexavalent Chromium,            |            |                               |
| 1000 mg/L Stock                                     | 7/25/2015  | Absolute Grade Lot # 072512   |
| Calibration Checks: Hexavalent Chromium,            |            |                               |
| 1000 mg/L Stock                                     | 5/31/2017  | Ultra lot # L00439            |
| Spiking Solution Source                             | 7/25/2015  | Absolute Grade Lot # 072512   |
| Lead Chromate (Insoluble Hexavalent Chromium Spike) | 7/26/2017  | Sigma Aldrich Lot # BCBG0578V |
|                                                     |            | ***                           |
| Magnesium Chloride, Anhydrous                       | 9/2/2017   | Alfa Aesar Lot #H10X010       |
|                                                     |            |                               |
| 1N NaOH                                             |            |                               |
| Digestion Solution                                  | 10/11/2013 | 6459-33546-xCR                |
| Phosphate Buffer Solution                           | 2/14/13    | GHE8- 33273-XCRA              |
| 5.0 M Nitric Acid                                   | 3113113    | 40WE9-33563-XCRA              |
| Diphenylcarbazide Solution                          | 10/13/12   | BNE9-33564-XCR                |
| Sulfuric Acid, 10%                                  | 3/13/13    | 4269-33562-4CB                |
| Filter                                              |            | FZEA(4811                     |
| Teflon Chips                                        | NA         | 919120                        |

Form: GN087A-21B Rev. Date: 2/18/10



6R 213>

MIN ZACCUTEST.

# HEXAVALENT CHROMIUM TEMPERATURE AND TIME DIGESTON LOG - METHOD 3060A

Record a minimum of starting, middle, and ending temperatures for each batch.

Thermometer ID: 38リスタス/162 Thermometer Correction factor:

Note: Minimum of 1 hour digestion time for each batch. Corrected temperatures must be in the range of 90 to 95 deg. C.

|                   |               |        | Temp. in deg. C<br>Hot Plate # _i - | Temp. in deg. C<br>Hot Plate # <u>λ</u> - | Temp, in deg. C<br>Hot Plate # 3 -                           | Temp. in deg. C<br>Hot Plate # 4 - |
|-------------------|---------------|--------|-------------------------------------|-------------------------------------------|--------------------------------------------------------------|------------------------------------|
| Digestion         | Contrained    | Time   | Uncorrected/Corrected               | Uncorrected/Corrected                     | Uncorrected/Correc Uncorrected/Correc Uncorrected/Correc ted | Uncorrected/Correc<br>ted          |
| 6767125<br>26.725 |               | (7:30  | 90/02                               | 42/50                                     | 40/43                                                        | 49/40                              |
| 686721            |               | (8:50  | 40/40                               | 42/40                                     | 9/62                                                         | 40/60                              |
|                   | Fnding Time   | CE:8)  | 20/60                               | 43/40                                     | 40/4)                                                        | 40/40                              |
| <u> </u>          |               |        | 1                                   |                                           |                                                              |                                    |
|                   | Starting Time | (\$:35 | C2/63                               | 53/50                                     | 20/42                                                        | 40/40                              |
|                   | Time 1        | 14:25  | 9960                                | 43/40                                     | 28/42                                                        | 99/20                              |
|                   | Ending Time   | (4:35  | 4940                                | 42/60                                     | 49/43                                                        | 40/60                              |
|                   |               |        |                                     |                                           |                                                              | ,                                  |
|                   | Starting Time |        |                                     |                                           |                                                              |                                    |
|                   | Time 1        | 1      |                                     |                                           |                                                              |                                    |
| >                 | · Ending Time | j      |                                     |                                           |                                                              |                                    |

Rev. Date: 8/08/12 Form: GN074-02

2nd Analyst Check

Analyst:



### Hexavalent Chromium pH Adjustment Log

Method: SW846 3060A/7196A

| pH adj. | start time: |
|---------|-------------|
| pH adj. | end time:   |

8:35

8:51

pH adjustment Date:

GN Batch ID:

Final Sample Volume pH after Weight in pH after H2SO4 Spike Info. g HNO3 (ml) Comments Sample ID 10 100 1.772 NA 7.325 om 195 Calibration Blank 976 0.10 ml of 10 mg/l NA 7.218 0.010 mg/l standard 1.839 7.740 0.50 ml of 10 mg/l NA 0.050 mg/l standard 7 871 1.782 NA 1.00 ml of 10 mg/l 0.100 mg/l standard 7.735 1.898 3.00 ml of 10 mg/l NA 0.300 mg/l standard 5.00 ml of 10 mg/I NA 7.159 0.500 mg/l standard NA 7.524 1.391 8.00 ml of 10 mg/l 0.800 mg/l standard 1.744 10,0 ml of 10 mg/l NA 7.6<u>54</u> 1.00 mg/l standard 

Reagent Reference Information - refer to attached reagent reference information page(s).

1000000 ug/g x Insoluble spike wt(g) x 52/323.2}/ms sample wt(g) = Insoluble spike amount of PbCrO4

Anayst: 1/13/6

Form: GN068-01 Rev. Date: 5/22/06





# 

Form: GN205-02 Rev. Date:10/16/09



### **Data Validation Report**

| Project:                   | PPG – Northern Transect Sampling                  |  |  |
|----------------------------|---------------------------------------------------|--|--|
| Laboratory:                | TestAmerica, Edison, NJ                           |  |  |
| Laboratory Job No.:        | 460-31791                                         |  |  |
| Analysis/Method:           | Hexavalent Chromium SW846 3060A/7196A             |  |  |
| Validation Level:          | Full (Hexavalent Chromium)                        |  |  |
| Site Location/Address:     | PPG Site 114 – Garfield Avenue, Jersey City, NJ   |  |  |
| AECOM Project Number:      | 60213772.5.A                                      |  |  |
| Prepared by: Kristin Ruthe | erford/AECOM Completed on: September 27, 2012     |  |  |
| Reviewed by: Lisa Krowitz/ | AECOM File Name: 2012-09-27 DV Report 460-31791-F |  |  |

### Introduction

The data were reviewed in accordance with the FSP-QAPP and the following NJDEP and/or Region 2 validation Standard Operating Procedure (SOP):

 NJDEP Office of Data Quality SOP 5.A.10, Rev 3 (September 2009), SOP for Analytical Data Validation of Hexavalent Chromium – for USEPA SW-846 Method 3060A, USEPA SW-846 Method 7196A and USEPA SW-846 Method 7199.

The results of quality control data analyzed with site samples were used to assess the overall reliability of the data. The following qualifiers were used to identify data quality issues:

- U: Indicates the analyte was not detected in the sample above the sample reporting limit.
- J: Indicates the result was an estimated value; the associated numerical value was an approximate concentration of the analyte in the sample.
- UJ: Indicates the analyte was not detected above the reporting limit and the reporting limit was approximate.
- R: The sample result was rejected due to serious deficiencies; the presence or absence of the analyte could not be confirmed.

### **Sample Information**

The samples listed below were collected by AECOM on September 28, 2011 as part of the Garfield Northern Transect Sampling at the PPG Site - 114 Jersey City, New Jersey.

| Field ID    | Laboratory ID | Matrix | Fraction            |
|-------------|---------------|--------|---------------------|
| NTB-C2-12.0 | J31791-1      | Soil   | Hexavalent Chromium |
| NTB-C1-11.0 | J31791-2      | Soil   | Hexavalent Chromium |
| NTB-B2-2.0  | J31791-3      | Soil   | Hexavalent Chromium |

The samples were collected following the procedures detailed in the Remedial Investigation Work Plan – Soil for Non-Residential Chromate Chemical Production Waste Sites 114, 132, 133, 135, 137, 143, and 186, Jersey City, New Jersey and the Field Sampling Plan/Quality Assurance Project Plan for Non-Residential and Residential Chromium Sites Hudson County, New Jersey (December 2011).

### **General Comments**

The data package was complete. Quality control (QC) issues identified during validation are discussed below.

### **Hexavalent Chromium**

### Matrix Spike Results

Sample NTB-C1-11.0 (J31791-2) was selected for the matrix spike (MS) analysis associated with the samples in this SDG and was used for supporting data quality recommendations. The soluble and insoluble MS recoveries were 79% and 89%, respectively; both results met the quality control criteria of 75-125%. The post digestion spike (PDS) recovery was 112%, which met the PDS criteria of 85-115%. No data qualification was required on the basis of spike recoveries.

### **Data Quality and Usability**

In general, these data appear to be valid and may be used for decision-making purposes. No data were qualified or rejected. The hexavalent chromium results for the samples in this SDG data are usable as reported by the laboratory without qualification.

### **Attachments**

Attachment A Data Validation Report Form

### **Attachment A**

**Data Validation Report Form** 

### AECOM DATA VALIDATION REPORT FORM – HEXAVALENT CHROMIUM ANALYSIS (7196) Page 1 of 5

| Client Name: PPG Industries                    | Project Number: 60213772.5.A            |
|------------------------------------------------|-----------------------------------------|
| Site Location: PPG- Northern Transect Sampling | Project Manager: Robert Cataldo         |
| Laboratory: Test America, Edison, New Jersey   | Limited or Full Validation (circle one) |
| Laboratory Job No: 460-31791                   | Date Checked: 09/27/2012                |
| Validator: Kristin Rutherford                  | Peer: Lisa Krowitz                      |

| ITEM                                            | YES | NO | N/A | COMMENTS                                      |
|-------------------------------------------------|-----|----|-----|-----------------------------------------------|
| Sample results included?                        | х   |    |     | 3 soils                                       |
| Reporting Limits met project requirements?      | х   |    |     |                                               |
| Field I.D. included?                            | х   |    |     |                                               |
| Laboratory I.D. included?                       | х   |    |     |                                               |
| Sample matrix included?                         | х   |    |     |                                               |
| Sample receipt temperature 2-6°C?               | х   |    |     | 3.6°C                                         |
| Signed COCs included?                           | х   |    |     |                                               |
| Date of sample collection included?             | х   |    |     | 09/28/2011                                    |
| Date of sample digestion included?              | х   |    |     | Soil: 460-31791 HxCr prepped on 10/20/2011    |
| Holding time to digestion met criteria?         | х   |    |     | Yes                                           |
| Soils -30 days from collection to digestion.    |     |    |     |                                               |
| Date of analysis included?                      | х   |    |     | Soil: 460-31791: HxCr analyzed on 10/21/2011. |
| Holding time to analysis met criteria?          | x   |    |     | Yes                                           |
| Soils -168 hours from digestion to analysis.    |     |    |     |                                               |
| Aqueous – 24 hours from collection to analysis. |     |    |     |                                               |
| Method reference included?                      | х   |    |     | 3060A/7196A                                   |
| Laboratory Case Narrative included?             | х   |    |     |                                               |

Definitions: MDL – Method Detection Limit; %R – Percent Recovery; RL – Reporting Limit; RPD – Relative Percent Difference; RSD – Relative Standard Deviation: Corr – Correlation Coefficient.

### **Comments**

Field Duplicates: none in this SDG

Percent Solids: all samples >50%, no qualifications

Sample Dilutions: None for this SDG

| ITEM                                                                                                                                                                                    | YES         | NO | N/A | COMMENTS                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|-----|-----------------------------------------------------------------------|
| Initial Calibration Documentation Included in Lab Package?                                                                                                                              | х           |    |     | Cal source J31791 soil – WThcrlM 00029                                |
| Blank plus 4 standards (7196A) or blank plus 3 standards (7199),     Correlation coefficient of ≥0.995 (7196A) or ≥0.999 (7199).     Calibrate daily or each time instrument is set up. | x<br>x<br>x |    |     | Each analysis 1 blank and 7 cal STDs     All analyses meet CC     Yes |
| Calibration Check Standard (CCS) for 7196A and Quality Control Sample (QCS) for 7199 Included in Lab Package?                                                                           | х           |    |     | Check source (soil-WThcrlM3_00014)                                    |
| NR criteria met? (90 - 110%).     Correct frequency of once every 10 samples     CCS and QCS from independent source and at mid level of calibration curve.                             | x<br>x<br>x |    |     | All met %R     Analyzed every 10 samples     Yes                      |
| Calibration Blanks                                                                                                                                                                      | х           |    |     |                                                                       |
| Analyzed prior to initial calibration standards and after each CCS/QCS?     Absolute value should not exceed MDL.                                                                       | x<br>x      |    |     | 1. Yes<br>2. Yes                                                      |
| Method Blank and Field Blanks Included in Lab Package?                                                                                                                                  | х           |    |     | No field blank in this SDG                                            |
| Method blank analyzed with each preparation batch?                                                                                                                                      | х           |    |     | 1. Yes, Soil – MB 460-90228/1-A                                       |
| Absolute value should not exceed MDL.                                                                                                                                                   | x           |    |     | Yes, all method and field blanks were less than MDL.                  |
|                                                                                                                                                                                         |             |    |     | 2. 163, all metrod and field branks were less than wide.              |
| Eh and pH data.                                                                                                                                                                         | X           |    |     |                                                                       |
| Eh and pH data was included and plotted for all samples?  Soluble Matrix Spike Data Included in Lab Package?                                                                            | X           |    |     | J31791-2 [NTB-C1-11.0]                                                |
| 1. %R criteria met? (75-125%R).                                                                                                                                                         | x           |    |     | 1. 460-31791 – Yes (79 %)                                             |
| Was the spike concentration 40 mg/Kg or twice the sample                                                                                                                                | x           |    |     | 2. 460-31791 Yes, 49.1 mg/kg.                                         |
| concentration, whichever is greater?  3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                 | x           |    |     | Yes for all batches.                                                  |
| Insoluble Matrix Spike Data Included in Lab Package?                                                                                                                                    | х           |    |     | J31791-2 [NTB-C1-11.0]                                                |
| NR criteria met? (75-125%R).                                                                                                                                                            | X           |    |     | 1. 460-31791: Yes (89%)                                               |
| 1. /or official field (15 125 /ort).                                                                                                                                                    | ^           |    |     | 1. 400 31731. 163 (0378)                                              |
| 2. Was the spike concentration around 400 to 800 mg/Kg?                                                                                                                                 | x           |    |     | 2. 460-31791 Yes (870 mg/kg).                                         |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                       | х           |    |     | Yes for all batches.                                                  |
| Post Digestion Spike                                                                                                                                                                    | х           |    |     | J31791-2 [NTB-C1-11.0]                                                |
| 1. %R criteria met? (85-115%R).                                                                                                                                                         | х           |    |     | 1. 460-31791 Yes (112%)                                               |
| 2. Was the spike concentration 40 mg/Kg or twice the sample                                                                                                                             | x           |    |     | 2. 460-31791 Yes, 49.1 mg/kg                                          |
| concentration?                                                                                                                                                                          |             |    |     |                                                                       |
| 3. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                       | x           |    |     | Yes for all batches.                                                  |
| Sample Duplicate Data Included in Lab Package?                                                                                                                                          | х           |    |     | J31791-2 [NTB-C1-11.0]                                                |
| RPD criteria met? (RPD < 20%) of both results are ≥4x RL or control limit of ±RL if both results are <4x RL.                                                                            | х           |    |     | 1. 460-31791 – Yes, both results ND                                   |
| 2. Was a sample spiked at the frequency of 1/batch or 20 samples?                                                                                                                       | x           |    |     | 2. Yes                                                                |
| Was a Laboratory Control Sample (LCS) Included in Lab Package?                                                                                                                          | х           |    |     |                                                                       |
| NR criteria met? (80-120%R).     Was an LCS analyzed at the frequency of 1/batch or 20 samples?                                                                                         | x<br>x      |    |     | Yes, all LCS recoveries were within quality control criteria.     Yes |
| Miscellaneous Items.                                                                                                                                                                    |             |    |     |                                                                       |
| For soils by 3060A, was the initial pH within a range of 7.0-8.0?                                                                                                                       | х           |    |     | 1. Yes                                                                |
| 2. For soils by 7199, was the pH within a range of 9.0-9.5? 3. For aqueous by 7196A, was the pH with a range of 1.5-2,5?                                                                |             |    | x   | 2. NA                                                                 |
| 4. For soils (3060A), was the digestion temperature 90-95°C for at                                                                                                                      | x           |    | Х   | 3. NA<br>4. Yes                                                       |
| least 60 minutes? 5. For 7199, was each sample injected twice and was the RPD ≤20?                                                                                                      |             |    | x   | 5. NA                                                                 |

AECOM Page 3 of 5

### **Holding Time**

| Sample ID   | Method | Days from<br>Sampling to Prep | Days from Prep to<br>Analysis | Days from<br>Sampling to<br>Analysis | Sample to Prep<br>Status | Prep to Analysis<br>Status | Sample to<br>Analysis Status |
|-------------|--------|-------------------------------|-------------------------------|--------------------------------------|--------------------------|----------------------------|------------------------------|
| NTB-B2-2.0  | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NTB-C1-11.0 | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |
| NTB-C2-12.0 | SW7196 | 9                             | 0                             | 9                                    | OK @30 days              | OK @7 days                 | OK @37 days                  |

### **Percent Solids**

| Sample ID   | Percent Solids (%) | Status  |
|-------------|--------------------|---------|
| NTB-B2-2.0  | 86.9               | ok @50% |
| NTB-C1-11.0 | 81.4               | ok @50% |
| NTB-C2-12.0 | 64.1               | ok @50% |

AECOM Page 4 of 5

| Dry weight (g) AECOM%solids =                   | 5.52<br>81.4             | OK                | reported %solids=       | 81.4              |
|-------------------------------------------------|--------------------------|-------------------|-------------------------|-------------------|
| Wet weight (g)                                  | 6.55                     |                   |                         |                   |
| Empty dish weight (g)                           | 1.01                     |                   |                         |                   |
| Percent Solids                                  | NTB-C1-11.0 (J3          | 1791-2) p. 327    |                         |                   |
| AECOIVI70R                                      | 79                       | UN                | керопеа %к              | 79                |
| AECOM%R                                         | 79                       | OK                | Reported %R             | 79                |
| True Value (mg/Kg) Native concentration (mg/Kg) | 49.1<br>0                |                   |                         |                   |
| %R = Found/True*100                             | NTB-C1-11.0 (J3          | 1791-2) p. 324, 2 | 95                      |                   |
|                                                 | NTD 04 44 0 410          | 4704 0) 004 0     | 0.5                     | ·                 |
| AECOM Calculated MS Result (mg/Kg)              | 38.74                    | OK rounding       | Reported Result (mg/Kg) | 38.75             |
| Dilution Factor                                 | 1                        |                   |                         |                   |
| Percent solids                                  | 0.814                    |                   |                         |                   |
| Final Volume (L)                                | 0.1                      |                   |                         |                   |
| Sample weight (g)                               | 2.5                      |                   |                         |                   |
| Instrument Concentration (mg/L)                 | 788.372                  |                   |                         |                   |
| Total absorbance - background                   | 0.639                    |                   |                         |                   |
| Total absorbance                                | 0.645                    |                   |                         |                   |
| MS calculation Background absorbance reading    | NTB-C1-11.0 (J3<br>0.006 | 1131-2) p. 324, 2 | 33                      |                   |
| MS calculation                                  | NTR-C1-11 0 / 12         | 1701-2) n 224 2   | 05                      |                   |
| AECOM Calculated %R                             | 104                      | OK rounding       | Reported %R             | 103               |
| True Value (mg/Kg)                              | 14.2                     |                   |                         |                   |
| %R = Found/True*100                             | pg. 298                  |                   |                         |                   |
| AECOM Calculated LCS Result (mg/Kg)             | 14.70                    | OK rounding       | Reported Result (mg/Kg) | 14.71             |
| Dilution Factor                                 | 1                        |                   |                         |                   |
| Final Volume (L)                                | 0.1                      |                   |                         |                   |
| Sample weight (g)                               | 2.5                      |                   |                         |                   |
| Instrument Concentration (mg/L)                 | 367/581                  |                   |                         |                   |
| Total absorbance - background                   | 0.302                    |                   |                         |                   |
| Total absorbance                                | 0.302                    |                   |                         |                   |
| Background Absorbance                           | 0                        | ,                 |                         |                   |
| LCS calculation                                 | 460-90228/2-A p          | . 324. 298        |                         |                   |
| AECOM Calculated r                              | 1.000                    | OK                | Reported r              | 1.000             |
| AECOM Slope                                     | 1249                     | OK                | Reported Slope          | 1249              |
| AECOM Calculated Intercept                      | -9.508                   | OK                | Reported intercept      | -9.508            |
|                                                 |                          |                   |                         | (p. 319 of data p |
|                                                 |                          |                   |                         |                   |
|                                                 | 1250                     | 1.003             |                         |                   |
|                                                 | 750                      | 0.612             |                         |                   |
|                                                 | 500                      | 0.416             |                         |                   |
| (p. 319 of data pkg)                            | 100                      | 0.089             |                         |                   |
| Cr+6 ICAL 10/21/11                              | 50                       | 0.048             |                         |                   |
| Batch: 88553                                    | 0                        | 0                 |                         |                   |
| SDG#: J31791                                    |                          |                   |                         |                   |
| PPG GARA Soils by Method 7196                   | x - concentration        | y - response      |                         |                   |

AECOM Page 5 of 5

|                         | 1112 01 1110 (00 | , p. | <b>02</b> .,         |
|-------------------------|------------------|------|----------------------|
| Reporting Limit         | 16               |      |                      |
| Low Standard (mg/L)     | 50               |      |                      |
| Initial weight (g)      | 2.5              |      |                      |
| Final volume (L)        | 0.1              |      |                      |
| Percent solids          | 0.814            |      |                      |
| Dilution Factor         | 1                |      |                      |
| Reporting Limit (ma/Ka) | 2.5              | OK   | Reported RL (ma/Ka)= |

### **Sample Calculations**

|  | NTB-C1-11.0 ( | (J31791-2) | p. 324, |
|--|---------------|------------|---------|
|--|---------------|------------|---------|

2.5

|                                 | 16     | 1791-2) p. 324 | ,                       |      |
|---------------------------------|--------|----------------|-------------------------|------|
| Background absorbance reading   | 0.004  |                |                         |      |
| Total absorbance                | 0.009  |                |                         |      |
| Total absorbance - background   | 0.005  |                |                         |      |
| Instrument Response (mg/L)      | -3.265 |                |                         |      |
| Sample weight (g)               | 2.5    |                |                         |      |
| Final Volume (L)                | 0.1    |                |                         |      |
| Percent solids                  | 0.814  |                |                         |      |
| Dilution Factor                 | 1      |                |                         |      |
| AECOM Calculated Result (mg/Kg) | -0.16  | OK < 2.5       | Reported Result (mg/Kg) | 2.5\ |



### **ANALYTICAL REPORT**

Job Number: 460-31791-1

Job Description: PPG Northern Transects

For: AECOM, Inc. 250 Apollo Drive Chelmsford, MA 01824

Attention: Ms. Lisa Krowitz

Approved for release Patricia Grieco Project Manager II 10/21/2011 6:42 PM

Patricia Grieco
Project Manager II
patricia.grieco@testamericainc.com
10/21/2011
Revision: 1

cc: Ms. Erin Farrell
NJ NJLABDATA

The test results in this report meet all NELAP requirements unless specified within the case narrative. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. All questions regarding this report should be directed to the TestAmerica Edison Project Manager.

TestAmerica Edison Certifications and Approvals: Connecticut: CTDOH #PH-0200, New Jersey: NJDEP (NELAP) #12028, New York: NYDOH (NELAP) #11452, NYDOH (ELAP) #11452, Pennsylvania: PADEP (NELAP) 68-00522 and Rhode Island: RIDOH LAO00132



### **Table of Contents**

| Cover Title Page         | 1  |
|--------------------------|----|
| Data Summaries           | 4  |
| Report Narrative         | 4  |
| Sample Summary           | 6  |
| Executive Summary        | 7  |
| Method Summary           | 10 |
| Method / Analyst Summary | 11 |
| Sample Datasheets        | 12 |
| QC Data Summary          | 18 |
| Data Qualifiers          | 32 |
| QC Association Summary   | 33 |
| Lab Chronicle            | 36 |
| Inorganic Sample Data    | 40 |
| Metals Data              | 40 |
| Met Cover Page           | 41 |
| Met Sample Data          | 42 |
| Met QC Data              | 45 |
| Met ICV/CCV              | 45 |
| Met CRQL                 | 49 |
| Met Blanks               | 51 |
| Met ICSA/ICSAB           | 56 |
| Met MS/MSD/PDS           | 60 |
| Met Dup/Trip             | 63 |
| Met LCS/LCSD             | 65 |
| Met Serial Dilution      | 67 |
| Met MDL                  | 69 |

### **Table of Contents**

| Met Preparation Log              | 73  |
|----------------------------------|-----|
| Met Analysis Run Log             | 75  |
| Met ICP/MS Int Stds              | 84  |
| Met Raw Data                     | 88  |
| Met Prep Data                    | 278 |
| General Chemistry Data           | 280 |
| Gen Chem Cover Page              | 281 |
| Gen Chem Sample Data             | 282 |
| Gen Chem QC Data                 | 291 |
| Gen Chem ICV/CCV                 | 291 |
| Gen Chem Blanks                  | 294 |
| Gen Chem MS/MSD/PDS              | 295 |
| Gen Chem Duplicates              | 296 |
| Gen Chem LCS/LCSD                | 297 |
| Gen Chem MDL                     | 299 |
| Gen Chem Linear Ranges           | 303 |
| Gen Chem Preparation Log         | 304 |
| Gen Chem Analysis Run Log        | 305 |
| Gen Chem Raw Data                | 313 |
| Gen Chem Prep Data               | 322 |
| Shipping and Receiving Documents | 330 |
| Client Chain of Custody          | 331 |
| Sample Receipt Checklist         | 332 |

### **CASE NARRATIVE**

Client: AECOM, Inc.

**Project: PPG Northern Transects** 

Report Number: 460-31791-1

### Revision #1 - Run QC Specifically on These Samples not Indicated on COC

This case narrative is in the form of an exception report, where only the anomalies related to this report, method specific performance and/or QA/QC issues are discussed. If there are no issues to report, this narrative will include a statement that documents that there are no relevant data issues.

It should be noted that samples with elevated Reporting Limits (RLs) as a result of a dilution may not be able to satisfy customer reporting limits in some cases. Such increases in the RLs are unavoidable but acceptable consequence of sample dilution that enables quantification of target analytes or interferences which exceed the calibration range of the instrument.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

### **RECEIPT**

The samples were received on 09/28/2011; the samples arrived in good condition, properly preserved and on ice. The temperature of the coolers at receipt was 3.6 C.

Note: All samples which require thermal preservation are considered acceptable if the arrival temperature is within 2C of the required temperature or method specified range. For samples with a specified temperature of 4C, samples with a temperature ranging from just above freezing temperature of water to 6C shall be acceptable. Samples that are hand delivered immediately following collection may not meet these criteria, however they will be deemed acceptable according to NELAC standards, if there is evidence that the chilling process has begun, such as arrival on ice, etc.

### **REDUCTION-OXIDATION (REDOX) POTENTIAL**

Samples 460-31791-1 through 460-31791-3 were analyzed for Reduction-Oxidation (REDOX) Potential in accordance with SM 2580B Oxidation Reduction Potential. The samples were leached on 10/06/2011 and analyzed on 10/06/2011.

No difficulties were encountered during the redox analyses.

All quality control parameters were within the acceptance limits.

### **TOTAL METALS**

Samples 460-31791-1 through 460-31791-3 were analyzed for total metals in accordance with EPA SW-846 Method 6020. The samples were prepared on 10/05/2011 and analyzed on 10/06/2011 and 10/07/2011.

Antimony and Copper failed the recovery criteria low for the MS of sample 460-31791-3 in batch 460-88109. Several analytes failed the recovery criteria high.

Refer to the QC report for details.

Barium, Calcium, Lead and Nickel exceeded the rpd limit for the duplicate of sample 460-31791-3. Refer to the QC report for details.

Sample 460-31791-1(100X) required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No other difficulties were encountered during the metals analyses.

All other quality control parameters were within the acceptance limits.

### **HEXAVALENT CHROMIUM**

Samples 460-31791-1 through 460-31791-3 were analyzed for hexavalent chromium in accordance with EPA SW-846 Method 3060A/7196A. The samples were prepared and analyzed on 10/07/2011.

No difficulties were encountered during the hexchrome Cr6 analyses.

All quality control parameters were within the acceptance limits.

### **TOTAL MERCURY**

Samples 460-31791-1 through 460-31791-3 were analyzed for total mercury in accordance with EPA SW-846 Method 7471A. The samples were prepared and analyzed on 10/03/2011.

Mercury failed the recovery criteria high for the MS of sample 460-31882-16 in batch 460-88109. The presence of the '4' qualifier in the report indicates analytes where the concentration in the unspiked sample exceeded four times the spiking amount.

Refer to the QC report for details.

No other difficulties were encountered during the mercury analyses.

All other quality control parameters were within the acceptance limits.

### **CORROSIVITY (PH)**

Samples 460-31791-1 through 460-31791-3 were analyzed for corrosivity (pH) in accordance with EPA SW-846 Method 9045C. The samples were analyzed on 10/06/2011.

This analysis is normally performed in the field and has a method-defined holding time of 15 minutes. The following samples have been qualified with the "HF" flag to indicate analysis was performed in the laboratory outside the 15 minute timeframe: NTB-B2-2.0 (460-31791-3), NTB-C1-11.0 (460-31791-2), NTB-C2-12.0 (460-31791-1)

No difficulties were encountered during the corrosivity (pH) analyses.

All quality control parameters were within the acceptance limits.

### **PERCENT SOLIDS**

Samples 460-31791-1 through 460-31791-3 were analyzed for percent solids in accordance with ASTM D2974-87 Modified. The samples were analyzed on 10/04/2011.

No difficulties were encountered during the % solids analyses.

All quality control parameters were within the acceptance limits.

### **SAMPLE SUMMARY**

Client: AECOM, Inc. Job Number: 460-31791-1

|               |                  |               | Date/Time       | Date/Time       |
|---------------|------------------|---------------|-----------------|-----------------|
| Lab Sample ID | Client Sample ID | Client Matrix | Sampled         | Received        |
| 460-31791-1   | NTB-C2-12.0      | Solid         | 09/28/2011 1200 | 09/28/2011 1740 |
| 460-31791-2   | NTB-C1-11.0      | Solid         | 09/28/2011 1240 | 09/28/2011 1740 |
| 460-31791-3   | NTB-B2-2.0       | Solid         | 09/28/2011 1440 | 09/28/2011 1740 |

### **EXECUTIVE SUMMARY - Detections**

Client: AECOM, Inc. Job Number: 460-31791-1

| Lab Sample ID<br>Analyte | Client Sample ID     | Result | Qualifier | Reporting<br>Limit | Units      | Method   |
|--------------------------|----------------------|--------|-----------|--------------------|------------|----------|
|                          |                      |        |           |                    |            |          |
| 460-31791-1              | NTB-C2-12.0          |        |           |                    |            |          |
| Arsenic                  |                      | 1.0    |           | 0.77               | mg/Kg      | 6020     |
| Barium                   |                      | 12.4   |           | 1.5                | mg/Kg      | 6020     |
| Chromium                 |                      | 2.1    |           | 1.5                | mg/Kg      | 6020     |
| Copper                   |                      | 8.0    |           | 1.5                | mg/Kg      | 6020     |
| Manganese                |                      | 442    |           | 3.1                | mg/Kg      | 6020     |
| Lead                     |                      | 1.9    |           | 0.46               | mg/Kg      | 6020     |
| Zinc                     |                      | 35.4   |           | 6.2                | mg/Kg      | 6020     |
| Aluminum                 |                      | 963    |           | 15.4               | mg/Kg      | 6020     |
| Sodium                   |                      | 2560   |           | 77.2               | mg/Kg      | 6020     |
| Magnesium                |                      | 10100  |           | 77.2               | mg/Kg      | 6020     |
| Calcium                  |                      | 318000 |           | 386                | mg/Kg      | 6020     |
| Iron                     |                      | 782    |           | 46.3               | mg/Kg      | 6020     |
| рН                       |                      | 9.48   | HF        |                    | SU         | 9045C    |
| Percent Moisture         |                      | 35.9   |           | 1.0                | %          | Moisture |
| Percent Solids           |                      | 64.1   |           | 1.0                | %          | Moisture |
| Soluble                  |                      |        |           |                    |            |          |
| Oxidation Reduction      | on Potential-Soluble | 390    |           |                    | millivolts | SM 2580B |

### **EXECUTIVE SUMMARY - Detections**

Client: AECOM, Inc. Job Number: 460-31791-1

| Lab Sample ID<br>Analyte              | Client Sample ID | Result | Qualifier | Reporting<br>Limit | Units      | Method   |
|---------------------------------------|------------------|--------|-----------|--------------------|------------|----------|
| 460-31791-2                           | NTB-C1-11.0      |        |           |                    |            |          |
| Arsenic                               |                  | 8.2    |           | 0.56               | mg/Kg      | 6020     |
| Barium                                |                  | 51.8   |           | 1.1                | mg/Kg      | 6020     |
| Beryllium                             |                  | 0.61   |           | 0.23               | mg/Kg      | 6020     |
| Cobalt                                |                  | 6.9    |           | 1.1                | mg/Kg      | 6020     |
| Chromium                              |                  | 17.7   |           | 1.1                | mg/Kg      | 6020     |
| Copper                                |                  | 20.3   |           | 1.1                | mg/Kg      | 6020     |
| Manganese                             |                  | 259    |           | 2.3                | mg/Kg      | 6020     |
| Nickel                                |                  | 10.5   |           | 1.1                | mg/Kg      | 6020     |
| Lead                                  |                  | 53.3   |           | 0.34               | mg/Kg      | 6020     |
| Selenium                              |                  | 1.1    |           | 0.56               | mg/Kg      | 6020     |
| Vanadium                              |                  | 30.8   |           | 1.1                | mg/Kg      | 6020     |
| Zinc                                  |                  | 85.4   |           | 4.5                | mg/Kg      | 6020     |
| Aluminum                              |                  | 8580   |           | 11.3               | mg/Kg      | 6020     |
| Sodium                                |                  | 147    |           | 56.3               | mg/Kg      | 6020     |
| Magnesium                             |                  | 4350   |           | 56.3               | mg/Kg      | 6020     |
| Potassium                             |                  | 1660   |           | 56.3               | mg/Kg      | 6020     |
| Calcium                               |                  | 1770   |           | 56.3               | mg/Kg      | 6020     |
| Iron                                  |                  | 13300  |           | 33.8               | mg/Kg      | 6020     |
| Thallium                              |                  | 0.21   | J         | 0.23               | mg/Kg      | 6020     |
| Mercury                               |                  | 0.042  |           | 0.041              | mg/Kg      | 7471A    |
| рН                                    |                  | 7.93   | HF        |                    | SU         | 9045C    |
| Percent Moisture                      |                  | 18.6   |           | 1.0                | %          | Moisture |
| Percent Solids                        |                  | 81.4   |           | 1.0                | %          | Moisture |
| Soluble                               |                  |        |           |                    |            |          |
| Oxidation Reduction Potential-Soluble |                  | 430    |           |                    | millivolts | SM 2580B |

# **EXECUTIVE SUMMARY - Detections**

Client: AECOM, Inc. Job Number: 460-31791-1

| Lab Sample ID<br>Analyte | Client Sample ID     | Result | Qualifier | Reporting<br>Limit | Units      | Method   |  |
|--------------------------|----------------------|--------|-----------|--------------------|------------|----------|--|
| 460-31791-3              | NTB-B2-2.0           |        |           |                    |            |          |  |
| Arsenic                  | N1D-D2-2.0           | 12.0   |           | 0.56               | mg/Kg      | 6020     |  |
| Barium                   |                      | 181    |           | 1.1                | mg/Kg      | 6020     |  |
| Beryllium                |                      | 0.29   |           | 0.23               | mg/Kg      | 6020     |  |
| Cadmium                  |                      | 0.45   | J         | 0.56               | mg/Kg      | 6020     |  |
| Cobalt                   |                      | 4.2    |           | 1.1                | mg/Kg      | 6020     |  |
| Chromium                 |                      | 56.9   |           | 1.1                | mg/Kg      | 6020     |  |
| Copper                   |                      | 136    |           | 1.1                | mg/Kg      | 6020     |  |
| Manganese                |                      | 181    |           | 2.3                | mg/Kg      | 6020     |  |
| Nickel                   |                      | 14.9   |           | 1.1                | mg/Kg      | 6020     |  |
| Lead                     |                      | 1330   |           | 0.34               | mg/Kg      | 6020     |  |
| Antimony                 |                      | 1.3    |           | 0.56               | mg/Kg      | 6020     |  |
| Selenium                 |                      | 1.5    |           | 0.56               | mg/Kg      | 6020     |  |
| Vanadium                 |                      | 59.7   |           | 1.1                | mg/Kg      | 6020     |  |
| Zinc                     |                      | 200    |           | 4.5                | mg/Kg      | 6020     |  |
| Aluminum                 |                      | 4610   |           | 11.3               | mg/Kg      | 6020     |  |
| Sodium                   |                      | 66.9   |           | 56.4               | mg/Kg      | 6020     |  |
| Magnesium                |                      | 1450   |           | 56.4               | mg/Kg      | 6020     |  |
| Potassium                |                      | 476    |           | 56.4               | mg/Kg      | 6020     |  |
| Calcium                  |                      | 1660   |           | 56.4               | mg/Kg      | 6020     |  |
| Iron                     |                      | 11600  |           | 33.8               | mg/Kg      | 6020     |  |
| Thallium                 |                      | 0.18   | J         | 0.23               | mg/Kg      | 6020     |  |
| Mercury                  |                      | 0.53   |           | 0.037              | mg/Kg      | 7471A    |  |
| рН                       |                      | 7.46   | HF        |                    | SU         | 9045C    |  |
| Percent Moisture         |                      | 13.1   |           | 1.0                | %          | Moisture |  |
| Percent Solids           |                      | 86.9   |           | 1.0                | %          | Moisture |  |
| Soluble                  |                      |        |           |                    |            |          |  |
| Oxidation Reduction      | on Potential-Soluble | 444    |           |                    | millivolts | SM 2580B |  |

#### **METHOD SUMMARY**

Client: AECOM, Inc. Job Number: 460-31791-1

| Description                                                               | Lab Location       | Method       | Preparation Method |
|---------------------------------------------------------------------------|--------------------|--------------|--------------------|
| Matrix: Solid                                                             |                    |              |                    |
| Metals (ICP/MS) Preparation, Metals                                       | TAL EDI<br>TAL EDI | SW846 6020   | SW846 3050B        |
| Mercury (CVAA) Preparation, Mercury                                       | TAL EDI<br>TAL EDI | SW846 7471A  | SW846 7471A        |
| Chromium, Hexavalent Alkaline Digestion (Chromium, Hexavalent)            | TAL EDI<br>TAL EDI | SW846 7196A  | SW846 3060A        |
| рН                                                                        | TAL EDI            | SW846 9045C  |                    |
| Percent Moisture                                                          | TAL EDI            | EPA Moisture |                    |
| Reduction-Oxidation (REDOX) Potential  Deionized Water Leaching Procedure | TAL EDI<br>TAL EDI | SM SM 2580B  | ASTM DI Leach      |

#### Lab References:

TAL EDI = TestAmerica Edison

#### **Method References:**

ASTM = ASTM International

EPA = US Environmental Protection Agency

SM = "Standard Methods For The Examination Of Water And Wastewater",

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

# METHOD / ANALYST SUMMARY

Client: AECOM, Inc. Job Number: 460-31791-1

| Method       | Analyst           | Analyst ID |
|--------------|-------------------|------------|
| SW846 6020   | Polidori, Michael | MPP        |
| SW846 7471A  | Staib, Thomas     | TS         |
| SW846 7196A  | Carlone, John     | JC         |
| SW846 9045C  | Cabanganan, Maria | MB         |
| EPA Moisture | Armbruster, Chris | CHA        |
| SM SM 2580B  | Cabanganan, Maria | МВ         |

50 mL

0.77

1.5

50 mL

0.62 g

Client: AECOM, Inc. Job Number: 460-31791-1

NTB-C2-12.0 Client Sample ID:

Lab Sample ID: 460-31791-1 Date Sampled: 09/28/2011 1200

Client Matrix: Solid % Moisture: 35.9 Date Received: 09/28/2011 1740

6020 Metals (ICP/MS)

Final Weight/Volume:

0.56

1.2

Final Weight/Volume:

Analysis Method: 6020 Analysis Batch: 460-88662 Instrument ID: ICPMS2 Prep Method: 3050B Prep Batch: 460-88293 Lab File ID: 039SMPL.D Dilution: 20 Initial Weight/Volume: 1.01 g

10/06/2011 2149 Analysis Date: 10/05/2011 0822 Prep Date:

RL Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL Silver 1.5 1.2 1.5 0.77 Arsenic 0.68 1.0 Barium 12.4 1.0 1.5 U Beryllium 0.31 0.22 0.31 Cadmium 0.77 U 0.62 0.77 U Cobalt 1.5 1.3 1.5 1.2 Chromium 2.1 1.5 1.2 1.5 Copper 8.0 2.5 Manganese 442 3.1 Nickel 1.5 U 1.2 1.5 Lead 1.9 0.34 0.46 U Antimony 0.77 0.56 0.77

U

U

Zinc 35.4 4.9 6.2 Aluminum 963 12.9 15.4 Sodium 2560 58.7 77.2 60.2 77.2 Magnesium 10100 Potassium 77.2 U 58.6 77.2 38.9 Iron 782 46.3 Thallium 0.31 U 0.25 0.31

0.77

1.5

Analysis Method: 6020 Analysis Batch: 460-88792 Instrument ID: ICPMS2 Prep Method: 3050B Prep Batch: 460-88293 Lab File ID: 034SMPL.D Dilution: 100 Initial Weight/Volume: 1.01 g

10/07/2011 2150 Analysis Date: 10/05/2011 0822 Prep Date:

Selenium

Vanadium

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL

Calcium 318000 312 386

7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 460-88109 Instrument ID: LEEMAN3 Prep Method: 7471A Prep Batch: 460-88100 Lab File ID: 100311.PRN

Dilution: Initial Weight/Volume: 1.0 10/03/2011 2127 Analysis Date:

Final Weight/Volume: 100 mL 10/03/2011 1800 Prep Date:

Analyte DryWt Corrected: Y Qualifier MDL RL Result (mg/Kg) Mercury 0.050 U 0.033 0.050

Client: AECOM, Inc. Job Number: 460-31791-1

Client Sample ID: NTB-C1-11.0

Lab Sample ID: 460-31791-2 Date Sampled: 09/28/2011 1240

Client Matrix: Solid % Moisture: 18.6 Date Received: 09/28/2011 1740

#### 6020 Metals (ICP/MS)

Analysis Method: 6020 Analysis Batch: 460-88662 Instrument ID: ICPMS2 Prep Method: 3050B Prep Batch: 460-88293 Lab File ID: 040SMPL.D Dilution: 20 Initial Weight/Volume: 1.09 g

Analysis Date: 10/06/2011 2153 Final Weight/Volume: 50 mL

Prep Date: 10/05/2011 0822

| Analyte   | DryWt Corrected: Y | Result (mg/Kg) | Qualifier | MDL  | RL   |  |
|-----------|--------------------|----------------|-----------|------|------|--|
| Silver    |                    | 1.1            | U         | 0.90 | 1.1  |  |
| Arsenic   |                    | 8.2            |           | 0.50 | 0.56 |  |
| Barium    |                    | 51.8           |           | 0.74 | 1.1  |  |
| Beryllium |                    | 0.61           |           | 0.16 | 0.23 |  |
| Cadmium   |                    | 0.56           | U         | 0.45 | 0.56 |  |
| Cobalt    |                    | 6.9            |           | 0.92 | 1.1  |  |
| Chromium  |                    | 17.7           |           | 0.88 | 1.1  |  |
| Copper    |                    | 20.3           |           | 0.90 | 1.1  |  |
| Manganese |                    | 259            |           | 1.8  | 2.3  |  |
| Nickel    |                    | 10.5           |           | 0.88 | 1.1  |  |
| Lead      |                    | 53.3           |           | 0.25 | 0.34 |  |
| Antimony  |                    | 0.56           | U         | 0.41 | 0.56 |  |
| Selenium  |                    | 1.1            |           | 0.41 | 0.56 |  |
| Vanadium  |                    | 30.8           |           | 0.88 | 1.1  |  |
| Zinc      |                    | 85.4           |           | 3.6  | 4.5  |  |
| Aluminum  |                    | 8580           |           | 9.4  | 11.3 |  |
| Sodium    |                    | 147            |           | 42.9 | 56.3 |  |
| Magnesium |                    | 4350           |           | 43.9 | 56.3 |  |
| Potassium |                    | 1660           |           | 42.7 | 56.3 |  |
| Calcium   |                    | 1770           |           | 45.6 | 56.3 |  |
| Iron      |                    | 13300          |           | 28.4 | 33.8 |  |
| Thallium  |                    | 0.21           | J         | 0.18 | 0.23 |  |

#### 7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 460-88109 Instrument ID: LEEMAN3
Prep Method: 7471A Prep Batch: 460-88100 Lab File ID: 100311.PRN

Dilution: 1.0 Initial Weight/Volume: 0.60 g
Analysis Date: 10/03/2011 2129 Final Weight/Volume: 100 mL

Analysis Date: 10/03/2011 2129 Final Weight/Volume: 100 mL Prep Date: 10/03/2011 1800

 Analyte
 DryWt Corrected: Y
 Result (mg/Kg)
 Qualifier
 MDL
 RL

 Mercury
 0.042
 0.027
 0.041

Client: AECOM, Inc. Job Number: 460-31791-1

Client Sample ID: NTB-B2-2.0

Lab Sample ID: 460-31791-3 Date Sampled: 09/28/2011 1440

Client Matrix: Solid % Moisture: 13.1 Date Received: 09/28/2011 1740

#### 6020 Metals (ICP/MS)

Analysis Method: 6020 Analysis Batch: 460-88662 Instrument ID: ICPMS2 Prep Method: 3050B Prep Batch: 460-88293 Lab File ID: 035SMPL.D Initial Weight/Volume: Dilution: 20 1.02 g 10/06/2011 2130 Final Weight/Volume: 50 mL

Analysis Date: 10/05/2011 0822 Prep Date:

RL Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL Silver 0.90 1.1 1.1 Arsenic 0.50 0.56 12.0 Barium 181 0.74 1.1 Beryllium 0.29 0.16 0.23 Cadmium 0.45 J 0.45 0.56 Cobalt 4.2 0.92 1.1 Chromium 56.9 0.88 1.1 136 0.90 1.1 Copper 2.3 Manganese 181 1.8 Nickel 14.9 0.88 1.1 Lead 1330 0.25 0.34 Antimony 1.3 0.41 0.56 Selenium 1.5 0.41 0.56 Vanadium 59.7 0.88 1.1 Zinc 200 3.6 4.5 Aluminum 4610 9.4 11.3 42.9 Sodium 66.9 56.4 43.9 56.4 Magnesium 1450 Potassium 476 42.8 56.4 Calcium 1660 45.6 56.4 Iron 11600 28.4 33.8 0.18 Thallium 0.18 J 0.23

#### 7471A Mercury (CVAA)

Analysis Method: 7471A Analysis Batch: 460-88109 Instrument ID: LEEMAN3 Prep Method: 7471A 460-88100 Prep Batch: Lab File ID: 100311.PRN 0.61 g

Dilution: 1.0

Initial Weight/Volume: 10/03/2011 2131 Analysis Date: Final Weight/Volume: 100 mL 10/03/2011 1800 Prep Date:

Analyte DryWt Corrected: Y Result (mg/Kg) Qualifier MDL RL 0.53 0.025 0.037 Mercury

Client: AECOM, Inc. Job Number: 460-31791-1

#### **General Chemistry Client Sample ID:** NTB-C2-12.0 Lab Sample ID: 460-31791-1 Date Sampled: 09/28/2011 1200 Client Matrix: Solid % Moisture: 35.9 Date Received: 09/28/2011 1740 RLDil Analyte Result Qual Units MDL Method Cr (VI) 3.2 U 0.80 3.2 1.0 7196A mg/Kg Analysis Batch: 460-90310 Analysis Date: 10/21/2011 1042 DryWt Corrected: Y Prep Batch: 460-90228 Prep Date: 10/20/2011 1300 Analyte Result Qual Units Dil Method 9.48 HF SU 1.0 9045C рН DryWt Corrected: N Analysis Batch: 460-88553 Analysis Date: 10/06/2011 1149 Oxidation Reduction SM 2580B millivolts 1.0 Potential-Soluble Analysis Batch: 460-88558 Analysis Date: 10/06/2011 1340 DryWt Corrected: N Analyte Result Qual Units RL RLDil Method 1.0 Percent Moisture 35.9 % 1.0 1.0 Moisture Analysis Batch: 460-88198 Analysis Date: 10/04/2011 1314 DryWt Corrected: N Percent Solids 64.1 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-88198 Analysis Date: 10/04/2011 1314 DryWt Corrected: N

Client: AECOM, Inc. Job Number: 460-31791-1

#### **General Chemistry Client Sample ID:** NTB-C1-11.0 Lab Sample ID: 460-31791-2 Date Sampled: 09/28/2011 1240 Client Matrix: Solid % Moisture: 18.6 Date Received: 09/28/2011 1740 RLDil Analyte Result Qual Units MDL Method Cr (VI) 2.5 U 0.61 2.5 1.0 7196A mg/Kg Analysis Batch: 460-90310 Analysis Date: 10/21/2011 1042 DryWt Corrected: Y Prep Batch: 460-90228 Prep Date: 10/20/2011 1300 Analyte Result Qual Units Dil Method 7.93 HF SU 1.0 9045C рН DryWt Corrected: N Analysis Batch: 460-88553 Analysis Date: 10/06/2011 1151 Oxidation Reduction SM 2580B millivolts 1.0 Potential-Soluble Analysis Batch: 460-88558 Analysis Date: 10/06/2011 1342 DryWt Corrected: N Analyte Result Qual Units RL RLDil Method 1.0 Percent Moisture 18.6 % 1.0 1.0 Moisture Analysis Batch: 460-88198 Analysis Date: 10/04/2011 1314 DryWt Corrected: N Percent Solids 81.4 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-88198 Analysis Date: 10/04/2011 1314 DryWt Corrected: N

Client: AECOM, Inc. Job Number: 460-31791-1

#### **General Chemistry Client Sample ID:** NTB-B2-2.0 Lab Sample ID: 460-31791-3 Date Sampled: 09/28/2011 1440 Client Matrix: Solid % Moisture: 13.1 Date Received: 09/28/2011 1740 RLDil Analyte Result Qual Units MDL Method Cr (VI) 2.2 U 0.56 2.2 1.0 7196A mg/Kg Analysis Batch: 460-90310 Analysis Date: 10/21/2011 1042 DryWt Corrected: Y Prep Batch: 460-90228 Prep Date: 10/20/2011 1300 Analyte Result Qual Units Dil Method 7.46 HF SU 1.0 9045C рН DryWt Corrected: N Analysis Batch: 460-88553 Analysis Date: 10/06/2011 1152 Oxidation Reduction SM 2580B millivolts 1.0 Potential-Soluble Analysis Batch: 460-88558 Analysis Date: 10/06/2011 1345 DryWt Corrected: N Analyte Result Qual Units RL RLDil Method 1.0 Percent Moisture 13.1 % 1.0 1.0 Moisture Analysis Batch: 460-88198 Analysis Date: 10/04/2011 1314 DryWt Corrected: N Percent Solids 86.9 % 1.0 1.0 1.0 Moisture Analysis Batch: 460-88198 Analysis Date: 10/04/2011 1314 DryWt Corrected: N

Client: AECOM, Inc. Job Number: 460-31791-1

#### Method Blank - Batch: 460-88293

10/05/2011 0822

Method: 6020 Preparation: 3050B

Lab Sample ID: MB 460-88293/1-A ^20 Analysis Batch: 460-88662 Instrument ID: ICPMS2 460-88293 Client Matrix: Prep Batch: Lab File ID: 0326CCB.D Dilution: 20 Leach Batch: N/A Initial Weight/Volume: 1.00 g 10/06/2011 2116 Units: Final Weight/Volume: Analysis Date: mg/Kg 50 mL

Prep Date: 10/08
Leach Date: N/A

Thallium

| Analyte   | Result | Qual | MDL  | RL   |
|-----------|--------|------|------|------|
| Silver    | 1.0    | U    | 0.80 | 1.0  |
| Arsenic   | 0.50   | U    | 0.44 | 0.50 |
| Barium    | 1.0    | U    | 0.66 | 1.0  |
| Beryllium | 0.20   | U    | 0.14 | 0.20 |
| Cadmium   | 0.50   | U    | 0.40 | 0.50 |
| Cobalt    | 1.0    | U    | 0.82 | 1.0  |
| Chromium  | 1.0    | U    | 0.78 | 1.0  |
| Copper    | 1.0    | U    | 0.80 | 1.0  |
| Manganese | 2.0    | U    | 1.6  | 2.0  |
| Nickel    | 1.0    | U    | 0.78 | 1.0  |
| Lead      | 0.30   | U    | 0.22 | 0.30 |
| Antimony  | 0.50   | U    | 0.36 | 0.50 |
| Selenium  | 0.50   | U    | 0.36 | 0.50 |
| Vanadium  | 1.0    | U    | 0.78 | 1.0  |
| Zinc      | 4.0    | U    | 3.2  | 4.0  |
| Aluminum  | 10.0   | U    | 8.4  | 10.0 |
| Sodium    | 50.0   | U    | 38.0 | 50.0 |
| Magnesium | 50.0   | U    | 39.0 | 50.0 |
| Potassium | 50.0   | U    | 37.9 | 50.0 |
| Calcium   | 50.0   | U    | 40.4 | 50.0 |
| Iron      | 30.0   | U    | 25.2 | 30.0 |

0.20

U

0.16

0.20

Client: AECOM, Inc. Job Number: 460-31791-1

#### LCS-Certified Reference Material - Batch: 460-88293

Method: 6020 Preparation: 3050B

Lab Sample ID: LCSSRM 460-88293/2-A
Client Matrix: Solid
Dilution: 100
Analysis Date: 10/06/2011 2121

Prep Batch: Leach Batch: Units:

Analysis Batch:

460-88662 460-88293 N/A mg/Kg Instrument ID: ICPMS2
Lab File ID: 033SMPL.D
Initial Weight/Volume: 1.00 g
Final Weight/Volume: 50 mL

Prep Date: 10/05/2011 0822 Leach Date: N/A

| Analyte   | Spike Amount | Result | % Rec. | Limit      | Qual |
|-----------|--------------|--------|--------|------------|------|
| Silver    | 30.1         | 32.78  | 109    | 64.5 - 135 |      |
| Arsenic   | 104          | 108.5  | 104    | 70.3 - 130 |      |
| Barium    | 198          | 201.7  | 102    | 72.1 - 128 |      |
| Beryllium | 77.6         | 76.61  | 99     | 75.4 - 125 |      |
| Cadmium   | 60.7         | 62.24  | 103    | 72.9 - 125 |      |
| Cobalt    | 91.2         | 98.23  | 108    | 72.1 - 128 |      |
| Chromium  | 236          | 237.4  | 101    | 74.9 - 125 |      |
| Copper    | 174          | 179.2  | 103    | 74.8 - 125 |      |
| Manganese | 558          | 596.6  | 107    | 78.8 - 121 |      |
| Nickel    | 134          | 141.5  | 106    | 70.6 - 129 |      |
| Lead      | 86.0         | 90.48  | 105    | 72.0 - 128 |      |
| Antimony  | 67.4         | 191.3  | 284    | 0 - 311    |      |
| Selenium  | 286          | 295.2  | 103    | 65.1 - 135 |      |
| Vanadium  | 115          | 117.0  | 102    | 71.1 - 128 |      |
| Zinc      | 594          | 614.5  | 103    | 71.4 - 129 |      |
| Aluminum  | 10500        | 8154   | 78     | 39.2 - 162 |      |
| Sodium    | 1020         | 947.0  | 93     | 68.7 - 132 |      |
| Magnesium | 4000         | 4026   | 101    | 74 - 126   |      |
| Potassium | 4300         | 4632   | 108    | 71.9 - 128 |      |
| Calcium   | 9870         | 10210  | 103    | 75.0 - 125 |      |
| ron       | 18000        | 18020  | 100    | 55.7 - 144 |      |
| Thallium  | 121          | 130.8  | 108    | 71.7 - 129 |      |

Client: AECOM, Inc. Job Number: 460-31791-1

#### Matrix Spike - Batch: 460-88293

Method: 6020 Preparation: 3050B

 Lab Sample ID:
 460-31791-3
 Analysis Batch:

 Client Matrix:
 Solid
 Prep Batch:

 Dilution:
 20
 Leach Batch:

 Analysis Date:
 10/06/2011 2140
 Units:

 Prep Date:
 10/05/2011 0822

Analysis Batch: 460-88662
Prep Batch: 460-88293
Leach Batch: N/A
Units: mg/Kg

Instrument ID: ICPMS2
Lab File ID: 037SMPL.D
Initial Weight/Volume: 1.03 g
Final Weight/Volume: 50 mL

Leach Date: N/A

| Analyte   | Sample Result | /Qual | Spike Amount | Result | % Rec. | Limit    | Qual |
|-----------|---------------|-------|--------------|--------|--------|----------|------|
| Silver    | 1.1           | U     | 5.58         | 6.12   | 110    | 75 - 125 |      |
| Arsenic   | 12.0          |       | 11.2         | 24.21  | 110    | 75 - 125 |      |
| Barium    | 181           |       | 11.2         | 355.3  | 1558   | 75 - 125 | 4    |
| Beryllium | 0.29          |       | 5.58         | 6.29   | 107    | 75 - 125 |      |
| Cadmium   | 0.45          | J     | 5.58         | 6.15   | 102    | 75 - 125 |      |
| Cobalt    | 4.2           |       | 5.58         | 10.19  | 107    | 75 - 125 |      |
| Chromium  | 56.9          |       | 11.2         | 70.21  | 120    | 75 - 125 | 4    |
| Copper    | 136           |       | 11.2         | 131.2  | -39    | 75 - 125 | 4    |
| Manganese | 181           |       | 55.8         | 260.9  | 143    | 75 - 125 | F    |
| Nickel    | 14.9          |       | 11.2         | 27.56  | 113    | 75 - 125 |      |
| Lead      | 1330          |       | 5.58         | 1739   | 7391   | 75 - 125 | 4    |
| Antimony  | 1.3           |       | 5.58         | 3.82   | 45     | 75 - 125 | F    |
| Selenium  | 1.5           |       | 11.2         | 12.08  | 94     | 75 - 125 |      |
| Vanadium  | 59.7          |       | 11.2         | 76.11  | 147    | 75 - 125 | 4    |
| Zinc      | 200           |       | 55.8         | 308.8  | 196    | 75 - 125 | F    |
| Aluminum  | 4610          |       | 558          | 5703   | 196    | 75 - 125 | 4    |
| Sodium    | 66.9          |       | 558          | 675.6  | 109    | 75 - 125 |      |
| Magnesium | 1450          |       | 558          | 2156   | 127    | 75 - 125 | F    |
| Potassium | 476           |       | 558          | 1124   | 116    | 75 - 125 |      |
| Calcium   | 1660          |       | 558          | 2478   | 147    | 75 - 125 | F    |
| Iron      | 11600         |       | 558          | 12960  | 235    | 75 - 125 | 4    |
| Thallium  | 0.18          | J     | 4.47         | 4.31   | 92     | 75 - 125 |      |

#### Post Digestion Spike - Batch: 460-88293

Method: 6020 Preparation: 3050B

ICPMS2

1.02 g

50 mL

038SMPL.D

Lab Sample ID: 460-31791-3 Analysis Batch: 460-88662 Instrument ID: 460-88293 Client Matrix: Solid Prep Batch: Lab File ID: Dilution: 20 Leach Batch: N/A Initial Weight/Volume: Analysis Date: 10/06/2011 2144 Units: mg/Kg Final Weight/Volume: 10/05/2011 0822 Prep Date: Leach Date: N/A

| Analyte   | Sample Result | /Qual | Spike Amount | Result | % Rec. | Limit    | Qual |
|-----------|---------------|-------|--------------|--------|--------|----------|------|
| Silver    | 1.1           | U     | 5.64         | 6.09   | 108    | 75 - 125 |      |
| Arsenic   | 12.0          |       | 11.3         | 22.60  | 94     | 75 - 125 |      |
| Barium    | 181           |       | 11.3         | 193.1  | NC     | 75 - 125 |      |
| Beryllium | 0.29          |       | 5.64         | 5.87   | 99     | 75 - 125 |      |
| Cadmium   | 0.45          | J     | 5.64         | 6.16   | 101    | 75 - 125 |      |

Client: AECOM, Inc. Job Number: 460-31791-1

#### Post Digestion Spike - Batch: 460-88293

Method: 6020 Preparation: 3050B

 Lab Sample ID:
 460-31791-3

 Client Matrix:
 Solid

 Dilution:
 20

 Analysis Date:
 10/06/2011 2144

Analysis Batch: 460-88662
Prep Batch: 460-88293
Leach Batch: N/A
Units: mg/Kg

Instrument ID: ICPMS2
Lab File ID: 038SMPL.D
Initial Weight/Volume: 1.02 g
Final Weight/Volume: 50 mL

Prep Date: 10/05/2011 0822 Leach Date: N/A

| Analyte   | Sample Result/Qual | Spike Amount | Result | % Rec. | Limit    | Qual |
|-----------|--------------------|--------------|--------|--------|----------|------|
| Cobalt    | 4.2                | 5.64         | 9.79   | 99     | 75 - 125 |      |
| Chromium  | 56.9               | 11.3         | 67.87  | 98     | 75 - 125 |      |
| Copper    | 136                | 11.3         | 146.8  | NC     | 75 - 125 |      |
| Manganese | 181                | 56.4         | 236.0  | 97     | 75 - 125 |      |
| Nickel    | 14.9               | 11.3         | 26.23  | 100    | 75 - 125 |      |
| Lead      | 1330               | 5.64         | 1335   | NC     | 75 - 125 |      |
| Antimony  | 1.3                | 5.64         | 6.69   | 96     | 75 - 125 |      |
| Selenium  | 1.5                | 11.3         | 11.94  | 92     | 75 - 125 |      |
| Vanadium  | 59.7               | 11.3         | 70.97  | 100    | 75 - 125 |      |
| Zinc      | 200                | 56.4         | 254.3  | 97     | 75 - 125 |      |
| Aluminum  | 4610               | 564          | 5181   | 102    | 75 - 125 |      |
| Sodium    | 66.9               | 564          | 665.2  | 106    | 75 - 125 |      |
| Magnesium | 1450               | 564          | 1989   | 96     | 75 - 125 |      |
| Potassium | 476                | 564          | 1097   | 110    | 75 - 125 |      |
| Calcium   | 1660               | 564          | 2270   | 109    | 75 - 125 |      |
| Iron      | 11600              | 564          | 12220  | NC     | 75 - 125 |      |
| Thallium  | 0.18 J             | 4.51         | 4.43   | 94     | 75 - 125 |      |

Duplicate - Batch: 460-88293

Method: 6020 Preparation: 3050B

Lab Sample ID: Analysis Batch: 460-88662 Instrument ID: ICPMS2 460-31791-3 Client Matrix: Solid Prep Batch: 460-88293 Lab File ID: 034SMPL.D Dilution: 20 Leach Batch: N/A Initial Weight/Volume: 1.03 g 10/06/2011 2126 Final Weight/Volume: Analysis Date: Units: mg/Kg 50 mL 10/05/2011 0822 Prep Date:

Leach Date: N/A

| Analyte   | Sample Re | esult/Qual | Result | RPD | Limit | Qual |
|-----------|-----------|------------|--------|-----|-------|------|
| Silver    | 1.1       | U          | 1.1    | NC  | 20    | U    |
| Arsenic   | 12.0      |            | 12.28  | 3   | 20    |      |
| Barium    | 181       |            | 265.8  | 38  | 20    | F    |
| Beryllium | 0.29      |            | 0.351  | 17  | 20    |      |
| Cadmium   | 0.45      | J          | 0.601  | 28  | 20    |      |
| Cobalt    | 4.2       |            | 3.95   | 6   | 20    |      |
| Chromium  | 56.9      |            | 58.55  | 3   | 20    |      |
| Copper    | 136       |            | 146.2  | 8   | 20    |      |
| Manganese | 181       |            | 152.3  | 17  | 20    |      |
| Nickel    | 14.9      |            | 18.49  | 22  | 20    | F    |
| Lead      | 1330      |            | 1636   | 21  | 20    | F    |
| Antimony  | 1.3       |            | 1.34   | 3   | 20    |      |
| Selenium  | 1.5       |            | 1.83   | 18  | 20    |      |
| Vanadium  | 59.7      |            | 60.63  | 2   | 20    |      |
| Zinc      | 200       |            | 214.7  | 7   | 20    |      |
| Aluminum  | 4610      |            | 4563   | 1   | 20    |      |
| Sodium    | 66.9      |            | 73.49  | 9   | 20    |      |
| Magnesium | 1450      |            | 1307   | 10  | 20    |      |
| Potassium | 476       |            | 484.5  | 2   | 20    |      |
| Calcium   | 1660      |            | 2085   | 23  | 20    | F    |
| Iron      | 11600     |            | 11710  | 0.6 | 20    |      |
| Thallium  | 0.18      | J          | 0.302  | 49  | 20    |      |

Serial Dilution - Batch: 460-88293 Method: 6020
Preparation: 3050B

Instrument ID: Lab Sample ID: 460-31791-3 Analysis Batch: 460-88662 ICPMS2 Client Matrix: Prep Batch: 460-88293 Lab File ID: 036SMPL.D Solid Leach Batch: Dilution: 100 N/A Initial Weight/Volume: 1.02 g 10/06/2011 2135 Final Weight/Volume: Analysis Date: Units: mg/Kg 50 mL 10/05/2011 0822 Prep Date:

Leach Date: N/A

| Analyte   | Sample Result | /Qual | Result | %Diff | Limit | Qual |
|-----------|---------------|-------|--------|-------|-------|------|
| Silver    | 1.1           | U     | 5.6    | NC    | 10    | U    |
| Arsenic   | 12.0          |       | 11.28  | NC    | 10    |      |
| Barium    | 181           |       | 183.7  | 1.3   | 10    |      |
| Beryllium | 0.29          |       | 1.1    | NC    | 10    | U    |
| Cadmium   | 0.45          | J     | 2.8    | NC    | 10    | U    |
| Cobalt    | 4.2           |       | 5.6    | NC    | 10    | U    |
| Chromium  | 56.9          |       | 56.21  | 1.1   | 10    |      |

Client: AECOM, Inc. Job Number: 460-31791-1

Serial Dilution - Batch: 460-88293 Method: 6020
Preparation: 3050B

Lab Sample ID: 460-31791-3 Analysis Batch: 460-88662 Instrument ID: ICPMS2 460-88293 Client Matrix: Solid Prep Batch: Lab File ID: 036SMPL.D Dilution: 100 Leach Batch: N/A Initial Weight/Volume: 1.02 g Analysis Date: 10/06/2011 2135 Units: mg/Kg Final Weight/Volume: 50 mL

Prep Date: 10/05/2011 0822

Leach Date: N/A

| Analyte   | Sample Result/Qual | Result | %Diff | Limit | Qual |
|-----------|--------------------|--------|-------|-------|------|
| Copper    | 136                | 136.5  | 0.65  | 10    |      |
| Manganese | 181                | 181.3  | 0.08  | 10    |      |
| Nickel    | 14.9               | 13.76  | NC    | 10    |      |
| Lead      | 1330               | 1389   | 4.7   | 10    |      |
| Antimony  | 1.3                | 2.8    | NC    | 10    | U    |
| Selenium  | 1.5                | 2.8    | NC    | 10    | U    |
| Vanadium  | 59.7               | 60.08  | 0.63  | 10    |      |
| Zinc      | 200                | 209.7  | 5.1   | 10    |      |
| Aluminum  | 4610               | 4668   | 1.3   | 10    |      |
| Sodium    | 66.9               | 282    | NC    | 10    | U    |
| Magnesium | 1450               | 1456   | NC    | 10    |      |
| Potassium | 476                | 385.5  | NC    | 10    |      |
| Calcium   | 1660               | 1577   | NC    | 10    |      |
| Iron      | 11600              | 11720  | 0.65  | 10    |      |
| Thallium  | 0.18 J             | 1.1    | NC    | 10    | U    |

Client: AECOM, Inc. Job Number: 460-31791-1

Method Blank - Batch: 460-88100 Method: 7471A
Preparation: 7471A

Lab Sample ID: MB 460-88100/10-A Analysis Batch: 460-88109 Instrument ID: LEEMAN3 Client Matrix: Solid Prep Batch: 460-88100 Lab File ID: 100311.PRN Leach Batch: N/A Dilution: 1.0 Initial Weight/Volume: 0.60 g

Analysis Date: 10/03/2011 2117 Units: mg/Kg Final Weight/Volume: 100 mL

Prep Date: 10/03/2011 1800

Leach Date: N/A

 Analyte
 Result
 Qual
 MDL
 RL

 Mercury
 0.033
 U
 0.022
 0.033

LCS-Certified Reference Material - Batch: 460-88100 Method: 7471A

Preparation: 7471A

Lab Sample ID: **LCSSRM** Analysis Batch: 460-88109 Instrument ID: LEEMAN3 Client Matrix: Solid Prep Batch: 460-88100 Lab File ID: 100311.PRN Dilution: 10 Leach Batch: N/A Initial Weight/Volume: 0.60 g Units: Final Weight/Volume: mg/Kg 100 mL

Analysis Date: 10/03/2011 2119
Prep Date: 10/03/2011 1800

Leach Date: N/A

Analyte Spike Amount Result % Rec. Limit Qual

Mercury 8.46 8.58 101 51.3 - 149

Matrix Spike - Batch: 460-88100 Method: 7471A
Preparation: 7471A

Lab Sample ID: 460-31882-F-16-C MS Analysis Batch: 460-88109 Instrument ID: LEEMAN3 460-88100 Client Matrix: Solid Prep Batch: Lab File ID: 100311.PRN Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 0.60 g 10/03/2011 2125 Final Weight/Volume: Analysis Date: Units: mg/Kg 100 mL

Prep Date: 10/03/2011 1800

Leach Date: N/A

 Analyte
 Sample Result/Qual
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Mercury
 0.040
 0.181
 0.353
 173
 75 - 125
 F

Client: AECOM, Inc. Job Number: 460-31791-1

Duplicate - Batch: 460-88100 Method: 7471A Preparation: 7471A

460-88109 Lab Sample ID: 460-31882-F-16-B DU Analysis Batch: Instrument ID: LEEMAN3 Client Matrix: Prep Batch: 460-88100 Lab File ID: 100311.PRN Dilution: Leach Batch: N/A Initial Weight/Volume: 1.0 0.60 g

10/03/2011 2123 Analysis Date: Units: mg/Kg Final Weight/Volume: 100 mL Prep Date: 10/03/2011 1800

Leach Date: N/A

Sample Result/Qual Result RPD Limit Qual Analyte Mercury 0.040 0.0618 42 20

Serial Dilution - Batch: 460-88100 Method: 7471A Preparation: 7471A

460-88109 Lab Sample ID: 460-31882-F-16-A SD Analysis Batch: Instrument ID: LEEMAN3 Client Matrix: Prep Batch: 460-88100 Lab File ID: 100311.PRN Dilution: 5.0 Leach Batch: N/A Initial Weight/Volume: 0.60 g

10/03/2011 2210 Analysis Date: Units: mg/Kg Final Weight/Volume: 100 mL

10/03/2011 1800 Prep Date: Leach Date: N/A

Sample Result/Qual Result %Diff Limit Qual Analyte

0.040 0.18 NC U Mercury

Client: AECOM, Inc. Job Number: 460-31791-1

Method Blank - Batch: 460-90228

Method: 7196A Preparation: 3060A

Final Weight/Volume:

100 mL

Lab Sample ID: MB 460-90228/1-A Analysis Batch: 460-90310 Instrument ID: WetHexSpec

Client Matrix: Solid Prep Batch: 460-90228 Lab File ID: N/A Leach Batch: Dilution: 1.0 N/A Initial Weight/Volume: 2.50 g 10/21/2011 1042 Analysis Date: Units: mg/Kg Final Weight/Volume: 100 mL

Prep Date: 10/20/2011 1300

Leach Date: N/A

 Analyte
 Result
 Qual
 MDL
 RL

 Cr (VI)
 2.0
 U
 0.50
 2.0

Lab Control Sample Insoluble - Batch: 460-90228 Method: 7196A Preparation: 3060A

Lab Sample ID:LCSI 460-90228/3-AAnalysis Batch:460-90310Instrument ID:WetHexSpecClient Matrix:SolidPrep Batch:460-90228Lab File ID:N/A

Dilution: 50 Leach Batch: N/A Initial Weight/Volume: 2.50 g
Analysis Date: 10/21/2011 1042 Units: mg/Kg Final Weight/Volume: 100 mL

Prep Date: 10/20/2011 1300

Leach Date: N/A

 Analyte
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Cr (VI)
 708
 702.9
 99
 80 - 120

Lab Control Sample Soluble - Batch: 460-90228 Method: 7196A

Units:

Preparation: 3060A

Lab Sample ID: LCSS 460-90228/2-A Analysis Batch: 460-90310 Instrument ID: WetHexSpec 460-90228 Client Matrix: Solid Prep Batch: Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 2.50 g

Analysis Date: 10/21/2011 1042 Prep Date: 10/20/2011 1300

Leach Date: N/A

 Analyte
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Cr (VI)
 14.2
 14.71
 103
 85 - 115

mg/Kg

Client: AECOM, Inc. Job Number: 460-31791-1

Matrix Spike Insoluble - Batch: 460-90228

Preparation: 3060A

Method: 7196A

Lab Sample ID: 460-31791-2 Analysis Batch: 460-90310 Instrument ID: WetHexSpec

Client Matrix: Solid Prep Batch: 460-90228 Lab File ID: N/A Leach Batch: Dilution: 50 N/A Initial Weight/Volume: 2.50 g 10/21/2011 1042 Analysis Date: Units: mg/Kg Final Weight/Volume: 100 mL

Prep Date: 10/20/2011 1300

Leach Date: N/A

 Analyte
 Sample Result/Qual
 Spike Amount
 Result
 % Rec.
 Limit
 Qual

 Cr (VI)
 2.5
 U
 870
 774.5
 89
 75 - 125

Matrix Spike Soluble - Batch: 460-90228 Method: 7196A
Preparation: 3060A

Lab Sample ID: 460-31791-2 Analysis Batch: 460-90310 Instrument ID: WetHexSpec

460-90228 Client Matrix: Prep Batch: Lab File ID: Solid N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 2.50 g 10/21/2011 1042 Analysis Date: Units: mg/Kg Final Weight/Volume: 100 mL

Prep Date: 10/20/2011 1300

Leach Date: N/A

Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual

Cr (VI) 2.5 U 49.1 38.75 79 75 - 125

Post Digestion Spike - Batch: 460-90228 Method: 7196A Preparation: 3060A

Lab Sample ID: 460-31791-2 Analysis Batch: 460-90310 Instrument ID: WetHexSpec

Client Matrix: Solid Prep Batch: 460-90228 Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 2.50 g

Analysis Date: 10/21/2011 1042 Units: mg/Kg Final Weight/Volume: 100 mL Prep Date: 10/20/2011 1300

Leach Date: N/A

Analyte Sample Result/Qual Spike Amount Result % Rec. Limit Qual

Cr (VI) 2.5 U 49.1 55.01 112 85 - 115

Client: AECOM, Inc. Job Number: 460-31791-1

Duplicate - Batch: 460-90228 Method: 7196A Preparation: 3060A

Lab Sample ID: 460-31791-2 Analysis Batch: 460-90310 Instrument ID: WetHexSpec

460-90228 Client Matrix: Solid Prep Batch: Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 2.50 g 10/21/2011 1042 Units: Final Weight/Volume: 100 mL Analysis Date: mg/Kg

Prep Date: 10/20/2011 1300

Leach Date: N/A

 Analyte
 Sample Result/Qual
 Result
 RPD
 Limit
 Qual

 Cr (VI)
 2.5
 U
 2.5
 NC
 20
 U

No Equipment

Client: AECOM, Inc. Job Number: 460-31791-1

460-88553

Instrument ID:

Preparation: N/A

Method Blank - Batch: 460-88553 Method: 9045C Preparation: N/A

Analysis Batch:

Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A Leach Batch: N/A Dilution: 1.0 Initial Weight/Volume: 20 mL

10/06/2011 1129 Analysis Date: Units: SU Final Weight/Volume: 20 mL Prep Date: N/A

Leach Date: N/A

Lab Sample ID:

Leach Date:

N/A

Result Qual NONE NONE Analyte

рΗ 5.720

MB 460-88553/2

Lab Control Sample - Batch: 460-88553 Method: 9045C Preparation: N/A

Lab Sample ID: LCS 460-88553/3 Analysis Batch: 460-88553 Instrument ID: No Equipment

Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A Dilution: Leach Batch: N/A Initial Weight/Volume: 20 mL 1.0

Analysis Date: 10/06/2011 1130 Units: SU Final Weight/Volume: 20 mL Prep Date: N/A

Leach Date: N/A

Analyte Spike Amount % Rec. Limit Qual Result 5.50 5.490 100 95 - 105 рΗ

Duplicate - Batch: 460-88553 Method: 9045C

Lab Sample ID: 460-31882-J-16 DU Analysis Batch: 460-88553 Instrument ID: No Equipment Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume: 20 g

10/06/2011 1132 SU Final Weight/Volume: Analysis Date: Units: 20 mL Prep Date: N/A

Analyte Sample Result/Qual Result **RPD** Limit Qual

8.51 8.450 рΗ 0.7 10

Client: AECOM, Inc. Job Number: 460-31791-1

Duplicate - Batch: 460-88198 Method: Moisture
Preparation: N/A

Lab Sample ID: 460-31864-A-3 DU Analysis Batch: 460-88198 Instrument ID: No Equipment

Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: N/A Initial Weight/Volume:

Analysis Date: 10/04/2011 1314 Units: % Final Weight/Volume: Prep Date: N/A

28.5

71.5

Percent Moisture

Percent Solids

Leach Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual

24.1

75.9

17

6

20

20

Client: AECOM, Inc. Job Number: 460-31791-1

Duplicate - Batch: 460-88558 Method: SM 2580B Preparation: N/A

Leach Date:

10/06/2011 1100

Lab Sample ID: 460-31882-J-16-B DU Analysis Batch: 460-88558 Instrument ID: No Equipment

Client Matrix: Solid Prep Batch: N/A Lab File ID: N/A

Dilution: 1.0 Leach Batch: 460-88556 Initial Weight/Volume:

Analysis Date: 10/06/2011 1307 Units: millivolts Final Weight/Volume: 1.0 mL

Prep Date: N/A

Analyte Sample Result/Qual Result RPD Limit Qual
Oxidation Reduction Potential-Soluble 470 468.0 0.4 10

# **DATA REPORTING QUALIFIERS**

Client: AECOM, Inc. Job Number: 460-31791-1

| Lab Section       | Qualifier | Description                                                                                                                                               |
|-------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Metals            |           |                                                                                                                                                           |
|                   | U         | Indicates the analyte was analyzed for but not detected.                                                                                                  |
|                   | 4         | MS, MSD: The analyte present in the original sample is 4 times greater than the matrix spike concentration; therefore, control limits are not applicable. |
|                   | F         | MS/MSD Recovery or RPD exceeds the control limits                                                                                                         |
|                   | J         | Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.                                            |
| General Chemistry |           |                                                                                                                                                           |
|                   | HF        | Field parameter with a holding time of 15 minutes                                                                                                         |
|                   | U         | Indicates the analyte was analyzed for but not detected.                                                                                                  |

# **QC Association Summary**

| Lab Sample ID C           | lient Sample ID                  | Report<br>Basis | Client Matrix | Method | Prep Batch |
|---------------------------|----------------------------------|-----------------|---------------|--------|------------|
| Metals                    |                                  |                 |               |        |            |
| Prep Batch: 460-88100     |                                  |                 |               |        |            |
| LCSSRM 460-88100/11-A ^10 | LCS-Certified Reference Material | T               | Solid         | 7471A  |            |
| MB 460-88100/10-A         | Method Blank                     | T               | Solid         | 7471A  |            |
| 460-31791-1               | NTB-C2-12.0                      | T               | Solid         | 7471A  |            |
| 460-31791-2               | NTB-C1-11.0                      | T               | Solid         | 7471A  |            |
| 460-31791-3               | NTB-B2-2.0                       | T               | Solid         | 7471A  |            |
| 460-31882-F-16-B DU       | Duplicate                        | T               | Solid         | 7471A  |            |
| 460-31882-F-16-C MS       | Matrix Spike                     | Т               | Solid         | 7471A  |            |
| Analysis Batch:460-88109  |                                  |                 |               |        |            |
| LCSSRM 460-88100/11-A ^10 | LCS-Certified Reference Material | T               | Solid         | 7471A  | 460-88100  |
| MB 460-88100/10-A         | Method Blank                     | T               | Solid         | 7471A  | 460-88100  |
| 460-31791-1               | NTB-C2-12.0                      | T               | Solid         | 7471A  | 460-88100  |
| 460-31791-2               | NTB-C1-11.0                      | T               | Solid         | 7471A  | 460-88100  |
| 460-31791-3               | NTB-B2-2.0                       | T               | Solid         | 7471A  | 460-88100  |
| 460-31882-F-16-B DU       | Duplicate                        | T               | Solid         | 7471A  | 460-88100  |
| 460-31882-F-16-C MS       | Matrix Spike                     | Т               | Solid         | 7471A  | 460-88100  |
| Prep Batch: 460-88293     |                                  |                 |               |        |            |
| LCSSRM 460-88293/2-A ^100 | LCS-Certified Reference Material | T               | Solid         | 3050B  |            |
| MB 460-88293/1-A ^20      | Method Blank                     | T               | Solid         | 3050B  |            |
| 460-31791-1               | NTB-C2-12.0                      | T               | Solid         | 3050B  |            |
| 460-31791-2               | NTB-C1-11.0                      | T               | Solid         | 3050B  |            |
| 460-31791-3               | NTB-B2-2.0                       | T               | Solid         | 3050B  |            |
| 460-31791-3DU             | Duplicate                        | T               | Solid         | 3050B  |            |
| 460-31791-3MS             | Matrix Spike                     | Т               | Solid         | 3050B  |            |
| Analysis Batch:460-88662  |                                  |                 |               |        |            |
| LCSSRM 460-88293/2-A ^100 | LCS-Certified Reference Material | Т               | Solid         | 6020   | 460-88293  |
| MB 460-88293/1-A ^20      | Method Blank                     | Т               | Solid         | 6020   | 460-88293  |
| 460-31791-1               | NTB-C2-12.0                      | Т               | Solid         | 6020   | 460-88293  |
| 460-31791-2               | NTB-C1-11.0                      | T               | Solid         | 6020   | 460-88293  |
| 460-31791-3               | NTB-B2-2.0                       | Т               | Solid         | 6020   | 460-88293  |
| 460-31791-3DU             | Duplicate                        | T               | Solid         | 6020   | 460-88293  |
| 460-31791-3MS             | Matrix Spike                     | Т               | Solid         | 6020   | 460-88293  |
| Analysis Batch:460-88792  |                                  |                 |               |        |            |
| 460-31791-1               | NTB-C2-12.0                      | T               | Solid         | 6020   | 460-88293  |

#### Report Basis

T = Total

# **QC Association Summary**

|                          |                              | Report |               |          |            |
|--------------------------|------------------------------|--------|---------------|----------|------------|
| Lab Sample ID            | Client Sample ID             | Basis  | Client Matrix | Method   | Prep Batch |
| General Chemistry        |                              |        |               |          |            |
| Analysis Batch:460-88198 |                              |        |               |          |            |
| 460-31791-1              | NTB-C2-12.0                  | Т      | Solid         | Moisture |            |
| 460-31791-2              | NTB-C1-11.0                  | Т      | Solid         | Moisture |            |
| 460-31791-3              | NTB-B2-2.0                   | Т      | Solid         | Moisture |            |
| 460-31864-A-3 DU         | Duplicate                    | T      | Solid         | Moisture |            |
| Analysis Batch:460-88553 |                              |        |               |          |            |
| LCS 460-88553/3          | Lab Control Sample           | Т      | Solid         | 9045C    |            |
| MB 460-88553/2           | Method Blank                 | T      | Solid         | 9045C    |            |
| 460-31791-1              | NTB-C2-12.0                  | Т      | Solid         | 9045C    |            |
| 460-31791-2              | NTB-C1-11.0                  | T      | Solid         | 9045C    |            |
| 460-31791-3              | NTB-B2-2.0                   | Т      | Solid         | 9045C    |            |
| 460-31882-J-16 DU        | Duplicate                    | Т      | Solid         | 9045C    |            |
| Prep Batch: 460-88556    |                              |        |               |          |            |
| 460-31791-1              | NTB-C2-12.0                  | S      | Solid         | DI Leach |            |
| 460-31791-2              | NTB-C1-11.0                  | S      | Solid         | DI Leach |            |
| 460-31791-3              | NTB-B2-2.0                   | S      | Solid         | DI Leach |            |
| 460-31882-J-16-B DU      | Duplicate                    | S      | Solid         | DI Leach |            |
| Analysis Batch:460-88558 |                              |        |               |          |            |
| 460-31791-1              | NTB-C2-12.0                  | S      | Solid         | SM 2580B |            |
| 460-31791-2              | NTB-C1-11.0                  | S      | Solid         | SM 2580B |            |
| 460-31791-3              | NTB-B2-2.0                   | S      | Solid         | SM 2580B |            |
| 460-31882-J-16-B DU      | Duplicate                    | S      | Solid         | SM 2580B |            |
| Prep Batch: 460-90228    |                              |        |               |          |            |
| LCSI 460-90228/3-A       | Lab Control Sample Insoluble | T      | Solid         | 3060A    |            |
| LCSS 460-90228/2-A       | Lab Control Sample Soluble   | Т      | Solid         | 3060A    |            |
| MB 460-90228/1-A         | Method Blank                 | Т      | Solid         | 3060A    |            |
| 460-31791-1              | NTB-C2-12.0                  | Т      | Solid         | 3060A    |            |
| 460-31791-2              | NTB-C1-11.0                  | Т      | Solid         | 3060A    |            |
| 460-31791-2DU            | Duplicate                    | Т      | Solid         | 3060A    |            |
| 460-31791-2MSI           | Matrix Spike Insoluble       | Т      | Solid         | 3060A    |            |
| 460-31791-2MSS           | Matrix Spike Soluble         | Т      | Solid         | 3060A    |            |
| 460-31791-3              | NTB-B2-2.0                   | Т      | Solid         | 3060A    |            |

# **QC Association Summary**

|                         |                              | Report |               |        |            |
|-------------------------|------------------------------|--------|---------------|--------|------------|
| Lab Sample ID           | Client Sample ID             | Basis  | Client Matrix | Method | Prep Batch |
| General Chemistry       |                              |        |               |        |            |
| Analysis Batch:460-9031 | 0                            |        |               |        |            |
| LCSI 460-90228/3-A      | Lab Control Sample Insoluble | Т      | Solid         | 7196A  | 460-90228  |
| LCSS 460-90228/2-A      | Lab Control Sample Soluble   | Т      | Solid         | 7196A  | 460-90228  |
| MB 460-90228/1-A        | Method Blank                 | T      | Solid         | 7196A  | 460-90228  |
| 460-31791-1             | NTB-C2-12.0                  | Т      | Solid         | 7196A  | 460-90228  |
| 460-31791-2             | NTB-C1-11.0                  | T      | Solid         | 7196A  | 460-90228  |
| 460-31791-2DU           | Duplicate                    | Т      | Solid         | 7196A  | 460-90228  |
| 460-31791-2MSI          | Matrix Spike Insoluble       | T      | Solid         | 7196A  | 460-90228  |
| 460-31791-2MSS          | Matrix Spike Soluble         | Т      | Solid         | 7196A  | 460-90228  |
| 460-31791-3             | NTB-B2-2.0                   | Т      | Solid         | 7196A  | 460-90228  |

### Report Basis

S = Soluble

T = Total

# **Laboratory Chronicle**

Lab ID: 460-31791-1 Client ID: NTB-C2-12.0

Sample Date/Time: 09/28/2011 12:00 Received Date/Time: 09/28/2011 17:40

|            |                         |     | Analysis  |            | Date Prepared /  |     |         |         |
|------------|-------------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID               | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3050B    | 460-31791-A-1-B ^20     |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 20  | TAL EDI | MC      |
| A:6020     | 460-31791-A-1-B ^20     |     | 460-88662 | 460-88293  | 10/06/2011 21:49 | 20  | TAL EDI | MPP     |
| P:3050B    | 460-31791-A-1-B<br>^100 |     | 460-88792 | 460-88293  | 10/05/2011 08:22 | 100 | TAL EDI | MC      |
| A:6020     | 460-31791-A-1-B<br>^100 |     | 460-88792 | 460-88293  | 10/07/2011 21:50 | 100 | TAL EDI | MPP     |
| P:7471A    | 460-31791-A-1-A         |     | 460-88109 | 460-88100  | 10/03/2011 18:00 | 1   | TAL EDI | TS      |
| A:7471A    | 460-31791-A-1-A         |     | 460-88109 | 460-88100  | 10/03/2011 21:27 | 1   | TAL EDI | TS      |
| P:3060A    | 460-31791-A-1-G         |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 1   | TAL EDI | MA      |
| A:7196A    | 460-31791-A-1-G         |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 1   | TAL EDI | JC      |
| A:9045C    | 460-31791-A-1           |     | 460-88553 |            | 10/06/2011 11:49 | 1   | TAL EDI | MB      |
| A:Moisture | 460-31791-A-1           |     | 460-88198 |            | 10/04/2011 13:14 | 1   | TAL EDI | CHA     |
| A:SM 2580B | 460-31791-A-1-D         |     | 460-88558 |            | 10/06/2011 13:40 | 1   | TAL EDI | MB      |

Lab ID: 460-31791-2 Client ID: NTB-C1-11.0

Sample Date/Time: 09/28/2011 12:40 Received Date/Time: 09/28/2011 17:40

|            |                     |     | Analysis  |            | Date Prepared /  |     |         |         |
|------------|---------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID           | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3050B    | 460-31791-A-2-B ^20 |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 20  | TAL EDI | MC      |
| A:6020     | 460-31791-A-2-B ^20 |     | 460-88662 | 460-88293  | 10/06/2011 21:53 | 20  | TAL EDI | MPP     |
| P:7471A    | 460-31791-A-2-A     |     | 460-88109 | 460-88100  | 10/03/2011 18:00 | 1   | TAL EDI | TS      |
| A:7471A    | 460-31791-A-2-A     |     | 460-88109 | 460-88100  | 10/03/2011 21:29 | 1   | TAL EDI | TS      |
| P:3060A    | 460-31791-A-2-J     |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 1   | TAL EDI | MA      |
| A:7196A    | 460-31791-A-2-J     |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 1   | TAL EDI | JC      |
| A:9045C    | 460-31791-A-2       |     | 460-88553 |            | 10/06/2011 11:51 | 1   | TAL EDI | MB      |
| A:Moisture | 460-31791-A-2       |     | 460-88198 |            | 10/04/2011 13:14 | 1   | TAL EDI | CHA     |
| A:SM 2580B | 460-31791-A-2-D     |     | 460-88558 |            | 10/06/2011 13:42 | 1   | TAL EDI | MB      |

Lab ID: 460-31791-2 DU Client ID: NTB-C1-11.0

Sample Date/Time: 09/28/2011 12:40 Received Date/Time: 09/28/2011 17:40

|         |                    |     | Analysis  |            | Date Prepared /  |     |         |         |
|---------|--------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID          | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3060A | 460-31791-A-2-K DU |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 1   | TAL EDI | MA      |
| A:7196A | 460-31791-A-2-K DU |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 1   | TAL EDI | JC      |

# **Laboratory Chronicle**

Lab ID: 460-31791-2 PDS Client ID: NTB-C1-11.0

Sample Date/Time: 09/28/2011 12:40 Received Date/Time: 09/28/2011 17:40

|         |                        |     | Analysis  |            | Date Prepared /  |     |         |         |
|---------|------------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID              | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3060A | 460-31791-A-2-J PDS    |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 1   | TAL EDI | MA      |
| P:3060A | 460-31791-A-2-L<br>MSS |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 1   | TAL EDI | MA      |
| P:3060A | 460-31791-A-2-M MSI    |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 50  | TAL EDI | MA      |
| A:7196A | 460-31791-A-2-J PDS    |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 1   | TAL EDI | JC      |
| A:7196A | 460-31791-A-2-L<br>MSS |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 1   | TAL EDI | JC      |
| A:7196A | 460-31791-A-2-M MSI    |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 50  | TAL EDI | JC      |

Lab ID: 460-31791-3 Client ID: NTB-B2-2.0

Sample Date/Time: 09/28/2011 14:40 Received Date/Time: 09/28/2011 17:40

|            |                     |     | Analysis  |            | Date Prepared /  |     |         |         |
|------------|---------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method     | Bottle ID           | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3050B    | 460-31791-A-3-B ^20 |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 20  | TAL EDI | MC      |
| A:6020     | 460-31791-A-3-B ^20 |     | 460-88662 | 460-88293  | 10/06/2011 21:30 | 20  | TAL EDI | MPP     |
| P:7471A    | 460-31791-A-3-A     |     | 460-88109 | 460-88100  | 10/03/2011 18:00 | 1   | TAL EDI | TS      |
| A:7471A    | 460-31791-A-3-A     |     | 460-88109 | 460-88100  | 10/03/2011 21:31 | 1   | TAL EDI | TS      |
| P:3060A    | 460-31791-A-3-I     |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 1   | TAL EDI | MA      |
| A:7196A    | 460-31791-A-3-I     |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 1   | TAL EDI | JC      |
| A:9045C    | 460-31791-A-3       |     | 460-88553 |            | 10/06/2011 11:52 | 1   | TAL EDI | MB      |
| A:Moisture | 460-31791-A-3       |     | 460-88198 |            | 10/04/2011 13:14 | 1   | TAL EDI | CHA     |
| A:SM 2580B | 460-31791-A-3-F     |     | 460-88558 |            | 10/06/2011 13:45 | 1   | TAL EDI | MB      |

Lab ID: 460-31791-3 MS Client ID: NTB-B2-2.0

Sample Date/Time: 09/28/2011 14:40 Received Date/Time: 09/28/2011 17:40

|         |                           |     | Analysis  |            | Date Prepared /  |     |         |         |
|---------|---------------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID                 | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3050B | 460-31791-A-3-D MS<br>^20 |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 20  | TAL EDI | MC      |
| A:6020  | 460-31791-A-3-D MS<br>^20 |     | 460-88662 | 460-88293  | 10/06/2011 21:40 | 20  | TAL EDI | MPP     |

Lab ID: 460-31791-3 DU Client ID: NTB-B2-2.0

Sample Date/Time: 09/28/2011 14:40 Received Date/Time: 09/28/2011 17:40

|         |                           |     | Analysis  |            | Date Prepared /  |     |         |         |
|---------|---------------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID                 | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3050B | 460-31791-A-3-C DU<br>^20 |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 20  | TAL EDI | MC      |
| A:6020  | 460-31791-A-3-C DU<br>^20 |     | 460-88662 | 460-88293  | 10/06/2011 21:26 | 20  | TAL EDI | MPP     |

TestAmerica Edison A = Analytical Method P = Prep Method

# **Laboratory Chronicle**

Lab ID: 460-31791-3 SD Client ID: NTB-B2-2.0

Sample Date/Time: 09/28/2011 14:40 Received Date/Time: 09/28/2011 17:40

|         |                            |     | Analysis  |            | Date Prepared /  |     |         |         |
|---------|----------------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID                  | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3050B | 460-31791-A-3-B SD<br>^100 |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 100 | TAL EDI | MC      |
| A:6020  | 460-31791-A-3-B SD<br>^100 |     | 460-88662 | 460-88293  | 10/06/2011 21:35 | 100 | TAL EDI | MPP     |
| P:3050B | 460-31791-A-3-B<br>PDS ^20 |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 20  | TAL EDI | MC      |
| A:6020  | 460-31791-A-3-B<br>PDS ^20 |     | 460-88662 | 460-88293  | 10/06/2011 21:44 | 20  | TAL EDI | MPP     |

Lab ID: MB Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|         |                         |     | Analysis  |            | Date Prepared /  |     |         |         |
|---------|-------------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID               | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3050B | MB 460-88293/1-A<br>^20 |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 20  | TAL EDI | MC      |
| A:6020  | MB 460-88293/1-A<br>^20 |     | 460-88662 | 460-88293  | 10/06/2011 21:16 | 20  | TAL EDI | MPP     |
| P:7471A | MB 460-88100/10-A       |     | 460-88109 | 460-88100  | 10/03/2011 18:00 | 1   | TAL EDI | TS      |
| A:7471A | MB 460-88100/10-A       |     | 460-88109 | 460-88100  | 10/03/2011 21:17 | 1   | TAL EDI | TS      |
| P:3060A | MB 460-90228/1-A        |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 1   | TAL EDI | MA      |
| A:7196A | MB 460-90228/1-A        |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 1   | TAL EDI | JC      |
| A:9045C | MB 460-88553/2          |     | 460-88553 |            | 10/06/2011 11:29 | 1   | TAL EDI | MB      |

Lab ID: LCS Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

**Analysis** Date Prepared / Batch Analyzed Method **Bottle ID** Run **Prep Batch** Dil Lab Analyst 10/06/2011 11:30 A:9045C LCS 460-88553/3 460-88553 TAL EDI MB 1

Lab ID: LCSSRM Client ID: N/A

Sample Date/Time: N/A Received Date/Time: N/A

|         |                              |     | Analysis  |            | Date Prepared /  |     |         |         |
|---------|------------------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID                    | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:3050B | LCSSRM<br>460-88293/2-A ^100 |     | 460-88662 | 460-88293  | 10/05/2011 08:22 | 100 | TAL EDI | MC      |
| A:6020  | LCSSRM<br>460-88293/2-A ^100 |     | 460-88662 | 460-88293  | 10/06/2011 21:21 | 100 | TAL EDI | MPP     |
| P:7471A | LCSSRM<br>460-88100/11-A ^10 |     | 460-88109 | 460-88100  | 10/03/2011 18:00 | 10  | TAL EDI | TS      |
| A:7471A | LCSSRM<br>460-88100/11-A ^10 |     | 460-88109 | 460-88100  | 10/03/2011 21:19 | 10  | TAL EDI | TS      |

# **Laboratory Chronicle**

Lab ID: MS Client ID: N/A

Sample Date/Time: 10/01/2011 11:20 Received Date/Time: 10/02/2011 12:05

**Analysis** Date Prepared / Bottle ID Method **Batch** Analyzed Run **Prep Batch** Dil Lab Analyst 10/03/2011 18:00 P:7471A 460-31882-F-16-C 460-88109 460-88100 TAL EDI TS A:7471A 460-31882-F-16-C 460-88109 460-88100 10/03/2011 21:25 1 TAL EDI TS MS

Lab ID: DU Client ID: N/A

Sample Date/Time: 10/01/2011 11:20 Received Date/Time: 10/02/2011 12:05

**Analysis** Date Prepared / Method Batch Analyzed **Bottle ID** Run **Prep Batch** Dil Lab Analyst P:7471A 460-31882-F-16-B DU 460-88109 460-88100 10/03/2011 18:00 TS TAL EDI 10/03/2011 21:23 A:7471A 460-31882-F-16-B DU 460-88109 460-88100 1 TAL EDI TS A:9045C 10/06/2011 11:32 460-31882-J-16 DU 460-88553 1 TAL EDI MB 10/04/2011 13:14 A:Moisture 460-31864-A-3 DU 460-88198 TAL EDI CHA 1 A:SM 2580B 460-31882-J-16-B DU 460-88558 10/06/2011 13:07 1 TAL EDI MB

Lab ID: SD Client ID: N/A

Sample Date/Time: 10/01/2011 11:20 Received Date/Time: 10/02/2011 12:05

|         |                     |     | Analysis  |            | Date Prepared /  |     |         |         |
|---------|---------------------|-----|-----------|------------|------------------|-----|---------|---------|
| Method  | Bottle ID           | Run | Batch     | Prep Batch | Analyzed         | Dil | Lab     | Analyst |
| P:7471A | 460-31882-F-16-A SD |     | 460-88109 | 460-88100  | 10/03/2011 18:00 | 5   | TAL EDI | TS      |
| A:7471A | 460-31882-F-16-A SD |     | 460-88109 | 460-88100  | 10/03/2011 22:10 | 5   | TAL EDI | TS      |
| P:3060A | LCSI 460-90228/3-A  |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 50  | TAL EDI | MA      |
| P:3060A | LCSS 460-90228/2-A  |     | 460-90310 | 460-90228  | 10/20/2011 13:00 | 1   | TAL EDI | MA      |
| A:7196A | LCSI 460-90228/3-A  |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 50  | TAL EDI | JC      |
| A:7196A | LCSS 460-90228/2-A  |     | 460-90310 | 460-90228  | 10/21/2011 10:42 | 1   | TAL EDI | JC      |

#### Lab References:

TAL EDI = TestAmerica Edison

TestAmerica Edison A = Analytical Method P = Prep Method

# **METALS**

### COVER PAGE METALS

| Lab Name: | TestAmerica Edison     | Job Number: 460-31791-1 |
|-----------|------------------------|-------------------------|
| SDG No.:  |                        |                         |
| Project:  | PPG Northern Transects |                         |
|           | Client Sample ID       | Lab Sample ID           |
|           | NTB-C2-12.0            | 460-31791-1             |
|           | NTB-C1-11.0            | 460-31791-2             |
|           | NTB-B2-2.0             | 460-31791-3             |

Comments:

# 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: NTB-C2-12.0 Lab Sample ID: 460-31791-1

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG ID.:

Matrix: Solid Date Sampled: 09/28/2011 12:00

Reporting Basis: DRY Date Received: 09/28/2011 17:40

% Solids: 64.1

| CAS No.   | Analyte   | Result | RL    | MDL   | Units | С | Q | DIL | Method |
|-----------|-----------|--------|-------|-------|-------|---|---|-----|--------|
| 7440-22-4 | Silver    | 1.5    | 1.5   | 1.2   | mg/Kg | U |   | 20  | 6020   |
| 7440-38-2 | Arsenic   | 1.0    | 0.77  | 0.68  | mg/Kg |   |   | 20  | 6020   |
| 7440-39-3 | Barium    | 12.4   | 1.5   | 1.0   | mg/Kg |   |   | 20  | 6020   |
| 7440-41-7 | Beryllium | 0.31   | 0.31  | 0.22  | mg/Kg | U |   | 20  | 6020   |
| 7440-43-9 | Cadmium   | 0.77   | 0.77  | 0.62  | mg/Kg | U |   | 20  | 6020   |
| 7440-48-4 | Cobalt    | 1.5    | 1.5   | 1.3   | mg/Kg | U |   | 20  | 6020   |
| 7440-47-3 | Chromium  | 2.1    | 1.5   | 1.2   | mg/Kg |   |   | 20  | 6020   |
| 7440-50-8 | Copper    | 8.0    | 1.5   | 1.2   | mg/Kg |   |   | 20  | 6020   |
| 7439-96-5 | Manganese | 442    | 3.1   | 2.5   | mg/Kg |   |   | 20  | 6020   |
| 7440-02-0 | Nickel    | 1.5    | 1.5   | 1.2   | mg/Kg | U |   | 20  | 6020   |
| 7439-92-1 | Lead      | 1.9    | 0.46  | 0.34  | mg/Kg |   |   | 20  | 6020   |
| 7440-36-0 | Antimony  | 0.77   | 0.77  | 0.56  | mg/Kg | U |   | 20  | 6020   |
| 7782-49-2 | Selenium  | 0.77   | 0.77  | 0.56  | mg/Kg | U |   | 20  | 6020   |
| 7440-62-2 | Vanadium  | 1.5    | 1.5   | 1.2   | mg/Kg | U |   | 20  | 6020   |
| 7440-66-6 | Zinc      | 35.4   | 6.2   | 4.9   | mg/Kg |   |   | 20  | 6020   |
| 7429-90-5 | Aluminum  | 963    | 15.4  | 12.9  | mg/Kg |   |   | 20  | 6020   |
| 7440-23-5 | Sodium    | 2560   | 77.2  | 58.7  | mg/Kg |   |   | 20  | 6020   |
| 7439-95-4 | Magnesium | 10100  | 77.2  | 60.2  | mg/Kg |   |   | 20  | 6020   |
| 7440-09-7 | Potassium | 77.2   | 77.2  | 58.6  | mg/Kg | U |   | 20  | 6020   |
| 7440-70-2 | Calcium   | 318000 | 386   | 312   | mg/Kg |   |   | 100 | 6020   |
| 7439-89-6 | Iron      | 782    | 46.3  | 38.9  | mg/Kg |   |   | 20  | 6020   |
| 7440-28-0 | Thallium  | 0.31   | 0.31  | 0.25  | mg/Kg | U |   | 20  | 6020   |
| 7439-97-6 | Mercury   | 0.050  | 0.050 | 0.033 | mg/Kg | U |   | 1   | 7471A  |

# 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: NTB-C1-11.0 Lab Sample ID: 460-31791-2

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG ID.:

Matrix: Solid Date Sampled: 09/28/2011 12:40

Reporting Basis: DRY Date Received: 09/28/2011 17:40

% Solids: 81.4

| CAS No.   | Analyte   | Result | RL    | MDL   | Units | С | Q | DIL | Method |
|-----------|-----------|--------|-------|-------|-------|---|---|-----|--------|
| 7440-22-4 | Silver    | 1.1    | 1.1   | 0.90  | mg/Kg | U |   | 20  | 6020   |
| 7440-38-2 | Arsenic   | 8.2    | 0.56  | 0.50  | mg/Kg |   |   | 20  | 6020   |
| 7440-39-3 | Barium    | 51.8   | 1.1   | 0.74  | mg/Kg |   |   | 20  | 6020   |
| 7440-41-7 | Beryllium | 0.61   | 0.23  | 0.16  | mg/Kg |   |   | 20  | 6020   |
| 7440-43-9 | Cadmium   | 0.56   | 0.56  | 0.45  | mg/Kg | Ū |   | 20  | 6020   |
| 7440-48-4 | Cobalt    | 6.9    | 1.1   | 0.92  | mg/Kg |   |   | 20  | 6020   |
| 7440-47-3 | Chromium  | 17.7   | 1.1   | 0.88  | mg/Kg |   |   | 20  | 6020   |
| 7440-50-8 | Copper    | 20.3   | 1.1   | 0.90  | mg/Kg |   |   | 20  | 6020   |
| 7439-96-5 | Manganese | 259    | 2.3   | 1.8   | mg/Kg |   |   | 20  | 6020   |
| 7440-02-0 | Nickel    | 10.5   | 1.1   | 0.88  | mg/Kg |   |   | 20  | 6020   |
| 7439-92-1 | Lead      | 53.3   | 0.34  | 0.25  | mg/Kg |   |   | 20  | 6020   |
| 7440-36-0 | Antimony  | 0.56   | 0.56  | 0.41  | mg/Kg | U |   | 20  | 6020   |
| 7782-49-2 | Selenium  | 1.1    | 0.56  | 0.41  | mg/Kg |   |   | 20  | 6020   |
| 7440-62-2 | Vanadium  | 30.8   | 1.1   | 0.88  | mg/Kg |   |   | 20  | 6020   |
| 7440-66-6 | Zinc      | 85.4   | 4.5   | 3.6   | mg/Kg |   |   | 20  | 6020   |
| 7429-90-5 | Aluminum  | 8580   | 11.3  | 9.4   | mg/Kg |   |   | 20  | 6020   |
| 7440-23-5 | Sodium    | 147    | 56.3  | 42.9  | mg/Kg |   |   | 20  | 6020   |
| 7439-95-4 | Magnesium | 4350   | 56.3  | 43.9  | mg/Kg |   |   | 20  | 6020   |
| 7440-09-7 | Potassium | 1660   | 56.3  | 42.7  | mg/Kg |   |   | 20  | 6020   |
| 7440-70-2 | Calcium   | 1770   | 56.3  | 45.6  | mg/Kg |   |   | 20  | 6020   |
| 7439-89-6 | Iron      | 13300  | 33.8  | 28.4  | mg/Kg |   |   | 20  | 6020   |
| 7440-28-0 | Thallium  | 0.21   | 0.23  | 0.18  | mg/Kg | J |   | 20  | 6020   |
| 7439-97-6 | Mercury   | 0.042  | 0.041 | 0.027 | mg/Kg |   |   | 1   | 7471A  |

# 1A-IN INORGANIC ANALYSIS DATA SHEET METALS

Client Sample ID: NTB-B2-2.0 Lab Sample ID: 460-31791-3

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG ID.:

Matrix: Solid Date Sampled: 09/28/2011 14:40

Reporting Basis: DRY Date Received: 09/28/2011 17:40

% Solids: 86.9

| CAS No.   | Analyte   | Result | RL    | MDL   | Units | С | Q | DIL | Method |
|-----------|-----------|--------|-------|-------|-------|---|---|-----|--------|
| 7440-22-4 | Silver    | 1.1    | 1.1   | 0.90  | mg/Kg | U |   | 20  | 6020   |
| 7440-38-2 | Arsenic   | 12.0   | 0.56  | 0.50  | mg/Kg |   |   | 20  | 6020   |
| 7440-39-3 | Barium    | 181    | 1.1   | 0.74  | mg/Kg |   |   | 20  | 6020   |
| 7440-41-7 | Beryllium | 0.29   | 0.23  | 0.16  | mg/Kg |   |   | 20  | 6020   |
| 7440-43-9 | Cadmium   | 0.45   | 0.56  | 0.45  | mg/Kg | J |   | 20  | 6020   |
| 7440-48-4 | Cobalt    | 4.2    | 1.1   | 0.92  | mg/Kg |   |   | 20  | 6020   |
| 7440-47-3 | Chromium  | 56.9   | 1.1   | 0.88  | mg/Kg |   |   | 20  | 6020   |
| 7440-50-8 | Copper    | 136    | 1.1   | 0.90  | mg/Kg |   |   | 20  | 6020   |
| 7439-96-5 | Manganese | 181    | 2.3   | 1.8   | mg/Kg |   |   | 20  | 6020   |
| 7440-02-0 | Nickel    | 14.9   | 1.1   | 0.88  | mg/Kg |   |   | 20  | 6020   |
| 7439-92-1 | Lead      | 1330   | 0.34  | 0.25  | mg/Kg |   |   | 20  | 6020   |
| 7440-36-0 | Antimony  | 1.3    | 0.56  | 0.41  | mg/Kg |   |   | 20  | 6020   |
| 7782-49-2 | Selenium  | 1.5    | 0.56  | 0.41  | mg/Kg |   |   | 20  | 6020   |
| 7440-62-2 | Vanadium  | 59.7   | 1.1   | 0.88  | mg/Kg |   |   | 20  | 6020   |
| 7440-66-6 | Zinc      | 200    | 4.5   | 3.6   | mg/Kg |   |   | 20  | 6020   |
| 7429-90-5 | Aluminum  | 4610   | 11.3  | 9.4   | mg/Kg |   |   | 20  | 6020   |
| 7440-23-5 | Sodium    | 66.9   | 56.4  | 42.9  | mg/Kg |   |   | 20  | 6020   |
| 7439-95-4 | Magnesium | 1450   | 56.4  | 43.9  | mg/Kg |   |   | 20  | 6020   |
| 7440-09-7 | Potassium | 476    | 56.4  | 42.8  | mg/Kg |   |   | 20  | 6020   |
| 7440-70-2 | Calcium   | 1660   | 56.4  | 45.6  | mg/Kg | 1 |   | 20  | 6020   |
| 7439-89-6 | Iron      | 11600  | 33.8  | 28.4  | mg/Kg |   |   | 20  | 6020   |
| 7440-28-0 | Thallium  | 0.18   | 0.23  | 0.18  | mg/Kg | J |   | 20  | 6020   |
| 7439-97-6 | Mercury   | 0.53   | 0.037 | 0.025 | mg/Kg |   |   | 1   | 7471A  |

| Lab Name: | TestAmerica Edison | Job No.: | 460-31791-1 |
|-----------|--------------------|----------|-------------|
| SDG No.:  |                    |          |             |

ICV Source: ME\_IMS\_ICV\_00022 Concentration Units: ug/L

CCV Source: ME\_imsCal3\_00039

|           | ICV   | 460  | )-88662/6 |     | CCV   | 460 | -88662/28 |     | CCV              | 460 | -88662/40 |     |  |  |
|-----------|-------|------|-----------|-----|-------|-----|-----------|-----|------------------|-----|-----------|-----|--|--|
|           | 10/0  | 6/20 | 19:24     |     | 10/0  | 6/2 | 011 21:07 |     | 10/06/2011 22:03 |     |           |     |  |  |
| Analyte   | Found | С    | True      | %R  | Found | С   | True      | %R  | Found            | С   | True      | %R  |  |  |
| Aluminum  | 402.0 |      | 400       | 100 | 499.6 |     | 500       | 100 | 501.1            |     | 500       | 100 |  |  |
| Antimony  | 39.80 |      | 40.0      | 99  | 49.99 |     | 50.0      | 100 | 50.27            |     | 50.0      | 101 |  |  |
| Arsenic   | 40.25 |      | 40.0      | 101 | 49.62 |     | 50.0      | 99  | 50.03            |     | 50.0      | 100 |  |  |
| Barium    | 40.14 |      | 40.0      | 100 | 50.18 |     | 50.0      | 100 | 50.46            |     | 50.0      | 101 |  |  |
| Beryllium | 40.51 |      | 40.0      | 101 | 50.73 |     | 50.0      | 101 | 50.81            |     | 50.0      | 102 |  |  |
| Cadmium   | 39.96 |      | 40.0      | 100 | 50.03 |     | 50.0      | 100 | 50.60            |     | 50.0      | 101 |  |  |
| Calcium   | 4032  |      | 4000      | 101 | 4990  |     | 5000      | 100 | 5020             |     | 5000      | 100 |  |  |
| Chromium  | 40.32 |      | 40.0      | 101 | 50.17 |     | 50.0      | 100 | 50.43            |     | 50.0      | 101 |  |  |
| Cobalt    | 40.19 |      | 40.0      | 100 | 50.14 |     | 50.0      | 100 | 50.23            |     | 50.0      | 100 |  |  |
| Copper    | 40.04 |      | 40.0      | 100 | 50.18 |     | 50.0      | 100 | 50.31            |     | 50.0      | 101 |  |  |
| Iron      | 4018  |      | 4000      | 100 | 4987  |     | 5000      | 100 | 5004             |     | 5000      | 100 |  |  |
| Lead      | 39.75 |      | 40.0      | 99  | 50.15 |     | 50.0      | 100 | 49.90            |     | 50.0      | 100 |  |  |
| Magnesium | 4060  |      | 4000      | 102 | 5034  |     | 5000      | 101 | 5034             |     | 5000      | 101 |  |  |
| Manganese | 403.9 |      | 400       | 101 | 503.0 |     | 500       | 101 | 503.8            |     | 500       | 101 |  |  |
| Nickel    | 40.12 |      | 40.0      | 100 | 50.22 |     | 50.0      | 100 | 49.99            |     | 50.0      | 100 |  |  |
| Potassium | 3899  |      | 4000      | 97  | 4893  |     | 5000      | 98  | 4854             |     | 5000      | 97  |  |  |
| Selenium  | 40.02 |      | 40.0      | 100 | 49.02 |     | 50.0      | 98  | 50.18            |     | 50.0      | 100 |  |  |
| Silver    | 40.15 |      | 40.0      | 100 | 50.29 |     | 50.0      | 101 | 50.83            |     | 50.0      | 102 |  |  |
| Sodium    | 3994  |      | 4000      | 100 | 4994  |     | 5000      | 100 | 4983             |     | 5000      | 100 |  |  |
| Thallium  | 7.97  |      | 8.00      | 100 | 9.94  |     | 10.0      | 99  | 9.97             |     | 10.0      | 100 |  |  |
| Vanadium  | 39.84 |      | 40.0      | 100 | 50.00 |     | 50.0      | 100 | 50.14            |     | 50.0      | 100 |  |  |
| Zinc      | 39.80 |      | 40.0      | 99  | 49.89 |     | 50.0      | 100 | 49.85            |     | 50.0      | 100 |  |  |
|           |       |      |           |     |       |     |           |     |                  |     |           |     |  |  |

| Lab Name: | TestAmerica Edison | Job No.: | 460-31791-1 |
|-----------|--------------------|----------|-------------|
| SDG No.:  |                    |          |             |

ICV Source: ME\_IMS\_ICV\_00022 Concentration Units: ug/L

CCV Source: ME\_imsCal3\_00039

|           | ICV 460-88792/6<br>10/07/2011 19:45 |   |      |     |       |   | 0-88792/25<br>011 21:20 |     | CCV 460-88792/34<br>10/07/2011 22:05 |   |      |     |
|-----------|-------------------------------------|---|------|-----|-------|---|-------------------------|-----|--------------------------------------|---|------|-----|
| Analyte   | Found                               | С | True | %R  | Found | С | True                    | %R  | Found                                | С | True | %R  |
| Calcium   | 3957                                |   | 4000 | 99  | 5116  |   | 5000                    | 102 | 4938                                 |   | 5000 | 99  |
| Aluminum  | 397.4                               |   | 400  | 99  | 496.3 |   | 500                     | 99  | 492.3                                |   | 500  | 98  |
| Antimony  | 40.11                               |   | 40.0 | 100 | 50.52 |   | 50.0                    | 101 | 49.88                                |   | 50.0 | 100 |
| Arsenic   | 39.73                               |   | 40.0 | 99  | 50.05 |   | 50.0                    | 100 | 49.84                                |   | 50.0 | 100 |
| Barium    | 39.92                               |   | 40.0 | 100 | 50.67 |   | 50.0                    | 101 | 49.32                                |   | 50.0 | 99  |
| Beryllium | 39.46                               |   | 40.0 | 99  | 51.25 |   | 50.0                    | 102 | 50.73                                |   | 50.0 | 101 |
| Cadmium   | 39.91                               |   | 40.0 | 100 | 49.83 |   | 50.0                    | 100 | 49.14                                |   | 50.0 | 98  |
| Chromium  | 40.00                               |   | 40.0 | 100 | 50.41 |   | 50.0                    | 101 | 50.20                                |   | 50.0 | 100 |
| Cobalt    | 40.17                               |   | 40.0 | 100 | 51.10 |   | 50.0                    | 102 | 50.76                                |   | 50.0 | 102 |
| Copper    | 40.36                               |   | 40.0 | 101 | 51.62 |   | 50.0                    | 103 | 51.37                                |   | 50.0 | 103 |
| Iron      | 3992                                |   | 4000 | 100 | 5021  |   | 5000                    | 100 | 4998                                 |   | 5000 | 100 |
| Lead      | 39.93                               |   | 40.0 | 100 | 50.63 |   | 50.0                    | 101 | 50.10                                |   | 50.0 | 100 |
| Magnesium | 3984                                |   | 4000 | 100 | 4993  |   | 5000                    | 100 | 4944                                 |   | 5000 | 99  |
| Manganese | 395.0                               |   | 400  | 99  | 504.5 |   | 500                     | 101 | 501.5                                |   | 500  | 100 |
| Nickel    | 38.87                               |   | 40.0 | 97  | 49.22 |   | 50.0                    | 98  | 49.71                                |   | 50.0 | 99  |
| Potassium | 3991                                |   | 4000 | 100 | 4991  |   | 5000                    | 100 | 4937                                 |   | 5000 | 99  |
| Silver    | 39.63                               |   | 40.0 | 99  | 50.66 |   | 50.0                    | 101 | 50.24                                |   | 50.0 | 100 |
| Sodium    | 4029                                |   | 4000 | 101 | 4962  |   | 5000                    | 99  | 4915                                 |   | 5000 | 98  |
| Thallium  | 7.92                                |   | 8.00 | 99  | 10.04 |   | 10.0                    | 100 | 9.93                                 |   | 10.0 | 99  |
| Vanadium  | 39.93                               |   | 40.0 | 100 | 50.77 |   | 50.0                    | 102 | 49.92                                |   | 50.0 | 100 |
| Zinc      | 41.87                               |   | 40.0 | 105 | 50.75 |   | 50.0                    | 102 | 50.50                                |   | 50.0 | 101 |

| Lab Name: | TestAmerica Edison | Job No.: | 460-31791-1 |
|-----------|--------------------|----------|-------------|
| SDG No.:  |                    |          |             |

ICV Source: ME\_DQCS-INT\_00332 Concentration Units: ug/L

CCV Source: ME\_DQCS-INT\_00332

|         |       | ICV 460-88100/7-A CCV 460-881<br>10/03/2011 21:14 10/03/2011 |      |    |       | •               |     |     |       | -88100/8-A<br>011 21:59 |      |     |
|---------|-------|--------------------------------------------------------------|------|----|-------|-----------------|-----|-----|-------|-------------------------|------|-----|
| Analyte | Found | С                                                            | True | %R | Found | Found C True %R |     |     |       | С                       | True | %R  |
| Mercury | 816.7 |                                                              | 833  | 98 | 878.3 |                 | 833 | 105 | 885.0 |                         | 833  | 106 |

| Lab Name: <u>Te</u> | stAmerica E | dis | on         |     | J     | ob 1 | No.: 460- | 31791- | -1     |   |      |    |
|---------------------|-------------|-----|------------|-----|-------|------|-----------|--------|--------|---|------|----|
| SDG No.:            |             |     |            |     |       |      |           |        |        |   |      |    |
| ICV Source:         | ME_DQCS-INT | _00 | 332        |     | C     | onc  | entration | Units  | : ug/L |   |      |    |
| CCV Source:         | ME_DQCS-INT | _00 | 332        |     |       |      |           |        |        |   |      |    |
|                     |             |     | -88100/8-A |     |       |      |           |        |        |   |      |    |
| Analyte             | Found       | С   | True       | %R  | Found | С    | True      | %R     | Found  | С | True | %R |
| Mercury             | 880.0       |     | 833        | 106 |       |      |           |        |        |   |      |    |

### 2B-IN CRQL CHECK STANDARD METALS

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Method: 6020 Instrument ID: ICPMS2

Lab Sample ID: CRI 460-88662/8 Concentration Units: ug/L

CRQL Check Standard Source: ME\_ICmsCall\_00038

|           |       | CRQL C | heck Standard |       |        |
|-----------|-------|--------|---------------|-------|--------|
| Analyte   | True  | Found  | Qualifiers    | %R(1) | Limits |
| Silver    | 1.00  | 1.02   |               | 102   |        |
| Arsenic   | 0.500 | 0.483  | J             | 97    |        |
| Barium    | 1.00  | 1.02   |               | 102   |        |
| Beryllium | 0.200 | 0.20   | U             | 69    |        |
| Cadmium   | 0.500 | 0.504  |               | 101   |        |
| Cobalt    | 1.00  | 1.04   |               | 104   |        |
| Chromium  | 1.00  | 1.04   |               | 104   |        |
| Copper    | 1.00  | 0.996  | J             | 100   |        |
| Manganese | 2.00  | 2.06   |               | 103   |        |
| Nickel    | 1.00  | 1.06   |               | 106   |        |
| Lead      | 0.300 | 0.310  |               | 103   |        |
| Antimony  | 0.500 | 0.495  | J             | 99    |        |
| Selenium  | 0.500 | 0.50   | U             | 72    |        |
| Vanadium  | 1.00  | 1.00   |               | 100   |        |
| Zinc      | 4.00  | 4.26   |               | 106   |        |
| Aluminum  | 10.0  | 11.14  |               | 111   |        |
| Sodium    | 50.0  | 50.75  |               | 102   |        |
| Magnesium | 50.0  | 51.88  |               | 104   |        |
| Potassium | 50.0  | 45.42  | J             | 91    |        |
| Calcium   | 50.0  | 46.81  | J             | 94    |        |
| Iron      | 30.0  | 32.87  |               | 110   |        |
| Thallium  | 0.200 | 0.204  |               | 102   |        |

Lab Sample ID: CRI 460-88792/8 Concentration Units: ug/L

CRQL Check Standard Source: ME\_ICmsCall\_00038

|           | CRQL Check Standard |       |            |       |        |  |  |  |  |
|-----------|---------------------|-------|------------|-------|--------|--|--|--|--|
| Analyte   | True                | Found | Qualifiers | %R(1) | Limits |  |  |  |  |
| Silver    | 1.00                | 0.979 | J          | 98    |        |  |  |  |  |
| Arsenic   | 0.500               | 0.415 | J          | 83    |        |  |  |  |  |
| Barium    | 1.00                | 0.982 | J          | 98    |        |  |  |  |  |
| Beryllium | 0.200               | 0.213 |            | 107   |        |  |  |  |  |
| Cadmium   | 0.500               | 0.497 | J          | 99    |        |  |  |  |  |
| Cobalt    | 1.00                | 1.01  |            | 101   |        |  |  |  |  |
| Chromium  | 1.00                | 1.02  |            | 102   |        |  |  |  |  |
| Copper    | 1.00                | 0.974 | J          | 97    |        |  |  |  |  |

 ${\tt Note!} \ {\tt Calculations} \ {\tt are} \ {\tt performed} \ {\tt before} \ {\tt rounding} \ {\tt to} \ {\tt avoid} \ {\tt round-off} \ {\tt errors} \ {\tt in} \ {\tt calculated} \ {\tt results}.$ 

FORM IIB-IN

## 2B-IN CRQL CHECK STANDARD METALS

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Method: 6020 Instrument ID: ICPMS2

Lab Sample ID: CRI 460-88792/8 Concentration Units: ug/L

CRQL Check Standard Source: ME\_ICmsCal1\_00038

|           |       | CRQL Check Standard |            |       |        |  |  |  |  |  |
|-----------|-------|---------------------|------------|-------|--------|--|--|--|--|--|
| Analyte   | True  | Found               | Qualifiers | %R(1) | Limits |  |  |  |  |  |
| Manganese | 2.00  | 1.93                | J          | 97    |        |  |  |  |  |  |
| Nickel    | 1.00  | 0.940               | J          | 94    |        |  |  |  |  |  |
| Lead      | 0.300 | 0.308               |            | 103   |        |  |  |  |  |  |
| Antimony  | 0.500 | 0.488               | J          | 98    |        |  |  |  |  |  |
| Vanadium  | 1.00  | 0.977               | J          | 98    |        |  |  |  |  |  |
| Zinc      | 4.00  | 4.12                |            | 103   |        |  |  |  |  |  |
| Aluminum  | 10.0  | 9.41                | J          | 94    |        |  |  |  |  |  |
| Sodium    | 50.0  | 43.32               | J          | 87    |        |  |  |  |  |  |
| Magnesium | 50.0  | 49.55               | J          | 99    |        |  |  |  |  |  |
| Potassium | 50.0  | 46.43               | J          | 93    |        |  |  |  |  |  |
| Calcium   | 50.0  | 51.17               |            | 102   |        |  |  |  |  |  |
| Iron      | 30.0  | 32.13               |            | 107   |        |  |  |  |  |  |
| Thallium  | 0.200 | 0.193               | J          | 97    |        |  |  |  |  |  |

# 3-IN INSTRUMENT BLANKS METALS

| Lab | Name: | TestAmerica | Edison | Job No.: | 460-31791-1 |
|-----|-------|-------------|--------|----------|-------------|
|     |       |             |        |          |             |

SDG No.:

Concentration Units: ug/L

|           |      | ICB 460-88662/7<br>10/06/2011 19:29 |   |       | CCB 460-88662/29<br>10/06/2011 21:11 |       | 2/41 |       |   |
|-----------|------|-------------------------------------|---|-------|--------------------------------------|-------|------|-------|---|
| Analyte   | RL   | Found                               | С | Found | С                                    | Found | С    | Found | С |
| Aluminum  | 10.0 | 10.0                                | U | 10.0  | U                                    | 10.0  | U    |       |   |
| Antimony  | 0.50 | 0.50                                | U | 0.50  | U                                    | 0.50  | U    |       |   |
| Arsenic   | 0.50 | 0.50                                | U | 0.50  | U                                    | 0.50  | U    |       |   |
| Barium    | 1.0  | 1.0                                 | U | 1.0   | U                                    | 1.0   | U    |       |   |
| Beryllium | 0.20 | 0.20                                | U | 0.20  | U                                    | 0.20  | U    |       |   |
| Cadmium   | 0.50 | 0.50                                | U | 0.50  | U                                    | 0.50  | U    |       |   |
| Calcium   | 50.0 | 50.0                                | U | 50.0  | U                                    | 50.0  | U    |       |   |
| Chromium  | 1.0  | 1.0                                 | U | 1.0   | U                                    | 1.0   | U    |       |   |
| Cobalt    | 1.0  | 1.0                                 | U | 1.0   | U                                    | 1.0   | U    |       |   |
| Copper    | 1.0  | 1.0                                 | U | 1.0   | U                                    | 1.0   | U    |       |   |
| Iron      | 30.0 | 30.0                                | U | 30.0  | U                                    | 30.0  | U    |       |   |
| Lead      | 0.30 | 0.30                                | U | 0.30  | U                                    | 0.30  | U    |       |   |
| Magnesium | 50.0 | 50.0                                | U | 50.0  | U                                    | 50.0  | U    |       |   |
| Manganese | 2.0  | 2.0                                 | U | 2.0   | U                                    | 2.0   | U    |       |   |
| Nickel    | 1.0  | 1.0                                 | U | 1.0   | U                                    | 1.0   | U    |       |   |
| Potassium | 50.0 | 50.0                                | U | 50.0  | U                                    | 50.0  | U    |       |   |
| Selenium  | 0.50 | 0.50                                | U | 0.50  | U                                    | 0.50  | U    |       |   |
| Silver    | 1.0  | 1.0                                 | U | 1.0   | U                                    | 1.0   | U    |       |   |
| Sodium    | 50.0 | 50.0                                | U | 50.0  | U                                    | 50.0  | U    |       |   |
| Thallium  | 0.20 | 0.20                                | U | 0.20  | U                                    | 0.20  | U    |       |   |
| Vanadium  | 1.0  | 1.0                                 | U | 1.0   | U                                    | 1.0   | U    |       |   |
| Zinc      | 4.0  | 4.0                                 | U | 4.0   | U                                    | 4.0   | U    |       |   |

# 3-IN INSTRUMENT BLANKS METALS

| Lab Name: | TestAmerica Edison | Job No.: | 460-31791-1 |
|-----------|--------------------|----------|-------------|
| SDG No.:  |                    |          |             |

Concentration Units: ug/L

|           |      | ICB 460-8879 |   | CCB 460-88792<br>10/07/2011 2: |   | CCB 460-88792<br>10/07/2011 23 |   |       |   |
|-----------|------|--------------|---|--------------------------------|---|--------------------------------|---|-------|---|
| Analyte   | RL   | Found        | С | Found                          | С | Found                          | С | Found | С |
| Calcium   | 50.0 | 50.0         | U | 50.0                           | U | 50.0                           | U |       |   |
| Aluminum  | 10.0 | 10.0         | U | 10.0                           | U | 10.0                           | U |       |   |
| Antimony  | 0.50 | 0.50         | U | 0.50                           | U | 0.50                           | U |       |   |
| Arsenic   | 0.50 | 0.50         | U | 0.50                           | U | 0.50                           | U |       |   |
| Barium    | 1.0  | 1.0          | U | 1.0                            | U | 1.0                            | U |       |   |
| Beryllium | 0.20 | 0.20         | U | 0.20                           | U | 0.20                           | U |       |   |
| Cadmium   | 0.50 | 0.50         | U | 0.50                           | U | 0.50                           | U |       |   |
| Chromium  | 1.0  | 1.0          | U | 1.0                            | U | 1.0                            | U |       |   |
| Cobalt    | 1.0  | 1.0          | U | 1.0                            | U | 1.0                            | U |       |   |
| Copper    | 1.0  | 1.0          | U | 1.0                            | U | 1.0                            | U |       |   |
| Iron      | 30.0 | 30.0         | U | 30.0                           | U | 30.0                           | U |       |   |
| Lead      | 0.30 | 0.30         | U | 0.30                           | U | 0.30                           | U |       |   |
| Magnesium | 50.0 | 50.0         | U | 50.0                           | U | 50.0                           | U |       |   |
| Manganese | 2.0  | 2.0          | U | 2.0                            | U | 2.0                            | U |       |   |
| Nickel    | 1.0  | 1.0          | U | 1.0                            | U | 1.0                            | U |       |   |
| Potassium | 50.0 | 50.0         | U | 50.0                           | U | 50.0                           | U |       |   |
| Silver    | 1.0  | 1.0          | U | 1.0                            | U | 1.0                            | U |       |   |
| Sodium    | 50.0 | 50.0         | U | 50.0                           | U | 50.0                           | U |       |   |
| Thallium  | 0.20 | 0.20         | U | 0.20                           | U | 0.20                           | U |       |   |
| Vanadium  | 1.0  | 1.0          | U | 1.0                            | U | 1.0                            | U |       |   |
| Zinc      | 4.0  | 4.0          | U | 4.0                            | U | 4.0                            | U |       |   |

# 3-IN INSTRUMENT BLANKS METALS

| Lab Name: | TestAmerica Edison | Job No.: | 460-31791-1 |
|-----------|--------------------|----------|-------------|
| SDG No ·  |                    |          |             |

Concentration Units: ug/L

|         |      | ICB 460-8810 |   | CCB 460-88109 |   | CCB 460-88109 |   | CCB 460-88109 | • |
|---------|------|--------------|---|---------------|---|---------------|---|---------------|---|
| Analyte | RL   | Found        | С | Found         | С | Found         | С | Found         | С |
| Mercury | 0.20 | 0.20         | U | 0.20          | U | 0.20          | U | 0.20          | U |

### 3-IN METHOD BLANK METALS

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Concentration Units: mg/Kg Lab Sample ID: MB 460-88293/1-A ^20

Instrument Code: ICPMS2 Batch No.: 88662

| CAS No.   | Analyte   | Concentration | C | Q | Method |
|-----------|-----------|---------------|---|---|--------|
| 7440-22-4 | Silver    | 1.0           | U |   | 6020   |
| 7440-38-2 | Arsenic   | 0.50          | U |   | 6020   |
| 7440-39-3 | Barium    | 1.0           | U |   | 6020   |
| 7440-41-7 | Beryllium | 0.20          | U |   | 6020   |
| 7440-43-9 | Cadmium   | 0.50          | U |   | 6020   |
| 7440-48-4 | Cobalt    | 1.0           | U |   | 6020   |
| 7440-47-3 | Chromium  | 1.0           | U |   | 6020   |
| 7440-50-8 | Copper    | 1.0           | U |   | 6020   |
| 7439-96-5 | Manganese | 2.0           | U |   | 6020   |
| 7440-02-0 | Nickel    | 1.0           | U |   | 6020   |
| 7439-92-1 | Lead      | 0.30          | U |   | 6020   |
| 7440-36-0 | Antimony  | 0.50          | U |   | 6020   |
| 7782-49-2 | Selenium  | 0.50          | U |   | 6020   |
| 7440-62-2 | Vanadium  | 1.0           | U |   | 6020   |
| 7440-66-6 | Zinc      | 4.0           | U |   | 6020   |
| 7429-90-5 | Aluminum  | 10.0          | U |   | 6020   |
| 7440-23-5 | Sodium    | 50.0          | U |   | 6020   |
| 7439-95-4 | Magnesium | 50.0          | U |   | 6020   |
| 7440-09-7 | Potassium | 50.0          | U |   | 6020   |
| 7440-70-2 | Calcium   | 50.0          | U |   | 6020   |
| 7439-89-6 | Iron      | 30.0          | U |   | 6020   |
| 7440-28-0 | Thallium  | 0.20          | U |   | 6020   |

### 3-IN METHOD BLANK METALS

| Lab Name: Te                              | stAmerica Edison                                            | Job No.       | : 460- | 31791-1 |        |  |
|-------------------------------------------|-------------------------------------------------------------|---------------|--------|---------|--------|--|
| SDG No.:                                  | SDG No.:                                                    |               |        |         |        |  |
| Concentration                             | Concentration Units: mg/Kg Lab Sample ID: MB 460-88100/10-A |               |        |         |        |  |
| Instrument Code: LEEMAN3 Batch No.: 88109 |                                                             |               |        |         |        |  |
| CAS No.                                   | Analyte                                                     | Concentration | С      | Q       | Method |  |
| 7439-97-6                                 | Mercury                                                     | 0.033         | U      |         | 7471A  |  |

| Lab | Name:   | TestAmerica Edison   | Job No.: 460-31791-1         |
|-----|---------|----------------------|------------------------------|
| SDG | No.: _  |                      |                              |
| Lab | Sample  | ID: ICSA 460-88662/9 | Instrument ID: ICPMS2        |
| Lab | File II | D: 011SMPL.D         | ICS Source: ME_ICSA_MS_00143 |
|     |         |                      |                              |

Concentration Units: ug/L

|            | True       | Found      |          |  |
|------------|------------|------------|----------|--|
|            |            |            | Percent  |  |
| Analyte    | Solution A | Solution A | Recovery |  |
| Aluminum   | 50000      | 48064      | 96       |  |
| Antimony   |            | 0.384      |          |  |
| Arsenic    |            | 0.165      |          |  |
| Barium     |            | 0.157      |          |  |
| Beryllium  |            | -0.0070    |          |  |
| Cadmium    |            | 0.274      |          |  |
| Calcium    | 150000     | 136837     | 91       |  |
| Chromium   |            | 2.65       |          |  |
| Cobalt     |            | 1.85       |          |  |
| Copper     |            | 0.650      |          |  |
| Iron       | 125000     | 121307     | 97       |  |
| Lead       |            | 0.0750     |          |  |
| Magnesium  | 50000      | 49266      | 99       |  |
| Manganese  |            | 2.55       |          |  |
| Nickel     |            | 1.53       |          |  |
| Potassium  | 50000      | 48308      | 97       |  |
| Selenium   |            | 0.288      |          |  |
| Silver     |            | 0.164      |          |  |
| Sodium     | 125000     | 124924     | 100      |  |
| Thallium   |            | 0.0090     |          |  |
| Vanadium   |            | 0.197      |          |  |
| Zinc       |            | 1.47       |          |  |
| Boron      |            | 1.81       |          |  |
| Molybdenum | 1000       | 1042       | 104      |  |
| Strontium  |            | 6.97       |          |  |
| Tin        |            | 0.115      |          |  |
| Titanium   | 1000       | 1032       | 103      |  |

| Lab Na | ame: TestAme | rica Edison      | Job No.: 460-  | 31791-1          |
|--------|--------------|------------------|----------------|------------------|
| SDG No | ·:           |                  |                |                  |
| Lab Sa | ample ID: IC | SAB 460-88662/10 | Instrument ID: | : ICPMS2         |
| Lab Fi | ile ID: 012S | MPL.D            | ICS Source: M  | ME_ICSB_MS_00137 |

Concentration Units: ug/L

|            | True        | Found       |          |  |
|------------|-------------|-------------|----------|--|
|            |             |             | Percent  |  |
| Analyte    | Solution AB | Solution AB | Recovery |  |
| Aluminum   | 50000       | 46772       | 94       |  |
| Antimony   |             | 0.406       |          |  |
| Arsenic    | 100         | 97.8        | 98       |  |
| Barium     |             | 0.194       |          |  |
| Beryllium  |             | -0.0070     |          |  |
| Cadmium    | 100         | 96.0        | 96       |  |
| Calcium    | 150000      | 139310      | 93       |  |
| Chromium   | 200         | 189         | 95       |  |
| Cobalt     | 200         | 197         | 98       |  |
| Copper     | 200         | 181         | 91       |  |
| Iron       | 125000      | 117653      | 94       |  |
| Lead       |             | 0.0830      |          |  |
| Magnesium  | 50000       | 48158       | 96       |  |
| Manganese  | 200         | 189         | 95       |  |
| Nickel     | 200         | 185         | 92       |  |
| Potassium  | 50000       | 47152       | 94       |  |
| Selenium   | 100         | 93.2        | 93       |  |
| Silver     | 200         | 186         | 93       |  |
| Sodium     | 125000      | 123280      | 99       |  |
| Thallium   |             | 0.0060      |          |  |
| Vanadium   | 200         | 196         | 98       |  |
| Zinc       | 100         | 92.4        | 92       |  |
| Boron      |             | 1.52        |          |  |
| Molybdenum | 1000        | 1026        | 103      |  |
| Strontium  |             | 6.92        |          |  |
| Tin        |             | 0.113       |          |  |
| Titanium   | 1000        | 1008        | 101      |  |

| Lab | Name:  | TestAmerica Edison   | Job No.: 460-31791-1         |
|-----|--------|----------------------|------------------------------|
| SDG | No.:   |                      |                              |
| Lab | Sample | ID: ICSA 460-88792/9 | Instrument ID: ICPMS2        |
| Lab | File I | D: 012SMPL.D         | ICS Source: ME_ICSA_MS_00143 |

Concentration Units: ug/L

|            | True       | Found      |          |  |
|------------|------------|------------|----------|--|
|            |            |            | Percent  |  |
| Analyte    | Solution A | Solution A | Recovery |  |
| Calcium    | 150000     | 126230     | 84       |  |
| Aluminum   | 50000      | 46524      | 93       |  |
| Antimony   |            | 0.403      |          |  |
| Arsenic    |            | 0.147      |          |  |
| Barium     |            | 0.180      |          |  |
| Beryllium  |            | -0.0120    |          |  |
| Boron      |            | 0.563      |          |  |
| Cadmium    |            | 0.276      |          |  |
| Chromium   |            | 2.53       |          |  |
| Cobalt     |            | 1.80       |          |  |
| Copper     |            | 0.627      |          |  |
| Iron       | 125000     | 119790     | 96       |  |
| Lead       |            | 0.0770     |          |  |
| Magnesium  | 50000      | 46630      | 93       |  |
| Manganese  |            | 2.83       |          |  |
| Molybdenum | 1000       | 1001       | 100      |  |
| Nickel     |            | 1.55       |          |  |
| Potassium  | 50000      | 46666      | 93       |  |
| Silver     |            | 0.172      |          |  |
| Sodium     | 125000     | 118623     | 95       |  |
| Strontium  |            | 6.84       |          |  |
| Thallium   |            | 0.0070     |          |  |
| Tin        |            | 0.125      |          |  |
| Titanium   | 1000       | 1023       | 102      |  |
| Vanadium   |            | 0.149      |          |  |
| Zinc       |            | 1.42       |          |  |
|            |            |            |          |  |

| Lab Name: | TestAmerica Edison | Job No.: | 460-31791-1 |  |
|-----------|--------------------|----------|-------------|--|
|           |                    |          |             |  |

SDG No.:

Lab Sample ID: ICSAB 460-88792/10 Instrument ID: ICPMS2

Lab File ID: 013SMPL.D ICS Source: ME\_ICSB\_MS\_00137

Concentration Units: ug/L

|            | True        | Found       |          |  |  |  |
|------------|-------------|-------------|----------|--|--|--|
|            |             |             | Percent  |  |  |  |
| Analyte    | Solution AB | Solution AB | Recovery |  |  |  |
| Calcium    | 150000      | 132053      | 88       |  |  |  |
| Aluminum   | 50000       | 47213       | 94       |  |  |  |
| Antimony   |             | 0.407       |          |  |  |  |
| Arsenic    | 100         | 100.0       | 100      |  |  |  |
| Barium     |             | 0.199       |          |  |  |  |
| Beryllium  |             | 0.0110      |          |  |  |  |
| Boron      |             | 0.826       |          |  |  |  |
| Cadmium    | 100         | 96.1        | 96       |  |  |  |
| Chromium   | 200         | 191         | 96       |  |  |  |
| Cobalt     | 200         | 201         | 100      |  |  |  |
| Copper     | 200         | 185         | 93       |  |  |  |
| Iron       | 125000      | 120872      | 97       |  |  |  |
| Lead       |             | 0.0810      |          |  |  |  |
| Magnesium  | 50000       | 47326       | 95       |  |  |  |
| Manganese  | 200         | 191         | 96       |  |  |  |
| Molybdenum | 1000        | 1010        | 101      |  |  |  |
| Nickel     | 200         | 182         | 91       |  |  |  |
| Potassium  | 50000       | 47728       | 95       |  |  |  |
| Silver     | 200         | 185         | 92       |  |  |  |
| Sodium     | 125000      | 121530      | 97       |  |  |  |
| Strontium  |             | 7.08        |          |  |  |  |
| Thallium   |             | 0.0050      |          |  |  |  |
| Tin        |             | 0.113       |          |  |  |  |
| Titanium   | 1000        | 1035        | 103      |  |  |  |
| Vanadium   | 200         | 199         | 99       |  |  |  |
| Zinc       | 100         | 94.8        | 95       |  |  |  |
|            |             |             |          |  |  |  |

## 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

Client ID: NTB-B2-2.0 MS Lab ID: 460-31791-3 MS

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

% Solids: 86.9

| Analyte   | SSR   | Sample<br>Result (SR) | )<br>C | Spike<br>Added (SA) | %R   | Control<br>Limit<br>%R | Q | Method |
|-----------|-------|-----------------------|--------|---------------------|------|------------------------|---|--------|
| Silver    | 6.12  | 1.1                   | U      | 5.58                | 110  | 75-125                 |   | 6020   |
| Arsenic   | 24.21 | 12.0                  |        | 11.2                | 110  | 75-125                 |   | 6020   |
| Barium    | 355.3 | 181                   |        | 11.2                | 1558 | 75-125                 | 4 | 6020   |
| Beryllium | 6.29  | 0.29                  |        | 5.58                | 107  | 75-125                 |   | 6020   |
| Cadmium   | 6.15  | 0.45                  | J      | 5.58                | 102  | 75-125                 |   | 6020   |
| Cobalt    | 10.19 | 4.2                   |        | 5.58                | 107  | 75-125                 |   | 6020   |
| Chromium  | 70.21 | 56.9                  |        | 11.2                | 120  | 75-125                 | 4 | 6020   |
| Copper    | 131.2 | 136                   |        | 11.2                | -39  | 75-125                 | 4 | 6020   |
| Manganese | 260.9 | 181                   |        | 55.8                | 143  | 75-125                 | F | 6020   |
| Nickel    | 27.56 | 14.9                  |        | 11.2                | 113  | 75-125                 |   | 6020   |
| Lead      | 1739  | 1330                  |        | 5.58                | 7391 | 75-125                 | 4 | 6020   |
| Antimony  | 3.82  | 1.3                   |        | 5.58                | 45   | 75-125                 | F | 6020   |
| Selenium  | 12.08 | 1.5                   |        | 11.2                | 94   | 75-125                 |   | 6020   |
| Vanadium  | 76.11 | 59.7                  |        | 11.2                | 147  | 75-125                 | 4 | 6020   |
| Zinc      | 308.8 | 200                   |        | 55.8                | 196  | 75-125                 | F | 6020   |
| Aluminum  | 5703  | 4610                  |        | 558                 | 196  | 75-125                 | 4 | 6020   |
| Sodium    | 675.6 | 66.9                  |        | 558                 | 109  | 75-125                 |   | 6020   |
| Magnesium | 2156  | 1450                  |        | 558                 | 127  | 75-125                 | F | 6020   |
| Potassium | 1124  | 476                   |        | 558                 | 116  | 75-125                 |   | 6020   |
| Calcium   | 2478  | 1660                  |        | 558                 | 147  | 75-125                 | F | 6020   |
| Iron      | 12960 | 11600                 |        | 558                 | 235  | 75-125                 | 4 | 6020   |
| Thallium  | 4.31  | 0.18                  | J      | 4.47                | 92   | 75-125                 |   | 6020   |

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

# 5A-IN MATRIX SPIKE SAMPLE RECOVERY METALS

| Client ID:                   | Lab ID: 460-31882-F-16-C MS |
|------------------------------|-----------------------------|
| Lab Name: TestAmerica Edison | Job No.: 460-31791-1        |
| SDG No.:                     |                             |
| Matrix: Solid                | Concentration Units: mg/Kg  |
| 9 Solide: 92 2               |                             |

% Solids: 92.2

| Analyte | SSR C | Sample<br>Result (SR) | Spike<br>Added (SA) | %R  | Control<br>Limit<br>%R | Q | Method |
|---------|-------|-----------------------|---------------------|-----|------------------------|---|--------|
| Mercury | 0.353 | 0.040                 | 0.181               | 173 | 75-125                 | F | 7471A  |

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

### 5B-IN POST DIGESTION SPIKE SAMPLE RECOVERY METALS

Client ID: NTB-B2-2.0 PDS Lab ID: 460-31791-3 PDS

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Matrix: Solid Concentration Units: mg/Kg

| Analyte   | SSR C | Sample<br>Result (SR | )<br>C | Spike<br>Added (SA) | %R  | Control<br>Limit<br>%R | Q | Method |
|-----------|-------|----------------------|--------|---------------------|-----|------------------------|---|--------|
| Silver    | 6.09  | 1.1                  | U      | 5.64                | 108 | 75-125                 |   | 6020   |
| Arsenic   | 22.60 | 12.0                 |        | 11.3                | 94  | 75-125                 |   | 6020   |
| Barium    | 193.1 | 181                  |        | 11.3                | NC  | 75-125                 |   | 6020   |
| Beryllium | 5.87  | 0.29                 |        | 5.64                | 99  | 75-125                 |   | 6020   |
| Cadmium   | 6.16  | 0.45                 | J      | 5.64                | 101 | 75-125                 |   | 6020   |
| Cobalt    | 9.79  | 4.2                  |        | 5.64                | 99  | 75-125                 |   | 6020   |
| Chromium  | 67.87 | 56.9                 |        | 11.3                | 98  | 75-125                 |   | 6020   |
| Copper    | 146.8 | 136                  |        | 11.3                | NC  | 75-125                 |   | 6020   |
| Manganese | 236.0 | 181                  |        | 56.4                | 97  | 75-125                 |   | 6020   |
| Nickel    | 26.23 | 14.9                 |        | 11.3                | 100 | 75-125                 |   | 6020   |
| Lead      | 1335  | 1330                 |        | 5.64                | NC  | 75-125                 |   | 6020   |
| Antimony  | 6.69  | 1.3                  |        | 5.64                | 96  | 75-125                 |   | 6020   |
| Selenium  | 11.94 | 1.5                  |        | 11.3                | 92  | 75-125                 |   | 6020   |
| Vanadium  | 70.97 | 59.7                 |        | 11.3                | 100 | 75-125                 |   | 6020   |
| Zinc      | 254.3 | 200                  |        | 56.4                | 97  | 75-125                 |   | 6020   |
| Aluminum  | 5181  | 4610                 |        | 564                 | 102 | 75-125                 |   | 6020   |
| Sodium    | 665.2 | 66.9                 |        | 564                 | 106 | 75-125                 |   | 6020   |
| Magnesium | 1989  | 1450                 |        | 564                 | 96  | 75-125                 |   | 6020   |
| Potassium | 1097  | 476                  |        | 564                 | 110 | 75-125                 |   | 6020   |
| Calcium   | 2270  | 1660                 |        | 564                 | 109 | 75-125                 |   | 6020   |
| Iron      | 12220 | 11600                |        | 564                 | NC  | 75-125                 |   | 6020   |
| Thallium  | 4.43  | 0.18                 | J      | 4.51                | 94  | 75-125                 |   | 6020   |

SSR = Spiked Sample Result

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

# 6-IN DUPLICATES METALS

Client ID: NTB-B2-2.0 DU Lab ID: 460-31791-3 DU

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

% Solids for Sample: 86.9 % Solids for Duplicate: 86.9

Matrix: Solid Concentration Units: mg/Kg

| Analyte   | Control<br>Limit | Sample (S) | Sample (S) I |       | Duplicate (D) |     | Q | Method |
|-----------|------------------|------------|--------------|-------|---------------|-----|---|--------|
| Silver    | 1.1              | 1.1        | 1.1 U        |       | U             | NC  |   | 6020   |
| Arsenic   | 0.56             | 12.0       |              | 12.28 |               | 3   |   | 6020   |
| Barium    | 1.1              | 181        |              | 265.8 |               | 38  | F | 6020   |
| Beryllium | 0.22             | 0.29       |              | 0.351 |               | 17  |   | 6020   |
| Cadmium   | 0.56             | 0.45       | J            | 0.601 |               | 28  |   | 6020   |
| Cobalt    | 1.1              | 4.2        |              | 3.95  |               | 6   |   | 6020   |
| Chromium  | 1.1              | 56.9       |              | 58.55 |               | 3   |   | 6020   |
| Copper    | 1.1              | 136        |              | 146.2 |               | 8   |   | 6020   |
| Manganese | 2.2              | 181        |              | 152.3 |               | 17  |   | 6020   |
| Nickel    | 1.1              | 14.9       |              | 18.49 |               | 22  | F | 6020   |
| Lead      | 0.34             | 1330       |              | 1636  |               | 21  | F | 6020   |
| Antimony  | 0.56             | 1.3        |              | 1.34  |               | 3   |   | 6020   |
| Selenium  | 0.56             | 1.5        |              | 1.83  |               | 18  |   | 6020   |
| Vanadium  | 1.1              | 59.7       |              | 60.63 |               | 2   |   | 6020   |
| Zinc      | 4.5              | 200        |              | 214.7 |               | 7   |   | 6020   |
| Aluminum  | 11.2             | 4610       |              | 4563  |               | 1   |   | 6020   |
| Sodium    | 55.8             | 66.9       |              | 73.49 |               | 9   |   | 6020   |
| Magnesium | 55.8             | 1450       |              | 1307  |               | 10  |   | 6020   |
| Potassium | 55.8             | 476        |              | 484.5 |               | 2   |   | 6020   |
| Calcium   | 55.8             | 1660       |              | 2085  |               | 23  | F | 6020   |
| Iron      | 33.5             | 11600      |              | 11710 |               | 0.6 |   | 6020   |
| Thallium  | 0.22             | 0.18       | J            | 0.302 |               | 49  |   | 6020   |

# 6-IN DUPLICATES METALS

| Client ID:                   | Lab ID: 460-31882-F-16-B DU  |
|------------------------------|------------------------------|
| Lab Name: TestAmerica Edison | Job No.: 460-31791-1         |
| SDG No.:                     |                              |
| % Solids for Sample: 92.2    | % Solids for Duplicate: 92.2 |
| Matrix: Solid                | Concentration Units: mg/Kg   |

| Analyte | Control<br>Limit | Sample (S) | Duplicate (D) | RPD | Q | Method |
|---------|------------------|------------|---------------|-----|---|--------|
| Mercury | 0.036            | 0.040      | 0.0618        | 42  |   | 7471A  |

## 7A-IN LCS-CERTIFIED REFERENCE MATERIAL METALS

Lab ID: LCSSRM 460-88293/2-A ^100

Lab Name: TestAmerica Edison Job No.: 460-31791-1

Sample Matrix: Solid LCS Source: ME\_LCSS\_62\_00013

|           |       | Solid(mg/Kg) |   |     |       |     |   |        |  |  |  |
|-----------|-------|--------------|---|-----|-------|-----|---|--------|--|--|--|
| Analyte   | True  | Found        | С | %R  | Limit | s   | Q | Method |  |  |  |
| Silver    | 30.1  | 32.78        |   | 109 | 64.5  | 135 |   | 6020   |  |  |  |
| Arsenic   | 104   | 108.5        |   | 104 | 70.3  | 130 |   | 6020   |  |  |  |
| Barium    | 198   | 201.7        |   | 102 | 72.1  | 128 |   | 6020   |  |  |  |
| Beryllium | 77.6  | 76.61        |   | 99  | 75.4  | 125 |   | 6020   |  |  |  |
| Cadmium   | 60.7  | 62.24        |   | 103 | 72.9  | 125 |   | 6020   |  |  |  |
| Cobalt    | 91.2  | 98.23        |   | 108 | 72.1  | 128 |   | 6020   |  |  |  |
| Chromium  | 236   | 237.4        |   | 101 | 74.9  | 125 |   | 6020   |  |  |  |
| Copper    | 174   | 179.2        |   | 103 | 74.8  | 125 |   | 6020   |  |  |  |
| Manganese | 558   | 596.6        |   | 107 | 78.8  | 121 |   | 6020   |  |  |  |
| Nickel    | 134   | 141.5        |   | 106 | 70.6  | 129 |   | 6020   |  |  |  |
| Lead      | 86.0  | 90.48        |   | 105 | 72.0  | 128 |   | 6020   |  |  |  |
| Antimony  | 67.4  | 191.3        |   | 284 | 0     | 311 |   | 6020   |  |  |  |
| Selenium  | 286   | 295.2        |   | 103 | 65.1  | 135 |   | 6020   |  |  |  |
| Vanadium  | 115   | 117.0        |   | 102 | 71.1  | 128 |   | 6020   |  |  |  |
| Zinc      | 594   | 614.5        |   | 103 | 71.4  | 129 |   | 6020   |  |  |  |
| Aluminum  | 10500 | 8154         |   | 78  | 39.2  | 162 |   | 6020   |  |  |  |
| Sodium    | 1020  | 947.0        |   | 93  | 68.7  | 132 |   | 6020   |  |  |  |
| Magnesium | 4000  | 4026         |   | 101 | 74    | 126 |   | 6020   |  |  |  |
| Potassium | 4300  | 4632         |   | 108 | 71.9  | 128 |   | 6020   |  |  |  |
| Calcium   | 9870  | 10210        |   | 103 | 75.0  | 125 |   | 6020   |  |  |  |
| Iron      | 18000 | 18020        |   | 100 | 55.7  | 144 |   | 6020   |  |  |  |
| Thallium  | 121   | 130.8        |   | 108 | 71.7  | 129 |   | 6020   |  |  |  |

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

## 7A-IN LCS-CERTIFIED REFERENCE MATERIAL METALS

Lab ID: LCSSRM 460-88100/11-A ^10

Lab Name: TestAmerica Edison Job No.: 460-31791-1

Sample Matrix: Solid LCS Source: ME\_LCSS\_62\_00013

|         |      | Solid(mg/Kg)                    |  |  |  |  |  |  |  |  |
|---------|------|---------------------------------|--|--|--|--|--|--|--|--|
| Analyte | True | True Found C %R Limits Q Method |  |  |  |  |  |  |  |  |
| Mercury | 8.46 | 8.46 8.58 101 51.3 149 7471A    |  |  |  |  |  |  |  |  |

Calculations are performed before rounding to avoid round-off errors in calculated results.

FORM VIIA - IN

# 8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

Lab ID: 460-31791-3

SDG No:

Lab Name: TestAmerica Edison Job No: 460-31791-1

Matrix: Solid Concentration Units: mg/Kg

| Analyte   | Initial Sampi<br>Result (I) | le<br>C | Serial<br>Dilution<br>Result (S) | С | %<br>Difference | Q | Method |
|-----------|-----------------------------|---------|----------------------------------|---|-----------------|---|--------|
| Silver    | 1.1                         | U       | 5.6                              | U | NC              |   | 6020   |
| Arsenic   | 12.0                        |         | 11.28                            |   | NC              |   | 6020   |
| Barium    | 181                         |         | 183.7                            |   | 1.3             |   | 6020   |
| Beryllium | 0.29                        |         | 1.1                              | U | NC              |   | 6020   |
| Cadmium   | 0.45                        | J       | 2.8                              | U | NC              |   | 6020   |
| Cobalt    | 4.2                         |         | 5.6                              | U | NC              |   | 6020   |
| Chromium  | 56.9                        |         | 56.21                            |   | 1.1             |   | 6020   |
| Copper    | 136                         |         | 136.5                            |   | 0.65            |   | 6020   |
| Manganese | 181                         |         | 181.3                            |   | 0.08            |   | 6020   |
| Nickel    | 14.9                        |         | 13.76                            |   | NC              |   | 6020   |
| Lead      | 1330                        |         | 1389                             |   | 4.7             |   | 6020   |
| Antimony  | 1.3                         |         | 2.8                              | U | NC              |   | 6020   |
| Selenium  | 1.5                         |         | 2.8                              | U | NC              |   | 6020   |
| Vanadium  | 59.7                        |         | 60.08                            |   | 0.63            |   | 6020   |
| Zinc      | 200                         |         | 209.7                            |   | 5.1             |   | 6020   |
| Aluminum  | 4610                        |         | 4668                             |   | 1.3             |   | 6020   |
| Sodium    | 66.9                        |         | 282                              | U | NC              |   | 6020   |
| Magnesium | 1450                        |         | 1456                             |   | NC              |   | 6020   |
| Potassium | 476                         |         | 385.5                            |   | NC              |   | 6020   |
| Calcium   | 1660                        |         | 1577                             |   | NC              |   | 6020   |
| Iron      | 11600                       |         | 11720                            |   | 0.65            |   | 6020   |
| Thallium  | 0.18                        | J       | 1.1                              | U | NC              |   | 6020   |

# 8-IN ICP-AES AND ICP-MS SERIAL DILUTIONS METALS

| Lab ID: 460-31882-F-16-A SD  |                            |
|------------------------------|----------------------------|
| SDG No:                      |                            |
| Lab Name: TestAmerica Edison | Job No: 460-31791-1        |
| Matrix: Solid                | Concentration Units: mg/Kg |

| Analyte | Initial Sample<br>Result (I) C | Serial<br>Dilution<br>Result (S) C | %<br>Difference | Q | Method |
|---------|--------------------------------|------------------------------------|-----------------|---|--------|
| Mercury | 0.040                          | 0.18 U                             | NC              |   | 7471A  |

# 9-IN DETECTION LIMITS METALS

Lab Name: TestAmerica Edison Job Number: 460-31791-1

SDG Number:

Matrix: Solid Instrument ID: ICPMS2

Method: 6020 MDL Date: 12/31/2008 15:06

Prep Method: 3050B

| Analyte   | Wavelength/<br>Mass | RL<br>(mg/Kg) | MDL<br>(mg/Kg) |  |  |
|-----------|---------------------|---------------|----------------|--|--|
| Aluminum  | 27                  | 0.5           | 0.418          |  |  |
| Antimony  | 121                 | 0.025         | 0.018          |  |  |
| Arsenic   | 75                  | 0.025         | 0.022          |  |  |
| Barium    | 137                 | 0.05          | 0.033          |  |  |
| Beryllium | 9                   | 0.01          | 0.007          |  |  |
| Cadmium   | 111                 | 0.025         | 0.02           |  |  |
| Calcium   | 44                  | 2.5           | 2.022          |  |  |
| Chromium  | 52                  | 0.05          | 0.039          |  |  |
| Cobalt    | 59                  | 0.05          | 0.041          |  |  |
| Copper    | 63                  | 0.05          | 0.04           |  |  |
| Iron      | 56                  | 1.5           | 1.26           |  |  |
| Lead      | 208                 | 0.015         | 0.011          |  |  |
| Magnesium | 24                  | 2.5           | 1.948          |  |  |
| Manganese | 55                  | 0.1           | 0.082          |  |  |
| Nickel    | 60                  | 0.05          | 0.039          |  |  |
| Potassium | 39                  | 2.5           | 1.896          |  |  |
| Selenium  | 78                  | 0.025         | 0.018          |  |  |
| Silver    | 107                 | 0.05          | 0.04           |  |  |
| Sodium    | 23                  | 2.5           | 1.902          |  |  |
| Thallium  | 205                 | 0.01          | 0.008          |  |  |
| Vanadium  | 51                  | 0.05          | 0.039          |  |  |
| Zinc      | 66                  | 0.2           | 0.159          |  |  |

# 9-IN CALIBRATION BLANK DETECTION LIMITS METALS

| Lab Name | : TestAmerica Edison | Job Number: 460-31791-1     |
|----------|----------------------|-----------------------------|
| SDG Numb | er:                  |                             |
| Matrix:  | Solid                | Instrument ID: ICPMS2       |
| Method:  | 6020                 | XMDL Date: 12/31/2008 15:14 |

| Analyte   | Wavelength/<br>Mass | XRL<br>(ug/L) | XMDL<br>(ug/L) |
|-----------|---------------------|---------------|----------------|
| Aluminum  |                     | 10            | 8.05           |
| Antimony  |                     | 0.5           | 0.365          |
| Arsenic   |                     | 0.5           | 0.37           |
| Barium    |                     | 1             | 0.828          |
| Beryllium |                     | 0.2           | 0.17           |
| Cadmium   |                     | 0.5           | 0.411          |
| Calcium   |                     | 50            | 36.3           |
| Chromium  |                     | 1             | 0.814          |
| Cobalt    |                     | 1             | 0.77           |
| Copper    |                     | 1             | 0.801          |
| Iron      |                     | 30            | 24.3           |
| Lead      |                     | 0.3           | 0.229          |
| Magnesium |                     | 50            | 38             |
| Manganese |                     | 2             | 1.5            |
| Nickel    |                     | 1             | 0.703          |
| Potassium |                     | 50            | 37.1           |
| Selenium  |                     | 0.5           | 0.485          |
| Silver    |                     | 1             | 0.81           |
| Sodium    |                     | 50            | 36.4           |
| Thallium  |                     | 0.2           | 0.15           |
| Vanadium  |                     | 1             | 0.7            |
| Zinc      |                     | 4             | 3.06           |

# 9-IN DETECTION LIMITS METALS

Lab Name: TestAmerica Edison Job Number: 460-31791-1

SDG Number:

Matrix: Solid Instrument ID: LEEMAN3

Method: 7471A MDL Date: 03/23/2011 11:28

Prep Method: 7471A

| Analyte | Analyte Wavelength/<br>Mass |       |       |  |  |
|---------|-----------------------------|-------|-------|--|--|
| Mercury |                             | 0.033 | 0.022 |  |  |

# 9-IN CALIBRATION BLANK DETECTION LIMITS METALS

| Lab Name: TestAmerica Edison | Job Number: 460-31791-1     |
|------------------------------|-----------------------------|
| SDG Number:                  |                             |
| Matrix: Solid                | Instrument ID: LEEMAN3      |
| Method: 7471A                | XMDL Date: 12/30/2008 14:34 |

| Analyte | Wavelength/ | XRL    | XMDL   |
|---------|-------------|--------|--------|
|         | Mass        | (ug/L) | (ug/L) |
| Mercury |             | 0.2    | 0.185  |

# 12-IN PREPARATION LOG METALS

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Prep Method: 3050B

| Lab<br>Sample<br>ID       | Preparation<br>Date | Prep<br>Batch | Initial<br>Weight<br>(g) | Initial<br>Volume | Final<br>Volume<br>(mL) |
|---------------------------|---------------------|---------------|--------------------------|-------------------|-------------------------|
| MB 460-88293/1-A ^20      | 10/05/2011 08:22    | 88293         | 1.00                     |                   | 50                      |
| LCSSRM 460-88293/2-A ^100 | 10/05/2011 08:22    | 88293         | 1.00                     |                   | 50                      |
| 460-31791-3               | 10/05/2011 08:22    | 88293         | 1.02                     |                   | 50                      |
| 460-31791-3 DU            | 10/05/2011 08:22    | 88293         | 1.03                     |                   | 50                      |
| 460-31791-3 MS            | 10/05/2011 08:22    | 88293         | 1.03                     |                   | 50                      |
| 460-31791-1               | 10/05/2011 08:22    | 88293         | 1.01                     |                   | 50                      |
| 460-31791-2               | 10/05/2011 08:22    | 88293         | 1.09                     |                   | 50                      |

# 12-IN PREPARATION LOG METALS

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Prep Method: 7471A

| Lab<br>Sample<br>ID   | Preparation<br>Date | Prep<br>Batch | Initial<br>Weight<br>(g) | Initial<br>Volume | Final<br>Volume<br>(mL) |
|-----------------------|---------------------|---------------|--------------------------|-------------------|-------------------------|
| 155 160 00100/10 5    |                     | 00100         | _                        |                   |                         |
| MB 460-88100/10-A     | 10/03/2011 18:00    | 88100         | 0.60                     |                   | 100                     |
| LCSSRM 460-88100/11-A | 10/03/2011 18:00    | 88100         | 0.60                     |                   | 100                     |
| ^10                   |                     |               |                          |                   |                         |
| 460-31882-F-16-B DU   | 10/03/2011 18:00    | 88100         | 0.60                     |                   | 100                     |
| 460-31882-F-16-C MS   | 10/03/2011 18:00    | 88100         | 0.60                     |                   | 100                     |
| 460-31791-1           | 10/03/2011 18:00    | 88100         | 0.62                     |                   | 100                     |
| 460-31791-2           | 10/03/2011 18:00    | 88100         | 0.60                     |                   | 100                     |
| 460-31791-3           | 10/03/2011 18:00    | 88100         | 0.61                     |                   | 100                     |

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Instrument ID: ICPMS2 Method: 6020

Start Date: 10/06/2011 19:01 End Date: 10/06/2011 22:21

|                              |             | I                |       |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
|------------------------------|-------------|------------------|-------|---|--------|----|--------|--------|----|--------|----|----|--------|--------|----|--------|--------|--------|--------|--------|--------|----------|-----|
|                              |             |                  |       |   |        |    |        |        |    |        |    | A  | nal    | Lyt    | es |        |        |        |        |        |        |          |     |
| Lab<br>Sample<br>ID          | D<br>/<br>F | T<br>Y<br>p<br>e | Time  | A | A<br>1 | As | Ba     | B<br>e | Ca | C<br>d | Co | Cr | C<br>u | F<br>e | K  | M<br>g | M<br>n | N<br>a | N<br>i | P<br>b | s<br>b | s e      | T   |
| ZZZZZZ                       |             |                  | 19:01 |   |        |    | $\Box$ |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 19:06 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> | _   |
| ZZZZZZ                       |             |                  | 19:10 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> |     |
| ZZZZZZ                       |             |                  | 19:15 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> |     |
| ZZZZZZ                       |             |                  | 19:20 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> |     |
| ICV 460-88662/6              | 1           |                  | 19:24 | Х | X      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| ICB 460-88662/7              | 1           |                  | 19:29 | X | X      | X  | X      | X      | X  | X      | X  | X  | X      | X      | X  | X      | X      | X      | X      | X      | X      | X        | X   |
| CRI 460-88662/8              | 1           |                  | 19:34 | X |        | X  |        |        |    | X      | X  |    | X      |        |    | X      |        |        |        |        |        |          | X   |
| ICSA 460-88662/9             | 1           |                  | 19:34 | X | X      |    | X      | X      | X  |        |    | X  |        | X      | X  |        | X      | X      | X      | X      | X      | X        | X   |
| ICSAB 460-88662/10           | 1           |                  | 19:38 |   | X      | X  | X      | X      | X  | X      | X  | X  | X      | X      | X  | X      | X      | X      | X      | X      | X      | X        | X   |
| ZZZZZZ                       | 1           |                  | 19:43 | X | Х      | Х  | X      | X      | X  | X      | X  | X  | Х      | X      | X  | Х      | X      | X      | X      | Х      | X      | X        | I A |
| ZZZZZZ                       |             |                  | 19:47 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> |     |
| CCV 460-88662/13             |             |                  | 19:52 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| CCV 460-88662/13             |             |                  |       |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> |     |
| , ,                          |             |                  | 20:02 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> |     |
| ZZZZZZ                       |             |                  | 20:06 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> |     |
| ZZZZZZ                       |             |                  | 20:11 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        | <u> </u> |     |
| ZZZZZZ                       |             |                  | 20:16 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| CCV 460-88662/18             |             |                  | 20:20 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| CCB 460-88662/19             |             |                  | 20:25 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 20:30 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 20:35 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 20:39 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 20:44 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 20:48 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 20:53 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 20:58 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| ZZZZZZ                       |             |                  | 21:02 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| CCV 460-88662/28             | 1           |                  | 21:07 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| CCB 460-88662/29             | 1           |                  | 21:11 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| MB 460-88293/1-A ^20         | 20          | Т                | 21:16 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| LCSSRM 460-88293/2-A<br>^100 | 100         | Т                | 21:21 | Х | Х      | Х  | Х      |        | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| 460-31791-3 DU               | 20          | Т                | 21:26 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| 460-31791-3                  | 20          | Т                | 21:30 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| 460-31791-3 SD               | 100         | Т                | 21:35 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| 460-31791-3 MS               | 20          | Т                | 21:40 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| 460-31791-3 PDS              | 20          | Т                | 21:44 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| 460-31791-1                  | 20          | Т                | 21:49 | Х | Х      | Х  | Х      | Х      |    | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| 460-31791-2                  | 20          | Т                | 21:53 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| ZZZZZZ                       |             |                  | 21:58 |   |        |    |        |        |    |        |    |    |        |        |    |        |        |        |        |        |        |          |     |
| CCV 460-88662/40             | 1           |                  | 22:03 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
| CCB 460-88662/41             | 1           |                  | 22:07 | Х | Х      | Х  | Х      | Х      | Х  | Х      | Х  | Х  | Х      | Х      | Х  | Х      | Х      | Х      | Х      | Х      | Х      | Х        | Х   |
|                              |             |                  |       | _ |        |    | -      |        |    |        |    |    |        |        |    |        |        | -      | _      |        |        |          |     |

| Lab Name:  | TestAmerica Edison | Job No.: 460-31791-1       |  |
|------------|--------------------|----------------------------|--|
| SDG No.:   |                    |                            |  |
| Instrument | ID: ICPMS2         | Method: 6020               |  |
| Start Date | : 10/06/2011 19:01 | End Date: 10/06/2011 22:21 |  |

|                     |             |                  |       |        |        |        |        |    |        |        |    | A      | nal    | Lyt    | es |        |        |        |    |        |        |     |        |
|---------------------|-------------|------------------|-------|--------|--------|--------|--------|----|--------|--------|----|--------|--------|--------|----|--------|--------|--------|----|--------|--------|-----|--------|
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  | A<br>g | A<br>1 | A<br>s | B<br>a | Ве | C<br>a | C<br>d | Со | C<br>r | C<br>u | F<br>e | K  | g<br>M | M<br>n | N<br>a | Ni | P<br>b | S<br>b | S e | T<br>1 |
| ZZZZZZ              |             |                  | 22:12 |        |        |        |        |    |        |        |    |        |        |        |    |        |        |        |    |        |        |     |        |
| CCV 460-88662/43    |             |                  | 22:17 |        |        |        |        |    |        |        |    |        |        |        |    |        |        |        |    |        |        |     |        |
| CCB 460-88662/44    |             |                  | 22:21 |        |        |        |        |    |        |        |    |        |        |        |    |        |        |        |    |        |        |     |        |

| Job No.: 460-31791-1       |
|----------------------------|
|                            |
| Method: 6020               |
| End Date: 10/06/2011 22:21 |
|                            |

|                            |          |    |       |    |   |           |  |  |  |  |  | А | nal | .yt | es |  |  |  |   |          |
|----------------------------|----------|----|-------|----|---|-----------|--|--|--|--|--|---|-----|-----|----|--|--|--|---|----------|
|                            |          |    |       | V  | Z |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
|                            |          |    |       |    | n |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| Lab                        | D        | Т  |       |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| Sample<br>ID               | /<br>  F | Ур |       |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
|                            | 1        | e  | Time  |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     | +        |    | 19:01 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  | = | L        |
| ZZZZZZ                     |          |    | 19:01 |    |   | $\square$ |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 19:06 |    |   | $\square$ |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 19:10 |    |   | $\square$ |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 19:15 |    |   | $\square$ |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ICV 460-88662/6            | 1        |    |       | 17 | v | $\square$ |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ICB 460-88662/7            | 1        |    | 19:24 | X  | X |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| CRI 460-88662/8            | 1        |    | 19:29 |    | X |           |  |  |  |  |  |   |     |     |    |  |  |  |   | <u> </u> |
| ICSA 460-88662/9           | 1        |    | 19:34 | X  | X |           |  |  |  |  |  |   |     |     |    |  |  |  |   | <u> </u> |
|                            | 1        |    |       | X  | X |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ICSAB 460-88662/10         | 1        |    | 19:43 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
|                            |          |    |       |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ<br>CCV 460-88662/13 |          |    | 19:52 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
|                            |          |    | 19:57 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| CCB 460-88662/14           |          |    | 20:02 |    |   | Ш         |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:06 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:11 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:16 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| CCV 460-88662/18           |          |    | 20:20 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| CCB 460-88662/19           |          |    | 20:25 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:30 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:35 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:39 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:44 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:48 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:53 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 20:58 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 21:02 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| CCV 460-88662/28           | 1        |    | 21:07 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| CCB 460-88662/29           | 1        |    | 21:11 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| MB 460-88293/1-A ^20       | 20       |    | 21:16 | Х  |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| LCSSRM 460-88293/2-A ^100  | 100      | Т  | 21:21 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| 460-31791-3 DU             | 20       | Т  | 21:26 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   | <u></u>  |
| 460-31791-3                | 20       | Т  | 21:30 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| 460-31791-3 SD             | 100      | Т  | 21:35 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   | <u> </u> |
| 460-31791-3 MS             | 20       | Т  | 21:40 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| 460-31791-3 PDS            | 20       | Т  | 21:44 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| 460-31791-1                | 20       | Т  | 21:49 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| 460-31791-2                | 20       | Т  | 21:53 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| ZZZZZZ                     |          |    | 21:58 |    |   |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| CCV 460-88662/40           | 1        |    | 22:03 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |
| CCB 460-88662/41           | 1        |    | 22:07 | Х  | Х |           |  |  |  |  |  |   |     |     |    |  |  |  |   |          |

| Lab Name:         | TestAmer | ica E       | Ediso       | n    |   |   | _ Jok | o No | .:  | 460  | -317 | 791- | ·1   |      |   |  |  | _ |
|-------------------|----------|-------------|-------------|------|---|---|-------|------|-----|------|------|------|------|------|---|--|--|---|
| SDG No.:          |          |             |             |      |   |   |       |      |     |      |      |      |      |      |   |  |  | _ |
| Instrument        | ID: ICP  | MS2         |             |      |   |   | _ Met | chod | :   | 6020 | ı    |      |      |      |   |  |  | _ |
| Start Date:       | 10/06/   | 2011        | 19:0        | 1    |   |   | End   | d Da | te: | 10   | /06/ | /201 | 1 2  | 2:21 | 1 |  |  | _ |
|                   |          |             |             |      |   |   |       |      |     |      | I    | Anal | .yte | :S   |   |  |  |   |
|                   |          |             |             |      | V | Z |       |      |     |      |      |      |      |      |   |  |  |   |
| Lak<br>Samp<br>ID | le       | D<br>/<br>F | T<br>Y<br>p | Timo |   |   |       |      |     |      |      |      |      |      |   |  |  |   |

Time

22:12

22:17

22:21

Prep Types

ZZZZZZ

T = Total/NA

CCV 460-88662/43

CCB 460-88662/44

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Instrument ID: ICPMS2 Method: 6020

Start Date: 10/07/2011 19:20 End Date: 10/08/2011 04:07

|                    |     |        | .0    |   | _ |  | cc. |  |   | 201 |    |    |  |  |  | _        |
|--------------------|-----|--------|-------|---|---|--|-----|--|---|-----|----|----|--|--|--|----------|
|                    |     |        |       |   |   |  |     |  | A | nal | yt | es |  |  |  |          |
|                    |     |        |       | С |   |  |     |  |   |     | _  |    |  |  |  | Г        |
|                    |     |        |       | a |   |  |     |  |   |     |    |    |  |  |  |          |
| Lab                | D   | T      |       |   |   |  |     |  |   |     |    |    |  |  |  |          |
| Sample             | /   | У      |       |   |   |  |     |  |   |     |    |    |  |  |  |          |
| ID                 | F   | p<br>e | Time  |   |   |  |     |  |   |     |    |    |  |  |  |          |
|                    |     |        |       |   |   |  |     |  |   |     |    |    |  |  |  | L        |
| ZZZZZZ             |     |        | 19:20 |   |   |  |     |  |   |     |    |    |  |  |  |          |
| ZZZZZZ             |     |        | 19:25 |   |   |  |     |  |   |     |    |    |  |  |  | Т        |
| ZZZZZZ             |     |        | 19:30 |   |   |  |     |  |   |     |    |    |  |  |  |          |
| ZZZZZZ             |     |        | 19:35 |   |   |  |     |  |   |     |    |    |  |  |  |          |
| ZZZZZZ             |     |        | 19:40 |   |   |  |     |  |   |     |    |    |  |  |  |          |
| ICV 460-88792/6    | 1   |        | 19:45 | Х |   |  |     |  |   |     |    |    |  |  |  |          |
| ICB 460-88792/7    | 1   |        | 19:50 | Х |   |  |     |  |   |     |    |    |  |  |  |          |
| CRI 460-88792/8    | 1   |        | 19:55 | X |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ICSA 460-88792/9   | 1   |        | 20:00 | X |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ICSAB 460-88792/10 | 1   |        | 20:05 | X |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 20:10 |   |   |  |     |  |   |     |    |    |  |  |  | +        |
| ZZZZZZ             |     |        | 20:15 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| CCV 460-88792/13   |     |        | 20:20 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| CCB 460-88792/14   |     |        | 20:25 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 20:30 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 20:35 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 20:40 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 20:45 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 20:50 |   |   |  |     |  |   |     |    |    |  |  |  | _        |
| ZZZZZZ             |     |        | 20:55 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 21:00 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 21:05 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 21:10 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 21:15 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| CCV 460-88792/25   | 1   |        | 21:20 | X |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| CCB 460-88792/26   | 1   |        | 21:25 | X |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 21:30 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 21:35 |   |   |  |     |  |   |     |    |    |  |  |  | _        |
| ZZZZZZ             |     |        | 21:40 |   |   |  |     |  |   |     |    |    |  |  |  | _        |
| ZZZZZZ             |     |        | 21:45 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| 460-31791-1        | 100 | Т      | 21:50 | X |   |  |     |  |   |     |    |    |  |  |  | +        |
| ZZZZZZ             |     |        | 21:55 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 22:00 |   |   |  |     |  |   |     |    |    |  |  |  | +        |
| CCV 460-88792/34   | 1   |        | 22:05 | X |   |  |     |  |   |     |    |    |  |  |  | +        |
| CCB 460-88792/35   | 1   |        | 22:10 | X |   |  |     |  |   |     |    |    |  |  |  | +        |
| ZZZZZZ             |     |        | 22:15 |   |   |  |     |  |   |     |    |    |  |  |  | +        |
| ZZZZZZ             |     |        | 22:21 |   |   |  |     |  |   |     |    |    |  |  |  | +        |
| ZZZZZZ             |     |        | 22:26 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 22:31 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             |     |        | 22:36 |   |   |  |     |  |   |     |    |    |  |  |  | +        |
| ZZZZZZ             |     |        | 22:41 |   |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |
| ZZZZZZ             | +   |        | 22:46 | + |   |  |     |  |   |     |    |    |  |  |  | $\vdash$ |

| -          | Test | America Edison | Job No.: | 460-31791-1 |
|------------|------|----------------|----------|-------------|
| SDG No.:   |      |                |          |             |
| Instrument | ID:  | ICPMS2         | Method:  | 6020        |
|            |      |                |          |             |

Start Date: 10/07/2011 19:20 End Date: 10/08/2011 04:07

|                  |   |        |       |   |  |   |  | Α | nal | vte | 25 |  |  |  |  |
|------------------|---|--------|-------|---|--|---|--|---|-----|-----|----|--|--|--|--|
|                  |   |        |       | С |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        |       | а |  |   |  |   |     |     |    |  |  |  |  |
| Lab              | D | Т      |       |   |  |   |  |   |     |     |    |  |  |  |  |
| Sample<br>ID     | F | У<br>р |       |   |  |   |  |   |     |     |    |  |  |  |  |
| 15               |   | e<br>e | Time  |   |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        | 22:51 |   |  | I |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 22:56 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 23:01 |   |  |   |  |   |     |     |    |  |  |  |  |
| CCV 460-88792/46 |   |        | 23:06 |   |  |   |  |   |     |     |    |  |  |  |  |
| CCB 460-88792/47 |   |        | 23:10 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 23:16 |   |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        | 23:21 |   |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        | 23:26 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 23:31 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 23:36 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 23:41 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 23:46 |   |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        | 23:51 |   |  |   |  |   |     |     |    |  |  |  |  |
| CCV 460-88792/56 |   |        | 23:56 |   |  |   |  |   |     |     |    |  |  |  |  |
| CCB 460-88792/57 |   |        | 00:00 |   |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        | 00:06 |   |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        | 00:11 |   |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        | 00:16 |   |  |   |  |   |     |     |    |  |  |  |  |
|                  |   |        | 00:21 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 00:26 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 00:31 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 00:36 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 00:41 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 00:46 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 00:51 |   |  |   |  |   |     |     |    |  |  |  |  |
| CCV 460-88792/68 |   |        | 00:56 |   |  |   |  |   |     |     |    |  |  |  |  |
| CCB 460-88792/69 |   |        | 01:01 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:06 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:11 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:16 |   |  |   |  |   |     |     |    |  |  |  |  |
| CCV 460-88792/73 |   |        | 01:21 |   |  |   |  |   |     |     |    |  |  |  |  |
| CCB 460-88792/74 |   |        | 01:26 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:31 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:36 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:41 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:46 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:51 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 01:56 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 02:01 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 02:06 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 02:11 |   |  |   |  |   |     |     |    |  |  |  |  |
| ZZZZZZ           |   |        | 02:16 |   |  |   |  |   |     |     |    |  |  |  |  |

# 13-IN ANALYSIS RUN LOG METALS

| Lab Name:   | TestAmerica Edison | Job No.:  | 460-31791-1      |
|-------------|--------------------|-----------|------------------|
| SDG No.:    |                    |           |                  |
| Instrument  | ID: ICPMS2         | Method:   | 6020             |
| Start Date: | 10/07/2011 19:20   | End Date: | 10/08/2011 04:07 |

|                     |             |             |       | Analytes |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
|---------------------|-------------|-------------|-------|----------|--|----------|--|--|--|--|--|--|--|--|--|--|--|--|--|--------------|
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>y<br>p | Time  | Ca       |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| CCV 460-88792/85    |             |             | 02:21 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| CCB 460-88792/86    |             |             | 02:26 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 02:31 |          |  | $\vdash$ |  |  |  |  |  |  |  |  |  |  |  |  |  | $\vdash$     |
| ZZZZZZ              |             |             | 02:36 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  | <del> </del> |
| ZZZZZZ              |             |             | 02:41 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 02:46 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 02:51 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 02:56 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:01 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:06 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:11 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:16 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| CCV 460-88792/97    |             |             | 03:21 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| CCB 460-88792/98    |             |             | 03:26 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:31 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:36 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:41 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:46 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:51 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| ZZZZZZ              |             |             | 03:57 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| CCV 460-88792/105   |             |             | 04:02 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |
| CCB 460-88792/106   |             |             | 04:07 |          |  |          |  |  |  |  |  |  |  |  |  |  |  |  |  |              |

Prep Types

T = Total/NA

### 13-IN ANALYSIS RUN LOG METALS

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Instrument ID: LEEMAN3 Method: 7471A

Start Date: 10/03/2011 21:03 End Date: 10/03/2011 22:50

| Start Date: 10/03/    | /2011 | 21.0   |       |    |          | пa | Du |  | <br>03/ |      |     |    |  |  |  | —        | _            |
|-----------------------|-------|--------|-------|----|----------|----|----|--|---------|------|-----|----|--|--|--|----------|--------------|
|                       |       |        |       |    |          |    |    |  | A       | .na] | Lvt | es |  |  |  |          |              |
|                       |       |        |       | Н  |          |    |    |  |         |      |     |    |  |  |  |          |              |
|                       |       |        |       | g  |          |    |    |  |         |      |     |    |  |  |  |          |              |
| Lab                   | D     | T      |       |    |          |    |    |  |         |      |     |    |  |  |  |          |              |
| Sample                | /     | У      |       |    |          |    |    |  |         |      |     |    |  |  |  |          |              |
| ID                    | F     | p<br>e | Time  |    |          |    |    |  |         |      |     |    |  |  |  |          |              |
|                       |       |        |       |    |          |    |    |  |         |      |     |    |  |  |  | <u></u>  |              |
| IC 460-88100/1-A      |       |        | 21:03 | Х  |          |    |    |  |         |      |     |    |  |  |  |          |              |
| IC 460-88100/2-A      |       |        | 21:05 | Х  |          |    |    |  |         |      |     |    |  |  |  |          |              |
| IC 460-88100/3-A      |       |        | 21:06 | Х  |          |    |    |  |         |      |     |    |  |  |  |          |              |
| IC 460-88100/4-A      |       |        | 21:08 | Х  |          |    |    |  |         |      |     |    |  |  |  |          |              |
| IC 460-88100/5-A      |       |        | 21:10 | Х  |          |    |    |  |         |      |     |    |  |  |  |          |              |
| IC 460-88100/6-A      |       |        | 21:12 | Х  |          |    |    |  |         |      |     |    |  |  |  |          |              |
| ICV 460-88100/7-A     | 1     |        | 21:14 | Х  |          |    |    |  |         |      |     |    |  |  |  | l        |              |
| ICB 460-88109/8       | 1     |        | 21:15 | Х  |          |    |    |  |         |      |     |    |  |  |  | l        |              |
| MB 460-88100/10-A     | 1     | Т      | 21:17 | Х  |          |    |    |  |         |      |     |    |  |  |  | l        |              |
| LCSSRM 460-88100/11-A | 10    | Т      | 21:19 | Х  |          |    |    |  |         |      |     |    |  |  |  |          |              |
| ^10<br>ZZZZZZ         |       |        | 21:21 | -  | $\vdash$ |    |    |  |         |      |     |    |  |  |  |          | <u> </u>     |
| 460-31882-F-16-B DU   | 1     | T      | 21:23 | X  |          |    |    |  |         |      |     |    |  |  |  |          | -            |
| 460-31882-F-16-C MS   | 1     | T      | 21:25 | X  | $\vdash$ |    |    |  |         |      |     |    |  |  |  |          |              |
| 460-31791-1           | 1     | T      | 21:27 | X  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| 460-31791-2           | 1     | T      | 21:29 | X  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| 460-31791-2           | 1     | T      | 21:31 | X  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> | <u> </u>     |
| ZZZZZZ                | 1     | 1      | 21:33 | ^  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| ZZZZZZ                |       |        | 21:35 | -  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| CCV 460-88100/8-A     | 1     |        | 21:37 | X  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| CCB 460-88109/20      | 1     |        | 21:39 | X  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| ZZZZZZ                | 1     |        | 21:40 | ^  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> | -            |
| ZZZZZZ                | +     |        | 21:40 |    |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| ZZZZZZ                |       |        | 21:42 | -  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| ZZZZZZ                |       |        | 21:44 | -  |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| ZZZZZZ                |       |        | 21:48 |    |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| ZZZZZZ                |       |        | 21:50 |    |          |    |    |  |         |      |     |    |  |  |  | <u> </u> | <u> </u>     |
| ZZZZZZ                |       |        | 21:52 |    |          |    |    |  |         |      |     |    |  |  |  | <u> </u> | <u> </u>     |
| ZZZZZZ                |       |        | 21:54 |    |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| ZZZZZZ                | +     |        | 21:54 |    |          |    |    |  |         |      |     |    |  |  |  | <u> </u> |              |
| ZZZZZZ                |       | -      | 21:57 | -  | $\vdash$ |    |    |  |         |      |     |    |  |  |  |          | -            |
| CCV 460-88100/8-A     | 1     |        | 21:59 | X  | $\vdash$ |    |    |  |         |      |     |    |  |  |  | _        | -            |
| CCB 460-88109/32      | 1     |        | 22:01 | X  | $\vdash$ |    |    |  |         |      |     |    |  |  |  |          |              |
| ZZZZZZ                | + -   |        | 22:01 | 1^ | $\vdash$ |    |    |  |         |      |     |    |  |  |  | _        | -            |
| ZZZZZZ                |       |        | 22:05 | -  |          |    |    |  |         |      |     |    |  |  |  |          | -            |
| ZZZZZZ                |       | -      | 22:05 | -  | $\vdash$ |    |    |  |         |      |     |    |  |  |  |          | -            |
| ZZZZZZ                |       |        | 22:08 | -  |          |    |    |  |         |      |     |    |  |  |  |          | -            |
| 460-31882-F-16-A SD   | 5     | Т      | 22:10 | X  | $\vdash$ |    |    |  |         |      |     |    |  |  |  |          |              |
| ZZZZZZ                | '     | 1      | 22:10 | ^  | $\vdash$ |    |    |  |         |      |     |    |  |  |  |          |              |
| CCV 460-88100/8-A     | 1     |        | 22:12 | X  | $\vdash$ |    |    |  |         |      |     |    |  |  |  | _        | _            |
| CCB 460-88109/40      | 1     |        | 22:15 | X  | $\vdash$ |    |    |  |         |      |     |    |  |  |  |          |              |
| ZZZZZZ                | + -   |        | 22:17 | 1^ |          |    |    |  |         |      |     |    |  |  |  | <u> </u> | _            |
| 44444                 |       |        | 22.11 |    |          |    |    |  |         |      |     |    |  |  |  |          | $oxed{oxed}$ |

# 13-IN ANALYSIS RUN LOG METALS

| Lab Name:   | TestAmerica Edison | Job No.:  | 460-31791-1      |
|-------------|--------------------|-----------|------------------|
| SDG No.:    |                    |           |                  |
| Instrument  | ID: LEEMAN3        | Method:   | 7471A            |
| Start Date: | 10/03/2011 21:03   | End Date: | 10/03/2011 22:50 |

|                     |             |                  |       |   |  |  |  | А | nal | Lyte | es |  |  |  |  |
|---------------------|-------------|------------------|-------|---|--|--|--|---|-----|------|----|--|--|--|--|
|                     |             |                  |       | H |  |  |  |   |     |      |    |  |  |  |  |
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:19 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:21 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:22 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:24 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:26 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:28 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:30 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:32 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:34 |   |  |  |  |   |     |      |    |  |  |  |  |
| CCV 460-88100/8-A   |             |                  | 22:36 |   |  |  |  |   |     |      |    |  |  |  |  |
| CCB 460-88109/52    |             |                  | 22:38 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:39 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:41 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:43 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:45 |   |  |  |  |   |     |      |    |  |  |  |  |
| ZZZZZZ              |             |                  | 22:47 |   |  |  |  |   |     |      |    |  |  |  |  |
| CCV 460-88100/8-A   |             |                  | 22:48 |   |  |  |  |   |     |      |    |  |  |  |  |
| CCB 460-88109/59    |             |                  | 22:50 |   |  |  |  |   |     |      |    |  |  |  |  |

Prep Types

T = Total/NA

| Lab Name: | TestAmerica : | Edison | Job No.:  | 460-31791-1          |           |            |
|-----------|---------------|--------|-----------|----------------------|-----------|------------|
| SDG No.:  |               |        |           |                      |           |            |
| ICP-MS Ir | strument ID:  | ICPMS2 | Start Dat | e: <u>10/06/2011</u> | End Date: | 10/06/2011 |

|                    |       | Internal Standards %RI For: |   |               |   |               |   |               |   |               |   |
|--------------------|-------|-----------------------------|---|---------------|---|---------------|---|---------------|---|---------------|---|
| Lab Sample<br>ID   | Time  | Element<br>Li-6             | Q | Element<br>Sc | Q | Element<br>Ge | Q | Element<br>In | Q | Element<br>Tb | Q |
| ICV 460-88662/6    | 19:24 | 98                          |   | 100           |   | 101           |   | 98            |   | 99            |   |
| ICB 460-88662/7    | 19:29 | 100                         |   | 101           |   | 101           |   | 100           |   | 101           |   |
| CRI 460-88662/8    | 19:34 | 98                          |   | 100           |   | 101           |   | 100           |   | 100           |   |
| ICSA 460-88662/9   | 19:38 | 86                          |   | 94            |   | 96            |   | 90            |   | 94            |   |
| ICSAB 460-88662/10 | 19:43 | 85                          |   | 99            |   | 100           |   | 93            |   | 96            |   |
| CCV 460-88662/28   | 21:07 | 99                          |   | 99            |   | 100           |   | 98            |   | 100           |   |
| CCB 460-88662/29   | 21:11 | 99                          |   | 99            |   | 100           |   | 99            |   | 100           |   |
| MB 460-88293/1-A   | 21:16 | 98                          |   | 98            |   | 98            |   | 99            |   | 100           |   |
| LCSSRM             | 21:21 | 100                         |   | 100           |   | 101           |   | 98            |   | 101           |   |
| 460-31791-3 DU     | 21:26 | 97                          |   | 98            |   | 99            |   | 97            |   | 100           |   |
| 460-31791-3        | 21:30 | 99                          |   | 99            |   | 99            |   | 97            |   | 100           |   |
| 460-31791-3 SD     | 21:35 | 99                          |   | 99            |   | 100           |   | 99            |   | 100           |   |
| 460-31791-3 MS     | 21:40 | 95                          |   | 98            |   | 99            |   | 96            |   | 99            |   |
| 460-31791-3 PDS    | 21:44 | 96                          |   | 99            |   | 100           |   | 97            |   | 100           |   |
| 460-31791-1        | 21:49 | 94                          |   | 94            |   | 95            |   | 92            |   | 95            |   |
| 460-31791-2        | 21:53 | 97                          |   | 99            |   | 98            |   | 95            |   | 100           |   |
| CCV 460-88662/40   | 22:03 | 96                          |   | 97            |   | 98            |   | 96            |   | 98            |   |
| CCB 460-88662/41   | 22:07 | 97                          |   | 98            |   | 99            |   | 99            |   | 100           |   |

| Lab Name:  | TestAmerica  | Edison | Job No.:  | 460-31791-3 | 1       |       |            |
|------------|--------------|--------|-----------|-------------|---------|-------|------------|
| SDG No.:   |              |        |           |             |         |       |            |
| ICP-MS Ins | strument ID: | ICPMS2 | Start Dat | e: 10/06/2  | 011 End | Date: | 10/06/2011 |

|                    |       | Internal Standards %RI For: |   |         |   |         |   |         |   |         |   |
|--------------------|-------|-----------------------------|---|---------|---|---------|---|---------|---|---------|---|
| Lab Sample<br>ID   | Time  | Element<br>Bi               | Q | Element | Q | Element | Q | Element | Q | Element | Q |
| ICV 460-88662/6    | 19:24 | 98                          |   |         |   |         |   |         |   |         | T |
| ICB 460-88662/7    | 19:29 | 100                         |   |         |   |         |   |         |   |         |   |
| CRI 460-88662/8    | 19:34 | 99                          |   |         |   |         |   |         |   |         |   |
| ICSA 460-88662/9   | 19:38 | 87                          |   |         |   |         |   |         |   |         |   |
| ICSAB 460-88662/10 | 19:43 | 89                          |   |         |   |         |   |         |   |         |   |
| CCV 460-88662/28   | 21:07 | 99                          |   |         |   |         |   |         |   |         |   |
| CCB 460-88662/29   | 21:11 | 100                         |   |         |   |         |   |         |   |         |   |
| MB 460-88293/1-A   | 21:16 | 99                          |   |         |   |         |   |         |   |         |   |
| LCSSRM             | 21:21 | 101                         |   |         |   |         |   |         |   |         |   |
| 460-31791-3 DU     | 21:26 | 101                         |   |         |   |         |   |         |   |         |   |
| 460-31791-3        | 21:30 | 101                         |   |         |   |         |   |         |   |         |   |
| 460-31791-3 SD     | 21:35 | 101                         |   |         |   |         |   |         |   |         |   |
| 460-31791-3 MS     | 21:40 | 100                         |   |         |   |         |   |         |   |         |   |
| 460-31791-3 PDS    | 21:44 | 101                         |   |         |   |         |   |         |   |         |   |
| 460-31791-1        | 21:49 | 92                          |   |         |   |         |   |         |   |         |   |
| 460-31791-2        | 21:53 | 98                          |   |         |   |         |   |         |   |         |   |
| CCV 460-88662/40   | 22:03 | 98                          |   |         |   |         |   |         |   |         |   |
| CCB 460-88662/41   | 22:07 | 100                         |   |         |   |         |   |         |   |         | 1 |

| Lab Name:  | TestAmerica  | Edison | Job No.:  | 460-31791-1   |           |            |
|------------|--------------|--------|-----------|---------------|-----------|------------|
| SDG No.:   |              |        |           |               |           |            |
| ICP-MS Ins | strument ID: | ICPMS2 | Start Dat | e: 10/07/2011 | End Date: | 10/07/2011 |

|                    |       | Internal Standards %RI For: |   |               |   |               |   |               |   |               |   |  |
|--------------------|-------|-----------------------------|---|---------------|---|---------------|---|---------------|---|---------------|---|--|
| Lab Sample<br>ID   | Time  | Element<br>Li-6             | Q | Element<br>Sc | Q | Element<br>Ge | Q | Element<br>In | Q | Element<br>Tb | Q |  |
| ICV 460-88792/6    | 19:45 | 97                          |   | 98            |   | 100           |   | 96            |   | 97            |   |  |
| ICB 460-88792/7    | 19:50 | 99                          |   | 98            |   | 99            |   | 98            |   | 98            |   |  |
| CRI 460-88792/8    | 19:55 | 99                          |   | 100           |   | 101           |   | 99            |   | 99            |   |  |
| ICSA 460-88792/9   | 20:00 | 90                          |   | 96            |   | 98            |   | 93            |   | 97            |   |  |
| ICSAB 460-88792/10 | 20:05 | 89                          |   | 98            |   | 99            |   | 93            |   | 96            |   |  |
| CCV 460-88792/25   | 21:20 | 96                          |   | 99            |   | 101           |   | 98            |   | 99            |   |  |
| CCB 460-88792/26   | 21:25 | 99                          |   | 100           |   | 102           |   | 100           |   | 101           |   |  |
| 460-31791-1        | 21:50 | 99                          |   | 99            |   | 100           |   | 99            |   | 100           |   |  |
| CCV 460-88792/34   | 22:05 | 96                          |   | 97            |   | 99            |   | 97            |   | 100           |   |  |
| CCB 460-88792/35   | 22:10 | 98                          |   | 97            |   | 99            |   | 98            |   | 99            |   |  |

| Lab Name:  | TestAmerica  | Edison | Job No.:  | 460-31791-1   |           |            |
|------------|--------------|--------|-----------|---------------|-----------|------------|
| SDG No.:   |              |        |           |               |           |            |
| ICP-MS Ins | strument ID: | ICPMS2 | Start Dat | e: 10/07/2011 | End Date: | 10/07/2011 |

|                    |       |               | Internal Standards %RI For: |         |   |         |   |         |   |         |   |
|--------------------|-------|---------------|-----------------------------|---------|---|---------|---|---------|---|---------|---|
| Lab Sample<br>ID   | Time  | Element<br>Bi | Q                           | Element | Q | Element | Q | Element | Q | Element | Q |
| ICV 460-88792/6    | 19:45 | 97            |                             |         |   |         |   |         |   |         |   |
| ICB 460-88792/7    | 19:50 | 99            |                             |         |   |         |   |         |   |         |   |
| CRI 460-88792/8    | 19:55 | 100           |                             |         |   |         |   |         |   |         |   |
| ICSA 460-88792/9   | 20:00 | 91            |                             |         |   |         |   |         |   |         |   |
| ICSAB 460-88792/10 | 20:05 | 90            |                             |         |   |         |   |         |   |         |   |
| CCV 460-88792/25   | 21:20 | 99            |                             |         |   |         |   |         |   |         |   |
| CCB 460-88792/26   | 21:25 | 101           |                             |         |   |         |   |         |   |         |   |
| 460-31791-1        | 21:50 | 100           |                             |         |   |         |   |         |   |         |   |
| CCV 460-88792/34   | 22:05 | 100           |                             |         |   |         |   |         |   |         |   |
| CCB 460-88792/35   | 22:10 | 100           |                             |         |   |         |   |         |   |         |   |

QC Tune Report

Data File:

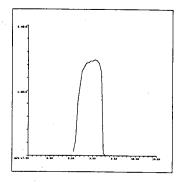
C:\ICPMH\1\7500\QCTUNE.D

Date Acquired:

6 Oct 2011 09:54:18 am

C:\ICPMH\1\METHODS\2008tune.m

Operator:


Misc Info:

Vial Number: Current Method:

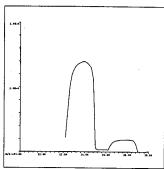
0

METHUD! 200976020 Mr 10061

| Minimum Response (CPS) |        |          |      |
|------------------------|--------|----------|------|
| Element                | Actual | Required | Flag |
| a.                     |        | -        | J.   |
| RSD (%)                |        |          |      |
| Element                | Actual | Required | Flag |
| 9 Be                   | 0.54   | 5.00     | _    |
| 24 Mg                  | 0.77   | 5.00     |      |
| 25 Mg                  | 0.40   | 5.00     | -    |
| 26 Mg                  | 0.72   | 5.00     |      |
| 59 Co                  | 0.46   | 5.00     |      |
| 115 In                 | 1.02   | 5.00     |      |
| 206 Pb                 | 1.15   | 5.00     |      |
| 207 Pb                 | 0.37   | 5.00     |      |
| 208 Pb                 | 0.90   | 5.00     |      |
|                        |        |          |      |
| Ion Ratio              |        |          |      |
| Element                | Actual | Required | Flag |
|                        |        |          | ="   |
| Maximum Bkg. Count(CF  | PS)    |          |      |
| Element                | Actual | Required | Flag |



9 Be Mass Calib. Actual: 9.00


Required: 8.90-9.10

Flag: Peak Width

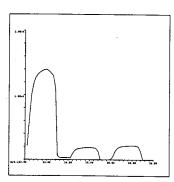
Actual: 0.60

Required: 0.90

Flag:



24 Mg


Mass Calib.

Actual: 23.95

Required: 23.90-24.10

Flag:
Peak Width
Actual: 0.65
Required: 0.90

Flag:



25 Mg

Mass Calib.

Actual: 24.95

Required: 24.90-25.10

Flag:

Peak Width

Actual: 0.65

Required: 0.90

Flag:

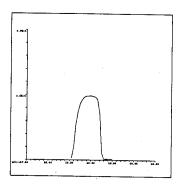


26 Mg

Mass Calib.

Actual: 25.95

Required: 25.90-26.10


Flag:

Peak Width

Actual: 0.65

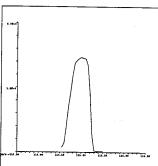
Required: 0.90

Flag:



59 Co Mass Calib.

Actual: 58.95


Required: 58.90-59.10

Flag: Peak Width

Actual: 0.65

Required: 0.90

Flag:

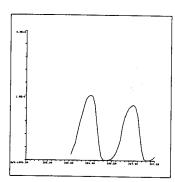


115 In

Mass Calib.

Actual: 115.00

Required: 114.90-115.10


Flag:

Peak Width

Actual: 0.65

Required: 0.90

Flag:

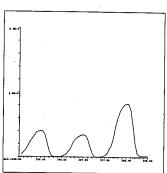


206 Pb

Mass Calib.

Actual: 206.00

Required: 205.90-206.10


Flag:

Peak Width

Actual: 0.60

Required: 0.90

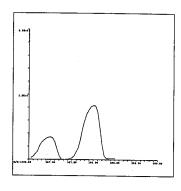
Flag:



207 Pb

Mass Calib.

Actual: 206.95


Required: 206.90-207.10

Flag: Peak Width Actual: 0.60

-----

Required: 0.90

Flag:



208 Pb

Mass Calib.
Actual: 208.00
Required: 207.90-208.10
Flag:
Peak Width
Actual: 0.60
Required: 0.90
Flag:

QC Tune Result:Pass

Batch Folder:

C:\ICPMH\1\DATA\11J06s00.B\

Analysis File:

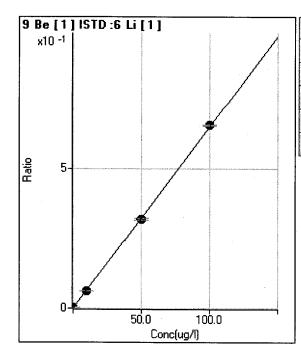
11J06s00.batch.xml

DA Date-Time:

10/7/2011 8:41:09 AM

Calibration Title:

Calibration Method:


**External Calibration** 

VIS Interpolation Fit:

Tune Step:

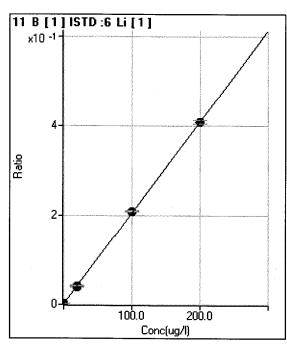
#1 helium.u

| Level | Standard Data File | Sample Name  | Acq. Date-Time       |
|-------|--------------------|--------------|----------------------|
| 1     | 003CALB.D          | Cal Blank    | 10/6/2011 7:01:17 PM |
| 2     | 004CALS.D          | CAL1 1187187 | 10/6/2011 7:06:02 PM |
| 3     | 005CALS.D          | CAL2 1187189 | 10/6/2011 7:10:48 PM |
| 4     | 006CALS.D          | CAL3 1187191 | 10/6/2011 7:15:30 PM |
| 5     | 007CALS.D          | CAL4 1187193 | 10/6/2011 7:20:06 PM |



|   | Rjct | Conc.   | Calc Conc. | CP8     | Ratio  | Det | RSD   |
|---|------|---------|------------|---------|--------|-----|-------|
| 1 | П    | 0.000   | -0.002     | 1.11    | 0.0001 | Р   | 173.2 |
| 2 |      | 0.200   | 0.272      | 28.33   | 0.0018 | Р   | 27.0  |
| 3 |      | 10.000  | 9.520      | 935.60  | 0.0617 | Р   | 2.4   |
| 4 |      | 50.000  | 49.317     | 4834.12 | 0.3190 | Р   | 1.8   |
| 5 |      | 100.000 | 101.158    | 9773.60 | 0.6543 | Р   | 0.9   |

y = 0.0065 \* x + 8.7439E-005


R = 0.9999

DL = 0.05856

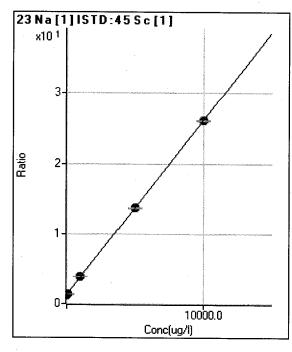
BEC = 0.01352

Weight: 1/y

Min Conc: <None>



|   | Rjct | Conc.   | Calc Conc. | CP8     | Ratio  | Det. | RSD  |
|---|------|---------|------------|---------|--------|------|------|
| 1 |      | 0.000   | 0.443      | 27.78   | 0.0018 | Р    | 37.9 |
| 2 |      | 20.000  | 19.121     | 613.36  | 0.0400 | Ρ    | 2.2  |
| 3 |      | 20.000  | 20.027     | 634.48  | 0.0418 | P    | 5.1  |
| 4 |      | 100.000 | 101.808    | 3164.86 | 0.2088 | Р    | 1.3  |
| 5 |      | 200.000 | 199.705    | 6105.76 | 0.4088 | Р    | 2.1  |


y = 0.0020 \* x + 9.1383E-004

R = 0.9999

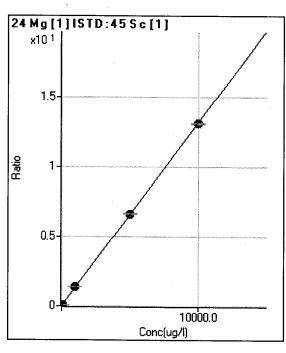
DL = 1.013

BEC = 0.4474

Weight: 1/SD^2



|   | Rjet | Conc.     | Calc Conc. | CPS        | Ratio   | Det. | RSD |
|---|------|-----------|------------|------------|---------|------|-----|
| 1 |      | 0.000     | -0.598     | 437674.38  | 1.2819  | Р    | 0.6 |
| 2 |      | 50.000    | 47.571     | 479803.99  | 1.4019  | Р    | 0.7 |
| 3 |      | 1000.000  | 1060.441   | 1337724.55 | 3.9253  | Α    | 0.9 |
| 4 |      | 5000.000  | 4972.773   | 4678336.11 | 13.6719 | Α    | 0.5 |
| 5 |      | 10000.000 | 9976.413   | 8822254.24 | 26.1373 | Α    | 0.4 |


y = 0.0025 \* x + 1.2834

R = 1.0000

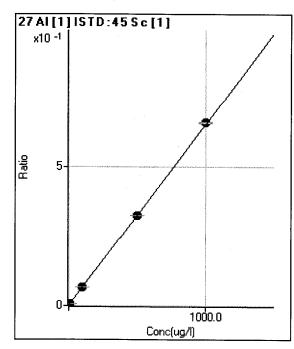
DL = 9.369

BEC = 515.2

Weight: 1/SD^2 Min Conc: <None>



|    | Rjct | Conc.     | Calc Conc. | CPS        | Ratio   | Det | RSD |
|----|------|-----------|------------|------------|---------|-----|-----|
| 1  |      | 0.000     | -0.010     | 147.78     | 0.0004  | Р   | 6.7 |
| 2  |      | 50.000    | 52.342     | 23735.27   | 0.0694  | Р   | 0.6 |
| 3  |      | 1000.000  | 1039.211   | 466381.79  | 1.3685  | P   | 0.7 |
| 4  |      | 5000.000  | 5025.369   | 2263872.53 | 6.6160  | Α   | 1.2 |
| C) |      | 10000.000 | 9940.690   | 4417251.64 | 13.0867 | Α   | 0.2 |


y = 0.0013 \* x + 4.4594E-004

R = 1.0000

DL = 0.06615

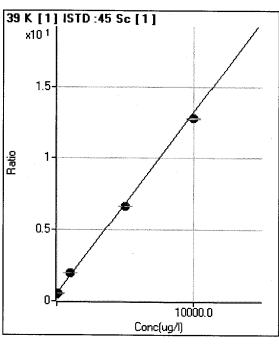
BEC = 0.3387

Weight: 1/SD^2



|   | Rjet | Conc.    | Calc Conc. | CPS       | Ratio  | Det. | RSD |
|---|------|----------|------------|-----------|--------|------|-----|
| 1 |      | 0.000    | -0.004     | 93.33     | 0.0003 | Р    | 3.0 |
| 2 |      | 10.000   | 11.176     | 2577.47   | 0.0075 | Р    | 1.9 |
| 3 |      | 100.000  | 101.963    | 22652.69  | 0.0665 | Р    | 0.8 |
| 4 |      | 500.000  | 499.571    | 111072.11 | 0.3246 | Р    | 0.1 |
| 5 |      | 1000.000 | 1012.347   | 221924.74 | 0.6575 | Р    | 0.4 |

y = 6.4919E-004 \* x + 2.7597E-004


R = 1.0000

DL = 0.03828

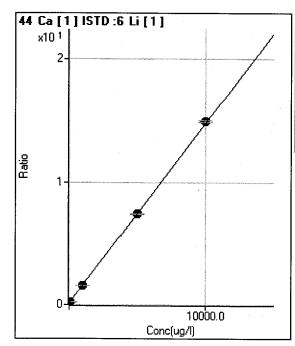
BEC = 0.4251

Weight: 1/SD^2

Min Conc: <None>



|   | Rjct | Conc.     | Calc Conc. | CPS        | Ratio   | Det. | RSD |
|---|------|-----------|------------|------------|---------|------|-----|
| 1 |      | 0.000     | -13.828    | 171319.97  | 0.5018  | Р    | 0.7 |
| 2 |      | 50.000    | 42.338     | 196111.23  | 0.5730  | Р    | 0.5 |
| 3 |      | 1000.000  | 1116.532   | 659486.75  | 1.9351  | Р    | 0.3 |
| 4 |      | 5000.000  | 4840.200   | 2277856.29 | 6.6568  | А    | 0.3 |
| 5 |      | 10000.000 | 9671.692   | 4314771.46 | 12.7832 | Α    | 0.5 |


y = 0.0013 \* x + 0.5193

R = 0.9999

DL = 8.174

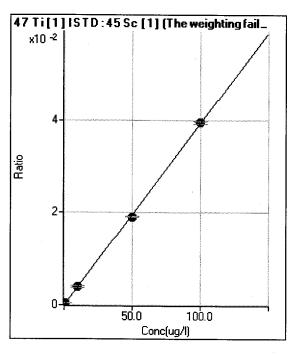
BEC = 409.6

Weight: 1/SD^2



|   | Rjct | Conc.     | Calc Conc. | CPS       | Ratio   | Det. | RSD |
|---|------|-----------|------------|-----------|---------|------|-----|
| 1 |      | 0.000     | 0.202      | 2275.20   | 0.1492  | Р    | 1.4 |
| 2 |      | 50.000    | 49.017     | 3384.30   | 0.2205  | Р    | 2.3 |
| 3 |      | 1000.000  | 995.593    | 24316.98  | 1.6024  | P    | 2.1 |
| 4 |      | 5000.000  | 4969.348   | 112192.77 | 7.4037  | Р    | 0.8 |
| 5 |      | 10000.000 | 10115.152  | 222810.65 | 14.9161 | Р    | 1.0 |

y = 0.0015 \* x + 0.1489


R = 1.0000

DL = 4.241

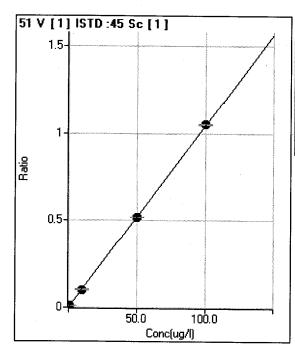
**BEC = 102** 

Weight: 1/SD^2

Min Conc: <None>



|   | Rjat | Conc.   | Calc Conc. | CPS      | Ratio  | Det | RSD  |
|---|------|---------|------------|----------|--------|-----|------|
| 1 |      | 0.000   | 0.115      | 0.00     | 0.0000 | Р   |      |
| 2 |      | 1.000   | 1.249      | 152.23   | 0.0004 | Ρ   | 16.3 |
| 3 |      | 10.000  | 10.289     | 1360.10  | 0.0040 | Р   | 8.8  |
| 4 |      | 50.000  | 48.757     | 6530.42  | 0.0191 | Р   | 1.3  |
| 5 |      | 100.000 | 100.590    | 13304.86 | 0.0394 | Ρ   | 1.8  |


y = 3.9233E-004 \* x - 4.5125E-005

R = 0.9999

DL = 0

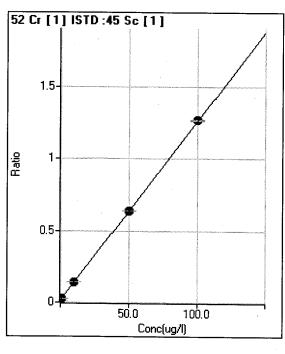
BEC = -0.115

Weight: 1/SD^2



|   | Rjet | Conc.   | Cale Conc. | CPS       | Ratio  | Det. | RSD  |
|---|------|---------|------------|-----------|--------|------|------|
| 1 |      | 0.000   | 0.000      | 158.89    | 0.0005 | Р    | 15.6 |
| 2 |      | 1.000   | 1.023      | 3809.47   | 0.0111 | Р    | 4.0  |
| 3 |      | 10.000  | 9.825      | 35084.86  | 0.1029 | Р    | 1.2  |
| 4 |      | 50.000  | 49.752     | 177733.21 | 0.5194 | Р    | 0.3  |
| 5 |      | 100.000 | 100.834    | 355156.31 | 1.0522 | Р    | 0.4  |

y = 0.0104 \* x + 4.6372E-004


R = 1.0000

DL = 0.02095

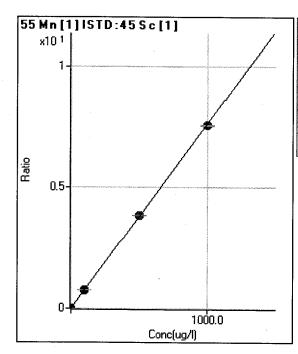
BEC = 0.04446

Weight: 1/SD^2

Min Conc: <None>



|   | Rjct | Conc.   | Calc Conc. | CPS       | Ratio  | Det. | RSD |
|---|------|---------|------------|-----------|--------|------|-----|
| 1 |      | 0.000   | -0.010     | 5378.86   | 0.0158 | Р    | 1.3 |
| 2 |      | 1.000   | 1.034      | 9837.74   | 0.0287 | Ρ    | 1.7 |
| 3 |      | 10.000  | 10.113     | 48266.01  | 0.1416 | Р    | 0.6 |
| 4 |      | 50.000  | 49.979     | 218071.08 | 0.6373 | P    | 0.1 |
| 5 |      | 100.000 | 100.720    | 428053.98 | 1.2682 | Р    | 0.6 |


y = 0.0124 \* x + 0.0159

R = 1.0000

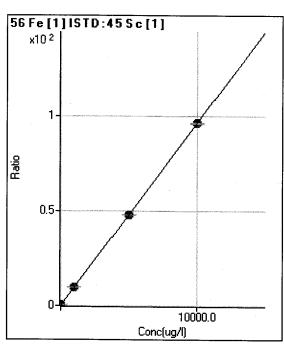
DL = 0.04909

BEC = 1.277

Weight: 1/SD^2



|   | Rjct | Conc.    | Calc Conc. | CP8        | Ratio  | Det. | RSD |
|---|------|----------|------------|------------|--------|------|-----|
| 1 |      | 0.000    | 0.000      | 301.12     | 0.0009 | Р    | 2.8 |
| 2 |      | 2.000    | 2.035      | 5621.18    | 0.0164 | Р    | 4.1 |
| 3 |      | 100.000  | 100.699    | 262426.79  | 0.7700 | Р    | 0.8 |
| 4 |      | 500.000  | 504.652    | 1319288.75 | 3.8555 | Α    | 0.7 |
| 5 |      | 1000.000 | 991.436    | 2556352.20 | 7.5736 | Α    | 0.5 |


y = 0.0076 \* x + 8.8248E-004

R = 1.0000

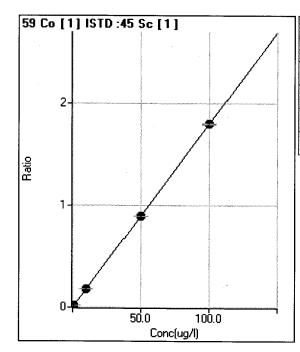
DL = 0.009554

BEC = 0.1155

Weight: 1/SD^2 Min Conc: <None>



|   | Rjct | Conc.     | Calc Conc. | CP8         | Ratio   | Det. | RSD |
|---|------|-----------|------------|-------------|---------|------|-----|
| 1 |      | 0.000     | -0.111     | 3594.91     | 0.0105  | Р    | 3.4 |
| 2 |      | 30.000    | 33.037     | 112521.25   | 0.3288  | Р    | 0.6 |
| 3 |      | 1000.000  | 1016.756   | 3330712.03  | 9.7733  | Α    | 0.8 |
| 4 |      | 5000.000  | 4981.366   | 16369033.50 | 47.8368 | Α    | 0.6 |
| 5 |      | 10000.000 | 9999.579   | 32408269.52 | 96.0157 | Α    | 0.9 |


y = 0.0096 \* x + 0.0116

R = 1.0000

DL = 0.1124

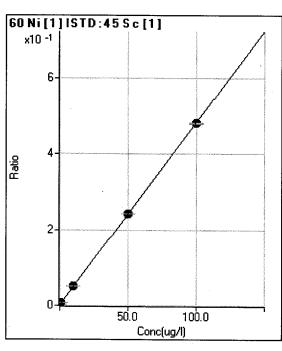
BEC = 1.208

Weight: 1/y



|   | Rjat | Conc.   | Calc Conc. | CPS       | Ratio  | Det. | RSD |
|---|------|---------|------------|-----------|--------|------|-----|
| 1 | П    | 0.000   | -0.001     | 71.12     | 0.0002 | Р    | 5.1 |
| 2 |      | 1.000   | 1.052      | 6530.45   | 0.0191 | Р    | 2.1 |
| 3 |      | 10.000  | 10.129     | 61971.85  | 0.1818 | Р    | 0.9 |
| 4 |      | 50.000  | 49.781     | 305515.33 | 0.8928 | Р    | 0.2 |
| 5 |      | 100.000 | 100.044    | 605554.71 | 1.7941 | Ρ    | 0.7 |

y = 0.0179 \* x + 2.2025E-004


R = 1.0000

DL = 0.001776

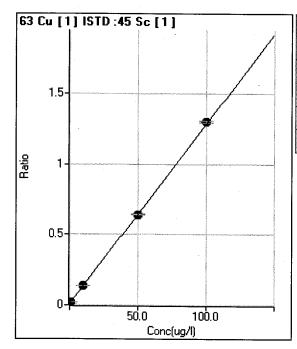
BEC = 0.01228

Weight: 1/y

Min Conc: <None>



|   | Rjct | Conc.   | Calc Conc. | CPS       | Ratio  | Det. | RSD |
|---|------|---------|------------|-----------|--------|------|-----|
| 1 |      | 0.000   | -0.016     | 457.80    | 0.0013 | Р    | 8.0 |
| 2 |      | 1.000   | 1.073      | 2250.24   | 0.0066 | Р    | 4.1 |
| 3 |      | 10.000  | 10.101     | 17037.43  | 0.0500 | Р    | 1.0 |
| 4 |      | 50.000  | 49.936     | 82664.41  | 0.2416 | Р    | 0.5 |
| 5 |      | 100.000 | 99.691     | 162305.44 | 0.4809 | Р    | 0.7 |


y = 0.0048 \* x + 0.0014

R = 1.0000

DL = 0.06683

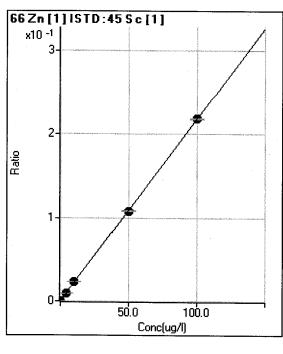
BEC = 0.2944

Weight: 1/SD^2



|   | Rjct | Conc.   | Calc Conc. | CPS       | Ratio  | Det | RSD |
|---|------|---------|------------|-----------|--------|-----|-----|
| 1 |      | 0.000   | -0.003     | 2304.68   | 0.0068 | Р   | 1.4 |
| 2 |      | 1.000   | 1.067      | 6976.20   | 0.0204 | Р   | 2.3 |
| 3 |      | 10.000  | 10.119     | 46263.85  | 0.1358 | Р   | 1.5 |
| 4 |      | 50.000  | 49.808     | 219553.61 | 0.6416 | Р   | 0.4 |
| 5 |      | 100.000 | 101.244    | 437846.81 | 1.2972 | Р   | 0.9 |

y = 0.0127 \* x + 0.0068


R = 1.0000

DL = 0.02202

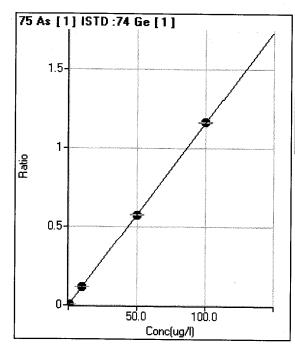
BEC = 0.5323

Weight: 1/SD^2

Min Conc: <None>



|   | Rjct | Conc.   | Calc Conc. | CP8      | Ratio  | Det. | RSD |
|---|------|---------|------------|----------|--------|------|-----|
| 1 |      | 0.000   | -0.005     | 154.45   | 0.0005 | Р    | 9.7 |
| 2 |      | 4.000   | 4.157      | 3255.99  | 0.0095 | Ъ    | 3.7 |
| 3 | П    | 10.000  | 10.339     | 7828.86  | 0.0230 | Ρ    | 1.8 |
| 4 |      | 50.000  | 49.426     | 36980.73 | 0.1081 | Р    | 0.6 |
| 5 |      | 100.000 | 100.236    | 73816.43 | 0.2187 | Р    | 0.4 |


y = 0.0022 \* x + 4.6257E-004

R = 1.0000

DL = 0.06019

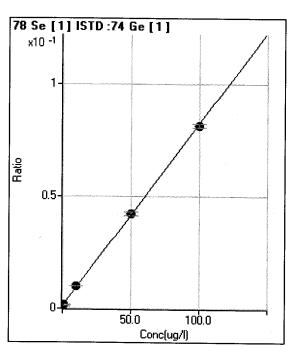
BEC = 0.2125

Weight: 1/SD^2



|   | Rjct | Conc.   | Calc Conc. | CPS      | Ratio  | Det | RSD  |
|---|------|---------|------------|----------|--------|-----|------|
| 1 |      | 0.000   | 0.000      | 33.89    | 0.0007 | Р   | 11.0 |
| 2 |      | 0.500   | 0.502      | 325.01   | 0.0065 | Р   | 17.4 |
| 3 |      | 10.000  | 10.022     | 5730.02  | 0.1166 | Р   | 1.1  |
| 4 |      | 50.000  | 49.694     | 28533.97 | 0.5755 | Р   | 0.5  |
| 5 | Г    | 100.000 | 100.580    | 57632.22 | 1.1640 | Р   | 0.5  |

y = 0.0116 \* x + 6.9032E-004


R = 1.0000

DL = 0.01962

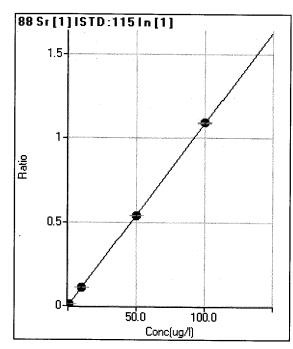
BEC = 0.05968

Weight: 1/SD^2

Min Conc: <None>



|   | Rjat | Conc.   | Calc Conc. | CPS     | Ratio  | Det. | RSD  |
|---|------|---------|------------|---------|--------|------|------|
| 1 |      | 0.000   | -0:148     | 50.00   | 0.0010 | Р    | 20.5 |
| 2 |      | 0.500   | 0.624      | 82.22   | 0.0016 | Р    | 24.4 |
| 3 |      | 10.000  | 10.675     | 481.68  | 0.0098 | Р    | 2.0  |
| 4 |      | 50.000  | 50.694     | 2095.73 | 0.0423 | Р    | 3.9  |
| 5 |      | 100.000 | 98.742     | 4022.80 | 0.0813 | Р    | 2.2  |


y = 8.1134E-004 \* x + 0.0011

R = 0.9999

DL = 0.7727

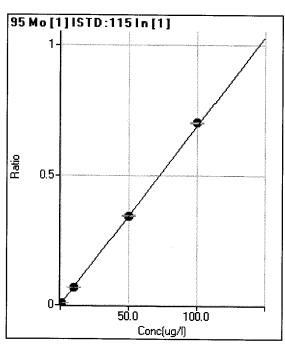
BEC = 1.405

Weight: 1/y



|   | Rjat | Conc.   | Calc Conc | CPS       | Ratio  | Det. | RSD  |
|---|------|---------|-----------|-----------|--------|------|------|
| 1 |      | 0.000   | 0.000     | 16.67     | 0.0001 | Р    | 19.7 |
| 2 |      | 1.000   | 0.997     | 3152.64   | 0.0109 | Р    | 1.9  |
| 3 |      | 10.000  | 9.963     | 30928.17  | 0.1082 | Р    | 1.9  |
| 4 |      | 50.000  | 49.446    | 153222.32 | 0.5366 | Р    | 0.3  |
| 5 |      | 100.000 | 100.652   | 304267.89 | 1.0922 | Р    | 0.2  |

y = 0.0109 \* x + 5.7172E-005


R = 1.0000

DL = 0.003133

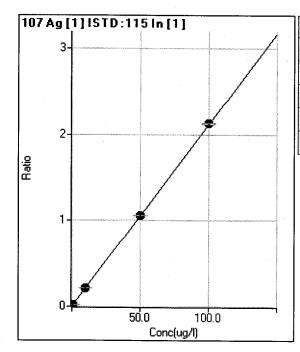
BEC = 0.005269

Weight: 1/SD^2

Min Conc: <None>



|   | Rjet | Conc.   | Calc Conc. | CPS       | Ratio  | Det. | RSD  |
|---|------|---------|------------|-----------|--------|------|------|
| 1 |      | 0.000   | 0.016      | 62.23     | 0.0002 | P    | 30.1 |
| 2 |      | 1.000   | 0.928      | 1881.29   | 0.0065 | Р    | 6.0  |
| 3 |      | 10.000  | 9.925      | 19554.06  | 0.0684 | Р    | 0.2  |
| 4 | П    | 50.000  | 49.972     | 98198.34  | 0.3439 | Р    | 1.1  |
| 5 |      | 100.000 | 102.039    | 195589.29 | 0.7021 | Р    | 0.3  |


y = 0.0069 \* x + 1.0381E-004

R = 0.9999

DL = 0.02813

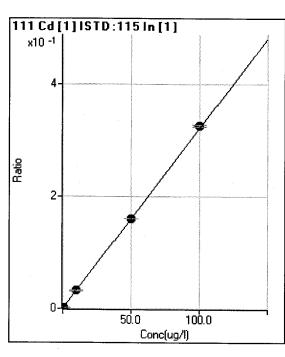
BEC = 0.01509

Weight: 1/SD^2



|   | Rjct | Cone.   | Calc Conc. | CP8       | Ratio  | Det. | RSD  |
|---|------|---------|------------|-----------|--------|------|------|
| 1 |      | 0.000   | 0.000      | 18.89     | 0.0001 | Р    | 10.5 |
| 2 | Ш    | 1.000   | 1.042      | 6396.02   | 0.0221 | Р    | 1.3  |
| 3 |      | 10.000  | 9.989      | 60323.98  | 0.2110 | Р    | 1.5  |
| 4 |      | 50.000  | 49.998     | 301462.48 | 1.0557 | Р    | 0.0  |
| 5 | ·    | 100.000 | 100.765    | 592703.23 | 2.1276 | Р    | 0.6  |

y = 0.0211 \* x + 6.5689E-005


R = 1.0000

DL = 0.0009739

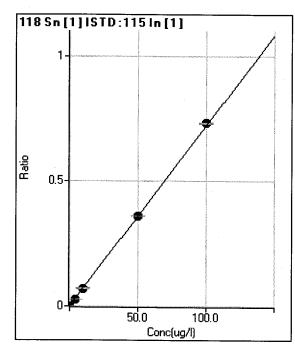
BEC = 0.003111

Weight: 1/SD^2

Min Conc: <None>



|   | Rjet | Conc.   | Calc Conc. | CPS      | Ratio  | Det | RSD   |
|---|------|---------|------------|----------|--------|-----|-------|
| 1 |      | 0.000   | 0.000      | 3.33     | 0.0000 | Р   | 100.3 |
| 2 |      | 0.500   | 0.514      | 482.25   | 0.0017 | Р   | 6.7   |
| 3 |      | 10.000  | 9.994      | 9183.05  | 0.0321 | Р   | 1.7   |
| 4 |      | 50.000  | 49.914     | 45790.64 | 0.1604 | Р   | 0.3   |
| 5 |      | 100.000 | 101.416    | 90761.18 | 0.3258 | Р   | 1.0   |


y = 0.0032 \* x + 1.1918E-005

R = 1.0000

DL = 0.01078

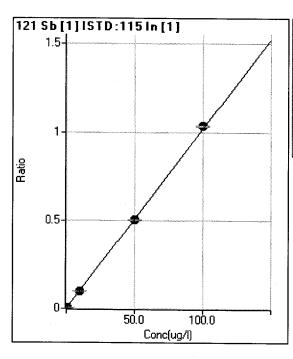
BEC = 0.00371

Weight: 1/SD^2



|   | Rjd | Cone.   | Calc Conc. | CPS       | Ratio  | Det | RSD  |
|---|-----|---------|------------|-----------|--------|-----|------|
| 1 |     | 0.000   | 0.002      | 82.23     | 0.0003 | Р   | 20.5 |
| 2 |     | 4.000   | 3.889      | 8219.16   | 0.0283 | Р   | 2.5  |
| 3 |     | 10.000  | 9.903      | 20517.84  | 0.0718 | Р   | 0.7  |
| 4 |     | 50.000  | 50.068     | 103279.46 | 0.3617 | Р   | 1.0  |
| 5 |     | 100.000 | 101.603    | 204393.39 | 0.7337 | P   | 0.8  |

y = 0.0072 \* x + 2.7083E-004


R = 1.0000

DL = 0.02416

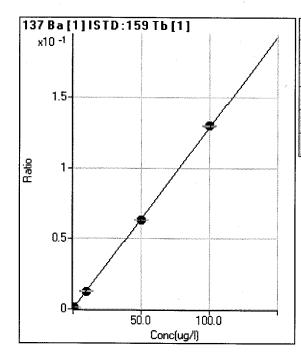
BEC = 0.03752

Weight: 1/SD^2

Min Conc: <None>



|   | Rjet | Conc.   | Calc Conc. | CPS       | Ratio  | Det. | RSD  |
|---|------|---------|------------|-----------|--------|------|------|
| 1 |      | 0.000   | 0.000      | 23.33     | 0.0001 | Р    | 28.6 |
| 2 |      | 0.500   | 0.458      | 1373.44   | 0.0047 | Ρ    | 5.5  |
| 3 |      | 10.000  | 9.842      | 28656.64  | 0.1002 | Р    | 1.3  |
| 4 |      | 50.000  | 49.364     | 143451.51 | 0.5024 | Р    | 0.9  |
| 5 |      | 100.000 | 101.651    | 288165.22 | 1.0344 | Р    | 0.7  |


y = 0.0102 \* x + 7.6615E-005

R = 0.9999

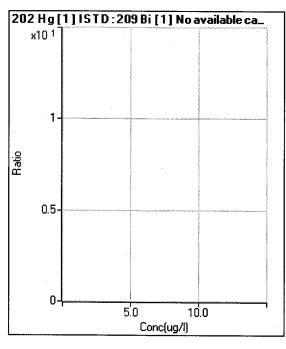
DL = 0.006776

BEC = 0.007529

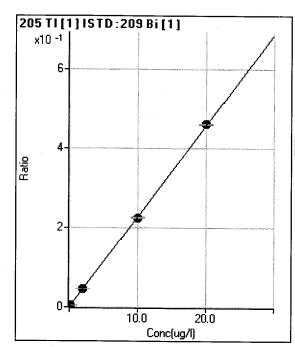
Weight: 1/SD^2



|   | Rjct | Conc.   | Calc Conc. | CP8      | Ratio  | Det. | RSD  |
|---|------|---------|------------|----------|--------|------|------|
| 1 | Ė    | 0.000   | 0.000      | 18.89    | 0.0000 | Р    | 36.6 |
| 2 |      | 1.000   | 0.997      | 1013.40  | 0.0013 | Ρ    | 5.0  |
| 3 | П    | 10.000  | 9.864      | 9732.34  | 0.0127 | P    | 1.3  |
| 4 |      | 50.000  | 49.325     | 48880.52 | 0.0635 | î.   | 0.9  |
| 5 |      | 100.000 | 101.107    | 98449.14 | 0.1300 | Р    | 0.7  |


y = 0.0013 \* x + 2.3832E-005

R = 0.9999


DL = 0.02088

BEC = 0.01853

Weight: 1/SD^2

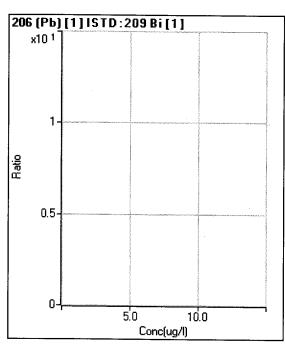


|   | Rjct | Conc. | Calc Conc. | CPS | Ratio | Det. | RSD |
|---|------|-------|------------|-----|-------|------|-----|
| 1 |      | 0.000 |            |     |       |      |     |
| 2 |      | 0.100 |            |     |       |      |     |
| 3 |      | 0.500 |            |     |       |      |     |
| 4 |      | 2.500 |            |     |       |      |     |
| 5 |      | 5.000 |            |     |       |      |     |



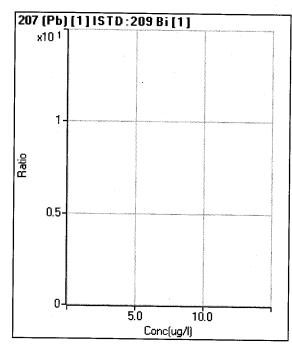
|   | Rjct | Conc.  | Calc Conc. | CPS       | Ratio  | Det. | RSD  |
|---|------|--------|------------|-----------|--------|------|------|
| 1 |      | 0.000  | 0.000      | 37.78     | 0.0001 | Р    | 43.3 |
| 2 |      | 0.200  | 0.192      | 2615.89   | 0.0045 | Р    | 6.2  |
| 3 |      | 2.000  | 1.988      | 26429.60  | 0.0455 | Р    | 0.7  |
| 4 |      | 10.000 | 9.885      | 130370.18 | 0.2259 | Р    | 1.5  |
| 7 |      | 20.000 | 20.185     | 259045.44 | 0.4612 | P    | 0.7  |

y = 0.0228 \* x + 6.0313E-005


R = 0.9999

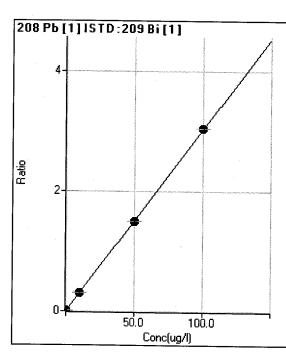
DL = 0.003658

BEC = 0.00264


Weight: 1/SD^2

Min Conc: <None>




|   | Rjat | Conc. | Calc Conc. | CPS       | Ratio  | Det. | RSD  |
|---|------|-------|------------|-----------|--------|------|------|
| 1 |      |       |            | 58.89     | 0.0001 | Р    | 31.0 |
| 2 |      |       |            | 1617.92   | 0.0028 | Р    | 10.1 |
| 3 |      |       |            | 44477.85  | 0.0765 | Р    | 0.6  |
| 4 | Ш    |       |            | 221442.97 | 0.3837 | Р    | 1.3  |
| 5 |      |       |            | 435360.72 | 0.7752 | Ъ    | 0.9  |

Excluded

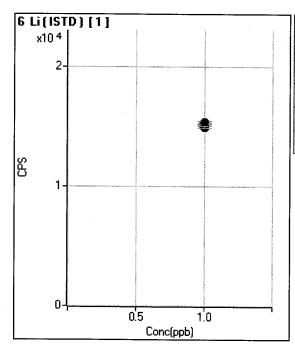


|   | Rjat | Conc. | Calc Conc. | CPS       | Ratio  | Det. | RSD |
|---|------|-------|------------|-----------|--------|------|-----|
| 1 |      |       |            | 71.12     | 0.0001 | Р    | 9.4 |
| 2 |      |       |            | 1225.66   | 0.0021 | Р    | 5.2 |
| 3 |      |       |            | 37588.14  | 0.0647 | Р    | 0.5 |
| 4 |      |       |            | 183906.74 | 0.3187 | Р    | 1.0 |
| 5 |      |       |            | 364673.36 | 0.6493 | Ρ    | 0.5 |

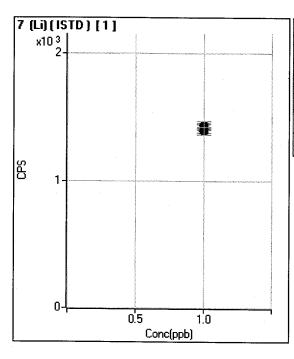
Excluded



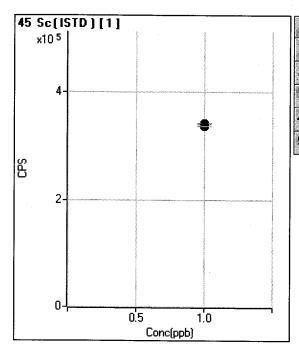
|   | Rjct | Conc.   | Calc Conc. | CPS        | Ratio  | Det. | RSD  |
|---|------|---------|------------|------------|--------|------|------|
| 1 |      | 0.000   | 0.000      | 257.79     | 0.0004 | Р    | 12.0 |
| 2 |      | 0.300   | 0.323      | 6014.05    | 0.0102 | Р    | 3.1  |
| 3 |      | 10.000  | 9.914      | 174924.27  | 0.3010 | Р    | 0.2  |
| 4 |      | 50.000  | 49.613     | 868208.87  | 1.5043 | Ρ    | 0.7  |
| 5 |      | 100.000 | 100.534    | 1711727.61 | 3.0478 | Р    | 0.2  |


y = 0.0303 \* x + 4.4355E-004

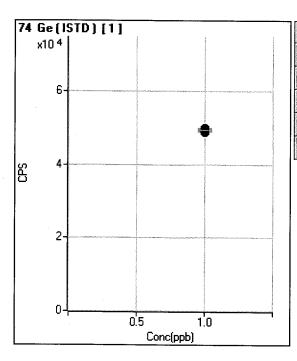
R = 1.0000


DL = 0.005198

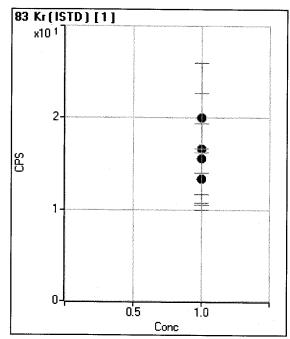
BEC = 0.01463


Weight: 1/SD^2

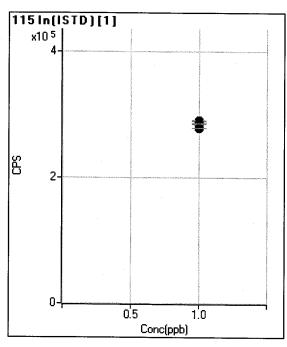



|   | Rjct | Conc. | Calc Conc. | CPS      | Ratio | Det. | RSD |
|---|------|-------|------------|----------|-------|------|-----|
| 1 |      | 1.000 |            | 15244.45 |       | Р    | 0.7 |
| 2 |      | 1.000 |            | 15344.82 |       | Ρ    | 1.3 |
| 3 |      | 1.000 |            | 15176.56 | ,     | Р    | 0.7 |
| 4 |      | 1.000 |            | 15153.94 |       | Р    | 0.5 |
| 5 |      | 1.000 |            | 14938.87 |       | Р    | 1.3 |

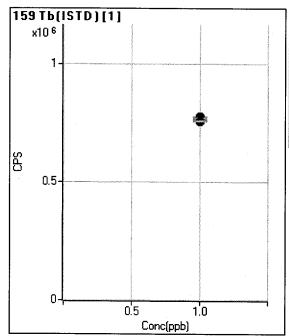



|   | Rjet | Conc. | Calc Conc. | CPS     | Ratio | Det. | RSD |
|---|------|-------|------------|---------|-------|------|-----|
| 1 |      | 1.000 |            | 1409.53 |       | Р    | 1.0 |
| 2 |      | 1.000 |            | 1427.30 |       | P.   | 3.9 |
| 3 |      | 1.000 |            | 1411.20 |       | P    | 4.6 |
| 4 |      | 1.000 |            | 1436.75 |       | T.   | 4.2 |
| 5 |      | 1.000 |            | 1392.86 |       | Р    | 4.2 |

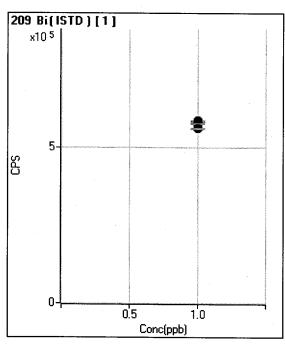



|   | Rict | Conc. | Calc Conc. | CPS       | Ratio | Det. | RSD |
|---|------|-------|------------|-----------|-------|------|-----|
| 1 |      | 1.000 |            | 341422.77 |       | Р    | 0.5 |
| 2 |      | 1.000 |            | 342251.07 |       | P    | 0.5 |
| 3 |      | 1.000 |            | 340803.47 |       | Ρ    | 0.3 |
| 4 |      | 1.000 |            | 342188.20 |       | Р    | 0.3 |
| 5 |      | 1.000 |            | 337538.40 |       | Р    | 0.4 |




|   | Rjct | Conc. | Calc Conc. | CPS      | Ratio | Det. | RSD |
|---|------|-------|------------|----------|-------|------|-----|
| 1 |      | 1.000 |            | 49060.59 |       | Р    | 0.4 |
| 2 |      | 1.000 |            | 49947.18 |       | î.   | 0.7 |
| 3 |      | 1.000 |            | 49142.46 |       | Р    | 0.8 |
| 4 |      | 1.000 |            | 49583.18 |       | J    | 0.4 |
| 5 |      | 1.000 |            | 49510.29 |       | Ъ    | 0.5 |




|   | Rjat | Conc  | Calc Conc. | CPS   | Ratio | Det. | RSD  |
|---|------|-------|------------|-------|-------|------|------|
| 1 |      | 1.000 |            | 16.67 |       | Р    | 72.1 |
| 2 |      | 1.000 |            | 20.00 |       | Р    | 60.1 |
| 3 |      | 1.000 |            | 15.56 |       | Ρ    | 49.5 |
| 4 |      | 1.000 | -          | 13.33 |       | Р    | 50.0 |
| 5 |      | 1.000 |            | 13.34 |       | Р    | 43.3 |



|   | Rjct | Conc. | Calc Conc. | CP8       | Ratio | Det. | RSD |
|---|------|-------|------------|-----------|-------|------|-----|
| 1 |      | 1.000 |            | 289859.05 |       | Ρ    | 0.4 |
| 2 | П    | 1.000 |            | 289956.45 |       | Р    | 0.2 |
| 3 |      | 1.000 |            | 285931.67 |       | Р    | 0.3 |
| 4 |      | 1.000 |            | 285551.90 |       | Ð    | 0.6 |
| 5 |      | 1.000 |            | 278575.67 |       | Р    | 0.2 |



|   | Rict | Conc. | Calc Conc. | CPS       | Ratio | Det. | RSD |
|---|------|-------|------------|-----------|-------|------|-----|
| 1 | П    | 1.000 | ·          | 771893.27 |       | Ρ    | 0.2 |
| 2 |      | 1.000 |            | 775604.75 |       | Ð    | 0.6 |
| 3 |      | 1.000 |            | 765769.08 |       | Р    | 0.6 |
| 4 |      | 1.000 |            | 770321.26 |       | P    | 0.5 |
| 5 |      | 1.000 |            | 757048.24 |       | P    | 0.5 |



|   | Rjct | Conc. | Calc Conc. | CPS       | Ratio | Det. | RSD |
|---|------|-------|------------|-----------|-------|------|-----|
| 1 |      | 1.000 |            | 586910.77 |       | Р    | 0.4 |
| 2 |      | 1.000 |            | 586971.29 |       | Ρ    | 0.3 |
| 3 |      | 1.000 |            | 581230.01 |       | Р    | 0.3 |
| 4 |      | 1.000 |            | 577161.81 |       | D.   | 1.0 |
| 5 |      | 1.000 |            | 561613.20 |       | Р    | 0.8 |

# Calibration Blank Report

**Sample Name Data File Name**  Cal Blank 003CALB.D

DataPath

 $C:\label{local_condition} C:\label{local_condition} C:\label{local_c$ 

**Acq Date Time** 

2011-10-06T19:01:17-04:00

Type VialNumber CalBlk

**Dilution** 

1101

Comment

1

Operator

MP

**QC Analyte Table** 

| QC Analyti | Table |      |           | _      |        |
|------------|-------|------|-----------|--------|--------|
| Element    | m/z   | ISTD | Tune Step | CPS    | %RSD   |
| Pb         | 208   | 209  | 1         | 258    | 12.29  |
| TI         | 205   | 209  | 1         | 38     | 43.52  |
| Ba         | 137   | 159  | 1         | 19     | 36.75  |
| Sb         | 121   | 115  | 1         | 23     | 28.56  |
| Sn         | 118   | 115  | 1         | 82     | 20.80  |
| Cd         | 111   | 115  | 1         | 3      | 100.05 |
| Ag         | 107   | 115  | 1         | 19     | 10.18  |
| Mo         | 95    | 115  | 1         | 62     | 30.46  |
| Sr         | 88    | 115  | 1         | 17     | 20.01  |
| Se         | 78    | 74   | 1         | 50     | 20.28  |
| As         | 75    | 74   | 1         | 34     | 11.35  |
| Zn         | 66    | 45   | 1         | 154    | 9.97   |
| Cu         | 63    | 45   | 1         | 2305   | 1.02   |
| Ni         | 60    | 45   | 1         | 458    | 8.18   |
| Co         | 59    | 45   | 1         | 71     | 5.41   |
| Fe         | 56    | 45   | 1         | 3595   | 3.37   |
| Mn         | 55    | 45   | 1         | 301    | 2.30   |
| Cr         | 52    | 45   | 1         | 5379   | 1.72   |
| V          | 51    | 45   | 1         | 159    | 15.46  |
| Ca         | 44    | 6    | 1         | 2275   | 1.97   |
| K          | 39    | 45   | 1         | 171320 | 0.24   |
| Al         | 27    | 45   | 1         | 93     | 3.09   |
| Mg         | 24    | 45   | 1         | 148    | 7.16   |
| Na         | 23    | 45   | 1         | 437674 | 0.31   |
| В          | 11    | 6    | 1         | 28     | 38.58  |
| Ве         | 9     | 6    | 1         | 1      | 173.21 |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  |
|---------|-----|-----------|--------|-------|
| Bi      | 209 | 1         | 586911 | 0.45  |
| Tb      | 159 | 1         | 771893 | 0.17  |
| In      | 115 | 1         | 289859 | 0.37  |
| Kr      | 83  | 1         | 17     | 72.13 |
| Ge      | 74  | 1         | 49061  | 0.37  |
| Sc      | 45  | 1         | 341423 | 0.46  |
| Li      | 6   | 1         | 15244  | 0.69  |



Sample Name

CAL1 1187187

**Data File Name** 

004CALS.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:06:02-04:00

Type VialNumber CalStd

VialNumber Dilution 1102 1

Comment

Operator

MP

ISTDRefDataFileName

003CALB.D

ISTD PassFail

Pass

**QC Analyte Table** 

| Element   | m/z | ISTD | Tune Step | CPS    | %RSD  |
|-----------|-----|------|-----------|--------|-------|
| Be        | 9   | 6    | 1         | 28     | 26.96 |
| В В       | 11  | 6    | 1         | 613    | 3.39  |
| Na        | 23  | 45   | 1         | 479804 | 0.27  |
| Mg        | 24  | 45   | 1         | 23735  | 0.27  |
| Al        | 27  | 45   | 1         | 2577   | 1.77  |
| K         | 39  | 45   | 1         | 196111 | 0.03  |
| Ca        | 44  | 6    | 1         | 3384   | 3.54  |
| Ti        | 47  | 45   | 1         |        |       |
| <u>''</u> | 51  | 45   |           | 152    | 16.14 |
|           |     |      | 1         | 3809   | 4.08  |
| Cr        | 52  | 45   | 1         | 9838   | 1.60  |
| Mn        | 55  | 45   | 1         | 5621   | 3.65  |
| Fe        | 56  | 45   | 1         | 112521 | 0.13  |
| Со        | 59  | 45   | 1         | 6530   | 2.23  |
| Ni        | 60  | 45   | 1         | 2250   | 4.48  |
| Cu        | 63  | 45   | 1         | 6976   | 2.37  |
| Zn        | 66  | 45   | 1         | 3256   | 3.95  |
| As        | 75  | 74   | 1         | 325    | 18.12 |
| Se        | 78  | 74   | 1         | 82     | 24.52 |
| Sr        | 88  | 115  | 1         | 3153   | 2.10  |
| Мо        | 95  | 115  | 1         | 1881   | 5.77  |
| Ag        | 107 | 115  | 1         | 6396   | 1.30  |
| Cd        | 111 | 115  | 1         | 482    | 6.53  |
| Sn        | 118 | 115  | 1         | 8219   | 2.71  |
| Sb        | 121 | 115  | 1         | 1373   | 5.47  |
| Ва        | 137 | 159  | 1         | 1013   | 5.50  |
| Π         | 205 | 209  | 1         | 2616   | 6.14  |
| (Pb)      | 206 | 209  | 1         | 1618   | 10.12 |
| (Pb)      | 207 | 209  | 1         | 1226   | 4.88  |
| Pb        | 208 | 209  | 1         | 6014   | 2.94  |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Li      | 6   | 1         | 15345  | 1.32  | 15244         | 100.7     | 60          | 120         |         |
| Sc      | 45  | 1         | 342251 | 0.48  | 341423        | 100.2     | 60          | 120         |         |
| Ge      | 74  | 1         | 49947  | 0.70  | 49061         | 101.8     | 60          | 120         |         |
| Kr      | 83  | 1         | 20     | 60.08 | 17            | 120.0     | 1           | 1000        | 1       |
| In      | 115 | 1         | 289956 | 0.22  | 289859        | 100.0     | 60          | 120         |         |
| Tb      | 159 | 1         | 775605 | 0.63  | 771893        | 100.5     | 60          | 120         |         |
| Bi      | 209 | 1         | 586971 | 0.32  | 586911        | 100.0     | 60          | 120         |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

CAL2 1187189

**Data File Name** 

005CALS.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:10:48-04:00

Type VialNumber CalStd

Dilution

1103 1

Comment

Operator

MP

**ISTDRefDataFileName** 

003CALB.D

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | CPS     | %RSD |
|---------|-----|------|-----------|---------|------|
| Be      | 9   | 6    | 1         | 936     | 1.79 |
| В       | 11  | 6    | 1         | 634     | 4.41 |
| Na      | 23  | 45   | 1         | 1337725 | 0.74 |
| Mg      | 24  | 45   | 1         | 466382  | 0.38 |
| Al      | 27  | 45   | 1         | 22653   | 0.48 |
| K       | 39  | 45   | 1         | 659487  | 0.06 |
| Ca      | 44  | 6    | 1         | 24317   | 1.45 |
| Ti      | 47  | 45   | 1         | 1360    | 8.58 |
| ٧       | 51  | 45   | 1         | 35085   | 1.45 |
| Cr      | 52  | 45   | 1         | 48266   | 0.35 |
| Mn      | 55  | 45   | 1         | 262427  | 0.53 |
| Fe      | 56  | 45   | 1         | 3330712 | 0.54 |
| Co      | 59  | 45   | 1         | 61972   | 0.63 |
| Ni      | 60  | 45   | 1         | 17037   | 0.72 |
| Cu      | 63  | 45   | 1         | 46264   | 1.16 |
| Zn      | 66  | 45   | 1         | 7829    | 1.51 |
| As      | 75  | 74   | 1         | 5730    | 0.76 |
| Se      | 78  | 74   | 1         | 482     | 2.77 |
| Sr      | 88  | 115  | 1         | 30928   | 1.95 |
| Mo      | 95  | 115  | 1         | 19554   | 0.32 |
| Ag      | 107 | 115  | 1         | 60324   | 1.41 |
| Cd      | 111 | 115  | 1         | 9183    | 1.87 |
| Sn      | 118 | 115  | 1         | 20518   | 0.64 |
| Sb      | 121 | 115  | 1         | 28657   | 1.46 |
| Ba      | 137 | 159  | 1         | 9732    | 1.84 |
| П       | 205 | 209  | 1         | 26430   | 0.32 |
| (Pb)    | 206 | 209  | 1         | 44478   | 0.80 |
| (Pb)    | 207 | 209  | 1         | 37588   | 0.53 |
| Pb      | 208 | 209  | 1         | 174924  | 0.26 |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Li      | 6   | 1         | 15177  | 0.67  | 15244         | 99.6      | 60          | 120         |         |
| Sc      | 45  | 1         | 340803 | 0.29  | 341423        | 99.8      | 60          | 120         |         |
| Ge      | 74  | 1         | 49142  | 0.85  | 49061         | 100.2     | 60          | 120         |         |
| Kr      | 83  | 1         | 16     | 49.47 | 17            | 93.3      | 1           | 1000        |         |
| In      | 115 | 1         | 285932 | 0.25  | 289859        | 98.6      | 60          | 120         |         |
| Tb      | 159 | 1         | 765769 | 0.56  | 771893        | 99.2      | 60          | 120         |         |
| Bi      | 209 | 1         | 581230 | 0.35  | 586911        | 99.0      | 60          | 120         |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |



Agilent Technologies

Sample Name

CAL3 1187191

Data File Name

006CALS.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:15:30-04:00

Type VialNumber CalStd 1104

Dilution

1

Comment

Operator **ISTDRefDataFileName**  MP

003CALB.D

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element    | m/z | ISTD | Tune Step | CPS      | %RSD |
|------------|-----|------|-----------|----------|------|
| Be         | 9   | 6    | 1         | 4834     | 1.35 |
| В          | 11  | 6    | 1         | 3165     | 1.69 |
| Na         | 23  | 45   | 1         | 4678336  | 0.39 |
| Mg         | 24  | 45   | 1         | 2263873  | 1.02 |
| Al         | 27  | 45   | 1         | 111072   | 0.37 |
| K          | 39  | 45   | 1         | 2277856  | 0.11 |
| Ca         | 44  | 6    | 1         | 112193   | 0.32 |
| Ti         | 47  | 45   | 1         | 6530     | 1.61 |
| ٧          | 51  | 45   | 1         | 177733   | 0.24 |
| Cr         | 52  | 45   | 1         | 218071   | 0.32 |
| Mn         | 55  | 45   | 1         | 1319289  | 0.47 |
| Fe         | 56  | 45   | 1         | 16369034 | 0.38 |
| Co         | 59  | 45   | 1         | 305515   | 0.46 |
| Ni         | 60  | 45   | 1         | 82664    | 0.77 |
| Cu         | 63  | 45   | 1         | 219554   | 0.44 |
| Zn         | 66  | 45   | 1         | 36981    | 0.85 |
| As         | 75  | 74   | 1         | 28534    | 0.46 |
| Se         | 78  | 74   | 1         | 2096     | 3.62 |
| Sr         | 88  | 115  | 1         | 153222   | 0.43 |
| Мо         | 95  | 115  | 1         | 98198    | 0.62 |
| <b>A</b> g | 107 | 115  | 1         | 301462   | 0.59 |
| Cd         | 111 | 115  | 1         | 45791    | 0.55 |
| Sn         | 118 | 115  | 1         | 103279   | 0.53 |
| Sb         | 121 | 115  | 1         | 143452   | 0.33 |
| Ba         | 137 | 159  | 1         | 48881    | 1.43 |
| П          | 205 | 209  | 1         | 130370   | 0.70 |
| (Pb)       | 206 | 209  | 1         | 221443   | 0.74 |
| (Pb)       | 207 | 209  | 1         | 183907   | 0.81 |
| Pb         | 208 | 209  | 1         | 868209   | 0.70 |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Li      | 6   | 1         | 15154  | 0.48  | 15244         | 99.4      | 60          | 120         | †       |
| Sc      | 45  | 1         | 342188 | 0.30  | 341423        | 100.2     | 60          | 120         |         |
| Ge      | 74  | 1         | 49583  | 0.44  | 49061         | 101.1     | 60          | 120         |         |
| Kr      | 83  | 1         | 13     | 49.99 | 17            | 80.0      | 1           | 1000        |         |
| In      | 115 | 1         | 285552 | 0.58  | 289859        | 98.5      | 60          | 120         | 1       |
| Tb      | 159 | 1         | 770321 | 0.52  | 771893        | 99.8      | 60          | 120         |         |
| Bi      | 209 | 1         | 577162 | 1.00  | 586911        | 98.3      | 60          | 120         |         |

| TuneStep | TuneFile |  |  |
|----------|----------|--|--|
| 1        | helium.u |  |  |

Agilent Technologies

Sample Name

CAL4 1187193

**Data File Name** 

007CALS.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:20:06-04:00

**Type** 

CalStd

VialNumber

1105

Dilution Comment 1

Operator

MP

ISTDRefDataFileName

003CALB.D

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | CPS      | %RSD |
|---------|-----|------|-----------|----------|------|
| Be      | 9   | 6    | 1         | 9774     | 1.02 |
| В       | 11  | 6    | 1         | 6106     | 1.08 |
| Na      | 23  | 45   | 1         | 8822254  | 0.19 |
| Mg      | 24  | 45   | 1         | 4417252  | 0.45 |
| Al      | 27  | 45   | 1         | 221925   | 0.46 |
| К       | 39  | 45   | 1         | 4314771  | 0.37 |
| Ca      | 44  | 6    | 1         | 222811   | 0.25 |
| Π       | 47  | 45   | 1         | 13305    | 1.35 |
| ٧       | 51  | 45   | 1         | 355156   | 0.12 |
| Cr      | 52  | 45   | 1         | 428054   | 0.65 |
| Mn      | 55  | 45   | 1         | 2556352  | 0.15 |
| Fe      | 56  | 45   | 1         | 32408270 | 0.54 |
| Co      | 59  | 45   | 1         | 605555   | 0.32 |
| Ni      | 60  | 45   | 1         | 162305   | 0.39 |
| Cu      | 63  | 45   | 1         | 437847   | 0.54 |
| Zn      | 66  | 45   | 1         | 73816    | 0.24 |
| As      | 75  | 74   | 1         | 57632    | 0.62 |
| Se      | 78  | 74   | 1         | 4023     | 2.12 |
| Sr      | 88  | 115  | 1         | 304268   | 0.18 |
| Mo      | 95  | 115  | 1         | 195589   | 0.32 |
| Ag      | 107 | 115  | 1         | 592703   | 0.75 |
| Cd      | 111 | 115  | 1         | 90761    | 0.97 |
| Sn      | 118 | 115  | 1         | 204393   | 0.77 |
| Sb      | 121 | 115  | 1         | 288165   | 0.65 |
| Ba      | 137 | 159  | 1         | 98449    | 1.14 |
| П       | 205 | 209  | 1         | 259045   | 1.40 |
| (Pb)    | 206 | 209  | 1         | 435361   | 1.69 |
| (Pb)    | 207 | 209  | 1         | 364673   | 0.90 |
| Pb      | 208 | 209  | 1         | 1711728  | 0.99 |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Li      | 6   | 1         | 14939  | 1.27  | 15244         | 98.0      | 60          | 120         | 1       |
| Sc      | 45  | 1         | 337538 | 0.43  | 341423        | 98.9      | 60          | 120         | 1       |
| Ge      | 74  | 1         | 49510  | 0.45  | 49061         | 100.9     | 60          | 120         |         |
| Kr      | 83  | 1         | 13     | 43.29 | 17            | 80.0      | 1           | 1000        |         |
| In      | 115 | 1         | 278576 | 0.18  | 289859        | 96.1      | 60          | 120         |         |
| Tb      | 159 | 1         | 757048 | 0.54  | 771893        | 98.1      | 60          | 120         | 1       |
| Bi      | 209 | 1         | 561613 | 0.82  | 586911        | 95.7      | 60          | 120         |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

# Initial Calibration Verification (ICV) - US EPA Method 6020

Sample Name

ICV 1123499

Data File Name

008\_ICV.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:24:42-04:00

Type VialNumber 6-ICV

Dilution

1201

Comment

MP

Operator ISTDRefDataFileName

003CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | Units | ExpectedValue | %Recovery | %QC Low | %QC High | QC Flag                                          |
|---------|-----|------|-----------|------------|-------|---------------|-----------|---------|----------|--------------------------------------------------|
| Pb      | 208 | 209  | 1         | 39.75      | ug/l  | 40            | 99.4      | 90      | 110      |                                                  |
| TI      | 205 | 209  | 1         | 7.97       | ug/l  | 8             | 99.6      | 90      | 110      |                                                  |
| Ва      | 137 | 159  | 1         | 40.14      | ug/l  | 40            | 100.4     | 90      | 110      | <b></b>                                          |
| Sb      | 121 | 115  | 1         | 39.80      | ug/l  | 40            | 99.5      | 90      | 110      |                                                  |
| Sn      | 118 | 115  | 1         | 39.87      | ug/l  | 40            | 99.7      | 90      | 110      |                                                  |
| Cd      | 111 | 115  | 1         | 39.96      | ug/l  | 40            | 99.9      | 90      | 110      |                                                  |
| Ag      | 107 | 115  | 1         | 40.15      | ug/l  | 40            | 100.4     | 90      | 110      |                                                  |
| Mo      | 95  | 115  | 1         | 39.90      | ug/l  | 40            | 99.7      | 90      | 110      |                                                  |
| Sr      | 88  | 115  | 1         | 39.56      | ug/l  | 40            | 98.9      | 90      | 110      | <del>                                     </del> |
| Se      | 78  | 74   | 1         | 40.02      | ug/l  | 40            | 100.0     | 90      | 110      |                                                  |
| As      | 75  | 74   | 1         | 40.24      | ug/l  | 40            | 100.6     | 90      | 110      |                                                  |
| Zn      | 66  | 45   | 1         | 39.80      | ug/l  | 40            | 99.5      | 90      | 110      |                                                  |
| Cu      | 63  | 45   | 1         | 40.04      | ug/l  | 40            | 100.1     | 90      | 110      |                                                  |
| Ni      | 60  | 45   | 1         | 40.12      | ug/l  | 40            | 100.3     | 90      | 110      |                                                  |
| Co      | 59  | 45   | 1         | 40.19      | ug/l  | 40            | 100.5     | 90      | 110      |                                                  |
| Fe      | 56  | 45   | 1         | 4018.00    | ug/l  | 4000          | 100.4     | 90      | 110      | ,                                                |
| Mn      | 55  | 45   | 1         | 403.90     | ug/l  | 400           | 101.0     | 90      | 110      |                                                  |
| Cr      | 52  | 45   | 1         | 40.32      | ug/l  | 40            | 100.8     | 90      | 110      |                                                  |
| V       | 51  | 45   | 1         | 39.84      | ug/l  | 40            | 99.6      | 90      | 110      |                                                  |
| Ti      | 47  | 45   | 1         | 39.21      | ug/l  | 40            | 98.0      | 90      | 110      |                                                  |
| Ca      | 44  | 6    | 1         | 4031.83    | ug/l  | 4000          | 100.8     | 90      | 110      |                                                  |
| K       | 39  | 45   | 1         | 3898.76    | ug/l  | 4000          | 97.5      | 90      | 110      |                                                  |
| Al      | 27  | 45   | 1         | 402.00     | ug/l  | 400           | 100.5     | 90      | 110      |                                                  |
| Mg      | 24  | 45   | 1         | 4060.17    | ug/l  | 4000          | 101.5     | 90      | 110      |                                                  |
| Na      | 23  | 45   | 1         | 3993.63    | ug/l  | 4000          | 99.8      | 90      | 110      |                                                  |
| В       | 11  | 6    | 1         | 82.49      | ug/l  | 80            | 103.1     | 90      | 110      |                                                  |
| Be      | 9   | 6    | 1         | 40.51      | ug/l  | 40            | 101.3     | 90      | 110      |                                                  |

| Element | m/z | Tune Step  | CPS    | %RSD  | Reference CPS | 0/ Passara |             |             | 1 = = =                                          |
|---------|-----|------------|--------|-------|---------------|------------|-------------|-------------|--------------------------------------------------|
|         |     | · une occp |        | 70135 | Reference CPS | %Recovery  | Lower Limit | Upper Limit | QC Flag                                          |
| Bi      | 209 | 1          | 575594 | 0.33  | 586911        | 98.1       | 60          | 120         |                                                  |
| Tb      | 159 | 1          | 765875 | 0.27  | 771893        | 99.2       | 60          | 120         | <del> </del>                                     |
| In      | 115 | 1          | 283966 | 0.27  | 289859        | 98.0       | 60          | 120         |                                                  |
| Kr      | 83  | 1          | 19     | 44.42 | 17            | 113.3      | 1           | 1000        | <del>                                     </del> |
| Ge      | 74  | 1          | 49512  | 0.56  | 49061         | 100.9      | 60          | 120         | 1                                                |
| Sc      | 45  | 1          | 339828 | 0.62  | 341423        | 99.5       | 60          | 120         |                                                  |
| Li      | 6   | 1          | 14909  | 1.02  | 15244         | 97.8       | 60          | 120         |                                                  |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

**ICB** 

**Data File Name** 

0096CCB.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:29:17-04:00

Type VialNumber

6-CCB

Dilution

1302 1

Comment Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD     | Units | CPS       | CPS%RSD | QC High | QC Flag                                          |
|---------|-----|------|-----------|------------|----------|-------|-----------|---------|---------|--------------------------------------------------|
| Be      | 9   | 6    | 1         | 0.04       | 45.92    | ug/l  | 5.00      | 33.40   | 0.2     | 1                                                |
| В       | 11  | 6    | 1         | 1.58       | 50.98    | ug/i  | 63.33     | 39.74   | 20      | 1                                                |
| Na      | 23  | 45   | 1         | -8.19      | -16.59   | ug/l  | 435134.25 | 0.23    | 50      | $\overline{}$                                    |
| Mg      | 24  | 45   | 1         | 0.15       | 28.27    | ug/l  | 219.45    | 8.47    | 50      | <b></b>                                          |
| Al      | 27  | 45   | 1         | -0.05      | -74.49   | ug/l  | 82.78     | 11.09   | 10      | <b>†</b>                                         |
| K       | 39  | 45   | 1         | -14.12     | -8.11    | ug/l  | 172752.70 | 0.33    | 50      | $\overline{}$                                    |
| Ca      | 44  | 6    | 1         | -7.85      | -5.43    | ug/l  | 2106.29   | 1.82    | 50      | <del>                                     </del> |
| Tì      | 47  | 45   | 1         | 0.15       | 9.66     | ug/l  | 4.44      | 43.40   | 1       |                                                  |
| V       | 51  | 45   | 1         | 0.01       | 140.50   | ug/l  | 180.01    | 15.82   | 1       | <del>                                     </del> |
| Cr      | 52  | 45   | 1         | -0.02      | -72.56   | ug/l  | 5403.31   | 0.96    | 1       |                                                  |
| Mn      | 55  | 45   | 1         | 0.03       | 24.13    | ug/l  | 374.46    | 4.57    | 2       | † — —                                            |
| Fe      | 56  | 45   | 1         | 0.07       | 20.86    | ug/l  | 4235.07   | 1.16    | 30      |                                                  |
| Co      | 59  | 45   | 1         | 0.00       | 188.41   | ug/l  | 92.22     | 33.39   | 1       |                                                  |
| Ni      | 60  | 45   | 1         | -0.07      | -13.87   | ug/l  | 378.91    | 3.97    | 1       | t                                                |
| Cu      | 63  | 45   | 1         | 0.00       | -646.46  | ug/i  | 2322.47   | 4.10    | 1       | <b>†</b>                                         |
| Zn      | 66  | 45   | 1         | -0.04      | -35.87   | ug/l  | 131.12    | 7.77    | 4       |                                                  |
| As      | 75  | 74   | 1         | 0.00       | -1092.16 | ug/l  | 33.33     | 32.78   | 0.5     | <del>                                     </del> |
| Se      | 78  | 74   | 1         | 0.07       | 358.78   | ug/l  | 59.44     | 16.90   | 0.5     |                                                  |
| Sr      | 88  | 115  | 1         | 0.00       | 134.61   | ug/l  | 31.11     | 62.79   | 1       |                                                  |
| Mo      | 95  | 115  | 1         | 0.04       | 24.99    | ug/l  | 105.56    | 17.96   | 1       |                                                  |
| Ag      | 107 | 115  | 1         | 0.00       | 32.22    | ug/l  | 48.89     | 19.69   | 1       |                                                  |
| Cd      | 111 | 115  | 1         | 0.00       | -4187.28 | ug/l  | 3.33      | 173.21  | 0.5     |                                                  |
| Sn      | 118 | 115  | 1         | 0.05       | 23.13    | ug/l  | 173.34    | 12.61   | 4       |                                                  |
| Sb      | 121 | 115  | 1         | 0.02       | 24.98    | ug/l  | 77.78     | 17.84   | 0.5     |                                                  |
| Ba      | 137 | 159  | 1         | 0.00       | -259.09  | ug/l  | 15.56     | 49.47   | 1       |                                                  |
| П       | 205 | 209  | 1         | 0.01       | 33.56    | ug/l  | 214.45    | 28.51   | 0.2     |                                                  |
| Pb      | 208 | 209  | 1         | 0.00       | 91.48    | ug/l  | 292.23    | 10.60   | 0.3     |                                                  |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 15320  | 1.94  | 15244   | 100.5 | 60     | 120     |         |
| Sc      | 45  | 1         | 344521 | 0.04  | 341423  | 100.9 | 60     | 120     |         |
| Ge      | 74  | 1         | 49669  | 0.53  | 49061   | 101.2 | 60     | 120     |         |
| Kr      | 83  | 1         | 14     | 70.51 | 17      | 86.7  | 1      | 1000    |         |
| In      | 115 | 1         | 290777 | 0.20  | 289859  | 100.3 | 60     | 120     |         |
| Тb      | 159 | 1         | 779400 | 0.62  | 771893  | 101.0 | 60     | 120     | 1       |
| Bi      | 209 | 1         | 589032 | 1.02  | 586911  | 100.4 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

### Quality Control Sample (QCS) - US EPA Method 200.8

Sample Name

RepLim 1187187

**Data File Name** 

010QCSR.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:34:03-04:00

Type

2-QCS

VialNumber

1102

Dilution Comment 1

Operator

MP

ISTDRefDataFileName

003CALB.D

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | Units | ExpectedValue | %Recovery | %QC Low | %QC High | QC Flag                                          |
|---------|-----|------|-----------|------------|-------|---------------|-----------|---------|----------|--------------------------------------------------|
| Pb      | 208 | 209  | 1         | 0.31       | ug/l  | 0.3           | 103.2     | 50      | 150      | 20.109                                           |
| TI      | 205 | 209  | 1         | 0.20       | ug/l  | 0.2           | 102.0     | 50      | 150      | <del>                                     </del> |
| Ba      | 137 | 159  | 1         | 1.02       | ug/l  | 1             | 102.4     | 50      | 150      | <del> </del>                                     |
| Sb      | 121 | 115  | 1         | 0.50       | ug/l  | 0.5           | 99.0      | 50      | 150      |                                                  |
| Sn      | 118 | 115  | 1         | 3.91       | ug/l  | 4             | 97.9      | 50      | 150      |                                                  |
| Cd      | 111 | 115  | 1         | 0.50       | ug/l  | 0.5           | 100.8     | 50      | 150      | <del></del>                                      |
| Ag      | 107 | 115  | 1         | 1.01       | ug/l  | 1             | 101.5     | 50      | 150      |                                                  |
| Mo      | 95  | 115  | 1         | 0.95       | ug/l  | 1             | 95.3      | 50      | 150      |                                                  |
| Sr      | 88  | 115  | 1         | 1.01       | ug/l  | 1             | 100.8     | 50      | 150      |                                                  |
| Se      | 78  | 74   | 1         | 0.36       | ug/l  | 0.5           | 71.8      | 50      | 150      |                                                  |
| As      | 75  | 74   | 1         | 0.48       | ug/l  | 0.5           | 96.7      | 50      | 150      |                                                  |
| Zn      | 66  | 45   | 1         | 4.26       | ug/l  | 4             | 106.4     | 50      | 150      |                                                  |
| Cu      | 63  | 45   | 1         | 1.00       | ug/l  | 1             | 99.6      | 50      | 150      |                                                  |
| Ni      | 60  | 45   | 1         | 1.06       | ug/l  | 1             | 105.7     | 50      | 150      |                                                  |
| Co      | 59  | 45   | 1         | 1.04       | ug/l  | 1             | 104.2     | 50      | 150      |                                                  |
| Fe      | 56  | 45   | 1         | 32.87      | ug/I  | 30            | 109.6     | 50      | 150      |                                                  |
| Mn      | 55  | 45   | 1         | 2.06       | ug/l  | 2             | 103.2     | 50      | 150      |                                                  |
| Cr      | 52  | 45   | 1         | 1.04       | ug/l  | 1             | 103.7     | 50      | 150      |                                                  |
| V       | 51  | 45   | 1         | 1.00       | ug/l  | 1             | 100.1     | 50      | 150      |                                                  |
| Ti      | 47  | 45   | 1         | 1.17       | ug/l  | 1             | 117.2     | 50      | 150      |                                                  |
| Ca      | 44  | 6    | 1         | 46.81      | ug/l  | 50            | 93.6      | 50      | 150      |                                                  |
| K       | 39  | 45   | 1         | 45.42      | ug/l  | 50            | 90.8      | 50      | 150      |                                                  |
| Al      | 27  | 45   | 1         | 11.14      | ug/l  | 10            | 111.4     | 50      | 150      |                                                  |
| Mg      | 24  | 45   | 1         | 51.88      | ug/l  | 50            | 103.8     | 50      | 150      |                                                  |
| Na      | 23  | 45   | 1         | 50.75      | ug/l  | 50            | 101.5     | 50      | 150      |                                                  |
| В       | 11  | 6    | 1         | 22.17      | ug/l  | 20            | 110.9     | 50      | 150      |                                                  |
| Be      | 9   | 6    | 1         | 0.14       | ug/l  | 0.2           | 68.8      | 50      | 150      |                                                  |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limiy | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 582705 | 0.38  | 586911        | 99.3      | 60          | 120         | 1                                                |
| Tb      | 159 | 1         | 768615 | 0.95  | 771893        | 99.6      | 60          | 120         |                                                  |
| In      | 115 | 1         | 288794 | 0.71  | 289859        | 99.6      | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 18     | 39.03 | 17            | 106.7     | 1           | 1000        | 1                                                |
| Ge      | 74  | 1         | 49711  | 0.35  | 49061         | 101.3     | 60          | 120         | <del>                                     </del> |
| Sc      | 45  | 1         | 342848 | 0.16  | 341423        | 100.4     | 60          | 120         | 1                                                |
| Li      | 6   | 1         | 14906  | 2.22  | 15244         | 97.8      | 60          | 120         | <b>-</b>                                         |

Sample Name

ICSA 1187215

**Data File Name** 

011SMPL.D

DataPath

**Acq Date Time** 

2011-10-06T19:38:47-04:00

**Type** 

Sample

VialNumber

1202

Dilution Comment 1

Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Fail

ISTD PassFail

**Pass** 

#### **QC Analyte Table**

| Element    | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|------------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb         | 208 | 209  | 1         | 0.07       | 0.07               | ug/l  | 3600       |         |
| П          | 205 | 209  | 1         | 0.01       | 0.01               | ug/l  | 720        |         |
| Ba         | 137 | 159  | 1         | 0.16       | 0.16               | ug/l  | 3600       |         |
| Sb         | 121 | 115  | 1         | 0.38       | 0.38               | ug/l  | 3600       |         |
| Sn         | 118 | 115  | 1         | 0.12       | 0.12               | ug/l  | 3600       |         |
| Cd         | 111 | 115  | 1         | 0.27       | 0.27               | ug/l  | 1800       |         |
| <b>A</b> g | 107 | 115  | 1         | 0.16       | 0.16               | ug/l  | 180        |         |
| Мо         | 95  | 115  | 1         | 1041.64    | 1041.64            | ug/l  | 3600       |         |
| Sr         | 88  | 115  | 1         | 6.97       | 6.97               | ug/l  | 3600       |         |
| Se         | 78  | 74   | 1         | 0.29       | 0.29               | ug/l  | 450        |         |
| As         | 75  | 74   | 1         | 0.17       | 0.17               | ug/l  | 1800       |         |
| Zn         | 66  | 45   | 1         | 1.47       | 1.47               | ug/l  | 450        |         |
| Cu         | 63  | 45   | 1         | 0.65       | 0.65               | ug/l  | 450        |         |
| Ni         | 60  | 45   | 1         | 1.53       | 1.53               | ug/l  | 900        |         |
| Со         | 59  | 45   | 1         | 1.85       | 1.85               | ug/l  | 450        |         |
| Fe         | 56  | 45   | 1         | 121306.59  | 121306.59          | ug/l  | 180000     |         |
| Mn         | 55  | 45   | 1         | 2.55       | 2.55               | ug/l  | 9000       |         |
| Cr         | 52  | 45   | 1         | 2.65       | 2.65               | ug/l  | 900        |         |
| ٧          | 51  | 45   | 1         | 0.20       | 0.20               | ug/l  | 3600       |         |
| Π          | 47  | 45   | 1         | 1031.50    | 1031.50            | ug/l  | 3600       |         |
| Ca         | 44  | 6    | 1         | 136837.49  | 136837.49          | ug/l  | 90000      | fail    |
| K          | 39  | 45   | 1         | 48307.57   | 48307.57           | ug/l  | 360000     |         |
| Al         | 27  | 45   | 1         | 48064.21   | 48064.21           | ug/l  | 36000      | fail    |
| Mg         | 24  | 45   | 1         | 49266.42   | 49266.42           | ug/l  | 180000     |         |
| Na         | 23  | 45   | 1         | 124923.71  | 124923.71          | ug/l  | 360000     |         |
| В          | 11  | 6    | 1         | 1.80       | 1.80               | ug/l  | 7200       |         |
| Be         | 9   | 6    | 1         | -0.01      | -0.01              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 509169 | 0.18  | 586911        | 86.8      | 60          | 120         |         |
| Tb      | 159 | 1         | 724754 | 0.47  | 771893        | 93.9      | 60          | 120         |         |
| In      | 115 | 1         | 259379 | 0.48  | 289859        | 89.5      | 60          | 120         |         |
| Kr      | 83  | 1         | 29     | 37.08 | 17            | 173.3     | 1           | 1000        |         |
| Ge      | 74  | 1         | 46973  | 0.91  | 49061         | 95.7      | 60          | 120         |         |
| Sc      | 45  | 1         | 322245 | 0.76  | 341423        | 94.4      | 60          | 120         |         |
| Li      | 6   | 1         | 13050  | 1.21  | 15244         | 85.6      | 60          | 120         |         |

Sample Name

ICSAB 1187217

**Data File Name** 

012SMPL.D

DataPath

 $C:\label{local_condition} C:\label{local_condition} C:\label{local_c$ 

**Acq Date Time** 

2011-10-06T19:43:20-04:00

Type VialNumber

Sample

Dilution

1203 1

Comment

Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

Fail

**ISTD PassFail** 

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag  |
|---------|-----|------|-----------|------------|--------------------|-------|------------|----------|
| Pb      | 208 | 209  | 1         | 0.08       | 0.08               | ug/l  | 3600       | <u> </u> |
| П       | 205 | 209  | 1         | 0.01       | 0.01               | ug/l  | 720        |          |
| Ba      | 137 | 159  | 1         | 0.19       | 0.19               | ug/l  | 3600       |          |
| Sb      | 121 | 115  | 1         | 0.41       | 0.41               | ug/l  | 3600       |          |
| Sn      | 118 | 115  | 1         | 0.11       | 0.11               | ug/l  | 3600       |          |
| Cd      | 111 | 115  | 1         | 95.97      | 95.97              | ug/l  | 1800       |          |
| Ag      | 107 | 115  | 1         | 186.33     | 186.33             | ug/l  | 180        | fail     |
| Мо      | 95  | 115  | 1         | 1025.52    | 1025.52            | ug/l  | 3600       | l        |
| Sr      | 88  | 115  | 1         | 6.92       | 6.92               | ug/l  | 3600       |          |
| Se      | 78  | 74   | 1         | 93.24      | 93.24              | ug/l  | 450        |          |
| As      | 75  | 74   | 1         | 97.79      | 97.79              | ug/l  | 1800       |          |
| Zn      | 66  | 45   | 1         | 92.36      | 92.36              | ug/l  | 450        |          |
| Cu      | 63  | 45   | 1         | 181.11     | 181.11             | ug/l  | 450        |          |
| Ni      | 60  | 45   | 1         | 184.64     | 184.64             | ug/l  | 900        |          |
| Co      | 59  | 45   | 1         | 196.56     | 196.56             | ug/l  | 450        |          |
| Fe      | 56  | 45   | 1         | 117652.87  | 117652.87          | ug/l  | 180000     |          |
| Mn      | 55  | 45   | 1         | 189.46     | 189.46             | ug/l  | 9000       |          |
| Cr      | 52  | 45   | 1         | 189.18     | 189.18             | ug/l  | 900        |          |
| V       | 51  | 45   | 1         | 196.05     | 196.05             | ug/l  | 3600       |          |
| Ti      | 47  | 45   | 1         | 1007.54    | 1007.54            | ug/l  | 3600       |          |
| Ca      | 44  | 6    | 1         | 139309.93  | 139309.93          | ug/l  | 90000      | fail     |
| K       | 39  | 45   | 1         | 47151.98   | 47151.98           | ug/l  | 360000     |          |
| Al      | 27  | 45   | 1         | 46772.36   | 46772.36           | ug/l  | 36000      | fail     |
| Mg      | 24  | 45   | 1         | 48157.75   | 48157.75           | ug/l  | 180000     |          |
| Na      | 23  | 45   | 1         | 123280.31  | 123280.31          | ug/l  | 360000     |          |
| В       | 11  | 6    | 1         | 1.52       | 1.52               | ug/l  | 7200       |          |
| Be      | 9   | 6    | 1         | -0.01      | -0.01              | ug/l  | 3600       |          |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 522792 | 0.38  | 586911        | 89.1      | 60          | 120         | 1       |
| Tb      | 159 | 1         | 744172 | 0.34  | 771893        | 96.4      | 60          | 120         | +       |
| In      | 115 | 1         | 268319 | 0.22  | 289859        | 92.6      | 60          | 120         | -       |
| Kr      | 83  | 1         | 21     | 24.12 | 17            | 126.7     | 1           | 1000        |         |
| Ge      | 74  | 1         | 48929  | 0.55  | 49061         | 99.7      | 60          | 120         | 1       |
| Sc      | 45  | 1         | 336621 | 0.42  | 341423        | 98.6      | 60          | 120         |         |
| Li      | 6   | 1         | 13023  | 1.26  | 15244         | 85.4      | 60          | 120         |         |



Sample Name

Rn chk

Data File Name

013SMPL.D

DataPath

**Acq Date Time** 

2011-10-06T19:47:54-04:00

Type VialNumber Sample

1

Dilution

1

Comment Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.01               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.00               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 0.03       | 0.03               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.01               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.02               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 0.02               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 0.02               | ug/I  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.24       | 0.24               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.04       | 0.04               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.28       | 0.28               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.00       | 0.00               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 0.02       | 0.02               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.04       | 0.04               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.19      | -0.19              | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.02       | 0.02               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 18.92      | 18.92              | ug/l  | 180000     | -       |
| Mn      | 55  | 45   | 1         | 0.17       | 0.17               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.06       | 0.06               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.01       | 0.01               | ug/I  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.25       | 0.25               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 18.49      | 18.49              | ug/I  | 90000      |         |
| K       | 39  | 45   | 1         | 16.48      | 16.48              | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 6.80       | 6.80               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 9.78       | 9.78               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 71.29      | 71.29              | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 1.18       | 1.18               | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.02       | 0.02               | ug/i  | 3600       |         |

| Element | m/z | Tune Step | CPS                 | %RSD  | Reference CPS | %Recovery   | Lower Limit |             | 1                                                |
|---------|-----|-----------|---------------------|-------|---------------|-------------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 577160              | 0.17  |               | <del></del> |             | Upper Limit | QC Flag                                          |
|         |     |           |                     | 0.17  | 586911        | 98.3        | 60          | 120         | 1                                                |
| Tb      | 159 | 1         | 762524              | 0.47  | 771893        | 98.8        | 60          | 120         | <del>                                     </del> |
| In      | 115 | 1         | 287566              | 0.42  | 289859        | 99.2        | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 20                  | 28.87 | 17            | 120.0       | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 49191               | 0.79  |               |             | <u> </u>    | 1000        |                                                  |
|         |     |           |                     | 0.79  | 49061         | 100.3       | 60          | 120         | 1                                                |
| Sc      | 45  | 1         | 3 <del>44</del> 575 | 0.30  | 341423        | 100.9       | 60          | 120         | <b>-</b>                                         |
| Li      | 6   | 1         | 14753               | 1.26  | 15244         | 96.8        | 60          | 120         |                                                  |

Sample Name

Rn chk

Data File Name

014SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:52:40-04:00

Type VialNumber

Sample

Dilution

1

Comment

1

Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

**Pass** 

#### **QC Analyte Table**

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.01               | ug/i  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.00               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 0.03       | 0.03               | ug/i  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 0.02               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.02               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.01               | ug/I  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 0.02               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.12       | 0.12               | ug/I  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.04       | 0.04               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.36       | 0.36               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.01       | 0.01               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 0.02       | 0.02               | ug/i  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.01       | 0.01               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.16      | -0.16              | ug/I  | 900        |         |
| Со      | 59  | 45   | 1         | 0.02       | 0.02               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 9.21       | 9.21               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.17       | 0.17               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | -0.05      | -0.05              | ug/I  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.04       | 0.04               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.20       | 0.20               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | -6.99      | -6.99              | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | -20.55     | -20.55             | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 3.09       | 3.09               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 5.79       | 5.79               | ug/i  | 180000     |         |
| Na      | 23  | 45   | 1         | 8.55       | 8.55               | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.27       | 0.27               | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.01       | 0.01               | ug/l  | 3600       |         |

#### **OC ISTD Table**

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery  | 1           |             | T = = =      |
|---------|-----|-----------|--------|-------|---------------|------------|-------------|-------------|--------------|
| D:      | 300 |           |        |       | Kererence CF3 | 70Recovery | Lower Limit | Upper Limit | QC Flag      |
| Bi      | 209 | 1         | 611393 | 0.78  | 586911        | 104.2      | 60          | 120         |              |
| Tb      | 159 | 1         | 804851 | 0.61  | 771893        | 104.3      | 60          | 120         | <b>-</b>     |
| In      | 115 | 1         | 300541 | 0.39  | 289859        | 103,7      | 60          | 120         | +            |
| Kr      | 83  | 1         | 12     | 31.50 | 17            | 73.3       | 1           | 1000        | <del></del>  |
| Ge      | 74  | 1         | 51600  | 0.33  | 49061         | 105.2      | 60          | 120         |              |
| Sc      | 45  | 1         | 358979 | 0.36  | 341423        | 105.1      | 60          | 120         |              |
| Li      | 6   | 1         | 15923  | 1.68  | 15244         | 104.5      | 60          | 120         | <del> </del> |

Page 1 of 1 Page 123 of 332

# Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

Data File Name

0156CCV.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T19:57:24-04:00

Type VialNumber

6-CCV

Dilution

1301

Comment

Operator

ΜP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | OC High | QC Flag      |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|--------------|
| Be      | 9   | 6    | 1         | 49.77      | 2.74 | ug/l  | 5050.85     | 2.41    | 50        | 99.5  | 90     | 110     | QC FIAG      |
| В       | 11  | 6    | 1         | 100.82     | 2.45 | ug/i  | 3244.87     | 2.43    | 100       | 100.8 | 90     | 110     | +            |
| Na      | 23  | 45   | 1         | 5045.31    | 0.56 | ug/l  | 4943551.59  | 0.08    | 5000      | 100.9 | 90     |         | +            |
| Mg      | 24  | 45   | 1         | 5118.32    | 0.68 | ug/l  | 2404686.49  | 0.27    | 5000      | 100.9 | 90     | 110     | <del> </del> |
| Al      | 27  | 45   | 1         | 504.73     | 1.08 | ug/l  | 117030.21   | 0.65    | 500       | 100.9 | 90     |         | -            |
| K       | 39  | 45   | 1         | 4908.38    | 1.05 | ug/l  | 2406505.50  | 1.26    | 5000      | 98.2  | 90     | 110     | -            |
| Ca      | 44  | 6    | 1         | 5058.30    | 0.33 | ug/l  | 118198.65   | 0.73    | 5000      | 101.2 | 90     | 110     | ļ            |
| П       | 47  | 45   | 1         | 49.74      | 3.47 | ug/l  | 6947.27     | 3.05    | 50        | 99.5  | 90     | 110     |              |
| ٧       | 51  | 45   | 1         | 50.21      | 0.73 | ug/l  | 187072.67   | 0.72    | 50        | 100.4 | 90     | 110     | <u> </u>     |
| Cr      | 52  | 45   | 1         | 50.03      | 0.37 | ug/l  | 227646.90   | 0.07    | 50        | 100.4 | 90     | 110     | <u> </u>     |
| Mn      | 55  | 45   | 1         | 501.57     | 0.92 | ug/l  | 1367491.77  | 0.51    | 500       | 100.1 |        | 110     | <u> </u>     |
| Fe      | 56  | 45   | 1         | 4978.40    | 0.56 | ug/l  | 17061176.55 | 0.13    | 5000      |       | 90     | 110     | <u> </u>     |
| Со      | 59  | 45   | 1         | 49.92      | 1.08 | ug/l  | 319500.51   | 0.13    | 5000      | 99.6  | 90     | 110     | ļ            |
| Ni      | 60  | 45   | 1         | 50.15      | 1.17 | ug/l  | 86572.92    | 1.10    | 50        | 99.8  | 90     | 110     |              |
| Cu      | 63  | 45   | 1         | 49.76      | 1.00 | ug/i  | 228766.97   | 1.19    | 50        | 100.3 | 90     | 110     |              |
| Zn      | 66  | 45   | 1         | 48.90      | 1.78 | ug/i  | 38155.86    | 1.64    |           | 99.5  | 90     | 110     |              |
| As      | 75  | 74   | 1         | 49,39      | 0.55 | ug/l  | 29107.78    | 1.04    | 50        | 97.8  | 90     | 110     |              |
| Se      | 78  | 74   | 1         | 49.53      | 1.14 | ug/I  | 2102.95     | 1.73    | 50        | 98.8  | 90     | 110     |              |
| Sr      | 88  | 115  | 1         | 49.92      | 0.56 | ug/l  | 159336.61   | 0.03    | 50        | 99.1  | 90     | 110     |              |
| Мо      | 95  | 115  | 1         | 50.45      | 1.40 | ug/I  | 102126.37   | 0.03    | 50        | 99.8  | 90     | 110     |              |
| Ag      | 107 | 115  | 1         | 50.72      | 1.08 | ug/l  | 314996.32   |         | 50        | 100.9 | 90     | 110     |              |
| Cd      | 111 | 115  | 1         | 50.70      | 0.75 | ug/l  | 47909.34    | 0.61    | 50        | 101.4 | 90     | 110     |              |
| Sn      | 118 | 115  | 1         | 50.61      | 1.02 | ug/I  |             | 0.79    | 50        | 101.4 | 90     | 110     |              |
| Sb      | 121 | 115  | 1         | 49.89      | 0.77 | _     | 107550.23   | 0.58    | 50        | 101.2 | 90     | 110     |              |
| Ba      | 137 | 159  | 1         | 49.68      | 0.77 | ug/l  | 149348.06   | 0.60    | 50        | 99.8  | 90     | 110     |              |
| П       | 205 | 209  | 1         | 10.05      | 1.31 | ug/l  | 51265.19    | 0.16    | 50        | 99.4  | 90     | 110     |              |
| Pb      | 208 | 209  | 1         | 49.99      | 0.97 | ug/l  | 137702.61   | 1.70    | 10        | 100.5 | 90     | 110     |              |
|         |     |      |           | לע.כד      | 0.9/ | ug/l  | 909144.18   | 1.32    | 50        | 100.0 | 90     | 110     |              |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag        |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|----------------|
| Li      | 6   | 1         | 15689  | 0.41  | 15244   | 102.9 | 60     | 120     | 20.109         |
| Sc      | 45  | 1         | 356872 | 0.43  | 341423  | 104.5 | 60     | 120     | <del> </del> - |
| Ge      | 74  | 1         | 50886  | 0.74  | 49061   | 103.7 | 60     | 120     | +              |
| Kr      | 83  | 1         | 12     | 56.76 | 17      | 73.3  | 1      | 1000    |                |
| In      | 115 | 1         | 294154 | 0.54  | 289859  | 101.5 | 60     | 120     | <del> </del>   |
| Tb      | 159 | 1         | 802167 | 0.24  | 771893  | 103.9 | 60     | 120     | <del> </del>   |
| Bi      | 209 | 1         | 599775 | 0.41  | 586911  | 102.2 | 60     | 120     | <del> </del>   |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |



# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

Data File Name

0166CCB.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:02:00-04:00

Type

6-CCB

VialNumber Dilution

1302 1

Comment

\_

Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag   |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|-----------|
| Be      | 9   | 6    | 1         | 0.00       | 2.61    | ug/l  | 1.67      | 0.00    | 0.2     |           |
| В       | 11  | 6    | 1         | 0.94       | 32.86   | ug/l  | 42.22     | 22.78   | 20      |           |
| Na      | 23  | 45   | 1         | 14.49      | 22.79   | ug/l  | 455984.32 | 0.32    | 50      |           |
| Mg      | 24  | 45   | 1         | 0.54       | 6.78    | ug/l  | 398.35    | 4.66    | 50      |           |
| Al      | 27  | 45   | 1         | 0.16       | 4.81    | ug/l  | 131.12    | 1.94    | 10      |           |
| K       | 39  | 45   | 1         | -1.58      | -237.41 | ug/l  | 178767.33 | 0.46    | 50      | 1         |
| Ca      | 44  | 6    | 1         | -7.31      | -52.73  | ug/l  | 2053.50   | 4.15    | 50      |           |
| Ti      | 47  | 45   | 1         | 0.12       | 11.47   | ug/l  | 1.11      | 173.21  | 1       |           |
| ٧       | 51  | 45   | 1         | 0.01       | 132.87  | ug/l  | 180.01    | 13.98   | 1       |           |
| Cr      | 52  | 45   | 1         | 0.01       | 609.55  | ug/l  | 5534.47   | 4.56    | 1       |           |
| Mn      | 55  | 45   | 1         | 0.00       | -500.11 | ug/l  | 292.24    | 20.79   | 2       |           |
| Fe      | 56  | 45   | 1         | 0.60       | 6.16    | ug/l  | 5998.44   | 2.15    | 30      |           |
| Co      | 59  | 45   | 1         | 0.00       | 33.41   | ug/l  | 91.11     | 5.59    | 1       |           |
| Ni      | 60  | 45   | 1         | -0.16      | -6.70   | ug/l  | 228.90    | 7.18    | 1       |           |
| Cu      | 63  | 45   | 1         | 0.01       | 575.12  | ug/l  | 2366.92   | 5.31    | 1       |           |
| Zn      | 66  | 45   | 1         | -0.05      | -20.30  | ug/l  | 124.45    | 5.57    | 4       |           |
| As      | 75  | 74   | 1         | -0.01      | -75.89  | ug/l  | 27.22     | 19.68   | 0.5     |           |
| Se      | 78  | 74   | 1         | -0.11      | -88.40  | ug/l  | 52.22     | 7.37    | 0.5     |           |
| Sr      | 88  | 115  | 1         | 0.00       | 111.72  | ug/l  | 21.11     | 24.12   | 1       | · · · · · |
| Мо      | 95  | 115  | 1         | 0.04       | 32.37   | ug/l  | 108.89    | 22.98   | 1       |           |
| Ag      | 107 | 115  | 1         | 0.00       | 55.82   | ug/l  | 40.00     | 28.88   | 1       |           |
| Cd      | 111 | 115  | 1         | 0.01       | 126.88  | ug/l  | 8.89      | 78.08   | 0.5     |           |
| Sn      | 118 | 115  | 1         | 0.03       | 61.61   | ug/l  | 137.78    | 26.54   | 4       |           |
| Sb      | 121 | 115  | 1         | 0.01       | 104.17  | ug/l  | 48.89     | 56.77   | 0.5     |           |
| Ва      | 137 | 159  | 1         | -0.01      | -28.27  | ug/l  | 6.67      | 50.03   | 1       |           |
| П       | 205 | 209  | 1         | 0.01       | 8.65    | ug/l  | 213.34    | 7.16    | 0.2     |           |
| Pb      | 208 | 209  | 1         | 0.00       | 112.89  | ug/l  | 290.01    | 12.43   | 0.3     |           |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 14850  | 0.58  | 15244   | 97.4  | 60     | 120     | -       |
| Sc      | 45  | 1         | 345578 | 0.70  | 341423  | 101.2 | 60     | 120     | 1       |
| Ge      | 74  | 1         | 49691  | 0.14  | 49061   | 101.3 | 60     | 120     |         |
| Kr      | 83  | 1         | 14     | 35.26 | 17      | 86.7  | 1      | 1000    |         |
| In      | 115 | 1         | 289367 | 0.58  | 289859  | 99.8  | 60     | 120     |         |
| Tb      | 159 | 1         | 769854 | 0.44  | 771893  | 99.7  | 60     | 120     |         |
| Bi      | 209 | 1         | 583009 | 0.69  | 586911  | 99.3  | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

460-32013-e-8-a@5

Data File Name

017SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:06:45-04:00

Type VialNumber

Sample 2111

Dilution

5

Comment

MP

Operator

ISTDRefDataFileName SamplePassFail

003CALB.D

Pass

ISTD PassFail

**Pass** 

#### **QC Analyte Table**

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.20       | 1.02               | ug/l  | 3600       |         |
| . П     | 205 | 209  | 1         | 0.01       | 0.05               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 14.76      | 73.79              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.09       | 0.45               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.07       | 0.36               | ug/l  | - 3600     |         |
| Cd      | 111 | 115  | 1         | 0.40       | 2.00               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 0.04               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.21       | 1.06               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 65.44      | 327.20             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.94       | 4.72               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.13       | 0.67               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 106.33     | 531.66             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 1.76       | 8.79               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 51.62      | 258.09             | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.28       | 1.42               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 198.61     | 993.05             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 100.66     | 503.29             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 1.74       | 8.69               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.59       | 2.97               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 5.81       | 29.04              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 9110.32    | 45551.61           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1510.16    | 7550.81            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 205.06     | 1025.32            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1088.90    | 5444.52            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 20919.90   | 104599.50          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 30.49      | 152.46             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.02       | 0.11               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 582046 | 0.92  | 586911        | 99.2      | 60          | 120         |         |
| Tb      | 159 | 1         | 775272 | 0.10  | 771893        | 100.4     | 60          | 120         |         |
| In      | 115 | 1         | 287297 | 0.61  | 289859        | 99.1      | 60          | 120         |         |
| Kr      | 83  | 1         | 16     | 12.40 | 17            | 93.3      | 1           | 1000        |         |
| Ge      | 74  | 1         | 50478  | 1.04  | 49061         | 102.9     | 60          | 120         |         |
| Sc      | 45  | 1         | 348320 | 0.42  | 341423        | 102.0     | 60          | 120         |         |
| Li      | 6   | 1         | 14701  | 1.22  | 15244         | 96.4      | 60          | 120         |         |

Sample Name

460-32013-d-9-a@5

Data File Name

018SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:11:28-04:00

Type

Sample

VialNumber

2112

Dilution

5

Comment Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

QC Analyte Table

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 0.06       | 0.32               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.08       | 0.40               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.12               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.04               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.04       | 0.18               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.03      | -0.14              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | -0.01      | -0.04              | ug/i  | 1800       |         |
| Zn      | 66  | 45   | 1         | 7.01       | 35.03              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 1.37       | 6.85               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.22       | 1.10               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.00       | 0.00               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 0.83       | 4.15               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.01       | 0.04               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.10       | 0.51               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.02       | 0.11               | ug/l  | 3600       |         |
| Π       | 47  | 45   | 1         | 0.16       | 0.78               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 3.32       | 16.59              | ug/l  | 90000      |         |
| K       | 39  | 45   | . 1       | 33.04      | 165.19             | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1.21       | 6.05               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1.30       | 6.51               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 55.49      | 277.47             | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 4.63       | 23.13              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.04              | ug/l  | 3600       |         |

**OC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 575821 | 0.95  | 586911        | 98.1      | 60          | 120         | Quillag |
| Tb      | 159 | 1         | 762925 | 0.35  | 771893        | 98.8      | 60          | 120         |         |
| In      | 115 | 1         | 286540 | 0.33  | 289859        | 98.9      | 60          | 120         | 1       |
| Kr      | 83  | 1         | 17     | 52.93 | 17            | 100.0     | 1           | 1000        | 1       |
| Ge      | 74  | 1         | 49696  | 0.35  | 49061         | 101.3     | 60          | 120         | 1       |
| Sc      | 45  | 1         | 341904 | 0.40  | 341423        | 100.1     | 60          | 120         |         |
| Li      | 6   | 1         | 14796  | 0.50  | 15244         | 97.1      | 60          | 120         |         |

Printed at: 8:45 AM on:10/7/2011 10/21/2011

Sample Name

460-31576-d-7-c@5

**Data File Name** 

019SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:16:13-04:00

Type VialNumber Sample 2303

Dilution

5

Comment

MP

Operator ISTDRefDataFileName

SamplePassFail

003CALB.D

ISTD PassFail

Pass **Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| T1      | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 0.02       | 0.11               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 0.08               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.09               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.07               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.03       | 0.17               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.18       | 0.90               | ug/i  | 450        |         |
| As      | 75  | 74   | 1         | 0.00       | -0.02              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.43       | 7.13               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.06       | 0.31               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.10      | -0.49              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.00       | 0.01               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 0.63       | 3.17               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | -0.02      | -0.10              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.02       | 0.10               | ug/l  | 900        |         |
| · V     | 51  | 45   | 1         | 0.02       | 0.08               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.16       | 0.78               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | -3.92      | -19.62             | ug/I  | 90000      |         |
| K       | 39  | 45   | 1         | 5.48       | 27.40              | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 0.70       | 3.51               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 0.63       | 3.15               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 22.71      | 113.53             | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.46       | 2.31               | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.00       | -0.01              | ug/l  | 3600       |         |

**QC ISTD Table** 

| <del></del> |     |           |        |       |               |           |             |             |                                                  |
|-------------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Element     | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
| Bi          | 209 | 1         | 578935 | 0.26  | 586911        | 98.6      | 60          | 120         | 10.00                                            |
| Τb          | 159 | 1         | 769670 | 0.46  | 771893        | 99.7      | 60          | 120         | <del></del>                                      |
| In          | 115 | 1         | 289705 | 0.41  | 289859        | 99.9      | 60          | 120         | <del> </del>                                     |
| Kr          | 83  | 1         | 13     | 25.01 | 17            | 80.0      | 1           | 1000        | +                                                |
| Ge          | 74  | 1         | 49296  | 0.76  | 49061         | 100.5     | 60          | 120         | +                                                |
| Sc          | 45  | 1         | 345402 | 0.73  | 341423        | 101.2     | 60          | 120         | -                                                |
| Li          | 6   | 1         | 14949  | 2.10  | 15244         | 98.1      | 60          | 120         | <del>                                     </del> |



Page 1 of 1 Page 128 of 332

## Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

Data File Name

0206CCV.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J06s00.B 2011-10-06T20:20:57-04:00

Type

6-CCV

VialNumber

Dilution

1301 1

Comment

Operator

MP

**ISTDRefDataFileName** SamplePassFail

003CALB.D

Pass

ISTD PassFail Pass

**QC Analyte Table** 

| Element | m/z  | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag      |
|---------|------|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|--------------|
| Be      | 9    | 6    | 1         | 50.99      | 0.56 | ug/l  | 4914.70     | 0.50    | 50        | 102.0 | 90     | 110     |              |
| В       | 11   | 6    | 1         | 100.70     | 2.16 | ug/l  | 3078.16     | 2.21    | 100       | 100.7 | 90     | 110     |              |
| Na      | 23   | 45   | 1         | 5101.68    | 0.75 | ug/l  | 4762557.39  | 0.68    | 5000      | 102.0 | 90     | 110     |              |
| Mg      | 24   | 45   | 1         | 5095.16    | 0.47 | ug/l  | 2283021.70  | 0.31    | 5000      | 101.9 | 90     | 110     |              |
| Al      | 27   | 45   | 1         | 508.39     | 0.23 | ug/l  | 112423.82   | 0.40    | 500       | 101.7 | 90     | 110     |              |
| K       | 39   | 45   | 1         | 4990.33    | 0.56 | ug/l  | 2330436.17  | 0.58    | 5000      | 99.8  | 90     | 110     | ·            |
| Ca      | 44   | .6   | 1         | 5158.43    | 0.42 | ug/l  | 114434.50   | 0.37    | 5000      | 103.2 | 90     | 110     |              |
| Π       | 47   | 45   | 1         | 49.73      | 1.57 | ug/l  | 6624.92     | 1.67    | 50        | 99.5  | 90     | 110     |              |
| ٧       | 51   | 45   | 1         | 50.83      | 0.15 | ug/i  | 180616.99   | 0.32    | 50        | 101.7 | 90     | 110     | <u> </u>     |
| Cr      | 52   | 45   | 1         | 50.92      | 0.27 | ug/l  | 220902.55   | 0.34    | 50        | 101.8 | 90     | 110     |              |
| Mn      | 55 . | 45   | 1         | 509.16     | 0.89 | ug/l  | 1323931.65  | 0.72    | 500       | 101.8 | 90     | 110     |              |
| Fe      | 56   | 45   | 1         | 5055.42    | 0.26 | ug/l  | 16523262.26 | 0.16    | 5000      | 101.1 | 90     | 110     |              |
| Со      | 59   | 45   | 1         | 50.92      | 0.33 | ug/l  | 310849.00   | 0.50    | 50        | 101.8 | 90     | 110     |              |
| Ni      | 60   | 45   | 1         | 51.09      | 0.83 | ug/l  | 84100.09    | 0.69    | 50        | 102.2 | 90     | 110     | <del> </del> |
| Cu      | 63   | 45   | 1         | 50.31      | 0.07 | ug/l  | 220567.63   | 0.18    | 50        | 100.6 | 90     | 110     |              |
| Zn      | 66   | 45   | 1         | 50.08      | 2.05 | ug/l  | 37264.87    | 2.03    | 50        | 100.2 | 90     | 110     |              |
| As      | 75   | 74   | 1         | 50.31      | 1.53 | ug/l  | 28930.77    | 0.35    | 50        | 100.6 | 90     | 110     |              |
| Se      | 78   | 74   | 1         | 50.58      | 1.53 | ug/l  | 2094.62     | 0.64    | 50        | 101.2 | 90     | 110     | <u> </u>     |
| Sr      | 88   | 115  | 1         | 50.57      | 0.77 | ug/l  | 154158.48   | 0.58    | 50        | 101.1 | 90     | 110     | i            |
| Мо      | 95   | 115  | 1         | 50.78      | 0.43 | ug/l  | 98180.21    | 0.64    | 50        | 101.6 | 90     | 110     |              |
| Ag      | 107  | 115  | 1         | 51.32      | 0.66 | ug/l  | 304407.24   | 0.46    | 50        | 102.6 | 90     | 110     | · · · · · ·  |
| Cd      | 111  | 115  | 1         | 51.28      | 0.82 | ug/l  | 46283.15    | 0.86    | 50        | 102.6 | 90     | 110     |              |
| Sn      | 118  | 115  | 1         | 51.16      | 0.27 | ug/l  | 103826.90   | 0.29    | 50        | 102.3 | 90     | 110     |              |
| Sb      | 121  | 115  | 1         | 50.76      | 0.45 | ug/l  | 145130.13   | 0.43    | 50        | 101.5 | 90     | 110     |              |
| Ва      | 137  | 159  | 1         | 50.70      | 0.16 | ug/l  | 49754.51    | 0.53    | 50        | 101.4 | 90     | 110     | <u> </u>     |
| П       | 205  | 209  | 1         | 10.03      | 0.49 | ug/l  | 131707.46   | 0.13    | 10        | 100.3 | 90     | 110     |              |
| Pb      | 208  | 209  | 1         | 50.47      | 0.70 | ug/I  | 879443.43   | 0.25    | 50        | 100.9 | 90     | 110     | <b></b>      |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag  |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|----------|
| Li      | 6   | 1         | 14901  | 0.06  | 15244   | 97.7  | 60     | 120     | QC Flag  |
| Sc      | 45  | 1         | 340352 | 0.17  | 341423  | 99.7  | 60     | 120     |          |
| Ge      | 74  | 1         | 49664  | 1.17  | 49061   | 101.2 | 60     | 120     | <b>†</b> |
| Kr      | 83  | 1         | 16     | 53.90 | 17      | 93.3  | 1      | 1000    |          |
| In      | 115 | 1         | 280932 | 0.23  | 289859  | 96.9  | 60     | 120     |          |
| Тb      | 159 | 1         | 762893 | 0.53  | 771893  | 98.8  | 60     | 120     |          |
| Bi      | 209 | 1         | 574663 | 0.57  | 586911  | 97.9  | 60     | 120     |          |

| TuneStep | TuneFile   |
|----------|------------|
| 1        | holisam as |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

Data File Name

0216CCB.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:25:32-04:00

Type VialNumber

6-CCB 1302

ViaiNumber Dilution

1

Comment Operator

MΡ

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

QC Analyte Table

| Element | m/z   | ISTD | Tune Step | Meas Value | %RSD      | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-------|------|-----------|------------|-----------|-------|-----------|---------|---------|---------|
| Be      | 9     | 6    | 1         | 0.02       | 167.73    | ug/l  | 2.78      | 91.68   | 0.2     |         |
| В       | 11    | 6    | 1         | 1.12       | 9.04      | ug/l  | 46.67     | 7.15    | 20      |         |
| Na      | 23    | 45   | 1         | 18.80      | 13.15     | ug/l  | 454116.00 | 0.41    | 50      |         |
| Mg      | 24    | 45   | 1         | 0.78       | 13.33     | ug/l  | 503.35    | 8.51    | 50      |         |
| Al      | 27    | 45   | 1         | 0.11       | 76.52     | ug/l  | 119.45    | 16.17   | 10      |         |
| К       | 39    | 45   | 1         | -1.39      | -193.42   | ug/l  | 176681.02 | 0.29    | 50      |         |
| Ca      | 44    | 6    | 1         | -6.48      | -34.26    | ug/l  | 2029.05   | 1.99    | 50      |         |
| Ti      | 47    | 45   | 1         | 0.13       | 10.91     | ug/l  | 2.22      | 86.60   | 1       |         |
| V       | 51    | 45   | 1         | 0.01       | 41.81     | ug/l  | 206.68    | 10.58   | 1       |         |
| Cr      | 52    | 45   | 1         | 0.05       | 34.75     | ug/l  | 5614.49   | 2.03    | 1       |         |
| Mn      | 55    | 45   | 1         | 0.04       | 15.11     | ug/l  | 396.69    | 3.66    | 2       |         |
| Fe      | 56    | 45   | 1         | 0.81       | 6.44      | ug/l  | 6614.83   | 1.80    | 30      |         |
| Co      | 59    | 45   | 1         | 0.01       | 96.98     | ug/l  | 111.12    | 32.08   | 1       |         |
| Ni      | 60    | 45   | 1         | -0.15      | -13.58    | ug/l  | 241.12    | 13.14   | 1       |         |
| Cu      | 63    | 45   | 1         | 0.00       | -12646.31 | ug/l  | 2315.79   | 5.55    | 1       |         |
| Zn      | 66    | 45   | 1         | -0.04      | -80.11    | ug/l  | 131.12    | 17.30   | 4       |         |
| As      | 75    | 74   | 1         | -0.01      | -57.02    | ug/l  | 27.78     | 12.49   | 0.5     |         |
| Se      | 78    | 74   | 1         | 0.28       | 71.77     | ug/l  | 67.22     | 11.46   | 0.5     |         |
| Sr      | 88    | 115  | 1         | 0.00       | 59.82     | ug/l  | 27.78     | 24.98   | 1       |         |
| Mo      | 95    | 115  | 1         | 0.04       | 7.61      | ug/l  | 114.45    | 6.07    | 1       |         |
| Ag      | 107   | 115  | 1         | 0.01       | 40.01     | ug/l  | 54.44     | 25.49   | 1       |         |
| Cd      | 111   | 115  | 1         | 0.00       | 115.33    | ug/l  | 7.78      | 65.47   | 0.5     |         |
| Sn      | . 118 | 115  | 1         | 0.03       | 13.81     | ug/l  | 136.67    | 6.45    | 4       |         |
| Sb      | 121   | 115  | 1         | 0.02       | 38.70     | ug/l  | 74.45     | 27.36   | 0.5     |         |
| Ba      | 137   | 159  | 1         | 0.00       | 775.68    | ug/l  | 18.89     | 26.96   | 1       |         |
| П       | 205   | 209  | 1         | 0.01       | 3.03      | ug/l  | 222.23    | 2.29    | 0.2     |         |
| Pb      | 208   | 209  | 1         | 0.00       | 22.73     | ug/l  | 321.12    | 4.91    | 0.3     |         |

| Element   | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|-----------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| <u>Li</u> | 6   | 1         | 14548  | 1.44  | 15244   | 95.4  | 60     | 120     |         |
| Sc        | 45  | 1         | 341384 | 0.84  | 341423  | 100.0 | 60     | 120     | 1       |
| Ge        | 74  | 1         | 49178  | 0.62  | 49061   | 100.2 | 60     | 120     |         |
| Kr        | 83  | 1         | 17     | 34.64 | 17      | 100.0 | 1      | 1000    |         |
| In        | 115 | 1         | 285529 | 0.82  | 289859  | 98.5  | 60     | 120     |         |
| Tb        | 159 | 1         | 765016 | 0.12  | 771893  | 99.1  | 60     | 120     |         |
| Bi        | 209 | 1         | 576578 | 0.29  | 586911  | 98.2  | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

### Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

mb 460-88247/1-a@20

Data File Name

0226CCB.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

Acq Date Time

2011-10-06T20:30:16-04:00

Type VialNumber Dilution

6-CCB 2304

Comment

MP

20

Operator ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD     | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|----------|-------|-----------|---------|---------|---------|
| Ве      | 9   | 6    | 1         | -0.01      | 0.00     | ug/l  | 0.00      | #DIV/0! | 0.2     | 1       |
| В       | 11  | 6    | 1         | 0.89       | 1091.92  | ug/l  | 40.00     | 36.33   | 20      |         |
| Na      | 23  | 45   | 1         | 5.41       | 432.62   | ug/l  | 449347.60 | 0.09    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.22       | 575.35   | ug/l  | 255.01    | 11.56   | 50      |         |
| Al      | 27  | 45   | 1         | 0.97       | 289.42   | ug/l  | 313.34    | 10.19   | 10      |         |
| K       | 39  | 45   | 1         | -10.93     | -521.37  | ug/l  | 175132.98 | 0.43    | 50      |         |
| Ca      | 44  | 6    | 1         | -8.02      | -338.97  | ug/l  | 2010.16   | 1.87    | 50      |         |
| Ti      | 47  | 45   | 1         | 0.19       | 449.25   | ug/l  | 10.00     | 57.75   | 1       |         |
| V       | 51  | 45   | 1         | 0.01       | 804.37   | ug/l  | 202.23    | 8.13    | 1       |         |
| Cr      | 52  | 45   | 1         | 0.01       | 3847.40  | ug/l  | 5537.79   | 1.05    | 1       |         |
| Mn      | 55  | 45   | 1         | -0.03      | -476.91  | ug/l  | 220.01    | 9.46    | 2       | 1       |
| Fe      | 56  | 45   | 1         | 0.07       | 640.09   | ug/l  | 4253.97   | 1.75    | 30      |         |
| Co      | 59  | 45   | 1         | 0.00       | -9882.05 | ug/l  | 73.34     | 19.81   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.14      | -104.57  | ug/l  | 250.01    | 4.81    | 1       | 1       |
| Cu      | 63  | 45   | 1         | -0.02      | -801.69  | ug/l  | 2260.24   | 1.79    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.36       | 212.71   | ug/l  | 432.24    | 6.42    | 4       |         |
| As      | 75  | 74   | 1         | -0.01      | -4695.37 | ug/l  | 29.44     | 39.77   | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.10      | -2061.17 | ug/l  | 52.78     | 7.95    | 0.5     | 1       |
| Sr      | 88  | 115  | 1         | 0.00       | 1570.23  | ug/l  | 25.55     | 27.15   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.03       | 790.03   | ug/l  | 91.12     | 25.70   | 1       | 1       |
| Ag      | 107 | 115  | 1         | 0.00       | 1074.07  | ug/l  | 28.89     | 17.64   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 1339.74  | ug/l  | 11.11     | 45.82   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.02       | 1133.80  | ug/l  | 112.23    | 16.36   | . 4     |         |
| Sb      | 121 | 115  | 1         | 0.01       | 1380.85  | ug/l  | 54.45     | 41.67   | 0.5     |         |
| Ва      | 137 | 159  | 1         | -0.01      | -2578.65 | ug/l  | 13.33     | 49.99   | 1       |         |
| П       | 205 | 209  | 1         | 0.00       | 492.79   | ug/l  | 63.34     | 10.52   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.00       | 2767.66  | ug/l  | 278.90    | 8.97    | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 14647  | 0.46  | 15244   | 96.1  | 60     | 120     |         |
| Sc      | 45  | 1         | 346478 | 0.28  | 341423  | 101.5 | 60     | 120     |         |
| Ge      | 74  | 1         | 49849  | 0.24  | 49061   | 101.6 | 60     | 120     |         |
| Kr      | 83  | 1         | 23     | 57.15 | - 17    | 140.0 | 1      | 1000    |         |
| In      | 115 | 1         | 290500 | 0.86  | 289859  | 100.2 | 60     | 120     |         |
| Tb      | 159 | 1         | 774731 | 0.36  | 771893  | 100.4 | 60     | 120     |         |
| Bi      | 209 | 1         | 586850 | 0.35  | 586911  | 100.0 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

lcssrm 460-88247/2-a@100

**Data File Name** 

023SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

Acq Date Time

2011-10-06T20:35:01-04:00

Type VialNumber Sample 2305

Dilution Comment 100

Operator

MΡ

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 17.03      | 1702.62            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 25.86      | 2586.13            | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 38.78      | 3877.93            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 23.39      | 2338.53            | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 21.76      | 2176.44            | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 12.67      | 1266.60            | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 6.32       | 632.02             | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 10.98      | 1097.81            | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 46.28      | 4628.20            | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 60.06      | 6005.81            | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 21.47      | 2147.00            | ug/l  | 1800       |         |
| Żn      | 66  | 45   | 1         | 125.95     | 12594.73           | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 36.54      | 3653.64            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 28.85      | 2885.23            | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 19.59      | 1958.88            | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 3589.73    | 358972.64          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 113.27     | 11327.03           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 49.03      | 4902.92            | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 23.63      | 2362.52            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 94.10      | 9409.92            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2202.92    | 220291.74          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 941.86     | 94186.07           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1764.82    | 176482.47          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 801.77     | 80176.98           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 212.31     | 21230.70           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 30.13      | 3012.78            | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 16.21      | 1620.52            | ug/l  | 3600       |         |

| 6C TOLD I |     |           |        |       |               |           |             |             |         |
|-----------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element   | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi        | 209 | 1         | 595345 | 1.30  | 586911        | 101.4     | 60          | 120         |         |
| Тb        | 159 | 1         | 784050 | 1.03  | 771893        | 101.6     | 60          | 120         |         |
| In        | 115 | 1         | 290369 | 1.06  | 289859        | 100.2     | 60          | 120         |         |
| Kr        | 83  | 1         | 18     | 57.27 | 17            | 106.7     | 1           | 1000        |         |
| Ge        | 74  | 1         | 50342  | 1.15  | 49061         | 102.6     | 60          | 120         |         |
| Sc        | 45  | 1         | 351010 | 0.88  | 341423        | 102.8     | 60          | 120         |         |
| Li        | 6   | 1         | 14937  | 0.92  | 15244         | 98.0      | 60          | 120         |         |

Sample Name

460-31546-a-7-f du@50

**Data File Name** 

024SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:39:43-04:00

Type VialNumber Sample

Dilution

2306

Comment

**50** 

Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

Fail

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag  |
|---------|-----|------|-----------|------------|--------------------|-------|------------|----------|
| Pb      | 208 | 209  | 1         | 12.49      | 624.69             | ug/l  | 3600       | <u> </u> |
| TI      | 205 | 209  | 1         | 0.21       | 10.45              | ug/l  | 720        |          |
| Ba      | 137 | 159  | 1         | 3726.33    | 186316.35          | ug/l  | 3600       | fail     |
| Sb      | 121 | 115  | 1         | 0.29       | 14.27              | ug/l  | 3600       |          |
| Sn      | 118 | 115  | 1         | 15.59      | 779.34             | ug/l  | 3600       |          |
| Cd      | 111 | 115  | 1         | 0.08       | 4.24               | ug/l  | 1800       |          |
| Ag      | 107 | 115  | 1         | 0.03       | 1.34               | ug/l  | 180        |          |
| Mo      | 95  | 115  | 1         | 0.16       | 8.23               | ug/l  | 3600       |          |
| Sr      | 88  | 115  | 1         | 15.26      | 763.11             | ug/l  | 3600       |          |
| Se      | 78  | 74   | 1         | 0.10       | 5.18               | ug/l  | 450        | l        |
| As      | 75  | 74   | 1         | 1.61       | 80.48              | ug/l  | 1800       |          |
| Zn      | 66  | 45   | 1         | 47.58      | 2379.02            | ug/l  | 450        |          |
| Cu      | 63  | 45   | 1         | 3.98       | 198.80             | ug/l  | 450        |          |
| Ni      | 60  | 45   | 1         | 148.50     | 7425.05            | ug/l  | 900        |          |
| Co      | 59  | 45   | 1         | 45.10      | 2254.96            | ug/l  | 450        |          |
| Fe      | 56  | 45   | 1         | 15542.96   | 777147.82          | ug/l  | 180000     |          |
| Mn      | 55  | 45   | 1         | 218.61     | 10930.28           | ug/l  | 9000       |          |
| Cr      | 52  | 45   | 1         | 5157.84    | 257891.76          | ug/l  | 900        | fail     |
| ٧       | 51  | 45   | 1         | 64.69      | 3234.65            | ug/l  | 3600       |          |
| Ti      | 47  | 45   | 1         | 121.64     | 6082.07            | ug/l  | 3600       |          |
| Ca      | 44  | 6    | 1         | 71508.19   | 3575409.67         | ug/l  | 90000      |          |
| K       | 39  | 45   | 1         | 13.69      | 684.73             | ug/l  | 360000     |          |
| Al      | 27  | 45   | 1         | 7221.71    | 361085.64          | ug/l  | 36000      |          |
| Mg      | 24  | 45   | 1         | 7661.54    | 383077.25          | ug/l  | 180000     |          |
| Na      | 23  | 45   | 1         | 152.35     | 7617.40            | ug/l  | 360000     |          |
| В       | 11  | 6    | 1         | 2.38       | 119.03             | ug/l  | 7200       |          |
| Ве      | 9   | 6    | 1         | 0.03       | 1.42               | ug/l  | 3600       |          |

| <u> </u> | ubic |           |        |       |               |           |             |             |                                                  |
|----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Element  | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
| Bi       | 209  | 1         | 563145 | 0.41  | 586911        | 96.0      | 60          | 120         | 1                                                |
| Tb       | 159  | 1         | 756405 | 0.68  | 771893        | 98.0      | 60          | 120         |                                                  |
| In       | 115  | 1         | 277680 | 0.28  | 289859        | 95.8      | 60          | 120         | <del>                                     </del> |
| Kr       | 83   | 1         | 23     | 37.81 | 17            | 140.0     | 1           | 1000        | +                                                |
| Ge       | 74   | 1         | 48570  | 0.39  | 49061         | 99.0      | 60          | 120         | <del>                                     </del> |
| Sc       | 45   | 1         | 337649 | 0.04  | 341423        | 98.9      | 60          | 120         |                                                  |
| Li       | 6    | 1         | 14446  | 1.34  | 15244         | 94.8      | 60          | 120         | +                                                |



Sample Name

460-31546-a-7-e@50

Data File Name

025SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:44:18-04:00

Type VialNumber Sample

Dilution

2307 50

Comment

Operator

MP

ISTDRefDataFileName SamplePassFail

003CALB.D

Fail

ISTD PassFail

**Pass** 

#### **QC Analyte Table**

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag     |
|---------|-----|------|-----------|------------|--------------------|-------|------------|-------------|
| Pb      | 208 | 209  | 1         | 12.21      | 610.58             | ug/l  | 3600       | <u> </u>    |
| П       | 205 | 209  | 1         | 0.11       | 5.32               | ug/l  | 720        |             |
| Ba      | 137 | 159  | 1         | 3702.39    | 185119.64          | ug/l  | 3600       | fail        |
| Sb      | 121 | 115  | 1         | 0.26       | 13.10              | ug/l  | 3600       |             |
| Sn      | 118 | 115  | 1         | 15.25      | 762.70             | ug/l  | 3600       | i           |
| Cd      | 111 | 115  | 1         | 0.09       | 4.37               | ug/l  | 1800       |             |
| Ag      | 107 | 115  | 1         | 0.01       | 0.63               | ug/l  | 180        |             |
| Mo      | 95  | 115  | 1         | 0.17       | 8.34               | ug/l  | 3600       |             |
| Sr      | 88  | 115  | 1         | 15.59      | 779.46             | ug/I  | 3600       |             |
| Se      | 78  | 74   | 1         | -0.05      | -2.55              | ug/l  | 450        |             |
| As      | 75  | 74   | 1         | 1.40       | 69.90              | ug/l  | 1800       |             |
| Zn      | 66  | 45   | 1         | 46.48      | 2324.21            | ug/i  | 450        |             |
| Cu      | 63  | 45   | 1         | 3.69       | 184.44             | ug/l  | 450        |             |
| Ni      | 60  | 45   | 1         | 134.90     | 6745.02            | ug/l  | 900        |             |
| Со      | 59  | 45   | 1         | 40.62      | 2030.91            | ug/l  | 450        |             |
| Fe      | 56  | 45   | 1         | 14426.70   | 721335.09          | ug/l  | 180000     |             |
| Mn      | 55  | 45   | 1         | 197.66     | 9882.84            | ug/l  | 9000       |             |
| Cr      | 52  | 45   | 1         | 4732.24    | 236611.92          | ug/l  | 900        | fail        |
| ٧       | 51  | 45   | 1         | 59.97      | 2998.67            | ug/l  | 3600       |             |
| Ti      | 47  | 45   | 1         | 114.63     | 5731.52            | ug/l  | 3600       |             |
| Ca      | 44  | 6    | 1         | 76817.96   | 3840897.98         | ug/l  | 90000      |             |
| K       | 39  | 45   | 1         | -2.54      | -126.94            | ug/l  | 360000     |             |
| Al      | 27  | 45   | 1         | 6511.85    | 325592.57          | ug/l  | 36000      |             |
| . Mg    | 24  | 45   | 1         | 7067.20    | 353359.79          | ug/l  | 180000     |             |
| Na      | 23  | 45   | 1         | 130.71     | 6535.41            | ug/l  | 360000     | <del></del> |
| В       | 11  | 6    | 1         | 1.93       | 96.41              | ug/l  | 7200       |             |
| Be      | 9   | 6    | 1         | 0.00       | 0.18               | ug/l  | 3600       |             |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag      |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------|
| Bi      | 209 | 1         | 571904 | 0.32  | 586911        | 97.4      | 60          | 120         | - QUILLE     |
| Tb      | 159 | 1         | 764942 | 0.22  | 771893        | 99.1      | 60          | 120         | _            |
| In      | 115 | 1         | 280722 | 0.88  | 289859        | 96.8      | 60          | 120         |              |
| Kr      | 83  | 1         | 17     | 72.11 | 17            | 100.0     | 1           | 1000        | +            |
| Ge      | 74  | 1         | 48568  | 0.56  | 49061         | 99.0      | 60          | 120         |              |
| Sc      | 45  | 1         | 337972 | 0.13  | 341423        | 99.0      | 60          | 120         | <del> </del> |
| Li      | 6   | 1         | 14864  | 1.71  | 15244         | 97.5      | 60          | 120         |              |

Sample Name

SD 460-31546-a-7-e@250

**Data File Name** 

026SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:48:53-04:00

**Type** VialNumber Sample

**Dilution** 

2308 250

Comment

MP

Operator ISTDRefDataFileName

003CALB.D

SamplePassFail

Fail

ISTD PassFail

**Pass** 

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 2.46       | 615.60             | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.03       | 8.19               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 771.19     | 192796.65          | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.07       | 16.53              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 3.13       | 782.38             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 4.52               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 1.02               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.05       | 13.24              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 3.05       | 761.44             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.14      | -34.91             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.23       | 58.33              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 10.32      | 2580.30            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.77       | 192.57             | ug/i  | 450        |         |
| Ni      | 60  | 45   | 1         | 27.34      | 6835.76            | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 8.27       | 2067.39            | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 2949.49    | 737373.45          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 40.31      | 10077.58           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 975.17     | 243793.26          | ug/l  | 900        | fail    |
| ٧       | 51  | 45   | 1         | 11.96      | 2990.99            | ug/l  | 3600       |         |
| T       | 47  | 45   | 1         | 23.49      | 5873.74            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 18186.45   | 4546612.25         | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | -9.50      | -2375.26           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1321.46    | 330365.73          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1477.06    | 369264.71          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 27.53      | 6881.70            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.28       | 70.74              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.00       | 0.97               | ug/l  | 3600       |         |

| Element | T /- | Towns Charles |        | T     |               | r         |             |             |          |
|---------|------|---------------|--------|-------|---------------|-----------|-------------|-------------|----------|
| Element | m/z  | Tune Step     | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag  |
| Bi      | 209  | 1             | 582667 | 0.51  | 586911        | 99.3      | 60          | 120         |          |
| Tb      | 159  | 1             | 764592 | 0.27  | 771893        | 99.1      | 60          | 120         | 1        |
| In      | 115  | 1             | 284919 | 0.74  | 289859        | 98.3      | 60          | 120         | +        |
| Kr      | 83   | 1             | 13     | 25.01 | 17            | 80.0      | 1           | 1000        | <u> </u> |
| Ge      | 74   | 1             | 48708  | 0.73  | 49061         | 99.3      | 60          | 120         |          |
| Sc      | 45   | 1             | 338508 | 0.23  | 341423        | 99.1      | 60          | 120         |          |
| Li      | 6    | 1             | 14892  | 0.47  | 15244         | 97.7      | 60          | 120         | -        |

Sample Name

460-31546-a-7-h ms@50

**Data File Name** 

027SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:53:35-04:00

Type VialNumber Sample 2309

Dilution

50

Comment Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

Fail

**ISTD PassFail** 

Pass

#### **QC Analyte Table**

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 13.01      | 650.57             | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 1.60       | 80.17              | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 3493.45    | 174672.72          | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 2.20       | 110.04             | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 17.82      | 891.16             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 1.99       | 99.70              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 2.00       | 100.01             | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 3.90       | 194.81             | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 18.35      | 917.32             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 3.92       | 196.17             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 5.06       | 253.18             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 67.18      | 3358.95            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 7.37       | 368.29             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 157.56     | <b>7</b> 877.97    | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 48.39      | 2419.67            | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 16622.55   | 831127.40          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 243.31     | 12165.46           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 5452.56    | 272628.18          | ug/I  | 900        | fail    |
| ٧       | 51  | 45   | 1         | 72.48      | 3624.01            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 129.11     | 6455.69            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 67819.36   | 3390967.91         | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 219.42     | 10970.98           | ug/l  | 360000     | -1      |
| Al      | 27  | 45   | 1         | 7592.65    | 379632.72          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 8148.32    | 407416.09          | ug/i  | 180000     |         |
| Na      | 23  | 45   | 1         | 381.50     | 19075.09           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 41.01      | 2050.34            | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 2.00       | 100.15             | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 568158 | 0.42  | 586911        | 96.8      | 60          | 120         | 1       |
| Tb      | 159 | 1         | 758851 | 0.10  | 771893        | 98.3      | 60          | 120         |         |
| In      | 115 | 1         | 276934 | 1.15  | 289859        | 95.5      | 60 .        | 120         | 1       |
| Kr      | 83  | 1         | 14     | 35.26 | 17            | 86.7      | 1           | 1000        | +       |
| Ge      | 74  | 1         | 47923  | 0.48  | 49061         | 97.7      | 60          | 120         |         |
| Sc      | 45  | 1         | 333530 | 0.79  | 341423        | 97.7      | 60          | 120         |         |
| Li      | 6   | 1         | 14656  | 0.56  | 15244         | 96.1      | 60          | 120         | 1       |

Agilent Technologies Page 1 of 1 Page 136 of 332

Printed at: 8:47 AM on:10/7/2011 10/21/2011

Sample Name

PDS 460-31546-a-7-e@50

Data File Name

028SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T20:58:12-04:00

Type VialNumber Sample 2310

Dilution

50

Comment

00

Operator

MP

ISTDRefDataFileName

003CALB.D

Sample Pass Fail

Fail

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 17.02      | 850.98             | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 3.88       | 193.87             | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 3699.15    | 184957.68          | ug/l  | 3600       | fail    |
| Sb      | 121 | 115  | 1         | 5.05       | 252.35             | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 24.00      | 1200.06            | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 4.88       | 244.20             | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 4.92       | 245.81             | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 9.76       | 488.18             | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 24.64      | 1231.92            | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 9.85       | 492.35             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 11.10      | 554.85             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 91.03      | 4551.41            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 12.98      | 648.79             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 142.27     | 7113.65            | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 45.04      | 2252.19            | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 14712.91   | 735645.55          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 243.95     | 12197.26           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 4725.07    | 236253.46          | ug/l  | 900        | fail    |
| ٧       | 51  | 45   | 1         | 68.99      | 3449.25            | ug/I  | 3600       |         |
| Ti      | 47  | 45   | 1         | 119.35     | 5967.57            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 77070.31   | 3853515.31         | ug/I  | 90000      |         |
| K       | 39  | 45   | 1         | 536.60     | 26830.00           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 6883.34    | 344166.90          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 7449.67    | 372483.68          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 648.98     | 32449.24           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 99.18      | 4959.21            | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 4.91       | 245.46             | ug/l  | 3600       |         |

| QC 131D 1 | abic |           |        |       |               |           |             |             |         |
|-----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element   | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi        | 209  | 1         | 571360 | 0.41  | 586911        | 97.4      | 60          | 120         |         |
| Tb        | 159  | 1         | 766041 | 0.35  | 771893        | 99.2      | 60          | 120         |         |
| In        | 115  | 1         | 280921 | 0.15  | 289859        | 96.9      | 60          | 120         | +       |
| Kr        | 83   | 1         | 8      | 24.71 | 17            | 46,7      | 1           | 1000        |         |
| Ge        | 74   | 1         | 48138  | 1.38  | 49061         | 98.1      | 60          | 120         |         |
| Sc        | 45   | 1         | 337108 | 0.51  | 341423        | 98.7      | 60          | 120         | +       |
| Ļi        | 6    | 1         | 14697  | 0.33  | 15244         | 96.4      | 60          | 120         | +       |

Sample Name

460-31546-a-6-g@50

Data File Name

029SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T21:02:46-04:00

Type VialNumber

Sample 2311

Dilution

50

Comment

MP

Operator

ISTDRefDataFileName SamplePassFail

003CALB.D

Fail

ISTD PassFail

**Pass** 

#### **QC Analyte Table**

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 13.60      | 679.82             | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 1.91       | 95.64              | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 6908.58    | 345428.76          | ug/l  | 3600       | fail    |
| Sb      | 121 | 115  | 1         | 0.26       | 13.22              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.43       | 21.26              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 2.37       | 118.36             | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 0.89               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.26       | 13.16              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 48.45      | 2422.41            | ug/i  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.05       | 2.70               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 1.29       | 64.38              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 221.78     | 11088.89           | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 4.21       | 210.43             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 131.99     | 6599.28            | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 37.64      | 1882.25            | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 13986.56   | 699328.03          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 186.22     | 9310.85            | ug/l  | 9000       | -       |
| Cr      | 52  | 45   | 1         | 4608.94    | 230446.79          | ug/l  | 900        | fail    |
| V       | 51  | 45   | 1         | 57.30      | 2865.08            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 125.46     | 6272.80            | ug/l  | 3600       | -       |
| Ca      | 44  | 6    | 1         | 62221.43   | 3111071.65         | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 14.24      | 712.03             | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 6780.66    | 339033.05          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 7293.04    | 364652.25          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 134.83     | 6741.38            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 1.82       | 90.84              | ug/l  | 7200       |         |
| Ве      | 9   | 6    | 1         | 0.07       | 3.52               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 561174 | 0.10  | 586911        | 95.6      | 60          | 120         | +                                                |
| Tb      | 159 | 1         | 751883 | 0.45  | 771893        | 97.4      | 60          | 120         | +                                                |
| In      | 115 | 1         | 275111 | 0.43  | 289859        | 94.9      | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 24     | 20.83 | 17            | 146.7     | 1           | 1000        | <del>                                     </del> |
| Ge      | 74  | 1         | 47858  | 0.85  | 49061         | 97.5      | 60          | 120         | -                                                |
| Sc      | 45  | 1         | 330509 | 0.62  | 341423        | 96.8      | 60          | 120         | <del>                                     </del> |
| Li      | 6   | 1         | 14425  | 1.53  | 15244         | 94.6      | 60          | 120         | +                                                |

## Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

Data File Name

0306CCV.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T21:07:22-04:00

Type VialNumber 6-CCV

Dilution

1301 1

Comment

Operator

ΜP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

OC Analyte Table

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag                                          |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|--------------------------------------------------|
| Be      | 9   | 6    | 1         | 50.73      | 2.01 | ug/l  | 4937.49     | 2.69    | 50        | 101.5 | 90     | 110     | 1                                                |
| В       | 11  | 6    | 1         | 98.01      | 2.74 | ug/l  | 3025.93     | 3.69    | 100       | 98.0  | 90     | 110     |                                                  |
| Na      | 23  | 45   | 1         | 4994.09    | 1.27 | ug/l  | 4632469.17  | 0.35    | 5000      | 99.9  | 90     | 110     | <u> </u>                                         |
| Mg      | 24  | 45   | 1         | 5034.17    | 1.35 | ug/l  | 2236891.70  | 0.08    | 5000      | 100.7 | 90     | 110     |                                                  |
| Al      | 27  | 45   | 1         | 499.58     | 1.25 | ug/l  | 109557.56   | 0.23    | 500       | 99.9  | 90     | 110     | † · · · ·                                        |
| K       | 39  | 45   | 1         | 4893.04    | 1.13 | ug/l  | 2269426.88  | 0.38    | 5000      | 97.9  | 90     | 110     | <u> </u>                                         |
| Ca      | 44  | 6    | 1         | 4989.56    | 1.18 | ug/i  | 111832.57   | 0.74    | 5000      | 99.8  | 90     | 110     | <del>                                     </del> |
| Ti      | 47  | 45   | 1         | 49.81      | 3.56 | ug/l  | 6582.68     | 4.76    | 50        | 99.6  | 90     | 110     |                                                  |
| V       | 51  | 45   | 1         | 50.00      | 0.55 | ug/l  | 176192.13   | 1.13    | 50        | 100.0 | 90     | 110     | <u> </u>                                         |
| Cr      | 52  | 45   | 1         | 50.17      | 1.40 | ug/l  | 215880.39   | 0.26    | 50        | 100.3 | 90     | 110     | -                                                |
| Mn      | 55  | 45   | 1         | 503.00     | 1.92 | ug/l  | 1296961.17  | 0.51    | 500       | 100.6 | 90     | 110     | <del>                                     </del> |
| Fe      | 56  | 45   | 1         | 4986.61    | 1.88 | ug/l  | 16161740.59 | 0.54    | 5000      | 99.7  | 90     | 110     |                                                  |
| Co      | 59  | 45   | 1         | 50.14      | 1.46 | ug/l  | 303482.90   | 0.21    | 50        | 100.3 | 90     | 110     |                                                  |
| Ni      | 60  | 45   | 1         | 50.22      | 1.92 | ug/l  | 81990.95    | 0.49    | 50        | 100.4 | 90     | 110     |                                                  |
| Cu      | 63  | 45   | 1         | 50.18      | 1.59 | ug/l  | 218166.78   | 0.17    | 50        | 100.4 | 90     | 110     | <u> </u>                                         |
| Zn      | 66  | 45   | 1         | 49.89      | 0.71 | ug/l  | 36820.41    | 1.20    | 50        | 99.8  | 90     | 110     | <del>† -</del>                                   |
| As      | 75  | 74   | 1         | 49.62      | 0.57 | ug/l  | 28069.77    | 0.33    | 50        | 99.2  | 90     | 110     |                                                  |
| Se      | 78  | 74   | 1         | 49.02      | 3.05 | ug/l  | 1998.49     | 2.73    | 50        | 98.0  | 90     | 110     | ļ                                                |
| Sr      | 88  | 115  | 1         | 49.20      | 0.46 | ug/l  | 151350.59   | 0.36    | 50        | 98.4  | 90     | 110     |                                                  |
| Мо      | 95  | 115  | 1         | 50.10      | 0.53 | ug/l  | 97728.57    | 0.78    | 50        | 100.2 | 90     | 110     | <del> </del>                                     |
| Ag      | 107 | 115  | 1         | 50.29      | 0.76 | ug/i  | 301009.88   | 0.73    | 50        | 100.6 | 90     | 110     |                                                  |
| Cd      | 111 | 115  | 1         | 50.03      | 1.53 | ug/l  | 45559.97    | 0.91    | 50        | 100.1 | 90     | 110     |                                                  |
| Sn      | 118 | 115  | 1         | 50.59      | 0.82 | ug/l  | 103597.84   | 0.31    | 50        | 101.2 | 90     | 110     |                                                  |
| Sb      | 121 | 115  | 1         | 49.99      | 0.49 | ug/l  | 144227.20   | 0.61    | 50        | 100.0 | 90     | 110     |                                                  |
| Ba      | 137 | 159  | 1         | 50.18      | 0.16 | ug/l  | 50023.20    | 0.19    | 50        | 100.4 | 90     | 110     |                                                  |
| TI      | 205 | 209  | 1         | 9.94       | 0.91 | ug/l  | 132273.23   | 0.78    | 10        | 99.4  | 90     | 110     |                                                  |
| Pb      | 208 | 209  | 1         | 50.15      | 0.38 | ug/i  | 885091.04   | 0.10    | 50        | 100.3 | 90     | 110     | <del>                                     </del> |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag                                           |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------------------------------------------------|
| Li      | 6   | 1         | 15046  | 0.98  | 15244   | 98.7  | 60     | 120     | <del>  `                                   </del> |
| Sc      | 45  | 1         | 337555 | 1.40  | 341423  | 98.9  | 60     | 120     |                                                   |
| Ge      | 74  | 1         | 48853  | 0.24  | 49061   | 99.6  | 60     | 120     | 1                                                 |
| Kr      | 83  | 1         | 12     | 15.73 | 17      | 73.3  | 1      | 1000    | ·                                                 |
| In      | 115 | 1         | 283470 | 0.66  | 289859  | 97.8  | 60     | 120     | <del>                                     </del>  |
| ТЪ      | 159 | 1         | 774958 | 0.31  | 771893  | 100.4 | 60     | 120     | <del>                                     </del>  |
| Bi      | 209 | 1         | 582031 | 0.48  | 586911  | 99.2  | 60     | 120     | †                                                 |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0316CCB.D

DataPath

Acq Date Time

2011-10-06T21:11:58-04:00

Type VialNumber 6-CCB 1302

ViaiNumber Dilution

1

Comment

Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD     | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|----------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.01      | 0.00     | ug/l  | 0.00      | #DIV/0! | 0.2     |         |
| В       | 11  | 6    | 1         | 1.07       | 26.32    | ug/l  | 46.67     | 18.90   | 20      |         |
| Na      | 23  | 45   | 1         | -7.36      | -19.49   | ug/l  | 427576.37 | 0.06    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.43       | 16.77    | ug/l  | 343.34    | 9.70    | 50      |         |
| Al      | 27  | 45   | 1         | 0.14       | 10.90    | ug/l  | 123.89    | 2.80    | 10      |         |
| K       | 39  | 45   | 1         | -20.99     | -12.33   | ug/l  | 166525.80 | 0.40    | 50      |         |
| Ca      | 44  | 6    | 1         | -14.27     | -15.75   | ug/l  | 1928.48   | 2.94    | 50      |         |
| Ti      | 47  | 45   | 1         | 0.15       | 25.78    | ug/l  | 4.44      | 114.60  | 1       |         |
| V       | 51  | 45   | 1         | 0.01       | 88.37    | ug/l  | 183.34    | 12.60   | 1       |         |
| Cr      | 52  | 45   | 1         | 0.02       | 125.71   | ug/l  | 5436.67   | 1.73    | 1       |         |
| Mn      | 55  | 45   | 1         | -0.01      | -124.95  | ug/l  | 268.90    | 13.37   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.42       | 4.87     | ug/l  | 5266.52   | 1.31    | 30      |         |
| Co      | 59  | 45   | 1         | 0.00       | 125.23   | ug/l  | 81.11     | 10.34   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.18      | -8.74    | ug/l  | 187.79    | 13.79   | 1       | 1       |
| Cu      | 63  | 45   | 1         | -0.04      | -68.06   | ug/l  | 2140.21   | 4.68    | 1       |         |
| Zn      | 66  | 45   | 1         | -0.01      | -338.77  | ug/l  | 145.56    | 24.70   | 4       | 1       |
| As      | 75  | 74   | 1         | 0.00       | -1043.06 | ug/l  | 33.33     | 13.24   | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.07      | -406.94  | ug/l  | 52.78     | 22.40   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.00       | 73.58    | ug/l  | 30.00     | 33.33   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.03       | 32.22    | ug/l  | 95.56     | 22.43   | 1       | ĺ       |
| Ag      | 107 | 115  | 1         | 0.01       | 27.72    | ug/l  | 50.00     | 17.64   | 1       |         |
| Cd .    | 111 | 115  | 1         | 0.01       | 50.63    | ug/l  | 10.00     | 33.30   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.02       | 67.15    | ug/l  | 124.45    | 25.32   | 4       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 33.96    | ug/l  | 58.89     | 21.43   | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.12       | 17.87    | ug/l  | 133.34    | 15.00   | 1       |         |
| П       | 205 | 209  | 1         | 0.02       | 12.61    | ug/l  | 360.02    | 10.92   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.00       | 68.26    | ug/l  | 332.24    | 14.24   | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 15052  | 0.39  | 15244   | 98.7  | 60     | 120     |         |
| Sc      | 45  | 1         | 337985 | 0.28  | 341423  | 99.0  | 60     | 120     |         |
| Ge      | 74  | 1         | 48896  | 0.38  | 49061   | 99.7  | 60     | 120     |         |
| Kr      | 83  | 1         | 10     | 33.30 | 17      | 60.0  | 1      | 1000    |         |
| In      | 115 | 1         | 288086 | 0.57  | 289859  | 99.4  | 60     | 120     |         |
| Tb      | 159 | 1         | 771669 | 0.41  | 771893  | 100.0 | 60     | 120     |         |
| Bi      | 209 | 1         | 589791 | 0.68  | 586911  | 100.5 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

mb 460-88293/1-a@20

Data File Name

0326CCB.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B 2011-10-06T21:16:44-04:00

**Acq Date Time** Type

6-CCB

VialNumber **Dilution** 

2312 20

Comment **Operator** 

ΜP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD     | Units | CPS       | CPS%RSD | QC High | QC Flag        |
|---------|-----|------|-----------|------------|----------|-------|-----------|---------|---------|----------------|
| Be      | 9   | 6    | 1         | -0.01      | 0.00     | ug/l  | 0.00      | #DIV/0! | 0.2     | - <del> </del> |
| В       | 11  | 6    | 1         | 0.46       | 2164.42  | ug/l  | 27.78     | 55.43   | 20      | <b>-</b>       |
| Na      | 23  | 45   | 1         | 18.86      | 419.35   | ug/l  | 443441.16 | 0.50    | 50      | 1              |
| Mg      | 24  | 45   | 1         | 0.50       | 171.36   | ug/l  | 370.01    | 5.19    | 50      |                |
| Al      | 27  | 45   | 1         | 2.00       | 235.11   | ug/l  | 524.46    | 10.03   | 10      |                |
| K       | 39  | 45   | 1         | 11.59      | 67.60    | ug/l  | 177997.31 | 0.26    | 50      |                |
| Ca      | 44  | 6    | 1         | -10.21     | -685.82  | ug/l  | 1995.71   | 2.64    | - 50    |                |
| Ti      | 47  | 45   | 1         | 0.18       | 162.72   | ug/l  | 8.89      | 21.63   | 1       |                |
| V       | 51  | 45   | 1         | 0.04       | 478.33   | ug/l  | 282.23    | 10.91   | 1       |                |
| Cr      | 52  | 45   | 1         | 0.09       | 1764.72  | ug/l  | 5663.43   | 5.51    | 1       |                |
| Mn      | 55  | 45   | 1         | -0.04      | -327.37  | ug/l  | 186.67    | 9.45    | 2       |                |
| Fe      | 56  | 45   | 1         | 1.33       | 48.15    | ug/l  | 8114.96   | 0.94    | 30      |                |
| Со      | 59  | 45   | 1         | 0.01       | 239.89   | ug/l  | 103.34    | 3.23    | 1       |                |
| Ni      | 60  | 45   | 1         | -0.09      | -369.77  | ug/l  | 332.24    | 7.53    | 1       |                |
| Cu      | 63  | 45   | 1         | 0.10       | 554.08   | ug/l  | 2680.31   | 4.47    | 1       |                |
| Zn      | 66  | 45   | 1         | 1.16       | 165.86   | ug/l  | 997.85    | 6.95    | 4       |                |
| As      | 75  | 74   | 1         | 0.02       | 1303.24  | ug/l  | 46.11     | 18.54   | 0.5     |                |
| Se      | 78  | 74   | 1         | -0.22      | -1961.50 | ug/l  | 46.11     | 18.20   | 0.5     |                |
| Sr      | 88  | 115  | 1         | 0.01       | 10.75    | ug/l  | 40.00     | 0.00    | 1       |                |
| Mo      | 95  | 115  | 1         | 0.02       | 797.96   | ug/l  | 76.67     | 24.21   | 1       |                |
| Ag      | 107 | 115  | 1         | 0.00       | 1592.15  | ug/l  | 32.22     | 33.25   | 1       |                |
| Cd      | 111 | 115  | 1         | 0.01       | 2315.41  | ug/i  | 12.22     | 83.33   | 0.5     |                |
| Sn      | 118 | 115  | 1         | 0.06       | 384.77   | ug/l  | 201.12    | 11.99   | 4       |                |
| Sb      | 121 | 115  | 1         | 0.04       | 305.12   | ug/l  | 132.23    | 12.44   | 0.5     |                |
| Ba      | 137 | 159  | 1         | 0.14       | 158.09   | ug/l  | 156.67    | 6.38    | 1       |                |
| П       | 205 | 209  | 1         | 0.01       | 220.89   | ug/l  | 198.90    | 9.53    | 0.2     |                |
| Pb      | 208 | 209  | 1         | 0.00       | 2507.48  | ug/l  | 293.35    | 14.51   | 0.3     |                |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|--------------------------------------------------|
| Li      | 6   | 1         | 14894  | 1.52  | 15244   | 97.7  | 60     | 120     | 1                                                |
| Sc      | 45  | 1         | 333316 | 0.33  | 341423  | 97.6  | 60     | 120     | <u> </u>                                         |
| Ge      | 74  | 1         | 48107  | 0.69  | 49061   | 98.1  | 60     | 120     | <del>                                     </del> |
| Kr      | 83  | 1         | 14     | 26.66 | 17      | 86.7  | 1      | 1000    | <u> </u>                                         |
| In      | 115 | 1         | 286606 | 0.32  | 289859  | 98.9  | 60     | 120     |                                                  |
| Tb      | 159 | 1         | 773751 | 0.82  | 771893  | 100.2 | 60     | 120     | <del>                                     </del> |
| Bi      | 209 | 1         | 582781 | 0.50  | 586911  | 99.3  | 60     | 120     |                                                  |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Agilent Technologies Page 1 of 1 Page 141 of 332

Sample Name

lcssrm 460-88293/2-a@100

**Data File Name** 

033SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B 2011-10-06T21:21:28-04:00

**Acq Date Time** Туре

Sample

VialNumber

2401

Dilution

100

Comment

MP

Operator ISTDRefDataFileName

SamplePassFail

003CALB.D

**ISTD PassFail** 

Pass Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 18.09      | 1809.48            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 26.17      | 2616.56            | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 40.33      | 4033.14            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 38.25      | 3825.27            | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 23.10      | 2310.34            | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 12.45      | 1244.83            | ug/l  | 1800       | i e     |
| Ag      | 107 | 115  | 1         | 6.55       | 655.48             | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 10.83      | 1083.13            | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 45.57      | 4557.45            | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 59.04      | 5904.12            | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 21.69      | 2169.07            | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 122.90     | 12289.91           | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 35.84      | 3584.35            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 28.29      | 2829.50            | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 19.65      | 1964.62            | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 3603.08    | 360308.44          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 119.31     | 11931.38           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 47.48      | 4748.25            | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 23.39      | 2339.30            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 77.35      | 7735.29            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2043.00    | 204299.64          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 926.38     | 92638.00           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1630.83    | 163083.17          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 805.12     | 80511.98           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 189.41     | 18940.65           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 29.17      | 2917.35            | ug/l  | 7200       |         |
| Ве      | 9   | 6    | 1         | 15.32      | 1532.24            | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag  |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|----------|
| Bi      | 209 | 1         | 591372 | 0.79  | 586911        | 100.8     | 60          | 120         |          |
| Τb      | 159 | 1         | 780795 | 0.51  | 771893        | 101.2     | 60          | 120         |          |
| In      | 115 | 1         | 284668 | 0.35  | 289859        | 98.2      | 60          | 120         |          |
| Kr      | 83  | 1         | 13     | 66.12 | 17            | 80.0      | 1           | 1000        | 1        |
| Ge      | 74  | 1         | 49416  | 0.35  | 49061         | 100.7     | 60          | 120         |          |
| Sc      | 45  | 1         | 340932 | 0.49  | 341423        | 99.9      | 60          | 120         | <u> </u> |
| Li      | 6   | 1         | 15196  | 1.32  | 15244         | 99.7      | 60          | 120         |          |

10/21/2011

Sample Name

460-31791-a-3-c du@20

Data File Name

034SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T21:26:09-04:00

Type VialNumber Sample 2402

Dilution Comment 20

Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

Pass

**ISTD PassFail** 

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 1465.01    | 29300.19           | ug/l  | 3600       | -       |
| П       | 205 | 209  | 1         | 0.27       | 5.40               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 237.98     | 4759.63            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 1.20       | 23.93              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 16.26      | 325.26             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.54       | 10.75              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.40       | 7.95               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 1.33       | 26.57              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1 .       | 17.42      | 348.44             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 1.64       | 32.74              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 11.00      | 219.92             | ug/i  | 1800       |         |
| Zn      | 66  | 45   | 1         | 192.21     | 3844.14            | ug/i  | 450        |         |
| Cu      | 63  | 45   | 1         | 130.93     | 2618.63            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 16.55      | 331.08             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 3.54       | 70.76              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 10487.97   | 209759.33          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 136.35     | 2726.98            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 52.43      | 1048.57            | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 54.29      | 1085.81            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 228.50     | 4569.94            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1866.48    | 37329.52           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 433.79     | 8675.84            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 4085.34    | 81706.86           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1170.63    | 23412.62           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 65.80      | 1315.98            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 3.14       | 62.74              | ug/l  | 7200       | -       |
| Be      | 9   | 6    | 1         | 0.31       | 6.28               | ug/l  | 3600       |         |

| C TOID I | abic |           |        |       |               |           |             |             |          |
|----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|----------|
| Element  | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag  |
| Bi       | 209  | 1         | 591461 | 0.18  | 586911        | 100.8     | 60          | 120         | T        |
| Tb       | 159  | 1         | 768081 | 0.76  | 771893        | 99.5      | 60          | 120         |          |
| In       | 115  | 1         | 282373 | 0.73  | 289859        | 97.4      | 60          | 120         |          |
| Kr       | 83   | 1         | 36     | 53.31 | 17            | 213.3     | 1           | 1000        | <b>—</b> |
| Ge       | 74   | 1         | 48721  | 1.25  | 49061         | 99.3      | 60          | 120         | <b>-</b> |
| Sc       | 45   | 1         | 334560 | 0.36  | 341423        | 98.0      | 60          | 120         | +        |
| Li       | 6    | 1         | 14722  | 1.06  | 15244         | 96.6      | 60          | 120         |          |

Sample Name

460-31791-a-3-b@20

Data File Name

035SMPL.D

DataPath

 $C:\label{local_condition} C:\label{local_condition} C:\label{local_c$ 

**Acq Date Time** 

2011-10-06T21:30:48-04:00

Type

Sample

VialNumber

2403

**Dilution** 

20

Comment Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 1176.34    | 23526.86           | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.16       | 3.24               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 160.78     | 3215.62            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 1.15       | 23.02              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 10.64      | 212.71             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.40       | 8.03               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.37       | 7.47               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 1.01       | 20.19              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 13.35      | 266.95             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 1.35       | 27.04              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 10.60      | 212.10             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 176.91     | 3538.13            | ug/i  | 450        |         |
| Cu      | 63  | 45   | 1         | 120.24     | 2404.71            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 13.21      | 264.10             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 3.73       | 74.59              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 10326.49   | 206529.80          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 160.66     | 3213.28            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 50.42      | 1008.37            | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 52.94      | 1058.84            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 232.42     | 4648.31            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1468.38    | 29367.67           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 421.92     | 8438.48            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 4084.58    | 81691.55           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1281.78    | 25635.62           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 59.29      | 1185.72            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 2.13       | 42.51              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.26       | 5.22               | ug/i  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 592663 | 0.30  | 586911        | 101.0     | 60          | 120         |         |
| Tb      | 159 | 1         | 772944 | 1.10  | 771893        | 100.1     | 60          | 120         |         |
| In      | 115 | 1         | 281899 | 0.84  | 289859        | 97.3      | 60          | 120         |         |
| Kr      | 83  | 1         | 36     | 21.64 | 17            | 213.3     | 1           | 1000        |         |
| Ge      | 74  | 1         | 48431  | 0.45  | 49061         | 98.7      | 60          | 120         |         |
| Sc      | 45  | 1         | 336469 | 0.37  | 341423        | 98.5      | 60          | 120         |         |
| Li      | 6   | 1         | 15047  | 1.23  | 15244         | 98.7      | 60          | 120         |         |

Sample Name

SD 460-31791-a-3-b@100

**Data File Name** 

036SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T21:35:26-04:00

Type VialNumber Sample 2404

Dilution Comment

Operator

100 MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 246.32     | 24632.17           | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.04       | 4.47               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 32.57      | 3257.14            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.27       | 27.02              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 2.17       | 217.39             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.09       | 8.60               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.08       | 8.02               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.21       | 20.96              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 2.64       | 263.73             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.29       | 29.08              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 2.00       | 200.10             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 37.20      | 3719.67            | ug/i  | 450        |         |
| Cu      | 63  | 45   | 1         | 24.20      | 2420.26            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 2.44       | 244.09             | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.74       | 74.47              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 2078.72    | 207871.85          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 32.16      | 3215.96            | ug/l  | 9000       | ······· |
| Cr      | 52  | 45   | 1         | 9.97       | 996.78             | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 10.65      | 1065.48            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 46.06      | 4605.98            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 279.65     | 27964.52           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 68.37      | 6836.69            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 827.87     | 82786.52           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 258.22     | 25822.16           | ug/l  | 180000     | ·       |
| Na      | 23  | 45   | 1         | 1.06       | 106.22             | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.60       | 60.12              | ug/l  | 7200       |         |
| Ве      | 9   | 6    | 1         | 0.04       | 3.79               | ug/l  | 3600       |         |

| SC TOID ! | anic |           |        |       |               |           |             |             |                                                  |
|-----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Element   | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
| Bi        | 209  | 1         | 591101 | 0.22  | 586911        | 100.7     | 60          | 120         |                                                  |
| Tb        | 159  | 1         | 775483 | 0.35  | 771893        | 100.5     | 60          | 120         | †                                                |
| In        | 115  | 1         | 285418 | 0.35  | 289859        | 98.5      | 60          | 120         |                                                  |
| Kr        | 83   | 1         | 11     | 75.52 | 17            | 66.7      | 1           | 1000        | 1                                                |
| Ge        | 74   | 1         | 48878  | 0.44  | 49061         | 99.6      | 60          | 120         | <del>                                     </del> |
| Sc        | 45   | 1         | 339109 | 0.27  | 341423        | 99.3      | 60          | 120         | 1                                                |
| Li        | 6    | 1         | 15039  | 0.32  | 15244         | 98.7      | 60          | 120         | <del></del>                                      |

Sample Name

460-31791-a-3-d ms@20

**Data File Name** 

037SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T21:40:08-04:00

Type VialNumber Sample 2405

Dilution

20

Comment

MP

Operator ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 1557.45    | 31148.96           | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 3.86       | 77.11              | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 318.16     | 6363.28            | ug/i  | 3600       |         |
| Sb      | 121 | 115  | 1         | 3.42       | 68.40              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 23.79      | 475.72             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 5.51       | 110.18             | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 5.48       | 109.68             | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 10.76      | 215.20             | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 25.84      | 516.82             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 10.81      | 216.26             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 21.68      | 433.58             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 276.51     | 5530.28            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 117.52     | 2350.30            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 24.67      | 493.45             | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 9.13       | 182.52             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 11601.21   | 232024.11          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 233.58     | 4671.52            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 62.87      | 1257.32            | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 68.15      | 1362.92            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 278.80     | 5576.02            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2219.19    | 44383.88           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1006.72    | 20134.39           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 5106.03    | 102120.50          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1930.20    | 38604.00           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 604.93     | 12098.62           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 97.84      | 1956.85            | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 5.63       | 112.57             | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag     |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|-------------|
| Bi      | 209 | 1         | 589309 | 0.63  | 586911        | 100.4     | 60          | 120         | 1           |
| Тb      | 159 | 1         | 764933 | 0.96  | 771893        | 99.1      | 60          | 120         | <u></u>     |
| In      | 115 | 1         | 278848 | 0.22  | 289859        | 96.2      | 60          | 120         | <b>————</b> |
| Kr      | 83  | 1         | 40     | 16.68 | 17            | 240.0     | 1           | 1000        |             |
| Ge      | 74  | 1         | 48378  | 0.72  | 49061         | 98.6      | 60          | 120         |             |
| Sc      | 45  | 1         | 335362 | 0.24  | 341423        | 98.2      | 60          | 120         |             |
| Li      | 6   | 1         | 14545  | 2.74  | 15244         | 95.4      | 60          | 120         |             |

Sample Name

PDS 460-31791-a-3-b@20

**Data File Name** 

038SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T21:44:44-04:00

Type VialNumber Sample 2406

Dilution

Comment

20

Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

**ISTD PassFail** 

**Pass** 

#### **QC Analyte Table**

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 1183.63    | 23672.69           | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 3.93       | 78.61              | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 171.26     | 3425.10            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 5.93       | 118.60             | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 20.00      | 399.91             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 5.46       | 109.22             | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 5.40       | 108.09             | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 10.77      | 215.49             | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 23.05      | 461.07             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 10.59      | 211.75             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 20.04      | 400.83             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 225.45     | 4509.08            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 130.18     | 2603.64            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 23.25      | 465.09             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 8.68       | 173.55             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 10831.94   | 216638.82          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 209.26     | 4185.18            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 60.18      | 1203.60            | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 62.92      | 1258.49            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 240.95     | 4818.97            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2012.92    | 40258.42           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 972.39     | 19447.85           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 4593.62    | 91872.39           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1763.77    | 35275.45           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 589.82     | 11796.33           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 97.37      | 1947.49            | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 5.21       | 104.16             | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 591411 | 0.66  | 586911        | 100.8     | 60          | 120         | 1 -     |
| Tb      | 159 | 1         | 774462 | 0.07  | 771893        | 100.3     | 60          | 120         |         |
| In      | 115 | 1         | 281008 | 1.15  | 289859        | 96.9      | 60          | 120         |         |
| Kr      | 83  | 1         | 28     | 13.86 | 17            | 166.7     | 1           | 1000        |         |
| Ge      | 74  | 1         | 48881  | 0.66  | 49061         | 99.6      | 60          | 120         | 1       |
| Sc      | 45  | 1         | 337859 | 0.15  | 341423        | 99.0      | 60          | 120         |         |
| Li      | 6   | 1         | 14696  | 1.22  | 15244         | 96.4      | 60          | 120         | -       |

Sample Name

460-31791-a-1-b@20

Data File Name

039SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

Acq Date Time

2011-10-06T21:49:19-04:00

Type VialNumber Sample 2407

Dilution Comment

MP

20

Operator

ИP

ISTDRefDataFileName

003CALB.D

SamplePassFail ISTD PassFail Fail Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 1.24       | 24.71              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.04       | 0.73               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 8.04       | 160.79             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.05       | 0.96               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.44       | 8.85               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.06       | 1.17               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 0.16               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.04       | 0.70               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 325.71     | 6514.15            | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.20       | 3.94               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.67       | 13.38              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 22.95      | 458.99             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 5.20       | 104.06             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.45       | 9.02               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.26       | 5.26               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 506.68     | 10133.54           | ug/i  | 180000     |         |
| Mn      | 55  | 45   | 1         | 286.05     | 5720.92            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 1.37       | 27.31              | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.56       | 11.21              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 38.49      | 769.77             | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 204094.96  | 4081899.15         | ug/l  | 90000      | fail    |
| K       | 39  | 45   | 1         | 28.40      | 567.95             | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 623.79     | 12475.76           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 6512.54    | 130250.86          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1658.88    | 33177.69           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 3.29       | 65.79              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.03       | 0.57               | ug/l  | 3600       |         |

QC ISTD Table

| <u>CC TOID !</u> | abic |           |        |       |               |           |             |             |         |
|------------------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element          | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi               | 209  | 1         | 540046 | 0.26  | 586911        | 92.0      | 60          | 120         |         |
| Тb               | 159  | 1         | 731456 | 0.39  | 771893        | 94.8      | 60          | 120         |         |
| In               | 115  | 1         | 266544 | 0.77  | 289859        | 92.0      | 60          | 120         |         |
| Kr               | 83   | 1         | 23     | 37.78 | 17            | 140.0     | 1           | 1000        |         |
| Ge               | 74   | 1         | 46614  | 0.32  | 49061         | 95.0      | 60          | 120         |         |
| Sc               | 45   | 1         | 320823 | 0.30  | 341423        | 94.0      | 60          | 120         |         |
| Li               | 6    | 1         | 14264  | 0.85  | 15244         | 93.6      | 60          | 120         |         |

Sample Name

460-31791-a-2-b@20

**Data File Name** 

040SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T21:53:56-04:00

Type VialNumber Sample

Dilution

2408

Comment

20

Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 47.33      | 946.64             | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.18       | 3.66               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 45.96      | 919.10             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.13       | 2.56               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 1.94       | 38.84              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.14       | 2.89               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.03       | 0.66               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.47       | 9.49               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 7.07       | 141.33             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.93       | 18.66              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 7.26       | 145.27             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 75.82      | 1516.42            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 18.00      | 359.96             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 9.30       | 186.03             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 6.13       | 122.63             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 11805.25   | 236105.03          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 229.95     | 4599.00            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 15.73      | 314.59             | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 27.29      | 545.88             | ug/i  | 3600       |         |
| Ti      | 47  | 45   | 1         | 679.31     | 13586.19           | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1568.23    | 31364.66           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1473.56    | 29471.22           | ug/l  | 360000     |         |
| A!      | 27  | 45   | 1         | 7613.45    | 152269.02          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3860.86    | 77217.23           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 130.50     | 2609.90            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 3.84       | 76.77              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.54       | 10.78              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Deference CDC | 0/ 0      |             |             | T = = = : |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|-----------|
|         |     | Tune Step | CP3    | 70K3D | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag   |
| Bi      | 209 | 1         | 575561 | 0.59  | 586911        | 98.1      | 60          | 120         |           |
| Tb      | 159 | 1         | 769606 | 0.24  | 771893        | 99.7      | 60          | 120         | 1         |
| In      | 115 | 1         | 275169 | 0.05  | 289859        | 94.9      | 60          | 120         |           |
| Kr      | 83  | 1         | 39     | 9.89  | 17            | 233.3     | 1           | 1000        |           |
| Ge      | 74  | 1         | 48299  | 0.68  | 49061         | 98.4      | 60          | 120         |           |
| Sc      | 45  | 1         | 336415 | 0.52  | 341423        | 98.5      | 60          | 120         |           |
| Li      | 6   | 1         | 14742  | 1.91  | 15244         | 96.7      | 60          | 120         |           |

Sample Name

460-31705-a-13-a@20

**Data File Name** 

041SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T21:58:35-04:00

Type VialNumber Sample 2409

Dilution

20

Comment

Operator

MΡ

ISTDRefDataFileName

003CALB.D

SamplePassFail

Fail

ISTD PassFail

**Pass** 

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units   | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|---------|------------|---------|
| Pb      | 208 | 209  | 1         | 61.15      | 1222.94            | ug/l    | 3600       |         |
| TI      | 205 | 209  | 1         | 0.12       | 2.34               | ug/l    | 720        |         |
| Ва      | 137 | 159  | 1         | 68.44      | 1368.75            | ug/l    | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.36       | 7.15               | ug/l    | 3600       |         |
| Sn      | 118 | 115  | 1         | 3.22       | 64.34              | ug/l    | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.23       | 4.63               | ug/l    | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.07       | 1.44               | ug/l    | 180        |         |
| Мо      | 95  | 115  | 1         | 0.76       | 15.12              | ug/l    | 3600       |         |
| Sr      | 88  | 115  | 1         | 14.96      | 299.13             | ug/l    | 3600       |         |
| Se      | 78  | 74   | 1         | 1.00       | 19.93              | ug/l    | 450        |         |
| As      | 75  | 74   | 1         | 6.67       | 133.38             | ug/I    | 1800       |         |
| Zn      | 66  | 45   | 1         | 94.49      | 1889.74            | ug/l    | 450        |         |
| Cu      | 63  | 45   | 1         | 39.42      | 788.41             | ug/l 45 |            |         |
| Ni      | 60  | 45   | 1         | 12.12      | 242.39             | ug/l    | 900        |         |
| Co      | 59  | 45   | 1         | 5.64       | 112.79             | ug/l    | 450        |         |
| Fe      | 56  | 45   | 1         | 12757.87   | 255157.30          | ug/l    | 180000     |         |
| Mn      | 55  | 45   | 1         | 366.75     | 7335.07            | ug/l    | 9000       |         |
| Cr      | 52  | 45   | 1         | 3899.41    | 77988.11           | ug/l    | 900        | fail    |
| ٧       | 51  | 45   | 1         | 26.24      | 524.87             | ug/l    | 3600       | -       |
| Ti      | 47  | 45   | 1         | 342.18     | 6843.55            | ug/l    | 3600       |         |
| Ca      | 44  | 6    | 1         | 3405.89    | 68117.71           | ug/l    | 90000      |         |
| K .     | 39  | 45   | 1         | 844.15     | 16883.05           | ug/l    | 360000     |         |
| Al      | 27  | 45   | 1         | 6810.66    | 136213.28          | ug/l    | 36000      |         |
| Mg      | 24  | 45   | 1         | 2522.99    | 50459.80           | ug/l    | 180000     | -       |
| Na      | 23  | 45   | 1         | 2503.48    | 50069.53           | ug/l    | 360000     |         |
| В       | 11  | 6    | 1         | 4.46       | 89.20              | ug/l    | 7200       |         |
| Be      | 9   | 6    | 1         | 0.68       | 13.51              | ug/l    | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 579361 | 0.43  | 586911        | 98.7      | 60          | 120         |                                                  |
| Tb      | 159 | 1         | 770837 | 0.76  | 771893        | 99.9      | 60          | 120         | -                                                |
| In      | 115 | 1         | 276483 | 0.31  | 289859        | 95.4      | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 49     | 33.63 | 17            | 293.3     | 1           | 1000        | <del>                                     </del> |
| Ge      | 74  | 1         | 47919  | 0.13  | 49061         | 97.7      | 60          | 120         | 1                                                |
| Sc      | 45  | 1         | 332506 | 0.88  | 341423        | 97.4      | 60          | 120         |                                                  |
| Li      | 6   | 1         | 14957  | 1.37  | 15244         | 98.1      | 60          | 120         | 1                                                |

### Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

Data File Name

0426CCV.D

DataPath

**Acq Date Time** 

2011-10-06T22:03:11-04:00

Type VialNumber 6-CCV

Dilution

1301

Comment

1 MP

Operator ISTDRefDataFileName

003CALB.D

SamplePassFail

ISTD PassFail

Pass Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag       |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|---------------|
| Ве      | 9   | 6    | 1         | 50.81      | 3.63 | ug/l  | 4810.78     | 3.31    | 50        | 101.6 | 90     | 110     |               |
| В       | 11  | 6    | 1         | 100.73     | 0.64 | ug/l  | 3024.84     | 1.16    | 100       | 100.7 | 90     | 110     |               |
| Na      | 23  | 45   | 1         | 4982.95    | 0.95 | ug/l  | 4546432.36  | 0.47    | 5000      | 99.7  | 90     | 110     |               |
| Mg      | 24  | 45   | 1         | 5034.45    | 0.94 | ug/l  | 2199972.92  | 0.68    | 5000      | 100.7 | 90     | 110     |               |
| Al      | 27  | 45   | 1         | 501.05     | 0.71 | ug/l  | 108058.92   | 0.28    | 500       | 100.2 | 90     | 110     | 1             |
| K       | 39  | 45   | 1         | 4853.69    | 0.42 | ug/l  | 2215239.20  | 0.17    | 5000      | 97.1  | 90     | 110     |               |
| Ca      | 44  | 6    | 1         | 5020.15    | 0.59 | ug/l  | 109460.37   | 0.46    | 5000      | 100.4 | 90     | 110     |               |
| Ti      | 47  | 45   | 1         | 50.07      | 5.09 | ug/l  | 6505.97     | 5.46    | 50        | 100.1 | 90     | 110     |               |
| V       | 51  | 45   | 1         | 50.14      | 0.36 | ug/l  | 173732.95   | 0.24    | 50        | 100.3 | 90     | 110     | † · · · · · · |
| Cr      | 52  | 45   | 1         | 50.43      | 0.65 | ug/l  | 213408.64   | 0.33    | 50        | 100.9 | 90     | 110     | T             |
| Mn      | 55  | 45   | 1         | 503.85     | 0.45 | ug/l  | 1277693.38  | 0.10    | 500       | 100.8 | 90     | 110     | 1             |
| Fe      | 56  | 45   | 1         | 5003.97    | 0.68 | ug/l  | 15950392.26 | 0.65    | 5000      | 100.1 | 90     | 110     | i             |
| Со      | 59  | 45   | 1         | 50.23      | 0.21 | ug/l  | 299041.00   | 0.62    | 50        | 100.5 | 90     | 110     |               |
| Ni      | 60  | 45   | 1         | 49.99      | 0.42 | ug/l  | 80269.94    | 0.70    | 50        | 100.0 | 90     | 110     |               |
| Cu      | 63  | 45   | 1         | 50.31      | 0.60 | ug/l  | 215073.49   | 0.30    | 50        | 100.6 | 90     | 110     | <b>—</b>      |
| Zn      | 66  | 45   | 1         | 49.85      | 0.77 | ug/l  | 36181.08    | 1.19    | 50        | 99.7  | 90     | 110     | <b></b>       |
| As      | 75  | 74   | 1         | 50.03      | 0.24 | ug/l  | 27865.51    | 0.38    | 50        | 100.1 | 90     | 110     |               |
| Se      | 78  | 74   | 1         | 50.18      | 1.79 | ug/l  | 2012.94     | 2.12    | 50        | 100.4 | 90     | 110     |               |
| Sr      | 88  | 115  | 1         | 49.95      | 1.10 | ug/l  | 150628.74   | 0.90    | 50        | 99.9  | 90     | 110     |               |
| Мо      | 95  | 115  | 1 .       | 50.55      | 0.73 | ug/l  | 96680.51    | 0.72    | 50        | 101.1 | 90     | 110     | 1             |
| Ag      | 107 | 115  | 1         | 50.83      | 0.36 | ug/l  | 298249.43   | 0.60    | 50        | 101.7 | 90     | 110     |               |
| Cd      | 111 | 115  | 1         | 50.60      | 0.33 | ug/l  | 45173.22    | 0.34    | 50        | 101.2 | 90     | 110     |               |
| Sn      | 118 | 115  | 1         | 50.68      | 0.44 | ug/l  | 101740.68   | 0.39    | 50        | 101.4 | 90     | 110     |               |
| Sb      | 121 | 115  | 1         | 50.27      | 0.57 | ug/l  | 142169.50   | 0.59    | 50        | 100.5 | 90     | 110     |               |
| Ва      | 137 | 159  | 1         | 50.46      | 1.43 | ug/l  | 49156.95    | 0.77    | 50        | 100.9 | 90     | 110     |               |
| TI      | 205 | 209  | 1         | 9.97       | 0.23 | ug/l  | 130686.33   | 1.19    | 10        | 99.7  | 90     | 110     |               |
| Pb      | 208 | 209  | 1         | 49.90      | 0.53 | ug/l  | 867450.71   | 0.56    | 50        | 99.8  | 90     | 110     |               |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec | QC Low | QC High | QC Flag  |
|---------|-----|-----------|--------|-------|---------|------|--------|---------|----------|
| Li      | 6   | 1         | 14638  | 0.52  | 15244   | 96.0 | 60     | 120     | <u> </u> |
| Sc      | 45  | 1         | 331930 | 0.43  | 341423  | 97.2 | 60     | 120     |          |
| Ge      | 74  | 1         | 48094  | 0.54  | 49061   | 98.0 | 60     | 120     |          |
| Kr      | 83  | 1         | 16     | 32.73 | 17      | 93.3 | 1      | 1000    |          |
| In      | 115 | 1         | 277905 | 0.25  | 289859  | 95.9 | 60     | 120     |          |
| Tb      | 159 | 1         | 757409 | 0.72  | 771893  | 98.1 | 60     | 120     | 1        |
| Bi      | 209 | 1         | 573347 | 0.96  | 586911  | 97.7 | 60     | 120     | <b>1</b> |

| TuneStep | TuneFile  |
|----------|-----------|
| 1        | holisen a |

### Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0436CCB.D

DataPath

Acq Date Time

2011-10-06T22:07:47-04:00

Type VialNumber 6-CCB

VialNumber Dilution

1302 1

Comment

Operator

MP

ISTDRefDataFileName

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | 0.00       | -545.62 | ug/l  | 1.11      | 86.60   | 0.2     |         |
| В       | 11  | 6    | 1         | 1.13       | 5.08    | ug/l  | 47.78     | 4.02    | 20      | 1       |
| Na      | 23  | 45   | 1         | -6.68      | -53.39  | ug/l  | 422042.75 | 0.38    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.37       | 10.18   | ug/l  | 311.12    | 5.09    | 50      |         |
| Al      | 27  | 45   | 1         | 0.10       | 59.47   | ug/l  | 113.89    | 11.18   | 10      |         |
| K       | 39  | 45   | 1         | -28.00     | -7.62   | ug/l  | 161194.99 | 0.70    | 50      | 1       |
| Ca      | 44  | 6    | 1         | -15.49     | -13.16  | ug/l  | 1867.92   | 2.01    | 50      |         |
| Tī      | 47  | 45   | 1         | 0.14       | 0.06    | ug/l  | 3.33      | 0.00    | 1       |         |
| V       | 51  | 45   | 1         | 0.02       | 46.81   | ug/l  | 208.90    | 11.98   | 1       |         |
| Cr      | 52  | 45   | 1         | -0.06      | -58.78  | ug/l  | 5063.19   | 2.62    | 1       |         |
| Mn      | 55  | 45   | 1         | -0.02      | -69.46  | ug/l  | 238.90    | 15.87   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.42       | 14.90   | ug/l  | 5201.48   | 3.51    | 30      |         |
| Co      | 59  | 45   | 1         | 0.00       | 159.79  | ug/l  | 92.23     | 32.39   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.18      | -12.35  | ug/l  | 186.68    | 18.90   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.05      | -63.55  | ug/l  | 2065.75   | 5.67    | 1       |         |
| Zn      | 66  | 45   | 1         | -0.02      | -137.57 | ug/l  | 141.12    | 13.01   | 4       |         |
| As      | 75  | 74   | 1.        | -0.01      | -199.04 | ug/l  | 30.00     | 24.21   | 0.5     | †       |
| Se      | 78  | 74   | 1         | 0.03       | 441.16  | ug/l  | 56.67     | 10.60   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.01       | 46.22   | ug/l  | 34.45     | 24.36   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.03       | 12.39   | ug/l  | 83.34     | 8.00    | 1       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 32.54   | ug/l  | 44.45     | 18.88   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 41.82   | ug/l  | 15.56     | 32.73   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.02       | 21.87   | ug/l  | 123.34    | 8.11    | . 4     |         |
| Sb      | 121 | 115  | 1         | 0.02       | 12.08   | ug/l  | 78.89     | 8.79    | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.03       | 21.44   | ug/l  | 50.00     | 13.34   | 1       |         |
| T       | 205 | 209  | 1         | 0.02       | 8.70    | ug/l  | 271.12    | 7.21    | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.02       | 12.45   | ug/l  | 542.24    | 6.22    | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 14786  | 0.44  | 15244   | 97.0  | 60     | 120     |         |
| Sc      | 45  | 1         | 333169 | 0.32  | 341423  | 97.6  | 60     | 120     | 1       |
| Ge      | 74  | 1         | 48527  | 0.70  | 49061   | 98.9  | 60     | 120     |         |
| Kr      | 83  | 1         | 12     | 31.50 | 17      | 73.3  | 1      | 1000    |         |
| In      | 115 | 1         | 286328 | 0.13  | 289859  | 98.8  | 60     | 120     |         |
| ТЪ      | 159 | 1         | 767851 | 0.40  | 771893  | 99.5  | 60     | 120     |         |
| Bi      | 209 | 1         | 586711 | 0.37  | 586911  | 100.0 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

460-31705-b-15-a@20

**Data File Name** 

044SMPL.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T22:12:32-04:00

Type VialNumber Sample

**Dilution** 

2410

Comment

20

Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

Fail

ISTD PassFail

Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 443.68     | 8873.60            | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.13       | 2.66               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 84.86      | 1697.13            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.42       | 8.46               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 25.09      | 501.70             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.54       | 10.82              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.19       | 3.90               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 1.47       | 29.42              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 43.89      | 877.82             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 1.76       | 35.28              | ug/I  | 450        |         |
| As      | 75  | 74   | 1         | 11.64      | 232.81             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 643.84     | 12876.82           | ug/l  | 450        | fail    |
| Cu      | 63  | 45   | 1         | 23.37      | 467.42             | ug/I  | 450        |         |
| Ni      | 60  | 45   | 1         | 12.95      | 259.05             | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 6.94       | 138.83             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 19247.22   | 384944.31          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 391.93     | 7838.66            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 1222.52    | 24450.42           | ug/l  | 900        | fail    |
| ٧       | 51  | 45   | 1         | 27.24      | 544.75             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 275.61     | 5512.23            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 10885.18   | 217703.52          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1175.37    | 23507.35           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 11147.80   | 222955.91          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3457.21    | 69144.17           | ug/l  | 180000     |         |
| Ná      | 23  | 45   | 1         | 4644.98    | 92899.62           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 7.78       | 155.67             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.70       | 13.96              | ug/l  | 3600       |         |

**OC ISTD Table** 

| C TOID I | able |           |        |       |               |           |             |             |                                                  |
|----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Element  | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
| Bi       | 209  | 1         | 580451 | 1.47  | 586911        | 98.9      | 60          | 120         | 1                                                |
| Tb       | 159  | 1         | 769749 | 1.17  | 771893        | 99.7      | 60          | 120         |                                                  |
| In       | 115  | 1         | 276815 | 1.48  | 289859        | 95.5      | 60          | 120         | <del>                                     </del> |
| Kr       | 83   | 1         | 54     | 21.51 | 17            | 326.7     | 1           | 1000        | <del>                                     </del> |
| Ge       | 74   | 1         | 48196  | 1.72  | 49061         | 98.2      | 60          | 120         | <del> </del>                                     |
| Sc       | 45   | 1         | 335902 | 1.29  | 341423        | 98.4      | 60          | 120         |                                                  |
| Li       | 6    | 1         | 14640  | 2.41  | 15244         | 96.0      | 60          | 120         |                                                  |



Agilent Technologies

#### Continuing Calibration Verification (CCV) - US EPA Method 6020

CCV 1187191

Sample Name Data File Name

0456CCV.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T22:17:05-04:00

Type VialNumber

6-CCV 1301

Dilution

1

Comment Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail ISTD PassFail

Pass Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag  |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|----------|
| Be      | 9   | 6    | 1         | 49.61      | 1.18 | ug/l  | 4743.54     | 1.52    | 50        | 99.2  | 90     | 110     |          |
| В       | 11  | 6    | 1         | 96.49      | 3.98 | ug/l  | 2925.92     | 3.08    | 100       | 96.5  | 90     | 110     |          |
| Na      | 23  | 45   | 1         | 5010.28    | 0.61 | ug/l  | 4569488.93  | 0.68    | 5000      | 100.2 | 90     | 110     |          |
| Mg      | 24  | 45   | 1         | 5057.78    | 0.64 | ug/l  | 2210381.96  | 0.79    | 5000      | 101.2 | 90     | 110     |          |
| Al      | 27  | 45   | 1         | 501.14     | 0.24 | ug/l  | 108089.05   | 0.42    | 500       | 100.2 | 90     | 110     |          |
| K       | 39  | 45   | 1         | 4918.89    | 0.70 | ug/l  | 2242871.58  | 0.75    | 5000      | 98.4  | 90     | 110     |          |
| Ca      | 44  | 6    | 1         | 5004.08    | 0.93 | ug/l  | 110185.60   | 0.04    | 5000      | 100.1 | 90     | 110     |          |
| Ŧī      | 47  | 45   | 1         | 51.07      | 0.92 | ug/l  | 6636.02     | 0.91    | 50        | 102.1 | 90     | 110     |          |
| ٧       | 51  | 45   | 1         | 50.68      | 0.06 | ug/l  | 175621.43   | 0.22    | 50        | 101.4 | 90     | 110     |          |
| Cr      | 52  | 45   | 1         | 50.92      | 0.46 | ug/l  | 215444.92   | 0.56    | 50        | 101.8 | 90     | 110     |          |
| Mn      | 55  | 45   | 1         | 506.19     | 0.06 | ug/i  | 1283736.80  | 0.33    | 500       | 101.2 | 90     | 110     |          |
| Fe      | 56  | 45   | 1         | 5014.75    | 0.31 | ug/l  | 15986020.46 | 0.39    | 5000      | 100.3 | 90     | 110     |          |
| Co      | 59  | 45   | 1         | 50.53      | 0.64 | ug/l  | 300812.61   | 0.38    | 50        | 101.1 | 90     | 110     |          |
| Ni      | 60  | 45   | 1         | 50.59      | 0.46 | ug/l  | 81240,44    | 0.53    | 50        | 101.2 | 90     | 110     |          |
| Cu      | 63  | 45   | 1         | 50.33      | 0.45 | ug/l  | 215196.44   | 0.25    | 50        | 100.7 | 90.    | 110     |          |
| Zn      | 66  | 45   | 1         | 50.37      | 0.59 | ug/l  | 36553.12    | 0.34    | 50        | 100.7 | 90     | 110     | <b>1</b> |
| As      | 75  | 74   | 1         | 49.59      | 0.95 | ug/l  | 28070.86    | 0.40    | 50 -      | 99.2  | 90     | 110     |          |
| Se      | 78  | 74   | 1         | 50.26      | 1.42 | ug/l  | 2049.06     | 1.59    | 50        | 100.5 | 90     | 110     | T        |
| Sr      | 88  | 115  | 1         | 49.47      | 0.48 | ug/l  | 150655.00   | 0.10    | 50        | 98.9  | 90     | 110     | i        |
| Мо      | 95  | 115  | 1         | 50.26      | 1.16 | ug/i  | 97057.44    | 1.61    | 50        | 100.5 | 90     | 110     | 1        |
| Ag      | 107 | 115  | 1         | 50.74      | 1.23 | ug/l  | 300651.30   | 1.44    | 50        | 101.5 | 90     | 110     |          |
| Cd      | 111 | 115  | 1         | 50.52      | 1.18 | ug/l  | 45544.19    | 1.18    | 50        | 101.0 | 90     | 110     |          |
| Sn      | 118 | 115  | 1         | 50.70      | 0.33 | ug/l  | 102773.26   | 0.51    | 50        | 101.4 | 90     | 110     |          |
| Sb      | 121 | 115  | 1         | 50.10      | 0.68 | ug/l  | 143059.40   | 0.84    | 50        | 100.2 | 90     | 110     |          |
| Ba      | 137 | 159  | 1         | 50.71      | 0.28 | ug/l  | 49911.67    | 0.50    | 50        | 101.4 | 90     | 110     |          |
| П       | 205 | 209  | 1         | 9.96       | 0.65 | ug/l  | 131717.92   | 0.85    | 10        | 99.6  | 90     | 110     |          |
| Pb      | 208 | 209  | 1         | 50.07      | 0.74 | ug/l  | 878452.79   | 0.43    | 50        | 100.1 | 90     | 110     |          |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|------|--------|---------|---------|
| Li      | 6   | 1         | 14782  | 0.95  | 15244   | 97.0 | 60     | 120     |         |
| Sc      | 45  | 1         | 331955 | 0.27  | 341423  | 97.2 | 60     | 120     |         |
| Ge      | 74  | 1         | 48886  | 0.77  | 49061   | 99.6 | 60     | 120     |         |
| Kr      | 83  | 1         | 14     | 13.35 | 17      | 86.7 | 1      | 1000    |         |
| In      | 115 | 1         | 280605 | 0.55  | 289859  | 96.8 | 60     | 120     |         |
| Тъ      | 159 | 1         | 765172 | 0.78  | 771893  | 99.1 | 60     | 120     |         |
| Bi      | 209 | 1         | 578617 | 1.05  | 586911  | 98.6 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

### Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0466CCB.D

DataPath

C:\ICPMH\1\DATA\11J06s00.B

**Acq Date Time** 

2011-10-06T22:21:41-04:00

Type VialNumber 6-CCB

Dilution

1302

**Comment** Operator

MP

**ISTDRefDataFileName** 

003CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.01      | -124.37 | ug/l  | 0.56      | 173.21  | 0.2     |         |
| В       | 11  | 6    | 1         | 1.16       | 45.00   | ug/l  | 48.89     | 32.22   | 20      |         |
| Na      | 23  | 45   | 1         | -12.97     | -26.28  | ug/l  | 424694.11 | 0.32    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.40       | 15.82   | ug/l  | 328.90    | 8.11    | 50      |         |
| Al      | 27  | 45   | 1         | 0.13       | 6.29    | ug/l  | 122.23    | 1.58    | 10      |         |
| K       | 39  | 45   | 1         | -33.70     | -5.53   | ug/l  | 161784.60 | 0.60    | 50      |         |
| Ca      | 44  | 6    | 1         | -20.78     | -8.81   | ug/l  | 1772.35   | 1.62    | 50      |         |
| Tì      | 47  | 45   | 1         | 0.13       | 10.95   | ug/l  | 2.22      | 86.60   | 1       |         |
| ٧       | 51  | 45   | 1         | 0.01       | 222.68  | ug/l  | 177.79    | 25.87   | 1       |         |
| Cr      | 52  | 45   | 1         | -0.06      | -57.69  | ug/l  | 5126.55   | 3.24    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.00       | -643.18 | ug/l  | 292.23    | 16.70   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.51       | 1.67    | ug/l  | 5602.74   | 0.65    | 30      |         |
| Со      | 59  | 45   | 1         | 0.01       | 34.15   | ug/l  | 107.78    | 10.86   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.19      | -4.21   | ug/l  | 174.45    | 7.72    | 1       |         |
| Cu      | 63  | 45   | 1         | -0.05      | -53.74  | ug/l  | 2069.09   | 5.80    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.01       | 200.88  | ug/l  | 163.34    | 8.16    | 4       |         |
| As      | 75  | 74   | 1         | 0.01       | 58.68   | ug/l  | 37.22     | 5.17    | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.05      | -262.34 | ug/l  | 54.44     | 9.84    | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.00       | 48.07   | ug/l  | 23.33     | 14.29   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.03       | 27.06   | ug/l  | 93.34     | 18.90   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 72.14   | ug/l  | 48.89     | 44.36   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 33.08   | ug/l  | 13.33     | 25.01   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.04       | 29.11   | ug/l  | 155.56    | 13.94   | 4       | 1       |
| Sb      | 121 | 115  | 1         | 0.01       | 13.11   | ug/l  | 58.89     | 8.64    | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.03       | 62.49   | ug/l  | 46.67     | 37.79   | 1       |         |
| Π       | 205 | 209  | 1         | 0.02       | 16.44   | ug/l  | 296.68    | 14.08   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.02       | 5.67    | ug/l  | 611.14    | 3.15    | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 14946  | 1.93  | 15244   | 98.0  | 60     | 120     |         |
| Sc      | 45  | 1         | 339460 | 0.47  | 341423  | 99.4  | 60     | 120     |         |
| Ge      | 74  | 1         | 49495  | 0.37  | 49061   | 100.9 | 60     | 120     |         |
| Kr      | 83  | 1         | 19     | 44.42 | 17      | 113.3 | 1      | 1000    |         |
| In      | 115 | 1         | 291410 | 0.58  | 289859  | 100.5 | 60     | 120     |         |
| ТЪ      | 159 | 1         | 780976 | 0.34  | 771893  | 101.2 | 60     | 120     |         |
| Bi      | 209 | 1         | 594396 | 0.39  | 586911  | 101.3 | 60     | 120     | 1       |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

QC Tune Report

Data File:

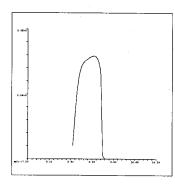
C:\ICPMH\1\7500\QCTUNE.D

Date Acquired:

7 Oct 2011 01:15:00 pm

Operator:

Misc Info:


Vial Number: Current Method:

C:\ICPMH\1\METHODS\2008tune.m

5TB 914256 METHOD: 200, 97640 AP/00711

| Minimum | Response | (CPS) |
|---------|----------|-------|

| Elemen | ıt    | Actual        | Required | Flag |
|--------|-------|---------------|----------|------|
| RSD (% | :)    |               |          |      |
| Elemen | t     | Actual        | Required | Flag |
| 9      | Ве    | 0.68          | 5.00     |      |
| 24     | Mg    | 1.36          | 5.00     |      |
| 25     | Mg    | 1.21          | 5.00     |      |
| 26     | Mg    | 0.61          | 5.00     |      |
| 59     | Co    | 1.15          | 5.00     |      |
| 115    | In    | 0.32          | 5.00     |      |
| 206    | Pb    | 1.05          | 5.00     |      |
| 207    | Pb    | 0.83          | 5.00     |      |
| 208    | Pb    | 0.92          | 5.00     |      |
| Ion Ra | tio   |               |          |      |
| Elemen | .t    | Actual        | Required | Flag |
| Maximu | m Bkg | . Count (CPS) |          |      |
| Elemen | t     | Actual        | Required | Flag |

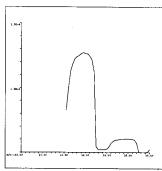


Mass Calib.

9 Be

Actual: 9.00

Required: 8.90-9.10


Flag:

Peak Width

Actual: 0.65

Required: 0.90

Flag:

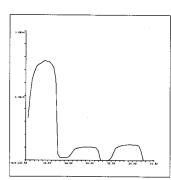


24 Mg

Mass Calib.

Actual: 23.95

Required: 23.90-24.10


Flag:

Peak Width

Actual: 0.65

Required: 0.90

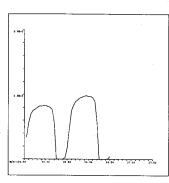
Flag:



Mass Calib.

Actual: 24.95

Required: 24.90-25.10


Flag:

Peak Width

Actual: 0.65

Required: 0.90

Flag:

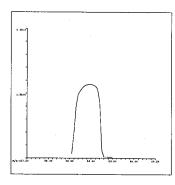


26 Mg

Mass Calib.

Actual: 25.95

Required: 25.90-26.10


Flag:

Peak Width

Actual: 0.65

Required: 0.90

Flag:

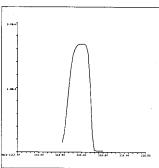


Mass Calib.

59 Co

Actual: 58.95

Required: 58.90-59.10


Flag:

Peak Width

Actual: 0.65

Required: 0.90

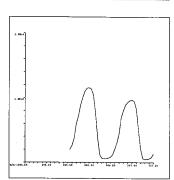
Flag:



115 In Mass Calib.

nass carry.

Actual: 115.00


Required: 114.90-115.10

Flag: Peak Width

Actual: 0.65

Required: 0.90

Flag:

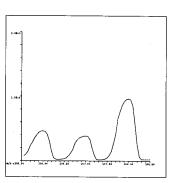


206 Pb

Mass Calib.

Actual: 206.00

Required: 205.90-206.10


Flag:

Peak Width

Actual: 0.65

Required: 0.90

Flag:

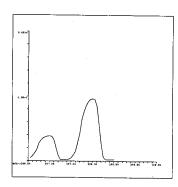


207 Pb

Mass Calib.

Actual: 206.95

Required: 206.90-207.10


Flag:

Peak Width

Actual: 0.60

Required: 0.90

Flag:



208 Pb Mass Calib. Actual: 207.95

Required: 207.90-208.10

Flag: Peak Width Actual: 0.60

Required: 0.90

Flag:

QC Tune Result:Pass

## Calibration Blank Report

Sample Name

Cal Blank

Data File Name

004CALB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T19:20:18-04:00

Type

CalBlk

VialNumber

1101

**Dilution** 

1

Comment

Operator

MP

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | CPS    | %RSD   |
|---------|-----|------|-----------|--------|--------|
| Pb      | 208 | 209  | 1         | 126    | 10.73  |
| TI      | 205 | 209  | 1         | 17     | 20.01  |
| Ва      | 137 | 159  | 1         | 11     | 62.48  |
| Sb      | 121 | 115  | 1         | 84     | 21.74  |
| Sn      | 118 | 115  | 1         | 94     | 21.56  |
| Cd      | 111 | 115  | 1         | 10     | 33.30  |
| Ag      | 107 | 115  | 1         | 12     | 78.69  |
| Мо      | 95  | 115  | 1         | 63     | 15.79  |
| Sr      | 88  | 115  | 1         | - 11   | 17.30  |
| Se      | 78  | 74   | 1         | 46     | 20.15  |
| As      | 75  | 74   | 1         | 26     | 35.16  |
| Zn      | 66  | 45   | 1         | 217    | 9.61   |
| Cu      | 63  | 45   | 1         | 2109   | 5.44   |
| Ni      | 60  | 45   | 1         | 122    | 25.34  |
| Со      | 59  | 45   | 1         | 2      | 86.60  |
| Fe      | 56  | 45   | 1         | 3306   | 2.32   |
| Mn      | 55  | 45   | 1         | 43     | 20.36  |
| Cr      | 52  | 45   | 1         | 1915   | 0.36   |
| V       | 51  | 45   | 1         | 472    | 2.48   |
| Ca      | 44  | 6    | 1         | 251    | 13.94  |
| К       | 39  | 45   | 1         | 92507  | 0.14   |
| Al      | 27  | 45   | 1         | 633    | 4.87   |
| Mg      | 24  | 45   | 1         | 196    | 2.99   |
| Na      | 23  | 45   | 1         | 189461 | 0.42   |
| В       | 11  | 6    | 1         | 7      | 132.33 |
| Be      | 9   | 6    | 1         | 4      | 49.42  |

**OC ISTD Table** 

| <b>401010</b> | abic |           |        |       |
|---------------|------|-----------|--------|-------|
| Element       | m/z  | Tune Step | CPS    | %RSD  |
| Bi            | 209  | 1         | 513001 | 0.25  |
| Тb            | 159  | 1         | 679167 | 0.48  |
| In            | 115  | 1         | 247939 | 1.79  |
| Kr            | 83   | 1         | 30     | 19.25 |
| Ge            | 74   | 1         | 38549  | 0.98  |
| Sc            | 45   | 1         | 263470 | 0.62  |
| Li            | 6    | 1         | 12234  | 0.33  |

Agilent Technologies

Sample Name

CAL1 1187187

Data File Name

005CALS.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T19:25:23-04:00

Type VialNumber

1102

Dilution

1

Comment

Operator

MΡ

ISTDRefDataFileName

004CALB.D

ISTD PassFail

OC Analyte Table

| Element | m/z  | ISTD | Tune Step | CPS    | %RSD  |
|---------|------|------|-----------|--------|-------|
| Be      | 9    | 6    | 1         | 15     | 19.24 |
| В       | 11   | 6    | 1         | 478    | 12.98 |
| Na      | 23   | 45   | 1         | 217023 | 0.20  |
| Mg      | 24   | 45   | 1         | 18043  | 2.00  |
| Al      | 27   | 45   | 1         | 2390   | 2.97  |
| K       | 39   | 45   | 1         | 110733 | 0.41  |
| Ca      | 44   | 6    | 1         | 1127   | 0.15  |
| Ti      | 47   | 45   | 1         | 101    | 16.26 |
| ٧       | - 51 | 45   | 1         | 3329   | 1.38  |
| Cr      | 52   | 45   | 1         | 5304   | 1.51  |
| Mn      | 55   | 45   | 1         | 4164   | 0.88  |
| Fe      | 56   | 45   | 1         | 87594  | 0.60  |
| Co      | 59   | 45   | 1         | 5067   | 3.43  |
| Ni      | 60   | 45   | 1         | 1510   | 0.44  |
| Cu      | 63   | 45   | 1         | 5530   | 3.36  |
| Zn      | 66   | 45   | 1         | 2677   | 1.19  |
| As      | 75   | 74   | 1         | 273    | 3.23  |
| Se      | 78   | 74   | 1         | 63     | 8.11  |
| Sr      | 88   | 115  | 1         | 2594   | 1.23  |
| Мо      | 95   | 115  | 1         | 1757   | 2.87  |
| Ag      | 107  | 115  | 1         | 5274   | 3.08  |
| Cd      | 111  | 115  | 1         | 402    | 8.63  |
| Sn      | 118  | 115  | 1         | 7350   | 0.36  |
| Sb      | 121  | 115  | 1         | 1308   | 6.60  |
| Ba      | 137  | 159  | 1         | 908    | 7.36  |
| Π       | 205  | 209  | 1         | 2476   | 6.98  |
| (Pb)    | 206  | 209  | 1         | 1286   | 4.28  |
| (Pb)    | 207  | 209  | 1         | 1047   | 3.67  |
| Pb      | 208  | 209  | 1         | 4995   | 2.12  |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Lì      | 6   | 1         | 12142  | 1.33  | 12234         | 99.3      | 60          | 120         |         |
| Sc      | 45  | 1         | 257822 | 0.47  | 263470        | 97.9      | 60          | 120         |         |
| Ge      | 74  | 1         | 38314  | 0.62  | 38549         | 99.4      | 60          | 120         |         |
| Kr      | 83  | 1         | 28     | 18.33 | 30            | 92.6      | 1           | 1000        |         |
| In      | 115 | 1         | 244131 | 0.64  | 247939        | 98.5      | 60          | 120         |         |
| Тb      | 159 | 1         | 669669 | 0.70  | 679167        | 98.6      | 60          | 120         | 1       |
| Bi      | 209 | 1         | 509702 | 0.34  | 513001        | 99.4      | 60          | 120         |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Agilent Technologies Page 161 of 1

Sample Name

CAL2 1187189

Data File Name

006CALS.D

DataPath

 $\textbf{C:} \\ \textbf{ICPMH} \\ \textbf{1} \\ \textbf{DATA} \\ \textbf{11J07t00.B}$ 

**Acq Date Time** 

2011-10-07T19:30:28-04:00

Type VialNumber CalStd

Dilution

1103 1

Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | CPS     | %RSD  |
|---------|-----|------|-----------|---------|-------|
| Be      | 9   | 6    | 1         | 807     | 1.73  |
| В       | 11  | 6    | 1         | 512     | 10.09 |
| Na      | 23  | 45   | 1         | 886613  | 0.30  |
| Mg      | 24  | 45   | 1         | 359053  | 0.84  |
| Al      | 27  | 45   | 1         | 18124   | 2.41  |
| K       | 39  | 45   | 1         | 483278  | 0.53  |
| Ca      | 44  | 6    | 1         | 17762   | 1.70  |
| Τī      | 47  | 45   | 1         | 1048    | 2.39  |
| ٧       | 51  | 45   | 1         | 28116   | 0.14  |
| Cr      | 52  | 45   | 1         | 35014   | 0.79  |
| Mn      | 55  | 45   | 1         | 204298  | 0.59  |
| Fe      | 56  | 45   | 1         | 2601782 | 0.57  |
| Co      | 59  | 45   | 1         | 48066   | 0.57  |
| Ni      | 60  | 45   | 1         | 13285   | 0.50  |
| Cu      | 63  | 45   | 1         | 36312   | 1.91  |
| Zn      | 66  | 45   | 1         | 6156    | 2.95  |
| As      | 75  | 74   | 1         | 4570    | 1.47  |
| Se      | 78  | 74   | 1         | 357     | 6.07  |
| Sr      | 88  | 115  | 1         | 25883   | 0.21  |
| Мо      | 95  | 115  | 1         | 16361   | 1.37  |
| Ag      | 107 | 115  | 1         | 50681   | 1.41  |
| Cd      | 111 | 115  | 1         | 7538    | 2.56  |
| Sn      | 118 | 115  | 1         | 17720   | 0.44  |
| Sb      | 121 | 115  | 1         | 24315   | 1.76  |
| Ва      | 137 | 159  | 1         | 9050    | 2.99  |
| Π       | 205 | 209  | 1         | 23286   | 3.38  |
| (Pb)    | 206 | 209  | 1         | 39598   | 2.02  |
| (Pb)    | 207 | 209  | 1         | 33535   | 1.09  |
| Pb      | 208 | 209  | 1         | 156745  | 0.72  |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Li      | 6   | 1         | 11935  | 1.95  | 12234         | 97.6      | 60          | 120         |         |
| Sc      | 45  | 1         | 256256 | 0.29  | 263470        | 97.3      | 60          | 120         |         |
| Ge      | 74  | 1         | 38135  | 0.38  | 38549         | 98.9      | 60          | 120         | *       |
| Kr      | 83  | 1         | 21     | 39.75 | 30            | 70.4      | 1           | 1000        |         |
| In      | 115 | 1         | 241855 | 1.00  | 247939        | 97.5      | 60          | 120         |         |
| ТЪ      | 159 | 1         | 657588 | 0.53  | 679167        | 96.8      | 60          | 120         |         |
| Bi      | 209 | 1         | 505652 | 0.78  | 513001        | 98.6      | 60          | 120         |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

CAL3 1187191

**Data File Name** 

007CALS.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T19:35:29-04:00

Type VialNumber CalStd 1104

Dilution

1

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

ISTD PassFail

Pass

**OC Analyte Table** 

| Be         9         6         1         4034           B         11         6         1         2335           Na         23         45         1         3531603           Mg         24         45         1         1760356           Al         27         45         1         87748           K         39         45         1         1788215           Ca         44         6         1         88038           Ti         47         45         1         5141           V         51         45         1         139562           Cr         52         45         1         139562           Cr         52         45         1         166237           Mn         55         45         1         1017323           Fe         56         45         1         12670485           Co         59         45         1         239867           Ni         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28                                                                                  | %RSD | CPS      | Tune Step | ISTD | m/z | Element |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|-----------|------|-----|---------|
| Na         23         45         1         3531603           Mg         24         45         1         1760356           Al         27         45         1         87748           K         39         45         1         1788215           Ca         44         6         1         88038           Ti         47         45         1         5141           V         51         45         1         139562           Cr         52         45         1         166237           Mn         55         45         1         1017323           Fe         56         45         1         10270485           Co         59         45         1         239867           Nii         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28776           As         75         74         1         22477           Se         78         74         1         130441           Mo         95         115         1                                                                                     | 1.12 | 4034     | 1         | 6    | 9   | Be      |
| Mg         24         45         1         1760356           Al         27         45         1         87748           K         39         45         1         1788215           Ca         44         6         1         88038           Ti         47         45         1         5141           V         51         45         1         139562           Cr         52         45         1         166237           Mn         55         45         1         1017323           Fe         56         45         1         1017323           Fe         56         45         1         12670485           Co         59         45         1         239867           Ni         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28776           As         75         74         1         22477           Se         78         74         1         130441           Mo         95         115         1                                                                                      | 3.21 | 2335     | 1         | 6    | 11  | В       |
| Al 27 45 1 87748  K 39 45 1 1788215  Ca 44 6 1 88038  Ti 47 45 1 5141  V 51 45 1 139562  Cr 52 45 1 166237  Mn 55 45 1 1017323  Fe 56 45 1 12670485  Co 59 45 1 239867  Ni 60 45 1 64125  Cu 63 45 1 172162  Zn 66 45 1 28776  As 75 74 1 22477  Se 78 74 1 1569  Sr 88 115 1 130441  Mo 95 115 1 81199  Ag 107 115 1 250827  Cd 111 115 1 38330  Sn 118 115 1 123805  Ba 137 159 1 45423  Tl 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.13 | 3531603  | 1         | 45   | 23  | Na      |
| K         39         45         1         1788215           Ca         44         6         1         88038           Ti         47         45         1         5141           V         51         45         1         139562           Cr         52         45         1         166237           Mn         55         45         1         1017323           Fe         56         45         1         12670485           Co         59         45         1         239867           Ni         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28776           As         75         74         1         22477           Se         78         74         1         1569           Sr         88         115         1         30441           Mo         95         115         1         81199           Ag         107         115         1         250827           Cd         111         115         1                                                                                      | 0.15 | 1760356  | 1         | 45   | 24  | Mg      |
| Ca         44         6         1         88038           Ti         47         45         1         5141           V         51         45         1         139562           Cr         52         45         1         166237           Mn         55         45         1         1017323           Fe         56         45         1         12670485           Co         59         45         1         239867           Ni         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28776           As         75         74         1         22477           Se         78         74         1         1569           Sr         88         115         1         130441           Mo         95         115         1         81199           Ag         107         115         1         250827           Cd         111         115         1         38330           Sn         118         115         1                                                                                    | 0.54 | 87748    | 1         | 45   | 27  | Al      |
| Ti 47 45 1 5141  V 51 45 1 139562  Cr 52 45 1 166237  Mn 55 45 1 1017323  Fe 56 45 1 12670485  Co 59 45 1 239867  Ni 60 45 1 64125  Cu 63 45 1 172162  Zn 66 45 1 28776  As 75 74 1 22477  Se 78 74 1 1569  Sr 88 115 1 130441  Mo 95 115 1 81199  Ag 107 115 1 250827  Cd 111 115 1 38330  Sn 118 115 1 123805  Ba 137 159 1 45423  Tl 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.23 | 1788215  | 1         | 45   | 39  | K       |
| V         51         45         1         139562           Cr         52         45         1         166237           Mn         55         45         1         1017323           Fe         56         45         1         12670485           Co         59         45         1         239867           Nii         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28776           As         75         74         1         22477           Se         78         74         1         1569           Sr         88         115         1         130441           Mo         95         115         1         81199           Ag         107         115         1         250827           Cd         111         115         1         38330           Sn         118         115         1         38273           Sb         121         115         1         123805           Ba         137         159         1 <td>1.12</td> <td>88038</td> <td>1</td> <td>6</td> <td>44</td> <td>Ca</td> | 1.12 | 88038    | 1         | 6    | 44  | Ca      |
| Cr 52 45 1 166237  Mn 55 45 1 1017323  Fe 56 45 1 12670485  Co 59 45 1 239867  Nii 60 45 1 64125  Cu 63 45 1 172162  Zn 66 45 1 28776  As 75 74 1 22477  Se 78 74 1 1569  Sr 88 115 1 130441  Mo 95 115 1 81199  Ag 107 115 1 250827  Cd 111 115 1 38330  Sn 118 115 1 123805  Ba 137 159 1 45423  Tl 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.50 | 5141     | 1         | 45   | 47  | Ti      |
| Mn         55         45         1         1017323           Fe         56         45         1         12670485           Co         59         45         1         239867           Ni         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28776           As         75         74         1         22477           Se         78         74         1         1569           Sr         88         115         1         130441           Mo         95         115         1         81199           Ag         107         115         1         250827           Cd         111         115         1         38330           Sn         118         115         1         89273           Sb         121         115         1         123805           Ba         137         159         1         45423           TI         205         209         1         117160                                                                                                                        | 0.39 | 139562   | 1         | 45   | 51  | ٧       |
| Fe 56 45 1 12670485  Co 59 45 1 239867  Ni 60 45 1 64125  Cu 63 45 1 172162  Zn 66 45 1 28776  As 75 74 1 22477  Se 78 74 1 1569  Sr 88 115 1 130441  Mo 95 115 1 81199  Ag 107 115 1 250827  Cd 111 115 1 38330  Sn 118 115 1 123805  Ba 137 159 1 45423  Tl 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.21 | 166237   | 1         | 45   | 52  | Cr      |
| Co         59         45         1         239867           Ni         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28776           As         75         74         1         22477           Se         78         74         1         1569           Sr         88         115         1         130441           Mo         95         115         1         81199           Ag         107         115         1         250827           Cd         111         115         1         38330           Sn         118         115         1         89273           Sb         121         115         1         123805           Ba         137         159         1         45423           TI         205         209         1         117160                                                                                                                                                                                                                                                   | 0.97 | 1017323  | 1         | 45   | 55  | Mn      |
| Ni         60         45         1         64125           Cu         63         45         1         172162           Zn         66         45         1         28776           As         75         74         1         22477           Se         78         74         1         1569           Sr         88         115         1         130441           Mo         95         115         1         81199           Ag         107         115         1         250827           Cd         111         115         1         38330           Sn         118         115         1         89273           Sb         121         115         1         123805           Ba         137         159         1         45423           TI         205         209         1         117160                                                                                                                                                                                                                                                                                                               | 0.29 | 12670485 | 1         | 45   | 56  | Fe      |
| Cu 63 45 1 172162  Zn 66 45 1 28776  As 75 74 1 22477  Se 78 74 1 1569  Sr 88 115 1 130441  Mo 95 115 1 81199  Ag 107 115 1 250827  Cd 111 115 1 38330  Sn 118 115 1 123805  Ba 137 159 1 45423  Tl 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.82 | 239867   | 1         | 45   | 59  | Co      |
| Zn     66     45     1     28776       As     75     74     1     22477       Se     78     74     1     1569       Sr     88     115     1     130441       Mo     95     115     1     81199       Ag     107     115     1     250827       Cd     111     115     1     38330       Sn     118     115     1     89273       Sb     121     115     1     123805       Ba     137     159     1     45423       Tl     205     209     1     117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.08 | 64125    | 1         | 45   | 60  | Ni      |
| As 75 74 1 22477  Se 78 74 1 1569  Sr 88 115 1 130441  Mo 95 115 1 81199  Ag 107 115 1 250827  Cd 111 115 1 38330  Sn 118 115 1 89273  Sb 121 115 1 123805  Ba 137 159 1 45423  Tl 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.12 | 172162   | 1         | 45   | 63  | Cu      |
| Se     78     74     1     1569       Sr     88     115     1     130441       Mo     95     115     1     81199       Ag     107     115     1     250827       Cd     111     115     1     38330       Sn     118     115     1     89273       Sb     121     115     1     123805       Ba     137     159     1     45423       Tl     205     209     1     117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.28 | 28776    | 1         | 45   | 66  | Źn      |
| Sr     88     115     1     130441       Mo     95     115     1     81199       Ag     107     115     1     250827       Cd     111     115     1     38330       Sn     118     115     1     89273       Sb     121     115     1     123805       Ba     137     159     1     45423       Tl     205     209     1     117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.62 | 22477    | 1         | 74   | 75  | As      |
| Mo         95         115         1         81199           Ag         107         115         1         250827           Cd         111         115         1         38330           Sn         118         115         1         89273           Sb         121         115         1         123805           Ba         137         159         1         45423           Tl         205         209         1         117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.14 | 1569     | 1         | 74   | 78  | Se      |
| Ag 107 115 1 250827  Cd 111 115 1 38330  Sn 118 115 1 89273  Sb 121 115 1 123805  Ba 137 159 1 45423  Tl 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.66 | 130441   | 1         | 115  | 88  | Sr      |
| Cd     111     115     1     38330       Sn     118     115     1     89273       Sb     121     115     1     123805       Ba     137     159     1     45423       Tl     205     209     1     117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.23 | 81199    | 1         | 115  | 95  | Мо      |
| Sn         118         115         1         89273           Sb         121         115         1         123805           Ba         137         159         1         45423           Tl         205         209         1         117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.31 | 250827   | 1         | 115  | 107 | Ag      |
| Sb 121 115 1 123805  Ba 137 159 1 45423  Tl 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.62 | 38330    | 1         | 115  | 111 | Cd      |
| Ва 137 159 1 45423<br>П 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.48 | 89273    | 1         | 115  | 118 | Sn      |
| TI 205 209 1 117160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.17 | 123805   | 1         | 115  | 121 | Sb      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.94 | 45423    | 1         | 159  | 137 | Ва      |
| (Ph) 206 209 1 197844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.33 | 117160   | 1         | 209  | 205 | П       |
| (1.5) 200 203 1 197077                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.73 | 197844   | 1         | 209  | 206 | (Pb)    |
| (Pb) 207 209 1 166476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69 | 166476   | 1         | 209  | 207 | (Pb)    |
| Pb 208 209 1 781391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.30 | 781391   | 1         | 209  | 208 | Pb      |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Li      | 6   | 1         | 11843  | 1.13  | 12234         | 96.8      | 60          | 120         |         |
| Sc      | 45  | 1         | 255996 | 0.25  | 263470        | 97.2      | 60          | 120         |         |
| Ge      | 74  | 1         | 37982  | 0.59  | 38549         | 98.5      | 60          | 120         |         |
| Kr      | 83  | 1         | 17     | 20.01 | 30            | 55.6      | 1           | 1000        |         |
| In      | 115 | 1         | 236914 | 0.45  | 247939        | 95.6      | 60          | 120         |         |
| Тb      | 159 | 1         | 659008 | 0.37  | 679167        | 97.0      | 60          | 120         |         |
| Bi      | 209 | 1         | 495069 | 0.69  | 513001        | 96.5      | 60          | 120         |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Agilent Technologies

Sample Name

CAL4 1187193

**Data File Name** 

008CALS.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T19:40:24-04:00

Туре VialNumber

CalStd

Dilution

1105 1

Comment Operator

MP

**ISTDRefDataFileName** 

004CALB.D

ISTD PassFail

Pass

**OC Analyte Table** 

| Be         9         6         1         7843         0.71           B         11         6         1         4717         0.86           Na         23         45         1         6640728         0.81           Mg         24         45         1         3390604         0.54           Al         27         45         1         171209         0.35           K         39         45         1         3365942         0.28           Ca         44         6         1         172324         0.62           Ti         47         45         1         10271         2.44           V         51         45         1         276308         0.76           Cr         52         45         1         2200000         0.49           Fe         56         45         1         24806055         0.22           Co                                                                                            | Element | m/z | ISTD | Tune Step | CPS      | %RSD |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----|------|-----------|----------|------|
| Na         23         45         1         6640728         0.81           Mg         24         45         1         3390604         0.54           Al         27         45         1         171209         0.35           K         39         45         1         3365942         0.28           Ca         44         6         1         172324         0.62           Ti         47         45         1         10271         2.44           V         51         45         1         276308         0.76           Cr         52         45         1         324344         0.63           Mn         55         45         1         2000000         0.49           Fe         56         45         1         2000000         0.49           Fe         56         45         1         2000000         0.49           Fe         56         45         1         24806055         0.22           Co         59         45         1         466969         0.38           Ni         60         45         1         125216         1.01           Cu<                                                                                 | Be      | 9   | 6    | 1         | 7843     | 0.71 |
| Mg         24         45         1         3390604         0.54           Al         27         45         1         171209         0.35           K         39         45         1         3365942         0.28           Ca         44         6         1         172324         0.62           Ti         47         45         1         10271         2.44           V         51         45         1         276308         0.76           Cr         52         45         1         324344         0.63           Mn         55         45         1         2000000         0.49           Fe         56         45         1         24806055         0.22           Co         59         45         1         24806055         0.22           Co         59         45         1         466969         0.38           Ni         60         45         1         125216         1.01           Cu         63         45         1         330533         0.27           Zn         66         45         1         55685         0.22           As <td>В</td> <td>11</td> <td>6</td> <td>1</td> <td>4717</td> <td>0.86</td>           | В       | 11  | 6    | 1         | 4717     | 0.86 |
| Al 27 45 1 171209 0.35  K 39 45 1 3365942 0.28  Ca 44 6 1 172324 0.62  Ti 47 45 1 10271 2.44  V 51 45 1 276308 0.76  Cr 52 45 1 324344 0.63  Mn 55 45 1 2000000 0.49  Fe 56 45 1 24806055 0.22  Co 59 45 1 466969 0.38  Ni 60 45 1 125216 1.01  Cu 63 45 1 330533 0.27  Zn 66 45 1 55685 0.22  As 75 74 1 44938 1.28  Se 78 74 1 3064 0.42  Sr 88 115 1 258450 0.37  Mo 95 115 1 163938 1.34  Ag 107 115 1 486098 0.53  Cd 111 115 1 75686 0.59  Sn 118 115 1 75686 0.59  Sn 118 115 1 176512 1.22  Sb 121 115 1 244627 0.92  Ba 137 159 1 89071 0.29  Tl 205 209 1 230356 0.43  (Pb) 206 209 1 389351 0.40  (Pb) 206 209 1 389351 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Na      | 23  | 45   | 1         | 6640728  | 0.81 |
| K         39         45         1         3365942         0.28           Ca         44         6         1         172324         0.62           Ti         47         45         1         10271         2.44           V         51         45         1         276308         0.76           Cr         52         45         1         276308         0.76           Cr         52         45         1         2000000         0.49           Fe         56         45         1         24806055         0.22           Co         59         45         1         466969         0.38           Ni         60         45         1         125216         1.01           Cu         63         45         1         330533         0.27           Zn         66         45         1         55685         0.22           As <td>Mg</td> <td>24</td> <td>45</td> <td>1</td> <td>3390604</td> <td>0.54</td>      | Mg      | 24  | 45   | 1         | 3390604  | 0.54 |
| Ca         44         6         1         172324         0.62           Ti         47         45         1         10271         2.44           V         51         45         1         276308         0.76           Cr         52         45         1         324344         0.63           Mn         55         45         1         2000000         0.49           Fe         56         45         1         24806055         0.22           Co         59         45         1         466969         0.38           Ni         60         45         1         125216         1.01           Cu         63         45         1         330533         0.27           Zn         66         45         1         55685         0.22           As         75         74         1         44938         1.28           Se         78         74         1         3064         0.42           Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag                                                                                        | Al      | 27  | 45   | 1         | 171209   | 0.35 |
| Ti 47 45 1 10271 2.44  V 51 45 1 276308 0.76  Cr 52 45 1 324344 0.63  Mn 55 45 1 2000000 0.49  Fe 56 45 1 24806055 0.22  Co 59 45 1 466969 0.38  Ni 60 45 1 125216 1.01  Cu 63 45 1 330533 0.27  Zn 66 45 1 55685 0.22  As 75 74 1 44938 1.28  Se 78 74 1 3064 0.42  Sr 88 115 1 258450 0.37  Mo 95 115 1 163938 1.34  Ag 107 115 1 486098 0.53  Cd 111 115 1 75686 0.59  Sn 118 115 1 176512 1.22  Sb 121 115 1 244627 0.92  Ba 137 159 1 89071 0.29  Tl 205 209 1 230356 0.43  (Pb) 206 209 1 389351 0.40  (Pb) 207 209 1 327468 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K       | 39  | 45   | 1         | 3365942  | 0.28 |
| V 51 45 1 276308 0.76  Cr 52 45 1 324344 0.63  Mn 55 45 1 2000000 0.49  Fe 56 45 1 24806055 0.22  Co 59 45 1 466969 0.38  Ni 60 45 1 125216 1.01  Cu 63 45 1 330533 0.27  Zn 66 45 1 55685 0.22  As 75 74 1 44938 1.28  Se 78 74 1 3064 0.42  Sr 88 115 1 258450 0.37  Mo 95 115 1 163938 1.34  Ag 107 115 1 486098 0.53  Cd 111 115 1 75686 0.59  Sn 118 115 1 176512 1.22  Sb 121 115 1 244627 0.92  Ba 137 159 1 89071 0.29  Tl 205 209 1 230356 0.43  (Pb) 206 209 1 389351 0.40  (Pb) 207 209 1 327468 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ca      | 44  | 6    | 1         | 172324   | 0.62 |
| Cr         52         45         1         324344         0.63           Mn         55         45         1         2000000         0.49           Fe         56         45         1         24806055         0.22           Co         59         45         1         466969         0.38           Ni         60         45         1         125216         1.01           Cu         63         45         1         330533         0.27           Zn         66         45         1         55685         0.22           As         75         74         1         44938         1.28           Se         78         74         1         3064         0.42           Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         776586         0.59           S                                                                                 | Ti      | 47  | 45   | 1         | 10271    | 2.44 |
| Mn         55         45         1         2000000         0.49           Fe         56         45         1         24806055         0.22           Co         59         45         1         24806055         0.22           Co         59         45         1         125216         1.01           Cu         63         45         1         330533         0.27           Zn         66         45         1         55685         0.22           As         75         74         1         44938         1.28           Se         78         74         1         3064         0.42           Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           <                                                                             | ٧       | 51  | 45   | 1         | 276308   | 0.76 |
| Fe 56 45 1 24806055 0.22 Co 59 45 1 466969 0.38 Ni 60 45 1 125216 1.01 Cu 63 45 1 330533 0.27 Zn 66 45 1 55685 0.22 As 75 74 1 44938 1.28 Se 78 74 1 3064 0.42 Sr 88 115 1 258450 0.37 Mo 95 115 1 163938 1.34 Ag 107 115 1 486098 0.53 Cd 111 115 1 75686 0.59 Sn 118 115 1 176512 1.22 Sb 121 115 1 244627 0.92 Ba 137 159 1 89071 0.29 Tl 205 209 1 230356 0.43 (Pb) 206 209 1 389351 0.40 (Pb) 207 209 1 327468 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cr      | 52  | 45   | 1         | 324344   | 0.63 |
| Co         59         45         1         466969         0.38           Ni         60         45         1         125216         1.01           Cu         63         45         1         330533         0.27           Zn         66         45         1         55685         0.22           As         75         74         1         44938         1.28           Se         78         74         1         3064         0.42           Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43 <td< td=""><td>Mn</td><td>55</td><td>45</td><td>1</td><td>2000000</td><td>0.49</td></td<> | Mn      | 55  | 45   | 1         | 2000000  | 0.49 |
| Ni         60         45         1         125216         1.01           Cu         63         45         1         330533         0.27           Zn         66         45         1         55685         0.22           As         75         74         1         44938         1.28           Se         78         74         1         3064         0.42           Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         327468         1.17                                                                                       | Fe      | 56  | 45   | 1         | 24806055 | 0.22 |
| Cu         63         45         1         330533         0.27           Zn         66         45         1         55685         0.22           As         75         74         1         44938         1.28           Se         78         74         1         3064         0.42           Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         327468         1.17                                                                                                                                                                | Co      | 59  | 45   | 1         | 466969   | 0.38 |
| Zn         66         45         1         55685         0.22           As         75         74         1         44938         1.28           Se         78         74         1         3064         0.42           Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         327468         1.17                                                                                                                                                                                                                                         | Ni      | 60  | 45   | 1         | 125216   | 1.01 |
| As 75 74 1 44938 1.28  Se 78 74 1 3064 0.42  Sr 88 115 1 258450 0.37  Mo 95 115 1 163938 1.34  Ag 107 115 1 486098 0.53  Cd 111 115 1 75686 0.59  Sn 118 115 1 176512 1.22  Sb 121 115 1 244627 0.92  Ba 137 159 1 89071 0.29  Tl 205 209 1 230356 0.43  (Pb) 206 209 1 389351 0.40  (Pb) 207 209 1 327468 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cu      | 63  | 45   | 1         | 330533   | 0.27 |
| Se         78         74         1         3064         0.42           Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         389351         0.40           (Pb)         207         209         1         327468         1.17                                                                                                                                                                                                                                                                                                            | Zn      | 66  | 45   | 1         | 55685    | 0.22 |
| Sr         88         115         1         258450         0.37           Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         389351         0.40           (Pb)         207         209         1         327468         1.17                                                                                                                                                                                                                                                                                                                                                                                   | As      | 75  | 74   | 1         | 44938    | 1.28 |
| Mo         95         115         1         163938         1.34           Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         389351         0.40           (Pb)         207         209         1         327468         1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Se      | 78  | 74   | 1         | 3064     | 0.42 |
| Ag         107         115         1         486098         0.53           Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         389351         0.40           (Pb)         207         209         1         327468         1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sr      | 88  | 115  | 1         | 258450   | 0.37 |
| Cd         111         115         1         75686         0.59           Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         389351         0.40           (Pb)         207         209         1         327468         1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Мо      | 95  | 115  | 1         | 163938   | 1.34 |
| Sn         118         115         1         176512         1.22           Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         389351         0.40           (Pb)         207         209         1         327468         1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ag      | 107 | 115  | 1         | 486098   | 0.53 |
| Sb         121         115         1         244627         0.92           Ba         137         159         1         89071         0.29           Tl         205         209         1         230356         0.43           (Pb)         206         209         1         389351         0.40           (Pb)         207         209         1         327468         1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cd      | 111 | 115  | 1         | 75686    | 0.59 |
| Ba 137 159 1 89071 0.29<br>T1 205 209 1 230356 0.43<br>(Pb) 206 209 1 389351 0.40<br>(Pb) 207 209 1 327468 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sn      | 118 | 115  | 1         | 176512   | 1.22 |
| Tl 205 209 1 230356 0.43 (Pb) 206 209 1 389351 0.40 (Pb) 207 209 1 327468 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sb      | 121 | 115  | 1         | 244627   | 0.92 |
| (Pb)         206         209         1         389351         0.40           (Pb)         207         209         1         327468         1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ba      | 137 | 159  | 1         | 89071    | 0.29 |
| (Pb) 207 209 1 327468 1.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Π       | 205 | 209  | 1         | 230356   | 0.43 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (Pb)    | 206 | 209  | 1         | 389351   | 0.40 |
| Pb 208 209 1 1532598 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Pb)    | 207 | 209  | 1         | 327468   | 1.17 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pb      | 208 | 209  | 1         | 1532598  | 0.75 |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Li      | 6   | 1         | 11760  | 0.87  | 12234         | 96.1      | 60          | 120         |         |
| Sc      | 45  | 1         | 256188 | 0.37  | 263470        | 97.2      | 60          | 120         |         |
| Ge      | 74  | 1         | 38200  | 0.54  | 38549         | 99.1      | 60          | 120         |         |
| Kr      | 83  | 1         | 14     | 81.07 | 30            | 48.1      | 1           | 1000        |         |
| In      | 115 | 1         | 234478 | 0.97  | 247939        | 94.6      | 60          | 120         |         |
| Тb      | 159 | 1         | 658230 | 0.83  | 679167        | 96.9      | 60          | 120         |         |
| Bi      | 209 | 1         | 492636 | 1.41  | 513001        | 96.0      | 60          | 120         |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |



Agilent Technologies

# Initial Calibration Verification (ICV) - US EPA Method 6020

Sample Name

ICV 1123499

Data File Name

009\_ICV.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T19:45:20-04:00

Type VialNumber 6-ICV

Dilution

1201 1

Comment

Operator ISTDRefDataFileName MP 004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

OC Analyte Table

| Element | m/z  | ISTD | Tune Step | Meas Value | Units  | ExpectedValue | %Recovery | %QC Low | %QC High | QC Flag |
|---------|------|------|-----------|------------|--------|---------------|-----------|---------|----------|---------|
| Pb      | 208  | 209  | 1         | 39.93      | ug/l   | 40            | 99.8      | 90      | 110      |         |
| TI      | 205  | 209  | 1         | 7.92       | ug/l   | 8             | 98.9      | 90      | 110      |         |
| Ba      | 137  | 159  | 1         | 39.92      | ug/l   | 40            | 99.8      | 90      | 110      |         |
| Sb      | 121  | 115  | 1         | 40.11      | ug/l   | 40            | 100.3     | 90      | 110      |         |
| Sn      | 118  | 115  | 1         | 40.00      | ug/l   | 40            | 100.0     | 90      | 110      |         |
| Cd      | 111  | 115  | 1         | 39.91      | ug/l   | 40            | 99.8      | 90      | 110      |         |
| Ag      | 107  | 115  | 1         | 39.62      | ug/l   | 40            | 99.1      | 90      | 110      |         |
| Мо      | 95   | 115  | 1         | 38.91      | ug/l   | 40            | 97.3      | 90      | 110      |         |
| Sr      | - 88 | 115  | 1         | 40.06      | ug/l   | 40            | 100.1     | 90      | 110      |         |
| Se      | 78   | 74   | 1         | 39.66      | ug/l   | 40            | 99.2      | 90      | 110      |         |
| As      | 75   | 74   | 1         | 39.73      | ug/l   | 40            | 99.3      | 90      | 110      |         |
| Zn      | 66   | 45   | 1         | 41.87      | ug/l   | 40            | 104.7     | 90      | 110      |         |
| Cu      | 63   | 45   | 1         | 40.36      | ug/l   | 40            | 100.9     | 90      | 110      |         |
| Ni      | 60   | 45   | 1         | 38.87      | ug/l   | 40            | 97.2      | 90      | 110      |         |
| Co      | 59   | 45   | 1         | 40.17      | ug/l   | 40            | 100.4     | 90      | 110      |         |
| Fe      | 56   | 45   | 1         | 3992.06    | ug/l   | 4000          | 99.8      | 90      | 110      |         |
| Mn      | 55   | 45   | 1         | 394.98     | ug/l   | 400           | 98.7      | 90      | 110      |         |
| Cr      | 52   | 45   | 1         | 40.00      | ug/l . | 40            | 100.0     | 90      | 110      |         |
| V       | 51   | 45   | 1         | 39.93      | ug/l   | 40            | 99.8      | 90      | 110      |         |
| Ti      | 47   | 45   | 1         | 39.80      | ug/l   | 40            | 99.5      | 90      | 110      |         |
| Ca      | 44   | 6    | 1         | 3957.10    | ug/l   | 4000          | 98.9      | 90      | 110      |         |
| K       | 39   | 45   | 1         | 3991.21    | ug/l   | 4000          | 99.8      | 90      | 110      |         |
| Al      | 27   | 45   | 1         | 397.39     | ug/l   | 400           | 99.3      | 90      | 110      |         |
| Mg      | 24   | 45   | 1         | 3984.07    | ug/l   | 4000          | 99.6      | 90      | 110      |         |
| Na      | 23   | 45   | 1         | 4029.23    | ug/l   | 4000          | 100.7     | 90      | 110      |         |
| В       | 11   | 6    | 1         | 82.24      | ug/l   | 80            | 102.8     | 90      | 110      |         |
| Be      | 9    | 6    | 1         | 39.46      | ug/l   | 40            | 98.6      | 90      | 110      |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag  |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|----------|
| Bi      | 209 | 1         | 498994 | 0.32  | 513001        | 97.3      | 60          | 120         |          |
| Tb      | 159 | 1         | 657280 | 0.47  | 679167        | 96.8      | 60          | 120         |          |
| In      | 115 | 1         | 237908 | 0.02  | 247939        | 96.0      | 60          | 120         | <u> </u> |
| Kr      | 83  | 1         | 28     | 24.98 | 30            | 92.6      | 1           | 1000        |          |
| Ge      | 74  | 1         | 38452  | 0.76  | 38549         | 99.7      | 60          | 120         |          |
| Sc      | 45  | 1         | 257085 | 0.43  | 263470        | 97.6      | 60          | 120         |          |
| Li      | 6   | 1         | 11815  | 1.52  | 12234         | 96.6      | 60          | 120         |          |

## Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

ICB

**Data File Name** 

0106CCB.D

DataPath

**Acq Date Time** 

2011-10-07T19:50:18-04:00

Type VialNumber 6-CCB 1302

VialNumber Dilution

130

Comment

MP

Operator ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD     | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|----------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | 0.00       | -8574.86 | ug/l  | 2.78      | 124.85  | 0.2     |         |
| В       | 11  | 6    | 1         | 1.27       | 51.04    | ug/l  | 37.78     | 41.70   | 20      |         |
| Na      | 23  | 45   | 1         | -2.88      | -48.96   | ug/l  | 182612.36 | 0.09    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.25       | 14.53    | ug/l  | 278.90    | 4.32    | 50      |         |
| Al      | 27  | 45   | 1 "       | 0.30       | 54.65    | ug/l  | 686.14    | 4.32    | 10      |         |
| K       | 39  | 45   | 1         | -8.07      | -40.95   | ug/l  | 91134.16  | 0.78    | 50      |         |
| Ča      | 44  | 6    | 1         | 1.27       | 138.25   | ug/l  | 255.01    | 12.47   | 50      |         |
| Tī      | 47  | 45   | 1         | -0.06      | 0.00     | ug/l  | 0.00      | #DIV/0! | 1       |         |
| ٧       | 51  | 45   | 1         | 0.00       | 1994.40  | ug/l  | 476.69    | 9.91    | 1       |         |
| Cr      | 52  | 45   | 1         | 0.03       | 81.87    | ug/l  | 1972.41   | 3.91    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.03       | 72.56    | ug/l  | 97.78     | 40.38   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.13       | 8.56     | ug/l  | 4007.23   | 1.15    | 30      |         |
| Co      | 59  | 45   | 1         | 0.00       | 19.50    | ug/l  | 12.22     | 15.73   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.08      | -10.32   | ug/l  | 101.11    | 10.07   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.06      | -26.01   | ug/l  | 1935.74   | 2.89    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.04       | 52.75    | ug/l  | 280.01    | 4.12    | 4       |         |
| As      | 75  | 74   | 1         | -0.02      | -148.09  | ug/l  | 29.44     | 45.39   | 0.5     | Ī       |
| Se      | 78  | 74   | 1         | -0.33      | -92.33   | ug/l  | 37.22     | 24.65   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.01       | 28.09    | ug/l  | 28.89     | 17.63   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.03       | 41.68    | ug/l  | 111.12    | 18.33   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 36.85    | ug/l  | 44.44     | 26.35   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 3553.94  | ug/l  | 10.00     | 88.20   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.05       | 18.15    | ug/l  | 166.67    | 9.16    | 4       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 61.47    | ug/l  | 124.45    | 22.30   | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.00       | -370.11  | ug/l  | 8.89      | 78.08   | 1       |         |
| П       | 205 | 209  | 1         | 0.01       | 26.41    | ug/l  | 81.11     | 21.09   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.01       | 11.06    | ug/l  | 267.79    | 6.39    | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|------|--------|---------|---------|
| Li      | 6   | 1         | 12065  | 0.24  | 12234   | 98.6 | 60     | 120     |         |
| Sc      | 45  | 1         | 258018 | 0.46  | 263470  | 97.9 | 60     | 120     |         |
| Ge      | 74  | . 1       | 37967  | 1.29  | 38549   | 98.5 | 60     | 120     |         |
| Kr      | 83  | 1         | 22     | 31.22 | 30      | 74.1 | 1      | 1000    |         |
| In      | 115 | 1         | 243817 | 0.31  | 247939  | 98.3 | 60     | 120     |         |
| ТЪ      | 159 | 1         | 663194 | 0.68  | 679167  | 97.6 | 60     | 120     |         |
| Bi      | 209 | 1         | 506454 | 0.50  | 513001  | 98.7 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

#### Quality Control Sample (QCS) - US EPA Method 200.8

RepLim 1187189 DE 10 - 8-11
011QCSR.D
C:\ICPMIN

Sample Name Data File Name

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T19:55:22-04:00

Type VialNumber 2-QCS 1102

Dilution Comment

Operator ISTDRefDataFileName MP 004CALB.D

ISTD PassFail

Pass

**OC Analyte Table** 

| Element | m/z | ISTD       | Tune Step | Meas Value | Units | ExpectedValue | %Recovery | %QC Low | %QC High | QC Flag           |
|---------|-----|------------|-----------|------------|-------|---------------|-----------|---------|----------|-------------------|
| Pb      | 208 | 209        | 1         | 0.31       | ug/l  | 0.3           | 102.6     | 50      | 150      |                   |
| TI      | 205 | 209        | 1         | 0.19       | ug/l  | 0.2           | 96.4      | 50      | 150      |                   |
| Ba      | 137 | 159        | 1         | 0.98       | ug/l  | 1             | 98.2      | 50      | 150      |                   |
| Sb      | 121 | 115        | 1         | 0.49       | ug/l  | 0.5           | 97.5      | 50      | 150      |                   |
| Sn      | 118 | 115        | 1         | 3.83       | ug/l  | 4             | 95.8      | 50      | 150      |                   |
| Cd      | 111 | 115        | 1         | 0.50       | ug/l  | 0.5           | 99.5      | 50      | 150      |                   |
| Ag      | 107 | 115        | 1         | 0.98       | ug/l  | 1             | 97.9      | 50      | 150      |                   |
| Мо      | 95  | 115        | 1         | 0.91       | ug/l  | 1             | 91.3      | 50      | 150      |                   |
| Sr      | 88  | 115        | 1         | 0.94       | ug/l  | 1             | 94.3      | 50      | 150      |                   |
| Se      | 78  | 74         | 1         | 0.04       | ug/l  | 0.5           | 8.9       | 50      | 150      | 2-QCS Main Failed |
| As      | 75  | 74         | 1         | 0.41       | ug/l  | 0.5           | 82.9      | 50      | 150      |                   |
| Zn      | 66  | 45         | 1         | 4.11       | ug/l  | 4             | 102.9     | 50      | 150      |                   |
| Cu      | 63  | 45         | 1         | 0.97       | ug/l  | 1             | 97.4      | 50      | 150      |                   |
| Ni      | 60  | 45         | 1         | 0.94       | ug/l  | 1             | 94.0      | 50      | 150      |                   |
| လ       | 59  | 45         | 1         | 1.01       | ug/l  | 1             | 100.7     | 50      | 150      |                   |
| Fe      | 56  | 45         | 1         | 32.13      | ug/l  | 30            | 107.1     | 50      | 150      |                   |
| Mn      | 55  | 45         | 1         | 1.93       | ug/l  | 2             | 96.7      | 50      | 150      |                   |
| · Cr    | 52  | <b>4</b> 5 | 1         | 1.02       | ug/l  | 1             | 101.6     | 50      | 150      |                   |
| ٧       | 51  | 45         | 1         | 0.98       | ug/l  | 1             | 97.7      | 50      | 150      |                   |
| Ti      | 47  | 45         | 1         | 0.84       | ug/l  | 1             | 84.3      | 50      | 150      |                   |
| Ca      | 44  | 6          | 1         | 51.17      | ug/l  | 50            | 102.3     | 50      | 150      |                   |
| K       | 39  | 45         | 1         | 46.43      | ug/l  | 50            | 92.9      | 50      | 150      |                   |
| Al      | 27  | 45         | 1         | 9.41       | ug/l  | 10            | 94.1      | 50      | 150      |                   |
| Mg      | 24  | 45         | 1         | 49.55      | ug/l  | 50            | 99.1      | 50      | 150      |                   |
| Na      | 23  | 45         | 1         | 43.32      | ug/i  | 50            | 86.6      | 50      | 150      |                   |
| В       | 11  | 6          | 1         | 18.58      | ug/l  | 20            | 92.9      | 50      | 150      |                   |
| Be      | 9   | 6          | 1         | 0.21       | ug/l  | 0.2           | 106.3     | 50      | 150      |                   |

| SC TOID ! | anić |           |        |       |               |           |             |             |         |
|-----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element   | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limiy | Upper Limit | QC Flag |
| Bi        | 209  | 1         | 511053 | 7.77  | 513001        | 99.6      | 60          | 120         |         |
| Tb        | 159  | 1         | 672666 | 8.64  | 679167        | 99.0      | 60          | 120         |         |
| In        | 115  | 1         | 245420 | 8.51  | 247939        | 99.0      | 60          | 120         | 1       |
| Kr        | 83   | 1         | 22     | 37.76 | 30            | 74.1      | 1           | 1000        |         |
| Ge        | 74   | 1         | 38817  | 6.91  | 38549         | 100.7     | 60          | 120         |         |
| Sc        | 45   | 1         | 262832 | 8.60  | 263470        | 99.8      | 60          | 120         |         |
| Li        | 6    | 1         | 12068  | 6.52  | 12234         | 98.6      | 60          | 120         |         |

Sample Name

ICSA 1187215

**Data File Name** 

012SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T20:00:27-04:00

Type VialNumber

Sample 1202

Dilution

1

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Fail

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.08       | 0.08               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.01       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 0.18       | 0.18               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.40       | 0.40               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.12       | 0.12               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.28       | 0.28               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.17       | 0.17               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 1001.24    | 1001.24            | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 6.84       | 6.84               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.10       | 0.10               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.15       | 0.15               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.42       | 1.42               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.63       | 0.63               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 1.55       | 1.55               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 1.80       | 1.80               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 119790.09  | 119790.09          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 2.83       | 2.83               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 2.53       | 2.53               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.15       | 0.15               | ug/l  | 3600       |         |
| Ή       | 47  | 45   | 1         | 1023.37    | 1023.37            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 126230.36  | 126230.36          | ug/l  | 90000      | fail    |
| K       | 39  | 45   | 1         | 46666.46   | 46666.46           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 46523.66   | 46523.66           | ug/l  | 36000      | fail    |
| Mg      | 24  | 45   | 1         | 46630.04   | 46630.04           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 118622.74  | 118622.74          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.56       | 0.56               | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.01              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 466260 | 0.98  | 513001        | 90.9      | 60          | 120         |         |
| Tb      | 159 | 1         | 656853 | 0.34  | 679167        | 96.7      | 60          | 120         |         |
| In      | 115 | 1         | 231422 | 0.10  | 247939        | 93.3      | 60          | 120         |         |
| Kr      | 83  | 1         | 14     | 74.18 | 30            | 48.2      | 1           | 1000        |         |
| Ge      | 74  | 1         | 37747  | 1.15  | 38549         | 97.9      | 60          | .120        |         |
| Sc      | 45  | 1         | 254069 | 0.78  | 263470        | 96.4      | 60          | 120         |         |
| Li      | 6   | 1         | 11051  | 0.90  | 12234         | 90.3      | 60          | 120         | 1       |

Sample Name Data File Name ICSAB 1187217

013SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T20:05:19-04:00

Type VialNumber Sample 1203

Dilution

1

Comment

MP

Operator

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Fail

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units  | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|--------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.08       | 0.08               | ug/l   | 3600       |         |
| П       | 205 | 209  | 1         | 0.01       | 0.01               | ug/l   | 720        |         |
| Ва      | 137 | 159  | 1         | 0.20       | 0.20               | ug/l   | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.41       | 0.41               | ug/l   | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.11       | 0.11               | ug/l   | 3600       |         |
| Cd      | 111 | 115  | 1         | 96.08      | 96.08              | ug/l   | 1800       |         |
| Ag      | 107 | 115  | 1         | 184.99     | 184.99             | ug/l   | 180        | fail    |
| Мо      | 95  | 115  | 1         | 1009.80    | 1009.80            | ug/l   | 3600       |         |
| Sr      | 88  | 115  | 1         | 7.08       | 7.08               | ug/l   | 3600       |         |
| Se      | 78  | 74   | 1         | 103.07     | 103.07             | ug/l   | 450        |         |
| As      | 75  | 74   | 1         | 99.99      | 99.99              | ug/l   | 1800       |         |
| Zn      | 66  | 45   | 1         | 94.80      | 94.80              | ug/l   | 450        |         |
| Cu      | 63  | 45   | 1         | 185.18     | 185.18             | ug/l   | 450        |         |
| Ni      | 60  | 45   | 1         | 182.49     | 182.49             | ug/l   | 900        |         |
| Co      | 59  | 45   | 1         | 200.84     | 200.84             | ug/l   | 450        |         |
| Fe      | 56  | 45   | 1         | 120872.28  | 120872.28          | ug/l   | 180000     |         |
| Mn      | 55  | 45   | 1         | 191.28     | 191.28             | ug/l   | 9000       |         |
| Cr      | 52  | 45   | 1         | 191.15     | 191.15             | ug/l . | 900        |         |
| ٧       | 51  | 45   | 1         | 198.84     | 198.84             | ug/l   | 3600       |         |
| Ti      | 47  | 45   | 1         | 1034.70    | 1034.70            | ug/l   | 3600       |         |
| Ca      | 44  | 6    | 1         | 132053.16  | 132053.16          | ug/l   | 90000      | fail    |
| K       | 39  | 45   | 1         | 47728.41   | 47728.41           | ug/l   | 360000     |         |
| Al      | 27  | 45   | 1         | 47212.95   | 47212.95           | ug/l   | 36000      | fail    |
| Mg      | 24  | 45   | 1         | 47325.92   | 47325.92           | ug/l   | 180000     |         |
| Na      | 23  | 45   | 1         | 121529.60  | 121529.60          | ug/l   | 360000     |         |
| В       | 11  | 6    | 1         | 0.83       | 0.83               | ug/l   | 7200       |         |
| Be      | 9   | 6    | 1         | 0.01       | 0.01               | ug/l   | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 460307 | 1.36  | 513001        | 89.7      | 60          | 120         |         |
| Tb      | 159 | 1         | 652516 | 0.96  | 679167        | 96.1      | 60          | 120         |         |
| In      | 115 | 1         | 230244 | 0.79  | 247939        | 92.9      | 60          | 120         |         |
| Kr      | 83  | 1         | 14     | 35.26 | 30            | 48.1      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38187  | 0.10  | 38549         | 99.1      | 60          | 120         |         |
| Sc      | 45  | 1         | 258498 | 0.68  | 263470        | 98.1      | 60          | 120         |         |
| Li      | 6   | 1         | 10927  | 2.39  | 12234         | 89.3      | 60          | 120         |         |

Sample Name

Rn chk

Data File Name

014SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T20:10:13-04:00

Type

Sample

VialNumber Dilution

1

Comment

Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.01               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.00               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 0.00       | 0.00               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.00       | 0.00               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.03       | 0.03               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.01               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 0.02               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.11       | 0.11               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.01       | 0.01               | ug/l  | 3600       | i       |
| Se      | 78  | 74   | 1         | -0.12      | -0.12              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.00       | 0.00               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | -0.04      | -0.04              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | -0.06      | -0.06              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.07      | -0.07              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.01       | 0.01               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 6.80       | 6.80               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.06       | 0.06               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.04       | 0.04               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.00       | 0.00               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.01      | -0.01              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 9.14       | 9.14               | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 2.08       | 2.08               | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1.87       | 1.87               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2.76       | 2.76               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 31.66      | 31.66              | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | -0.01      | -0.01              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.03              | ug/l  | 3600       |         |

OC ISTD Table

| Element    | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|------------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi         | 209 | 1         | 510522 | 0.46  | 513001        | 99.5      | 60          | 120         |         |
| Tb         | 159 | 1         | 674876 | 0.49  | 679167        | 99.4      | 60          | 120         |         |
| In         | 115 | 1         | 247258 | 0.37  | 247939        | 99.7      | 60          | 120         |         |
| <b>K</b> r | 83  | 1         | 16     | 24.76 | 30            | 51.8      | 1           | 1000        |         |
| Ge         | 74  | 1         | 38957  | 0.78  | 38549         | 101.1     | 60          | 120         |         |
| Sc         | 45  | 1         | 265317 | 0.17  | 263470        | 100.7     | 60          | 120         |         |
| Li         | 6   | 1         | 12045  | 1.27  | 12234         | 98.5      | 60          | 120         | 1       |

Agilent Technologies

Sample Name

Rn chk

Data File Name

015SMPL.D

DataPath

**Acq Date Time** 

2011-10-07T20:15:19-04:00

Type VialNumber Sample

Dilution

1 1

Comment

MP

Operator

**ISTDRefDataFileName** SamplePassFail

004CALB.D

ISTD PassFail

Pass Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag  |
|---------|-----|------|-----------|------------|--------------------|-------|------------|----------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.01               | ug/l  | 3600       |          |
| Π       | 205 | 209  | 1         | 0.00       | 0.00               | ug/l  | 720        |          |
| Ba      | 137 | 159  | 1         | 0.01       | 0.01               | ug/l  | 3600       |          |
| Sb      | 121 | 115  | 1         | 0.01       | 0.01               | ug/l  | 3600       |          |
| Sn      | 118 | 115  | 1         | 0.02       | 0.02               | ug/l  | 3600       |          |
| Cd      | 111 | 115  | 1         | 0.03       | 0.03               | ug/l  | 1800       |          |
| Ag      | 107 | 115  | 1         | 0.02       | 0.02               | ug/l  | 180        | <u> </u> |
| Мо      | 95  | 115  | 1         | 0.10       | 0.10               | ug/l  | 3600       |          |
| Sr      | 88  | 115  | 1         | 0.01       | 0.01               | ug/l  | 3600       |          |
| Se      | 78  | 74   | 1         | -0.19      | -0.19              | ug/l  | 450        |          |
| As      | 75  | 74   | 1         | 0.00       | 0.00               | ug/l  | 1800       |          |
| Zn      | 66  | 45   | 1         | -0.05      | -0.05              | ug/l  | 450        |          |
| Çu      | 63  | 45   | 1         | -0.04      | -0.04              | ug/l  | 450        |          |
| Ni      | 60  | 45   | 1         | -0.06      | -0.06              | ug/l  | 900        |          |
| Со      | 59  | 45   | 1         | 0.02       | 0.02               | ug/l  | 450        |          |
| Fe      | 56  | 45   | 1         | 12.01      | 12.01              | ug/l  | 180000     |          |
| Mn      | 55  | 45   | 1         | 0.08       | 0.08               | ug/l  | 9000       |          |
| Cr      | 52  | 45   | 1         | 0.01       | 0.01               | ug/l  | 900        |          |
| - V     | 51  | 45   | 1         | -0.01      | -0.01              | ug/l  | 3600       |          |
| Ti      | 47  | 45   | 1         | 0.13       | 0.13               | ug/l  | 3600       |          |
| Ca      | 44  | 6    | 1         | 12.45      | 12.45              | ug/l  | 90000      |          |
| K       | 39  | 45   | 1         | 2.26       | 2.26               | ug/l  | 360000     |          |
| Al      | 27  | 45   | 1         | 4.10       | 4.10               | ug/l  | 36000      |          |
| Mg      | 24  | 45   | 1         | 5.05       | 5.05               | ug/l  | 180000     |          |
| Na      | 23  | 45   | 1         | 30.96      | 30.96              | ug/l  | 360000     |          |
| В       | 11  | 6    | 1         | -0.15      | -0.15              | ug/l  | 7200       |          |
| Be      | 9   | 6    | 1         | -0.02      | -0.02              | ug/l  | 3600       |          |

| Element | -m/- | Tuna Chan | CDC    | O/ DCD | D-f           | 0/ 5      |             |             | 1       |
|---------|------|-----------|--------|--------|---------------|-----------|-------------|-------------|---------|
| Element | m/z  | Tune Step | CPS    | %RSD   | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi      | 209  | 1         | 512101 | 0.60   | 513001        | 99.8      | 60          | 120         |         |
| Tb      | 159  | 1         | 678398 | 0.40   | 679167        | 99.9      | 60          | 120         |         |
| In      | 115  | 1         | 248297 | 0.41   | 247939        | 100.1     | 60          | 120         |         |
| Kr      | 83   | 1         | 28     | 18.33  | 30            | 92.6      | 1           | 1000        |         |
| Ge      | 74   | 1         | 39299  | 0.52   | 38549         | 101.9     | 60          | 120         |         |
| Sc      | 45   | 1         | 264149 | 0.40   | 263470        | 100.3     | 60          | 120         |         |
| Li      | 6    | 1         | 12092  | 1.76   | 12234         | 98.8      | 60          | 120         | 1       |

### Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

**Data File Name** 

0166CCV.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T20:20:23-04:00

**Acq Date Time** 

6-CCV

Type VialNumber

Dilution

1301 1

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

OC Analyte Table

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | OC Low | OC High | QC Flag                                          |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|--------------------------------------------------|
| Be      | 9   | 6    | 1         | 50.00      | 4.13 | ug/l  | 3964,99     | 3.91    | <u> </u>  |       |        |         | QC Flag                                          |
| B       | 11  | 6    | 1         | 98.39      | 2.94 |       |             |         | 50        | 100.0 | 90     | 110     | <del> </del>                                     |
| Na      | 23  | 45   | 1         | 4933.66    | _    | ug/l  | 2333.58     | 3.33    | 100       | 98.4  | 90     | 110     | ļ <u> </u>                                       |
| Mg      | 24  | 45   |           |            | 0.46 | ug/l  | 3596685.50  | 0.62    | 5000      | 98.7  | 90     | 110     | <u> </u>                                         |
| Al      | 27  |      | 1         | 4950.33    | 0.62 | ug/l  | 1790613.93  | 0.40    | 5000      | 99.0  | 90     | 110     | ļ                                                |
|         |     | 45   | 1         | 498.97     | 0.99 | ug/l  | 88826.20    | 0.57    | 500       | 99.8  | 90     | 110     |                                                  |
| К       | 39  | 45   | 1         | 4964.49    | 0.74 | ug/l  | 1830957.78  | 0.36    | 5000      | 99.3  | 90     | 110     |                                                  |
| Ca      | 44  | 6    | 1         | 5130.69    | 0.72 | ug/l  | 89960.21    | 0.81    | 5000      | 102.6 | 90     | 110     |                                                  |
| Ti      | 47  | 45   | 1         | 50.46      | 2.32 | ug/l  | 5341.06     | 2.04    | 50        | 100.9 | 90     | 110     |                                                  |
| V       | 51  | 45   | 1         | 50.07      | 1.01 | ug/l  | 143182.19   | 0.56    | 50        | 100.1 | 90     | 110     |                                                  |
| Cr      | 52  | 45   | 1         | 50.04      | 0.56 | ug/l  | 169569.07   | 0.18    | 50        | 100.1 | 90     | 110     |                                                  |
| Mn      | 55  | 45   | 1         | 497.76     | 0.65 | ug/l  | 1042574.47  | 0.21    | 500       | 99.6  | 90     | 110     |                                                  |
| Fe      | 56  | 45   | 1         | 4994.60    | 0.85 | ug/l  | 12883657.17 | 0.54    | 5000      | 99.9  | 90     | 110     |                                                  |
| Co      | 59  | 45   | 1         | 50.52      | 0.61 | ug/l  | 243942.93   | 0.24    | 50        | 101.0 | 90     | 110     |                                                  |
| Ni      | 60  | 45   | 1         | 49.10      | 1.79 | ug/l  | 65760.43    | 1.57    | 50        | 98.2  | 90     | 110     |                                                  |
| Cu      | 63  | 45   | 1         | 51.19      | 0.36 | ug/l  | 177100.99   | 0.50    | 50        | 102.4 | 90     | 110     |                                                  |
| Zn      | 66  | 45   | 1         | 50.26      | 0.36 | ug/l  | 28996.22    | 0.27    | 50        | 100.5 | 90     | 110     |                                                  |
| As      | 75  | 74   | 1         | 50.21      | 0.54 | ug/l  | 23155.09    | 0.13    | 50        | 100.4 | 90     | 110     |                                                  |
| Se      | 78  | 74   | 1         | 50.72      | 3.78 | ug/l  | 1611.78     | 3.88    | 50        | 101.4 | 90     | 110     |                                                  |
| Sr      | 88  | 115  | 1         | 49.90      | 0.32 | ug/l  | 131898.59   | 0.34    | 50        | 99.8  | 90     | 110     |                                                  |
| Мо      | 95  | 115  | 1         | 48.76      | 0.69 | ug/l  | 82464.79    | 0.63    | 50        | 97.5  | 90     | 110     |                                                  |
| Ag      | 107 | 115  | 1         | 50.30      | 0.67 | ug/l  | 256472.00   | 0.53    | 50        | 100.6 | 90     | 110     |                                                  |
| Q       | 111 | 115  | 1         | 49.50      | 1.10 | ug/l  | 38760.97    | 0.99    | 50        | 99.0  | 90     | 110     | 1                                                |
| Sn      | 118 | 115  | 1         | 49.81      | 0.86 | ug/l  | 90847.82    | 0.72    | 50        | 99.6  | 90     | 110     | †                                                |
| Sb      | 121 | 115  | 1         | 50.26      | 0.32 | ug/l  | 126260.58   | 0.35    | 50        | 100.5 | 90     | 110     | <del>                                     </del> |
| Ba      | 137 | 159  | 1         | 50.12      | 1.36 | ug/l  | 45699.33    | 1.28    | 50        | 100.2 | 90     | 110     | † · · · ·                                        |
| П       | 205 | 209  | 1         | 10.00      | 1.08 | ug/l  | 118156.92   | 0.68    | 10        | 100.0 | 90     | 110     | <b> </b>                                         |
| Pb      | 208 | 209  | 1         | 50.73      | 0.62 | ug/l  | 789730.01   | 0.60    | 50        | 101.5 | 90     | 110     | <del> </del>                                     |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11807  | 0.58  | 12234   | 96.5  | 60     | 120     |         |
| Sc      | 45  | 1         | 263766 | 0.45  | 263470  | 100.1 | 60     | 120     |         |
| Ge      | 74  | 1         | 38976  | 0.51  | 38549   | 101.1 | 60     | 120     |         |
| Kr      | 83  | 1         | 23     | 14.29 | 30      | 77.8  | 1      | 1000    | i       |
| In      | 115 | 1         | 242732 | 0.17  | 247939  | 97.9  | 60     | 120     |         |
| Тъ      | 159 | 1         | 667722 | 0.11  | 679167  | 98.3  | 60     | 120     |         |
| Bi      | 209 | 1         | 501324 | 0.58  | 513001  | 97.7  | 60     | 120     | i       |

| TuneStep | TuneFile |
|----------|----------|
| 1        | holium u |

### Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0176CCB.D

DataPath

**Acq Date Time** 

2011-10-07T20:25:18-04:00

Type VialNumber 6-CCB 1302

Dilution

130) 1

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD     | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|----------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.02      | -55.75   | ug/l  | 1.11      | 86.60   | 0.2     |         |
| В       | 11  | 6    | 1         | 1.07       | 24.82    | ug/l  | 33.33     | 20.00   | 20      |         |
| Na      | 23  | 45   | 1         | 9.93       | 11.15    | ug/l  | 196330.75 | 0.32    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.60       | 19.56    | ug/l  | 415.57    | 10.47   | 50      |         |
| Al      | 27  | 45   | 1         | 0.36       | 63.42    | ug/l  | 714.47    | 5.97    | 10      |         |
| K       | 39  | 45   | 1         | -7.04      | -29.43   | ug/l  | 93906.42  | 0.55    | 50      |         |
| Ca      | 44  | 6    | 1         | 0.85       | 89.79    | ug/l  | 250.56    | 5.38    | 50      |         |
| П       | 47  | 45   | 1         | -0.03      | -99.98   | ug/l  | 3.33      | 100.05  | 1       |         |
| ٧       | 51  | 45   | 1         | 0.03       | 31.25    | ug/l  | 584.48    | 4.98    | 1       |         |
| Cr      | 52  | 45   | 1         | 0.00       | -1494.68 | ug/l  | 1925.73   | 3.47    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.02       | 41.71    | ug/l  | 93.34     | 21.72   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.79       | 6.75     | ug/l  | 5808.93   | 2.08    | 30      |         |
| Co      | 59  | 45   | 1         | 0.00       | 38.05    | ug/l  | 20.00     | 33.35   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.07      | -42.13   | ug/l  | 115.56    | 33.68   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.08      | -38.67   | ug/l  | 1911.30   | 6.04    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.09       | 58.09    | ug/l  | 318.90    | 9.66    | 4       |         |
| As      | 75  | 74   | 1         | -0.01      | -462.66  | ug/l  | 36.11     | 48.92   | 0.5     |         |
| Se      | 78  | 74   | 1         | 0.05       | 524.05   | ug/l  | 50.00     | 18.56   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.00       | 36.70    | ug/l  | 20.00     | 16.65   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.02       | 30.02    | ug/l  | 103.34    | 11.63   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 27.11    | ug/l  | 81.11     | 22.63   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 16.01    | ug/l  | 22.22     | 8.65    | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.03       | 28.45    | ug/l  | 131.12    | 10.28   | 4       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 36.90    | ug/l  | 116.67    | 11.43   | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.02       | 73.39    | ug/l  | 26.66     | 43.31   | 1       |         |
| Π       | 205 | 209  | 1         | 0.01       | 24.39    | ug/l  | 107.78    | 20.59   | 0.2     | 1       |
| Pb      | 208 | 209  | 1         | 0.01       | 24.52    | ug/l  | 237.79    | 11.24   | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 12215  | 0.54  | 12234   | 99.9  | 60     | 120     |         |
| Sc      | 45  | 1         | 264839 | 0.32  | 263470  | 100.5 | 60     | 120     |         |
| Ge      | 74  | 1         | 39014  | 1.04  | 38549   | 101.2 | 60     | 120     | ì       |
| Kr      | 83  | 1         | 19     | 44.42 | 30      | 63.0  | 1      | 1000    |         |
| In      | 115 | 1         | 248651 | 0.23  | 247939  | 100.3 | 60     | 120     |         |
| Tb      | 159 | 1         | 678310 | 0.92  | 679167  | 99.9  | 60     | 120     |         |
| Bi      | 209 | 1         | 516217 | 0.11  | 513001  | 100.6 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

### Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

mb 460-88638/1-a@5

**Data File Name** 

0186CCB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T20:30:22-04:00

Type VialNumber 6-CCB 2101

Dilution

210 5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD     | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|----------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.02      | -595.57  | ug/l  | 1.11      | 173.21  | 0.2     |         |
| В       | 11  | 6    | 1         | 0.17       | 601.89   | ug/l  | 11.11     | 45.82   | 20      |         |
| Na      | 23  | 45   | 1         | 17.19      | 40.93    | ug/l  | 198853.32 | 0.47    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.22       | 191.29   | ug/l  | 272.23    | 10.99   | 50      |         |
| Al      | 27  | 45   | 1         | -0.01      | -4848.91 | ug/l  | 640.58    | 2.24    | 10      |         |
| K       | 39  | 45   | 1         | -1.43      | -463.32  | ug/l  | 94678.63  | 0.46    | 50      |         |
| Ca      | 44  | 6    | 1         | 2.78       | 29.31    | ug/l  | 279.45    | 1.50    | 50      |         |
| Ti      | 47  | 45   | 1         | -0.04      | -219.45  | ug/l  | 2.22      | 86.60   | 1       |         |
| ٧       | 51  | 45   | 1         | 0.02       | 382.77   | ug/l  | 533.36    | 7.58    | 1       |         |
| Cr      | 52  | 45   | 1         | 0.03       | 521.13   | ug/l  | 2007.98   | 5.30    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.00       | 787.74   | ug/l  | 52.22     | 24.17   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.33       | 57.71    | ug/l  | 4556.83   | 2.11    | 30      |         |
| Co      | 59  | 45   | 1         | 0.00       | 432.22   | ug/l  | 10.00     | 66.70   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.07      | -58.07   | ug/l  | 106.67    | 10.83   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.05      | -58.44   | ug/l  | 2004.64   | 0.92    | 1       |         |
| Żn      | 66  | 45   | 1         | -0.02      | -832.29  | ug/l  | 248.90    | 9.12    | 4       |         |
| As      | 75  | 74   | 1         | -0.02      | -214.17  | ug/l  | 31.67     | 10.53   | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.41      | -363.27  | ug/l  | 35.56     | 25.82   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.00       | -1176.57 | ug/l  | 7.78      | 89.21   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.02       | 277.05   | ug/l  | 103.34    | 22.58   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 104.22   | ug/l  | 31.11     | 12.36   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 461.81   | ug/l  | 13.33     | 25.01   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.02       | 238.71   | ug/l  | 112.23    | 13.39   | 4       |         |
| Sb      | 121 | 115  | 1         | 0.00       | 1054.35  | ug/l  | 86.67     | 17.62   | 0.5     |         |
| Ва      | 137 | 159  | 1         | 0.00       | 4313.41  | ug/l  | 11.11     | 17.30   | 1       |         |
| П       | 205 | 209  | 1         | 0.00       | 377.01   | ug/l  | 34.45     | 39.11   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.00       | -5044.96 | ug/l  | 123.33    | 19.49   | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11960  | 2.12  | 12234   | 97.8  | 60     | 120     |         |
| Sc      | 45  | 1         | 261534 | 0.03  | 263470  | 99.3  | 60     | 120     |         |
| Ge      | 74  | 1         | 38784  | 0.57  | 38549   | 100.6 | 60     | 120     |         |
| Kr      | 83  | 1         | 9      | 78.08 | 30      | 29.6  | 1      | 1000    |         |
| In      | 115 | 1         | 243894 | 0.33  | 247939  | 98.4  | 60     | 120     |         |
| Тъ      | 159 | 1         | 667652 | 0.27  | 679167  | 98.3  | 60     | 120     |         |
| Bi      | 209 | 1         | 507700 | 0.27  | 513001  | 99.0  | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

lcs 460-88638/2-a@5

Data File Name

019SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T20:35:26-04:00

Type VialNumber Sample 2102

Dilution

21 5

Comment Operator

MΡ

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 5.16       | 25.80              | ug/l  | 3600       |         |
| Π       | 205 | 209  | 1         | 4.00       | 19.99              | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 10.00      | 49.99              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 5.14       | 25.72              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 9.42       | 47.10              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 5.06       | 25.30              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 4.92       | 24.59              | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 9.58       | 47.88              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 9.98       | 49.89              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 10.23      | 51.14              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 9.90       | 49.49              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 52.37      | 261.84             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 10.62      | 53.12              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 10.11      | 50.54              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 5.16       | 25.81              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 530.69     | 2653.47            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 50.63      | 253.15             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 10.20      | 50.98              | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 10.38      | 51.90              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 10.11      | 50.54              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 496.32     | 2481.62            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 583.28     | 2916.39            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 505.85     | 2529.26            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 520.60     | 2603.02            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 530.87     | 2654.36            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 99.19      | 495.97             | ug/i  | 7200       |         |
| Be      | 9   | 6    | 1         | 4.76       | 23.80              | ug/I  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 510905 | 0.80  | 513001        | 99.6      | 60          | 120         |         |
| Tb      | 159 | 1         | 675731 | 0.54  | 679167        | 99.5      | 60          | 120         |         |
| In      | 115 | 1         | 242736 | 0.33  | 247939        | 97.9      | 60          | 120         |         |
| Kr      | 83  | 1         | 22     | 31.22 | 30            | 74.1      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38580  | 1.08  | 38549         | 100.1     | 60          | 120         |         |
| Sc      | 45  | 1         | 259652 | 0.59  | 263470        | 98.6      | 60          | 120         |         |
| Li      | 6   | 1         | 12171  | 0.35  | 12234         | 99.5      | 60          | 120         |         |

Sample Name

460-31646-d-4-b du@5

Data File Name

020SMPL.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T20:40:28-04:00

Type

Sample

VialNumber Dilution

2103 5

Comment Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.01       | 0.07               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 10.11      | 50.56              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.10       | 0.50               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.06       | 0.32               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.05       | 0.23               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 2.47       | 12.34              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.03       | 0.16               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.07       | 0.34               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.14       | 10.70              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.26       | 1.30               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.22       | 1.10               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.57       | 2.84               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 615.62     | 3078.11            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 5.80       | 28.98              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.10       | 0.52               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.16       | 0.79               | ug/l  | 3600       |         |
| П       | 47  | 45   | 1         | 0.05       | 0.27               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 522.48     | 2612.42            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 660.09     | 3300.46            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 28.67      | 143.34             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 94.80      | 474.01             | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1125.25    | 5626.23            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 3.32       | 16.62              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.00       | 0.00               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %R\$D | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 519258 | 0.63  | 513001        | 101.2     | 60          | 120         |         |
| Tb      | 159 | 1         | 674353 | 0.77  | 679167        | 99.3      | 60          | 120         |         |
| In      | 115 | 1         | 245670 | 0.20  | 247939        | 99.1      | 60          | 120         |         |
| Kr      | 83  | 1         | 19     | 26.96 | 30            | 63.0      | 1 .         | 1000        |         |
| Ge      | 74  | 1         | 39592  | 1.15  | 38549         | 102.7     | 60          | 120         |         |
| Sc      | 45  | 1         | 262045 | 0.56  | 263470        | 99.5      | 60          | 120         |         |
| Li      | 6   | 1         | 12104  | 0.76  | 12234         | 98.9      | 60          | 120         |         |

Sample Name

460-31646-d-4-a@5

Data File Name

021SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time

2011-10-07T20:45:29-04:00

Type VialNumber Sample 2104

Dilution

5

Comment Operator

MΡ

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.05               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 10.39      | 51.94              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.08       | 0.41               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.03       | 0.14               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.05       | 0.23               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.01       | 0.05               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 2.54       | 12.69              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.23      | -1.16              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.08       | 0.38               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.92       | 9.60               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.02       | 0.12               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.17       | 0.83               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.56       | 2.81               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 628.10     | 3140.52            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 6.14       | 30.72              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.12       | 0.60               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.16       | 0.79               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.02      | -0.10              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 516.62     | 2583.12            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 649.43     | 3247.15            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 29.03      | 145.15             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 96.68      | 483.39             | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1128.96    | 5644.80            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 2.54       | 12.70              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.04              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 518701 | 0.95  | 513001        | 101.1     | 60          | 120         |         |
| Tb      | 159 | 1         | 675992 | 0.79  | 679167        | 99.5      | 60          | 120         |         |
| In      | 115 | 1         | 244465 | 0.54  | 247939        | 98.6      | 60          | 120         |         |
| Kr      | 83  | 1         | 18     | 39.03 | 30 .          | 59.3      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39072  | 0.70  | 38549         | 101.4     | 60          | 120         |         |
| Sc      | 45  | 1         | 260160 | 0.90  | 263470        | 98.7      | 60          | 120         |         |
| Li      | 6   | 1         | 12146  | 0.20  | 12234         | 99.3      | 60          | 120         |         |

Sample Name

SD 460-31646-d-4-a@25

Data File Name

022SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T20:50:31-04:00

Туре

Sample

VialNumber Dilution 2105 25

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.27               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.07               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 2.10       | 52.48              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.04       | 0.91               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.53               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.18               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.06               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.02       | 0.51               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.51       | 12.69              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.04      | -0.89              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.01       | 0.21               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.38       | 34.39              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.31       | 7.66               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.05       | 1.21               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.12       | 3.09               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 131.32     | 3283.08            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 1.22       | 30.56              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.06       | 1.42               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.04       | 1.04               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.03      | -0.78              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 113.07     | 2826.86            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 145.10     | 3627.42            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 6.91       | 172.86             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 19.39      | 484.72             | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 233.09     | 5827.19            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.35       | 8.85               | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.70              | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 513878 | 0.97  | 513001        | 100.2     | 60          | 120         |         |
| Тb      | 159 | 1         | 667744 | 0.42  | 679167        | 98.3      | 60          | 120         |         |
| In      | 115 | 1         | 245483 | 0.83  | 247939        | 99.0      | 60          | 120         |         |
| Kr      | 83  | 1         | 17     | 20.01 | 30            | 55.6      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39089  | 0.80  | 38549         | 101.4     | 60          | 120         |         |
| Sc      | 45  | 1         | 261512 | 0.53  | 263470        | 99.3      | 60          | 120         |         |
| Li      | 6   | 1         | 12059  | 0.99  | 12234         | 98.6      | 60          | 120         | Ì       |

Printed at: 8:52 PM on:10/7/2011 10/21/2011

Sample Name

460-31646-d-4-c ms@5

**Data File Name** 

023SMPL.D

DataPath

Acq Date Time

2011-10-07T20:55:35-04:00

Type VialNumber Sample 2106

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 5.17       | 25.83              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 3.95       | 19.76              | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 20.12      | 100.62             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 5.11       | 25.57              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 9.36       | 46.79              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 5.03       | 25.14              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 4.85       | 24.24              | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 9.73       | 48.67              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 12.44      | 62.22              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 7.85       | 39.25              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 9.67       | 48.35              | ug/l  | 1800       |         |
| Zn      | -66 | 45   | 1         | 54.39      | 271.97             | ug/i  | 450        |         |
| Cu      | 63  | 45   | 1         | 10.58      | 52.92              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 10.25      | 51.23              | ug/i  | 900        |         |
| Co      | 59  | 45   | 1         | 5.69       | 28.47              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 1117.79    | 5588.93            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 56.36      | 281.80             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 10.04      | 50.20              | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 10.10      | 50.50              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 10.21      | 51.06              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1017.15    | 5085.75            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1212.86    | 6064.31            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 527.80     | 2639.00            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 606.19     | 3030.94            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1617.61    | 8088.07            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 100.57     | 502.85             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 4.63       | 23.16              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 511276 | 0.47  | 513001        | 99.7      | 60          | 120         |         |
| Tb      | 159 | 1         | 672189 | 0.67  | 679167        | 99.0      | 60          | 120         |         |
| In      | 115 | 1         | 242994 | 0.20  | 247939        | 98.0      | 60          | 120         |         |
| Kr      | 83  | 1         | 24     | 20.83 | 30            | 81.5      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38875  | 0.43  | 38549         | 100.8     | 60          | 120         |         |
| Sc      | 45  | 1         | 259057 | 0.25  | 263470        | 98.3      | 60          | 120         |         |
| Li      | 6   | 1         | 11973  | 1.09  | 12234         | 97.9      | 60          | 120         |         |

Sample Name

PDS 460-31646-d-4-a@5

Data File Name

024SMPL.D

DataPath

**Acq Date Time** 

2011-10-07T21:00:37-04:00

Type VialNumber Sample 2107

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

Sample Pass Fail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 5.12       | 25.59              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 3.98       | 19.90              | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 20.66      | 103.28             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 4.93       | 24.64              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 9.89       | 49.45              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 4.87       | 24.35              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 5.05       | 25.27              | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 9.56       | 47.80              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 12.30      | 61.50              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 9.51       | 47.55              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 9.69       | 48.43              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 53.17      | 265.86             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 10.73      | 53.64              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 10.19      | 50.95              | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 5.63       | 28.14              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 1126.36    | 5631.82            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 55.70      | 278.49             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 9.97       | 49.87              | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 10.12      | 50.58              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 9.78       | 48.92              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1029.43    | 5147.14            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1214.33    | 6071.63            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 519.62     | 2598.10            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 601.22     | 3006.09            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1634.90    | 8174.51            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 98.00      | 489.98             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 4.84       | 24.21              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 512904 | 0.31  | 513001        | 100.0     | 60          | 120         |         |
| Тb      | 159 | 1         | 678526 | 0.11  | 679167        | 99.9      | 60          | 120         |         |
| In      | 115 | 1         | 242542 | 0.51  | 247939        | 97.8      | 60          | 120         |         |
| Kr      | 83  | 1         | 20     | 76.39 | 30            | 66.7      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38567  | 1.11  | 38549         | 100.0     | 60          | 120         |         |
| Sc      | 45  | 1         | 260648 | 0.62  | 263470        | 98.9      | 60          | 120         |         |
| Li      | 6   | 1         | 11849  | 0.83  | 12234         | 96.9      | 60          | 120         |         |

Sample Name

460-32071-e-4-a@5

Data File Name

025SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T21:05:39-04:00

Type VialNumber Sample 2108

Dilution

210 5

Comment

...

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.07       | 0.36               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.01       | 0.05               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 18.10      | 90.49              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.25       | 1.26               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.05       | 0.25               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.05               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 1.01       | 5.05               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 92.04      | 460.19             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.28       | 1.42               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.20       | 0.98               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 17.29      | 86.46              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.73       | 3.65               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.36       | 1.80               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.11       | 0.55               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 93.15      | 465.75             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 6.52       | 32.59              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 2.43       | 12.15              | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.80       | 4.00               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 2.53       | 12.67              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 11360.06   | 56800.30           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 3093.45    | 15467.25           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 101.55     | 507.77             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1755.16    | 8775.81            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 17034.88   | 85174.42           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 31.39      | 156.96             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.07              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 505838 | 0.35  | 513001        | 98.6      | 60          | 120         |         |
| Tb      | 159 | 1         | 674372 | 0.63  | 679167        | 99.3      | 60          | 120         |         |
| In      | 115 | 1         | 242914 | 0.53  | 247939        | 98.0      | 60          | 120         |         |
| Kr      | 83  | 1         | 20     | 44.10 | 30            | 66.7      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39161  | 0.64  | 38549         | 101.6     | 60          | 120         |         |
| Sc      | 45  | 1         | 259444 | 0.41  | 263470        | 98.5      | 60          | 120         |         |
| Li      | 6   | 1         | 11919  | 1.39  | 12234         | 97.4      | 60          | 120         |         |

Sample Name

460-32071-e-4-b ms@5

Data File Name

026SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T21:10:43-04:00

Type VialNumber Sample 2109

Dilution

5

Comment

Operator

ΜP

ISTDRefDataFileName

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 4.95       | 24.73              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 3.81       | 19.03              | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 27.21      | 136.06             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 4.88       | 24.41              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 8.88       | 44.39              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 4.75       | 23.73              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 4.50       | 22.51              | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 10.29      | 51.45              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 101.69     | 508.46             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 9.56       | 47.81              | ug/i  | 450        |         |
| As      | 75  | 74   | 1         | 9.53       | 47.63              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 50.12      | 250.60             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 10.35      | 51.74              | ug/l  | 450        |         |
| Ni      | 60  | 45   | . 1       | 9.88       | 49.41              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 4.89       | 24.46              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 573.18     | 2865.89            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 53.64      | 268.22             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 11.84      | 59.20              | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 10.27      | 51.33              | ug/l  | 3600       |         |
| Tī      | 47  | 45   | 1         | 11.87      | 59.37              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 12086.40   | 60431.99           | ug/l  | 90000      |         |
| К       | 39  | 45   | 1         | 3553.41    | 17767.03           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 572.09     | 2860.43            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2196.20    | 10981.00           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 17442.06   | 87210.31           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 124.80     | 623.99             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 5.05       | 25.25              | ug/l  | 3600       |         |

OC ISTD Table

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 505699 | 0.41  | 513001        | 98.6      | 60          | 120         | 1       |
| Tb      | 159 | 1         | 677632 | 0.99  | 679167        | 99.8      | 60          | 120         |         |
| In      | 115 | 1         | 243241 | 0.46  | 247939        | 98.1      | 60          | 120         | +       |
| Kr      | 83  | 1         | 17     | 52.93 | 30            | 55.6      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39268  | 0.79  | 38549         | 101.9     | 60          | 120         |         |
| Sc      | 45  | 1         | 261495 | 0.60  | 263470        | 99.3      | 60          | 120         |         |
| Li      | 6   | 1         | 11701  | 0.30  | 12234         | 95.6      | 60          | 120         |         |

Printed at: 9:12 PM on:10/7/2011 10/21/2011

Sample Name

460-32071-e-1-a@5

Data File Name

027SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T21:15:42-04:00

Type VialNumber Sample 2110

**Dilution** 

5

Comment Operator

MΡ

004CALB.D

**ISTDRefDataFileName** SamplePassFail

ISTD PassFail

**Pass** Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | . 1       | 0.13       | 0.65               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.02       | 0.09               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1 .       | 18.42      | 92.12              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.90       | 4.50               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.05       | 0.27               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 0.09               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 8.11       | 40.55              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 49.36      | 246.79             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.62       | 3.08               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 1.28       | 6.40               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.22       | 11.10              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.87       | 4.35               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.40       | 2.00               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.12       | 0.58               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 161.27     | 806.35             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 11.79      | 58.94              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 1.07       | 5.36               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 1.85       | 9.27               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 3.76       | 18.78              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 7923.69    | 39618.47           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1535.81    | 7679.06            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 166.08     | 830.41             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1837.78    | 9188.88            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 11965.18   | 59825.91           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 35.23      | 176.13             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.02      | -0.10              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag  |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|----------|
| Bi      | 209 | 1         | 511973 | 0.28  | 513001        | 99.8      | 60          | 120         | <u> </u> |
| Tb      | 159 | 1         | 673203 | 0.43  | 679167        | 99.1      | 60          | 120         |          |
| In      | 115 | 1         | 244015 | 0.27  | 247939        | 98.4      | 60          | 120         |          |
| Kr      | 83  | 1         | 21     | 48.24 | 30            | 70.4      | 1           | 1000        |          |
| Ge      | 74  | 1         | 39011  | 1.73  | 38549         | 101.2     | 60          | 120         |          |
| Sc      | 45  | 1         | 260531 | 0.32  | 263470        | 98.9      | 60          | 120         |          |
| Li      | 6   | 1         | 11700  | 1.87  | 12234         | 95.6      | 60          | 120         |          |

#### Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

Data File Name

0286CCV.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T21:20:43-04:00

Acq Date Time

6-CCV

Type VialNumber

1301

Dilution Comment

1

Operator ISTDRefDataFileName MP 004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

QC Analyte Table

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag  |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|----------|
| Be      | 9   | 6    | 1         | 51.25      | 0.31 | ug/l  | 4056.11     | 0.56    | 50        | 102.5 | 90     | 110     | T        |
| В       | 11  | 6    | 1         | 97.89      | 1.07 | ug/l  | 2316.91     | 1.09    | 100       | 97.9  | 90     | 110     | ļ        |
| Na      | 23  | 45   | 1         | 4962.15    | 0.37 | ug/l  | 3589953.14  | 0.53    | 5000      | 99.2  | 90     | 110     | 1        |
| Mg      | 24  | 45   | 1         | 4992.51    | 0.48 | ug/l  | 1792699.21  | 0.53    | 5000      | 99.9  | 90     | 110     |          |
| Al      | 27  | 45   | 1         | 496.35     | 1.08 | ug/l  | 87718.29    | 0.84    | 500       | 99.3  | 90     | 110     |          |
| K       | 39  | 45   | 1         | 4991.13    | 0.34 | ug/l  | 1826858.29  | 0.45    | 5000      | 99.8  | 90     | 110     |          |
| Ca      | 44  | 6    | 1         | 5115.55    | 0.85 | ug/l  | 89517.99    | 0.56    | 5000      | 102.3 | 90     | 110     |          |
| Tī      | 47  | 45   | 1         | 50.78      | 3.23 | ug/l  | 5335.50     | 3.39    | 50        | 101.6 | 90     | 110     |          |
| ٧       | 51  | 45   | 1         | 50.77      | 1.20 | ug/l  | 144100.59   | 0.98    | 50        | 101.5 | 90     | 110     |          |
| Cr      | 52  | 45   | 1         | 50.41      | 0.41 | ug/l  | 169555.99   | 0.24    | 50        | 100.8 | 90     | 110     |          |
| Mn      | 55  | 45   | 1         | 504.51     | 0.77 | ug/l  | 1048996.73  | 0.77    | 500       | 100.9 | 90     | 110     |          |
| Fe      | 56  | 45   | 1         | 5020.72    | 0.70 | ug/l  | 12856698.42 | 0.76    | 5000      | 100.4 | 90     | 110     |          |
| Co      | 59  | 45   | 1         | 51.10      | 0.26 | ug/l  | 244923.45   | 0.12    | 50        | 102.2 | 90     | 110     |          |
| Ni      | 60  | 45   | 1         | 49.22      | 0.36 | ug/l  | 65447.86    | 0.40    | 50        | 98.4  | 90     | 110     |          |
| Cu      | 63  | 45   | 1         | 51.62      | 0.75 | ug/l  | 177280.46   | 0.75    | 50        | 103.2 | 90     | 110     |          |
| Zn      | 66  | 45   | 1         | 50.75      | 0.97 | ug/l  | 29062.96    | 1.03    | 50        | 101.5 | 90     | 110     |          |
| As      | 75  | 74   | 1         | 50.05      | 0.47 | ug/l  | 23123.37    | 0.99    | 50        | 100.1 | 90     | 110     | <b> </b> |
| Se      | 78  | 74   | 1         | 51.31      | 3.67 | ug/l  | 1633.44     | 4.54    | 50        | 102.6 | 90     | 110     | 1        |
| Sr      | 88  | 115  | 1         | 50.57      | 0.55 | ug/i  | 133640.10   | 0.38    | 50        | 101.1 | 90     | 110     | <b>†</b> |
| Мо      | 95  | 115  | 1         | 48.91      | 0.55 | ug/l  | 82702.58    | 0.78    | 50        | 97.8  | 90     | 110     |          |
| Ag      | 107 | 115  | 1         | 50.66      | 0.25 | ug/l  | 258301.41   | 0.19    | 50        | 101.3 | 90     | 110     |          |
| Cd      | 111 | 115  | 1         | 49.83      | 1.36 | ug/l  | 39010.69    | 1.13    | 50        | 99.7  | 90     | 110     |          |
| Sn      | 118 | 115  | 1         | 50.48      | 0.17 | ug/l  | 92066.28    | 0.29    | 50        | 101.0 | 90     | 110     |          |
| Sb      | 121 | 115  | 1         | 50.52      | 0.54 | ug/l  | 126908.86   | 0.26    | 50        | 101.0 | 90     | 110     |          |
| Ва      | 137 | 159  | 1         | 50.67      | 0.27 | ug/l  | 46441.61    | 0.57    | 50        | 101.3 | 90     | 110     |          |
| П       | 205 | 209  | 1         | 10.04      | 0.57 | ug/l  | 120122.94   | 1.14    | 10        | 100.4 | 90     | 110     |          |
| Pb      | 208 | 209  | 1         | 50.63      | 0.35 | ug/l  | 797589.11   | 0.23    | 50        | 101.3 | 90     | 110     | i        |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11783  | 0.28  | 12234   | 96.3  | 60     | 120     |         |
| Sc      | 45  | 1         | 261838 | 0.23  | 263470  | 99.4  | 60     | 120     | 1       |
| Ge      | 74  | 1         | 39049  | 1.13  | 38549   | 101.3 | 60     | 120     |         |
| Кг      | 83  | 1         | 19     | 44.42 | 30      | 63.0  | 1      | 1000    |         |
| In      | 115 | 1         | 242697 | 0.29  | 247939  | 97.9  | - 60   | 120     |         |
| Tb      | 159 | 1         | 671159 | 0.37  | 679167  | 98.8  | 60     | 120     |         |
| Bi      | 209 | 1         | 507269 | 0.58  | 513001  | 98.9  | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0296CCB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T21:25:40-04:00

Type

6-CCB

VialNumber

1302

Dilution

1

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.02      | -55.85  | ug/l  | 1.11      | 86.60   | 0.2     |         |
| В       | 11  | 6    | 1         | 1.22       | 49.90   | ug/l  | 36.67     | 39.62   | 20      |         |
| Na      | 23  | 45   | 1         | -1.62      | -215.82 | ug/l  | 187988.33 | 0.63    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.47       | 11.40   | ug/l  | 367.79    | 6.03    | 50      |         |
| Al      | 27  | 45   | 1         | 0.30       | 108.00  | ug/l  | 702.25    | 7.51    | 10      |         |
| K       | 39  | 45   | 1         | -11.35     | -30.94  | ug/l  | 92238.09  | 1.18    | 50      |         |
| Ca      | 44  | 6    | 1         | 1.24       | 112.00  | ug/l  | 255.56    | 9.81    | 50      |         |
| Т       | 47  | 45   | 1         | -0.05      | -34.82  | ug/l  | 1.11      | 173.21  | 1       |         |
| ٧       | 51  | 45   | 1         | 0.00       | -380.27 | ug/l  | 475.58    | 8.12    | 1       |         |
| Cr      | 52  | 45   | 1         | 0.01       | 133.89  | ug/l  | 1973.52   | 2.50    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.05       | 22.96   | ug/l  | 145.56    | 15.25   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.40       | 12.47   | ug/l  | 4785.79   | 1.96    | 30      |         |
| Co      | 59  | 45   | 1         | 0.01       | 14.96   | ug/l  | 27.78     | 13.86   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.09      | -4.13   | ug/l  | 83.33     | 6.93    | 1       |         |
| Cu      | 63  | 45   | 1         | -0.06      | -10.97  | ug/l  | 1975.75   | 0.99    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.07       | 144.83  | ug/l  | 307.79    | 20.33   | 4       |         |
| As      | 75  | 74   | 1         | -0.02      | -34.03  | ug/l  | 29.44     | 11.77   | 0.5     |         |
| Se      | 78  | 74   | 1         | 0.19       | 69.13   | ug/l  | 54.44     | 7.70    | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.00       | 105.87  | ug/l  | 18.89     | 44.42   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.01       | 288.52  | ug/l  | 72.23     | 37.59   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 64.30   | ug/l  | 44.45     | 45.82   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 197.77  | ug/l  | 16.67     | 80.01   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.02       | 70.04   | ug/l  | 124.45    | 23.40   | 4       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 31.44   | ug/l  | 125.56    | 11.05   | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.00       | 467.13  | ug/l  | 12.22     | 41.65   | 1       |         |
| П       | 205 | 209  | 1         | 0.01       | 23.93   | ug/l  | 144.45    | 20.94   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.01       | 19.67   | ug/l  | 217.79    | 8.43    | 0.3     | 1       |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag  |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|----------|
| Li      | 6   | 1         | 12123  | 0.82  | 12234   | 99.1  | 60     | 120     |          |
| Sc      | 45  | 1         | 264393 | 0.75  | 263470  | 100.4 | 60     | 120     |          |
| Ge      | 74  | 1         | 39166  | 0.72  | 38549   | 101.6 | 60     | 120     |          |
| Kr      | 83  | 1         | 22     | 48.22 | 30      | 74.1  | 1      | 1000    |          |
| In      | 115 | 1         | 248625 | 0.10  | 247939  | 100.3 | 60     | 120     |          |
| Тъ      | 159 | 1         | 682760 | 0.20  | 679167  | 100.5 | 60     | 120     |          |
| Bi      | 209 | 1         | 516266 | 0.46  | 513001  | 100.6 | 60     | 120     | <u> </u> |

| TuneStep | TuneFile |  |
|----------|----------|--|
| 1        | helium.u |  |

Sample Name

460-32071-e-2-a@5

Data File Name

030SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B

Туре

2011-10-07T21:30:45-04:00

VialNumber

Sample 2111

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 4.38       | 21.89              | ug/l  | 3600       |         |
| ΤĪ      | 205 | 209  | 1         | 0.03       | 0.15               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 47.43      | 237.14             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.23       | 1.16               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.23       | 1.15               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.03       | 0.13               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 0.06               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.47       | 2.34               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 91.79      | 458.97             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.30       | 1.48               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.81       | 4.05               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 11.96      | 59.79              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 5.14       | 25.68              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 4.02       | 20.11              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 1.74       | 8.72               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 2168.49    | 10842.45           | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 147.00     | 735.02             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 3.22       | 16.11              | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 4.37       | 21.83              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 51.54      | 257.71             | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 15307.67   | 76538.36           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1887.30    | 9436.51            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1948.24    | 9741.20            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 4304.59    | 21522.94           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 16806.01   | 84030.06           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 29.66      | 148.29             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.10       | 0.49               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 504764 | 0.34  | 513001        | 98.4      | 60          | 120         | †                                                |
| Tb      | 159 | 1         | 677456 | 0.04  | 679167        | 99.7      | 60          | 120         | <del> </del>                                     |
| In      | 115 | 1         | 240974 | 0.90  | 247939        | 97.2      | 60          | 120         | <del>                                     </del> |
| Kr      | 83  | 1         | 31     | 16.37 | 30            | 103.7     | 1           | 1000        | 1                                                |
| Ge      | 74  | 1         | 38894  | 0.30  | 38549         | 100.9     | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 259519 | 0.95  | 263470        | 98.5      | 60          | 120         | 1                                                |
| Li      | 6   | 1         | 11745  | 1.41  | 12234         | 96.0      | 60          | 120         | +                                                |

Sample Name

460-32071-e-3-a@5

Data File Name

031SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T21:35:45-04:00

Type VialNumber Sample

Dilution

2112

5

Comment

Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element    | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|------------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb         | 208 | 209  | 1         | 0.20       | 1.00               | ug/l  | 3600       |         |
| П          | 205 | 209  | 1         | 0.01       | 0.04               | ug/l  | 720        |         |
| Ba         | 137 | 159  | 1         | 28.01      | 140.03             | ug/l  | 3600       |         |
| Sb         | 121 | 115  | 1         | 0.15       | 0.77               | ug/l  | 3600       | l       |
| Sn         | 118 | 115  | 1         | 0.12       | 0.58               | ug/l  | 3600       |         |
| Cd         | 111 | 115  | 1         | 0.02       | 0.08               | ug/l  | 1800       |         |
| <b>A</b> g | 107 | 115  | 1         | 0.01       | 0.03               | ug/l  | 180        |         |
| Мо         | 95  | 115  | 1         | 0.44       | 2.22               | ug/l  | 3600       |         |
| Sr         | 88  | 115  | 1         | 37.33      | 186.66             | ug/l  | 3600       |         |
| Se         | 78  | 74   | 1         | -0.17      | -0.84              | ug/l  | 450        |         |
| As         | 75  | 74   | 1         | 0.20       | 0.99               | ug/l  | 1800       |         |
| Zn         | 66  | 45   | 1         | 3.49       | 17.46              | ug/l  | 450        |         |
| Cu         | 63  | 45   | 1         | 2.01       | 10.07              | ug/l  | 450        |         |
| Ni         | 60  | 45   | 1         | 0.84       | 4.20               | ug/l  | 900        |         |
| Co         | 59  | 45   | 1         | 0.21       | 1.05               | ug/l  | 450        |         |
| Fe         | 56  | 45   | 1         | 272.11     | 1360.55            | ug/l  | 180000     |         |
| Mn         | 55  | 45   | 1         | 15.86      | 79.31              | ug/l  | 9000       |         |
| Cr         | 52  | 45   | 1         | 0.59       | 2.93               | ug/l  | 900        |         |
| V          | 51  | 45   | 1         | 1.06       | 5.31               | ug/l  | 3600       |         |
| Ti         | 47  | 45   | 1         | 8.06       | 40.31              | ug/l  | 3600       |         |
| Ca         | 44  | 6    | 1         | 7417.91    | 37089.55           | ug/l  | 90000      |         |
| K          | 39  | 45   | 1         | 1008.65    | 5043.23            | ug/l  | 360000     |         |
| Al         | 27  | 45   | 1         | 301.80     | 1509.00            | ug/l  | 36000      |         |
| Mg         | 24  | 45   | 1         | 1396.96    | 6984.81            | ug/l  | 180000     | -       |
| Na         | 23  | 45   | 1         | 5533.30    | 27666.48           | ug/l  | 360000     |         |
| В          | 11  | 6    | 1         | 25.07      | 125.33             | ug/l  | 7200       |         |
| Be         | 9   | 6    | 1         | 0.00       | 0.00               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 515844 | 0.80  | 513001        | 100.6     | 60          | 120         |         |
| Tb      | 159 | 1         | 685072 | 0.79  | 679167        | 100.9     | 60          | 120         | 1       |
| In      | 115 | 1         | 247530 | 0.29  | 247939        | 99.8      | 60          | 120         |         |
| Kr      | 83  | 1         | 19     | 44.42 | 30            | 63.0      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39238  | 1.69  | 38549         | 101.8     | 60          | 120         |         |
| Sc      | 45  | 1         | 261731 | 0.04  | 263470        | 99.3      | 60          | 120         | 1       |
| Li      | 6   | 1         | 11886  | 1.14  | 12234         | 97.2      | 60          | 120         | 1       |

Sample Name

460-32071-e-7-a@5

Data File Name

032SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T21:40:46-04:00

Туре

Sample

VialNumber Dilution 2201 5

Comment

Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.00       | 0.02               | ug/l  | 3600       | -       |
| TI      | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.01       | 0.05               | ug/i  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 0.02               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.01       | 0.06               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.20      | -0.99              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | -0.01      | -0.05              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.17       | 5.83               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | -0.05      | -0.23              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.08      | -0.41              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.00       | 0.01               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 0.28       | 1.38               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.01       | 0.07               | ug/i  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.00       | -0.01              | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.10       | 0.49               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.02      | -0.10              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 3.70       | 18.50              | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | -12.19     | -60.97             | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | -0.05      | -0.25              | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 0.32       | 1.58               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | -0.09      | -0.46              | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 1.71       | 8.53               | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.02      | -0.10              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag      |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------|
| Ві      | 209 | 1         | 518412 | 0.26  | 513001        | 101.1     | 60          | 120         | 1            |
| Tb      | 159 | 1         | 684109 | 0.29  | 679167        | 100.7     | 60          | 120         | <del> </del> |
| In      | 115 | 1         | 248498 | 0.32  | 247939        | 100.2     | 60          | 120         |              |
| Kr      | 83  | 1         | 19     | 36.75 | 30            | 63.0      | 1           | 1000        |              |
| Ge      | 74  | 1         | 39063  | 0.21  | 38549         | 101.3     | 60          | 120         |              |
| Sc      | 45  | 1         | 262428 | 0.76  | 263470        | 99.6      | 60          | 120         |              |
| Li      | 6   | 1         | 11952  | 0.33  | 12234         | 97.7      | 60          | 120         | 1            |

Sample Name

460-32013-d-9-c@5

Data File Name

033SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time

2011-10-07T21:45:51-04:00

Type VialNumber Sample 2202

Dilution

5

Comment

MP

Operator ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1 .       | 0.01       | 0.07               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.00       | 0.01               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.00       | 0.02               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 0.02               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.00               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.01       | 0.06               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.17       | 0.85               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | -0.02      | -0.09              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.19       | 5.93               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | -0.02      | -0.10              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.07      | -0.33              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.00       | 0.01               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 0.32       | 1.60               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.03       | 0.14               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.03       | 0.14               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.09       | 0.43               | ug/l  | 3600       |         |
| Τī      | 47  | 45   | 1         | -0.04      | -0.21              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2.06       | 10.29              | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | -12.99     | -64.93             | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 0.28       | 1.42               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 0.43       | 2.16               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | -1.32      | -6.61              | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 1.72       | 8.59               | ug/i  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.07              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 520562 | 0.40  | 513001        | 101.5     | 60          | 120         |         |
| Tb      | 159 | 1         | 682847 | 0.46  | 679167        | 100.5     | 60          | 120         |         |
| In      | 115 | 1         | 248258 | 0.21  | 247939        | 100.1     | 60          | 120         |         |
| Kr      | 83  | 1         | 18     | 21.66 | 30            | 59.3      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39293  | 1.00  | 38549         | 101.9     | 60          | 120         |         |
| Sc      | 45  | 1         | 264061 | 0.46  | 263470        | 100.2     | 60          | 120         |         |
| Li      | 6   | 1         | 12139  | 1.75  | 12234         | 99.2      | 60          | 120         |         |

Sample Name

460-31791-a-1-b@100

Data File Name

034SMPL.D

DataPath

**Acq Date Time** 

2011-10-07T21:50:55-04:00

Type VialNumber Sample

Dilution

2203 100

Comment

Operator

MP

**ISTDRefDataFileName** 

004CALB.D

Sample Pass Fail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.22       | 22.34              | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.00       | 0.18               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 1.65       | 165.40             | ug/i  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.03       | 2.58               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.08       | 8.16               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 0.02               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.14               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.00       | 0.27               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 64.95      | 6494.74            | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.13      | -12.78             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.10       | 10.46              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 5.18       | 518.20             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 1.05       | 104.54             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.06       | 5.61               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.05       | 5.27               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 108.68     | 10867.91           | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 56.72      | 5671.89            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.29       | 29.15              | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.23       | 22.84              | ug/l  | 3600       |         |
| Tì      | 47  | 45   | 1         | 7.49       | 748.65             | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 41203.80   | 4120380.41         | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | -7.41      | -740.87            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 123.47     | 12347.35           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1319.20    | 131920.20          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 299.13     | 29912.96           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.21       | 21.01              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -3.48              | ug/l  | 3600       |         |

| SC TOLD I | able |           |        |       |               |           |             |             |             |
|-----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|-------------|
| Element   | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag     |
| Bi        | 209  | 1         | 511780 | 0.47  | 513001        | 99.8      | 60          | 120         | <u> </u>    |
| Tb        | 159  | 1         | 675675 | 0.65  | 679167        | 99.5      | 60          | 120         |             |
| In        | 115  | 1         | 245581 | 0.93  | 247939        | 99.0      | 60          | 120         |             |
| Kr        | 83   | 1         | 16     | 12.40 | 30            | 51.9      | 1           | 1000        |             |
| Ge        | 74   | 1         | 38637  | 0.08  | 38549         | 100.2     | 60          | 120         |             |
| Sc        | 45   | 1         | 261455 | 0.36  | 263470        | 99.2      | 60          | 120         | <del></del> |
| Li        | 6    | 1         | 12079  | 2.13  | 12234         | 98.7      | 60          | 120         | <del></del> |

Sample Name

460-31705-a-13-a@100

Data File Name

035SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time

2011-10-07T21:55:56-04:00

Type VialNumber Sample 2204

Dilution Comment 100

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 12.52      | 1252.14            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.02       | 2.13               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 13.86      | 1385.52            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.09       | 9.11               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.64       | 63.90              | ug/I  | 3600       | l       |
| Cd      | 111 | 115  | 1         | 0.07       | 6.57               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 1.74               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.14       | 13.85              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 3.06       | 306.37             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.19      | -19.21             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 1.32       | 132.33             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 21.74      | 2174.39            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 8.28       | 828.04             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 2.42       | 242.01             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 1.22       | 121.76             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 2653.91    | 265390.68          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 74.31      | 7431.39            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 824.50     | 82449.79           | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 5.36       | 536.05             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 72.18      | 7218.33            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 699.44     | 69943.76           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 161.42     | 16142.10           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1398.33    | 139832.78          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 511.66     | 51165.91           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 478.96     | 47896.21           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.36       | 35.85              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.12       | 11.74              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag     |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|-------------|
| Bi      | 209 | 1         | 520063 | 0.07  | 513001        | 101.4     | 60          | 120         |             |
| Tb      | 159 | 1         | 677772 | 0.78  | 679167        | 99.8      | 60          | 120         |             |
| In      | 115 | 1         | 242716 | 0.78  | 247939        | 97.9      | 60          | 120         | <del></del> |
| Kr      | 83  | 1         | 21     | 71.19 | 30            | 70.4      | 1           | 1000        |             |
| Ge      | 74  | 1         | 38395  | 1.48  | 38549         | 99.6      | 60          | 120         |             |
| Sc      | 45  | 1         | 258624 | 0.25  | 263470        | 98.2      | 60          | 120         |             |
| Li      | 6   | 1         | 12004  | 1.29  | 12234         | 98.1      | 60          | 120         |             |

Sample Name

460-31705-b-15-a@50

Data File Name

036SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T22:00:57-04:00

Type

Sample

VialNumber

2205 50

Dilution Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

Sample Pass Fail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 186.11     | 9305.65            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.05       | 2.61               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 33.61      | 1680.62            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.19       | 9.55               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 10.06      | 502.89             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.19       | 9.47               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.07       | 3.64               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.62       | 30.88              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 17.46      | 872.82             | ug/i  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.84       | 41.90              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 4.76       | 237.96             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 272.89     | 13644.68           | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 9.89       | 494.70             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 5.26       | 263.11             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 2.91       | 145.50             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 8009.57    | 400478.70          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 160.07     | 8003.39            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 528.73     | 26436.45           | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 11.13      | 556.47             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 113.06     | 5653.12            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 4243.43    | 212171.40          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 466.98     | 23349.08           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 4618.05    | 230902.47          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1417.00    | 70850.21           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1935.64    | 96781.93           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 3.19       | 159.40             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.19       | 9.52               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 515708 | 0.66  | 513001        | 100.5     | 60          | 120         |         |
| Tb      | 159 | 1         | 671962 | 0.45  | 679167        | 98.9      | 60          | 120         |         |
| In      | 115 | 1         | 237516 | 0.28  | 247939        | 95.8      | 60          | 120         |         |
| Kr      | 83  | 1         | 31     | 12.36 | 30            | 103.7     | 1           | 1000        |         |
| Ge      | 74  | 1         | 38052  | 0.83  | 38549         | 98.7      | 60          | 120         | 1       |
| Sc      | 45  | 1         | 252372 | 0.65  | 263470        | 95.8      | 60          | 120         |         |
| Li      | 6   | 1         | 11799  | 0.99  | 12234         | 96.4      | 60          | 120         |         |

#### Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name Data File Name

CCV 1187191

0376CCV.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T22:05:56-04:00

Type

6-CCV

VialNumber

1301

Dilution

1

Comment Operator

MP

ISTDRefDataFileName SamplePassFail

004CALB.D

Pass

ISTD PassFail

Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|---------|
| Be      | 9   | 6    | 1         | 50.73      | 0.65 | ug/l  | 4012.22     | 0.27    | 50        | 101.5 | 90     | 110     |         |
| В       | 11  | 6    | 1         | 97.72      | 3.16 | ug/l  | 2311.35     | 3.10    | 100       | 97.7  | 90     | 110     |         |
| Na      | 23  | 45   | 1         | 4914.97    | 0.38 | ug/l  | 3484608.84  | 0.76    | 5000      | 98.3  | 90     | 110     |         |
| Mg      | 24  | 45   | 1         | 4943.97    | 0.36 | ug/l  | 1738820.43  | 0.11    | 5000      | 98.9  | 90     | 110     |         |
| Ai      | 27  | 45   | 1         | 492.30     | 1.11 | ug/l  | 85221.53    | 0.74    | 500       | 98.5  | 90     | 110     |         |
| K       | 39  | 45   | 1         | 4937.20    | 0.59 | ug/l  | 1771011.24  | 0.34    | 5000      | 98.7  | 90     | 110     |         |
| Ca      | 44  | 6    | 1         | 4937.58    | 0.65 | ug/l  | 86354.76    | 0.28    | 5000      | 98.8  | 90     | 110     |         |
| Ti      | 47  | 45   | 1         | 48.49      | 4.26 | ug/l  | 4990.93     | 4.21    | 50        | 97.0  | 90     | 110     |         |
| V       | 51  | 45   | 1         | 49.92      | 0.85 | ug/l  | 138793.28   | 1.25    | 50        | 99.8  | 90     | 110     |         |
| Cr      | 52  | 45   | 1         | 50.20      | 0.29 | ug/l  | 165400.74   | 0.68    | 50        | 100.4 | 90     | 110     |         |
| Mn      | 55  | 45   | 1         | 501.51     | 1.30 | ug/l  | 1021343.20  | 1.08    | 500       | 100.3 | 90     | 110     |         |
| Fe      | 56  | 45   | 1         | 4998.26    | 0.94 | ug/l  | 12536248.98 | 0.71    | 5000      | 100.0 | 90     | 110     |         |
| Со      | 59  | 45   | 1         | 50.76      | 0.92 | ug/l  | 238317.77   | 0.54    | 50        | 101.5 | 90     | 110     |         |
| Ni      | 60  | 45   | 1         | 49.70      | 1.08 | ug/l  | 64727.35    | 0.84    | 50        | 99.4  | 90     | 110     |         |
| Си      | 63  | 45   | 1         | 51.37      | 0.83 | ug/l  | 172803.89   | 0.67    | 50        | 102.7 | 90     | 110     |         |
| Zn      | 66  | 45   | 1         | 50.50      | 2.27 | ug/l  | 28321.68    | 1.86    | 50        | 101.0 | 90     | 110     |         |
| As      | 75  | 74   | 1         | 49.84      | 0.61 | ug/l  | 22574.82    | 0.62    | 50        | 99.7  | 90     | 110     |         |
| Se      | 78  | 74   | 1         | 49.97      | 5.17 | ug/l  | 1560.66     | 5.04    | 50        | 99.9  | 90     | 110     |         |
| Sr      | 88  | 115  | 1         | 49.07      | 0.43 | ug/l  | 129000.57   | 0.42    | 50        | 98.1  | 90     | 110     | 1       |
| Мо      | 95  | 115  | 1         | 48.81      | 0.67 | ug/l  | 82111.50    | 1.29    | 50        | 97.6  | 90     | 110     |         |
| Ag      | 107 | 115  | 1         | 50.24      | 0.52 | ug/l  | 254818.49   | 0.85    | 50        | 100.5 | 90     | 110     |         |
| Cd      | 111 | 115  | 1         | 49.14      | 0.83 | ug/l  | 38276.52    | 0.98    | 50        | 98.3  | 90     | 110     | 1       |
| Sn      | 118 | 115  | 1         | 50.01      | 1.16 | ug/l  | 90729.15    | 0.98    | 50        | 100.0 | 90     | 110     |         |
| Sb      | 121 | 115  | 1         | 49.88      | 0.75 | ug/l  | 124648.31   | 0.46    | 50        | 99.8  | 90     | 110     |         |
| Ba      | 137 | 159  | 1         | 49.32      | 2.11 | ug/l  | 45622.53    | 2.30    | 50        | 98.6  | 90     | 110     |         |
| TI      | 205 | 209  | 1         | 9.93       | 1.14 | ug/l  | 120221.44   | 0.69    | 10        | 99.3  | 90     | 110     |         |
| Pb      | 208 | 209  | 1         | 50.10      | 0.54 | ug/l  | 798512.68   | 0.12    | 50        | 100.2 | 90     | 110     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11776  | 0.82  | 12234   | 96.3  | 60     | 120     |         |
| Sc      | 45  | 1         | 256465 | 0.40  | 263470  | 97.3  | 60     | 120     |         |
| Ge      | 74  | 1         | 38285  | 0.48  | 38549   | 99.3  | 60     | 120     |         |
| Kr      | 83  | 1         | 12     | 41.65 | 30      | 40.7  | 1      | 1000    | 1       |
| În      | 115 | 1         | 241453 | 0.68  | 247939  | 97.4  | 60     | 120     |         |
| Тb      | 159 | 1         | 677349 | 0.23  | 679167  | 99.7  | 60     | 120     |         |
| Bi      | 209 | 1         | 513240 | 0.46  | 513001  | 100.0 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

Data File Name

0386CCB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T22:10:51-04:00

Acq Date Time Type

6-CCB

VialNumber

1302

Dilution Comment

1

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Ве      | 9   | 6    | 1         | -0.01      | -165.51 | ug/l  | 2.22      | 43.11   | 0.2     |         |
| В       | 11  | 6    | 1         | 0.73       | 29.83   | ug/l  | 24.44     | 20.83   | 20      |         |
| Na      | 23  | 45   | 1         | -5.29      | -41.64  | ug/l  | 179436.66 | 0.70    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.48       | 17.53   | ug/l  | 358.34    | 8.15    | 50      |         |
| Al      | 27  | 45   | 1         | 0.31       | 28.25   | ug/l  | 681.14    | 2.14    | 10      |         |
| K       | 39  | 45   | 1         | -11.99     | -20.19  | ug/l  | 89024.71  | 0.85    | 50      |         |
| Ca      | 44  | 6    | 1         | 1.21       | 169.70  | ug/l  | 251.67    | 14.75   | 50      |         |
| Ti      | 47  | 45   | 1         | -0.02      | -96.22  | ug/l  | 4.44      | 43.40   | 1       |         |
| ٧       | 51  | 45   | 1         | -0.01      | -128.42 | ug/l  | 452.24    | 5.18    | 1       |         |
| Cr      | 52  | 45   | 1         | 0.04       | 39.44   | ug/l  | 2007.98   | 2.75    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.05       | 22.54   | ug/l  | 148.90    | 15.88   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.46       | 6.99    | ug/l  | 4774.68   | 1.75    | 30      |         |
| Co      | 59  | 45   | 1         | 0.00       | 16.65   | ug/l  | 25.55     | 15.07   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.09      | -25.72  | ug/l  | 91.11     | 31.12   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.08      | -37.86  | ug/l  | 1865.73   | 5.07    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.07       | 75.01   | ug/l  | 296.68    | 9.99    | 4       |         |
| As      | 75  | 74   | 1         | -0.01      | -143.57 | ug/l  | 33.89     | 22.18   | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.08      | -82.16  | ug/l  | 45.00     | 3.71    | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.00       | 51.25   | ug/l  | 23.33     | 28.56   | 1       |         |
| Mo      | 95  | 115  | 1         | 0.02       | 25.73   | ug/l  | 91.11     | 9.20    | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 32.89   | ug/l  | 54.45     | 24.75   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 476.04  | ug/l  | 11.11     | 62.48   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.00       | 187.20  | ug/l  | 90.00     | 19.59   | . 4     |         |
| Sb      | 121 | 115  | 1         | 0.01       | 55.09   | ug/l  | 105.56    | 13.15   | 0.5     |         |
| Ва      | 137 | 159  | 1         | 0.00       | 146.29  | ug/l  | 14.44     | 35.26   | 1       |         |
| П       | 205 | 209  | 1         | 0.01       | 24.15   | ug/l  | 100.01    | 20.82   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.01       | 27.27   | ug/l  | 355.57    | 18.21   | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|------|--------|---------|---------|
| Li      | 6   | 1         | 11956  | 0.53  | 12234   | 97.7 | 60     | 120     |         |
| Sc      | 45  | 1         | 255805 | 0.12  | 263470  | 97.1 | 60     | 120     |         |
| Ge      | 74  | 1         | 38248  | 0.50  | 38549   | 99.2 | 60     | 120     |         |
| Kr      | 83  | 1         | 12     | 15.73 | 30      | 40.7 | 1      | 1000    |         |
| In      | 115 | 1         | 242390 | 0.87  | 247939  | 97.8 | 60     | 120     |         |
| Tb      | 159 | 1         | 671645 | 0.30  | 679167  | 98.9 | 60     | 120     |         |
| Bi      | 209 | 1         | 511539 | 0.68  | 513001  | 99.7 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

## Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name Data File Name mb 460-87830/1-a@20

0396CCB.D

DataPath

**Acq Date Time** 

2011-10-07T22:15:56-04:00 6-CCB

Type VialNumber

2206

Dilution

20

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Fail

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD       | Tune Step | Meas Value | %RSD      | Units | CPS       | CPS%RSD | QC High | QC Flag           |
|---------|-----|------------|-----------|------------|-----------|-------|-----------|---------|---------|-------------------|
| Be      | 9   | 6          | 1         | 0.00       | -60654.85 | ug/i  | 2.78      | 34.52   | 0.2     |                   |
| В       | 11  | 6          | 1         | 0.30       | 2220.67   | ug/l  | 14.44     | 58.06   | 20      |                   |
| Na      | 23  | 45         | 1         | 50.98      | 34.45     | ug/l  | 218494.21 | 0.19    | 50      | 6-CCB Main Failed |
| Mg      | 24  | 45         | 1         | 2.94       | 84.00     | ug/l  | 1228.96   | 3.74    | 50      |                   |
| Al      | 27  | 45         | 1         | 5.38       | 99.79     | ug/l  | 1559.55   | 2.97    | 10      |                   |
| Κ       | 39  | 45         | 1         | 68.66      | 45.06     | ug/l  | 117089.10 | 0.20    | 50      | 6-CCB Main Failed |
| Ca      | 44  | 6          | 1         | 31.10      | 122.56    | ug/l  | 788.92    | 5.49    | 50      |                   |
| Ti      | 47  | 45         | 1         | -0.04      | -1792.67  | ug/l  | 2.22      | 173.21  | 1       |                   |
| ٧       | 51  | 45         | 1         | 0.11       | 303.59    | ug/l  | 783.38    | 6.27    | 1       |                   |
| Cr      | 52  | 45         | 1         | 0.10       | 404.45    | ug/l  | 2210.23   | 2.77    | 1       |                   |
| Mn      | 55  | <b>4</b> 5 | 1         | 0.14       | 217.28    | ug/l  | 337.79    | 9.17    | 2       |                   |
| Fe      | 56  | 45         | 1         | 12.43      | 10.39     | ug/l  | 34940.19  | 0.55    | 30      |                   |
| Со      | 59  | 45         | 1         | 0.01       | 207.88    | ug/l  | 68.89     | 10.07   | 1       |                   |
| Ni      | 60  | 45         | 1         | 0.39       | 179.34    | ug/l  | 710.04    | 6.45    | 1       |                   |
| Cu      | 63  | 45         | 1         | 2.75       | 56.57     | ug/l  | 11313.28  | 1.97    | 1       | 6-CCB Main Failed |
| Zn      | 66  | 45         | 1         | 5.43       | 76.21     | ug/l  | 3284.89   | 3.20    | 4       | 6-CCB Main Failed |
| As      | 75  | 74         | 1         | 0.03       | 1842.97   | ug/l  | 51.11     | 21.72   | 0.5     |                   |
| Se      | 78  | 74         | 1         | -0.21      | -3772.46  | ug/l  | 41.11     | 28.77   | 0.5     |                   |
| Sr      | 88  | 115        | 1         | 0.05       | 370.23    | ug/l  | 140.01    | 17.17   | 1       |                   |
| Mo      | 95  | 115        | 1         | 0.02       | 1113.64   | ug/l  | 103.34    | 22.58   | 1       |                   |
| Ag      | 107 | 115        | 1         | 0.01       | 304.62    | ug/l  | 45.56     | 11.18   | 1       |                   |
| Cd      | 111 | 115        | 1         | 0.00       | 195.32    | ug/l  | 10.00     | 0.00    | 0.5     |                   |
| Sn      | 118 | 115        | 1         | 0.15       | 171.65    | ug/l  | 347.80    | 6.73    | 4       |                   |
| Sb      | 121 | 115        | 1         | 0.06       | 430.67    | ug/l  | 230.01    | 13.98   | 0.5     |                   |
| Ва      | 137 | 159        | 1_        | 0.12       | 507.56    | ug/l  | 117.78    | 22.88   | 1       |                   |
| TI      | 205 | 209        | 1         | 0.01       | 132.50    | ug/l  | 168.90    | 6.03    | 0.2     |                   |
| Pb      | 208 | 209        | 1         | 0.08       | 52.50     | .ug/l | 1453.42   | 2.55    | 0.3     |                   |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 12073  | 1.41  | 12234   | 98.7  | 60     | 120     |         |
| Sc      | 45  | 1         | 257410 | 0.34  | 263470  | 97.7  | 60     | 120     |         |
| Ge      | 74  | 1         | 38326  | 0.26  | 38549   | 99.4  | 60     | 120     |         |
| Kr      | 83  | 1         | 22     | 37.76 | 30      | 74.1  | 1      | 1000    |         |
| In      | 115 | 1         | 244333 | 0.24  | 247939  | 98.5  | 60     | 120     |         |
| Tb      | 159 | 1         | 679638 | 0.29  | 679167  | 100.1 | 60     | 120     |         |
| Bi      | 209 | 1         | 515542 | 0.19  | 513001  | 100.5 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

lcssrm 460-87830/2-a@100

Data File Name

040SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T22:21:01-04:00

Type VialNumber Sample

Dilution

2207 100

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration   | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|----------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 17.93      | 1793.41              | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 26.32      | 2631.62              | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 39.66      | 3965.79              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 39.10      | 3909.74              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 22.45      | 22 <del>44</del> .91 | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 13.39      | 1338.67              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 6.58       | 657.78               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 11.26      | 1125.52              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 47.34      | 4734.13              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 60.77      | 6077.30              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 21.32      | 2132.29              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 128.40     | 12840.11             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 37.51      | 3751.33              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 29.16      | 2916.35              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 20.25      | 2024.67              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 3789.13    | 378913.34            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 115.29     | 11528.97             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 49.77      | 4977.41              | ug/l  | 900        | -       |
| V       | 51  | 45   | 1         | 23.86      | 2386.26              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 85.09      | 8509.43              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2052.56    | 205255.91            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 940.24     | 94023.87             | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1769.94    | 176993.67            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 798.58     | 79858.14             | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 193.08     | 19307.94             | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 28.28      | 2828.22              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 16.36      | 1636.30              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bí      | 209 | 1         | 518819 | 0.94  | 513001        | 101.1     | 60          | 120         |         |
| Tb      | 159 | 1         | 677159 | 0.93  | 679167        | 99.7      | 60          | 120         |         |
| In      | 115 | 1         | 240299 | 0.80  | 247939        | 96.9      | 60          | 120         |         |
| Kr      | 83  | 1         | 19     | 71.30 | 30            | 63.0      | 1           | 1000        | -       |
| Ge      | 74  | 1         | 38898  | 0.81  | 38549         | 100.9     | 60          | 120         |         |
| Sc      | 45  | 1         | 260203 | 0.77  | 263470        | 98.8      | 60          | 120         |         |
| Li      | 6   | 1         | 12116  | 0.71  | 12234         | 99.0      | 60          | 120         |         |

Sample Name

460-31559-b-1-b du@50

Data File Name

041SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T22:26:02-04:00

Type VialNumber

Sample 2208

Dilution

50

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 196.69     | 9834.29            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.11       | 5.45               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 75.32      | 3766.09            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.80       | 39.85              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 10.39      | 519.34             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.16       | 8.15               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.04       | 1.84               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.17       | 8.66               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 6.27       | 313.46             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.02       | 0.97               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 1.73       | 86.36              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 114.57     | 5728.45            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 22.01      | 1100.55            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 9.40       | 469.91             | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 2.51       | 125.34             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 4683.54    | 234176.87          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 76.83      | 3841.49            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 448.78     | 22438.77           | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 14.84      | 742.22             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 92.13      | 4606.60            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1743.13    | 87156.32           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 205.98     | 10298.76           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1577.91    | 78895.71           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1121.66    | 56083.07           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 420.92     | 21046.09           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 1.04       | 52.08              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.05       | 2.37               | ug/l  | 3600       |         |

| <del>20 -0.0 .</del> |     |           |        |       |               |           |             |             |          |
|----------------------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|----------|
| Element              | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag  |
| Bi                   | 209 | 1         | 519219 | 0.51  | 513001        | 101.2     | 60          | 120         |          |
| Tb                   | 159 | 1         | 673714 | 0.28  | 679167        | 99.2      | 60          | 120         |          |
| In                   | 115 | 1         | 237667 | 0.47  | 247939        | 95.9      | 60          | 120         | <u> </u> |
| Kr                   | 83  | 1         | 33     | 26.46 | 30            | 111.1     | 1           | 1000        | 1        |
| Ge                   | 74  | 1         | 37742  | 1.18  | 38549         | 97.9      | 60          | 120         |          |
| Sc                   | 45  | 1         | 253972 | 0.35  | 263470        | 96.4      | 60          | 120         |          |
| Li                   | 6   | 1         | 12075  | 0.27  | 12234         | 98.7      | 60          | 120         | 1        |

Sample Name

460-31559-b-1-a@50

Data File Name

042SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T22:31:05-04:00

Type VialNumber

Sample 2209

Dilution

50

Comment

30

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag     |
|---------|-----|------|-----------|------------|--------------------|-------|------------|-------------|
| Pb      | 208 | 209  | 1         | 242.96     | 12148.10           | ug/l  | 3600       |             |
|         | 205 | 209  | 1         | 0.07       | 3.47               | ug/l  | 720        |             |
| Ba      | 137 | 159  | 1         | 75.83      | 3791.62            | ug/l  | 3600       | · · · · · · |
| Sb      | 121 | 115  | 1         | 1.63       | 81.41              | ug/l  | 3600       |             |
| Sn      | 118 | 115  | 1         | 6.85       | 342.35             | ug/l  | 3600       |             |
| Cd      | 111 | 115  | 1         | 0.14       | 7.24               | ug/l  | 1800       |             |
| Ag      | 107 | 115  | 1         | 0.06       | 2.93               | ug/l  | 180        |             |
| Мо      | 95  | 115  | 1         | 0.48       | 24.05              | ug/l  | 3600       |             |
| Sr      | 88  | 115  | 1         | 9.77       | 488.65             | ug/l  | 3600       |             |
| Se      | 78  | 74   | 1         | 0.07       | 3.34               | ug/l  | 450        |             |
| As      | 75  | 74   | 1         | 2.92       | 146.20             | ug/l  | 1800       |             |
| Zn      | 66  | 45   | 1         | 115.72     | 5785.79            | ug/l  | 450        |             |
| Cu      | 63  | 45   | 1         | 35.52      | 1775.86            | ug/l  | 450        |             |
| Ni      | 60  | 45   | 1         | 18.41      | 920.34             | ug/l  | 900        |             |
| Co      | 59  | 45   | 1         | 5.11       | 255.39             | ug/l  | 450        |             |
| Fe      | 56  | 45   | 1         | 7983.23    | 399161.67          | ug/l  | 180000     |             |
| Mn      | 55  | 45   | 1         | 86.39      | 4319.58            | ug/l  | 9000       |             |
| Cr      | 52  | 45   | 1         | 741.16     | 37058.21           | ug/l  | 900        |             |
| V       | 51  | 45   | 1         | 28.43      | 1421.36            | ug/l  | 3600       |             |
| Ti      | 47  | 45   | 1         | 134.84     | 6741.84            | ug/l  | 3600       |             |
| Ca      | 44  | 6    | 1         | 4303.71    | 215185.48          | ug/l  | 90000      |             |
| K       | 39  | 45   | 1         | 287.19     | 14359.67           | ug/l  | 360000     |             |
| Al      | 27  | 45   | 1         | 2505.07    | 125253.44          | ug/i  | 36000      | -           |
| Mg      | 24  | 45   | 1         | 2178.32    | 108916.01          | ug/l  | 180000     |             |
| Na      | 23  | 45   | 1         | 568.56     | 28427.99           | ug/l  | 360000     |             |
| В       | 11  | 6    | 1         | 1.53       | 76.44              | ug/l  | 7200       |             |
| Be      | 9   | 6    | 1         | 0.15       | 7.30               | ug/I  | 3600       |             |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 512136 | 0.28  | 513001        | 99.8      | 60          | 120         |                                                  |
| Tb      | 159 | 1         | 666361 | 0.35  | 679167        | 98.1      | 60          | 120         |                                                  |
| In      | 115 | 1         | 236935 | 0.53  | 247939        | 95.6      | 60          | 120         | <del>                                     </del> |
| Kr      | 83  | 1         | 26     | 27.15 | 30            | 85.2      | 1           | 1000        | <b>—</b>                                         |
| Ge      | 74  | 1         | 37458  | 0.81  | 38549         | 97.2      | 60          | 120         | <del>                                     </del> |
| Sc      | 45  | 1         | 251389 | 0.44  | 263470        | 95.4      | 60          | 120         | <del>                                     </del> |
| Li      | 6   | 1         | 11892  | 0.56  | 12234         | 97.2      | 60          | 120         | <del>                                     </del> |

Sample Name

SD 460-31559-b-1-a@250

Data File Name

043SMPL.D

DataPath **Acq Date Time**  2011-10-07T22:36:06-04:00

Type

Sample

VialNumber Dilution

2210 250

Comment

Operator

MΡ

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

**ISTD PassFail** 

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 48.59      | 12146.41           | ug/l  | 3600       | 1       |
| П       | 205 | 209  | 1         | 0.02       | 4.87               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 15.37      | 3842.03            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.34       | 84.66              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 1.31       | 327.12             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 4.86               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 3.83               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.11       | 27.10              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 1.94       | 484.90             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.03       | 6.95               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.57       | 143.62             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 24.22      | 6056.15            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 7.13       | 1783.13            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 3.60       | 899.88             | ug/i  | 900        |         |
| Co      | 59  | 45   | 1         | 1.02       | 254.47             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 1617.44    | 404359.59          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 17.51      | 4376.98            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 149.84     | 37461.06           | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 5.61       | 1402.83            | ug/l  | 3600       |         |
| Tì      | 47  | 45   | 1         | 27.43      | 6856.42            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 863.71     | 215928.60          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 42.38      | 10593.91           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 499.52     | 124881.24          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 434.73     | 108683.40          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 105.48     | 26369.25           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.32       | 80.85              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.01       | 1.87               | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 513368 | 0.25  | 513001        | 100.1     | 60          | 120         |                                                  |
| Tb      | 159 | 1         | 669384 | 0.88  | 679167        | 98.6      | 60          | 120         | <del>                                     </del> |
| In      | 115 | 1         | 238259 | 0.23  | 247939        | 96.1      | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 19     | 53.91 | 30            | 63.0      | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 37504  | 0.24  | 38549         | 97.3      | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 251743 | 0.49  | 263470        | 95.5      | 60          | 120         |                                                  |
| Li      | 6   | 1         | 11840  | 1.12  | 12234         | 96.8      | 60          | 120         |                                                  |



Printed at: 10:37 PM on:10/7/2011 10/21/2011

Sample Name

460-31559-b-1-c ms@50

**Data File Name** 

044SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time

2011-10-07T22:41:08-04:00

Type VialNumber Sample 2211

Dilution

50

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 198.02     | 9900.97            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 1.59       | 79.74              | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 94.89      | 4744.64            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 1.78       | 88.94              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 12.05      | 602.46             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 2.10       | 104.85             | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 2.09       | 104.65             | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 4.12       | 205.80             | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 13.62      | 680.81             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 4.08       | 203.85             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 6.24       | 311.84             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 154.75     | 7737.68            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 34.42      | 1721.22            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 23.63      | 1181.69            | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 7.31       | 365.50             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 7329.49    | 366474.54          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 93.45      | 4672.54            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 558.79     | 27939.42           | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 32.81      | 1640.68            | ug/l  | 3600       |         |
| П       | 47  | 45   | 1         | 117.29     | 5864.64            | ug/l  | 3600       |         |
| Са      | 44  | 6    | 1         | 3752.77    | 187638.31          | ug/l  | 90000      |         |
| Κ       | 39  | 45   | 1         | 474.75     | 23737.49           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 2394.11    | 119705.27          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2006.27    | 100313.58          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 693.06     | 34653.14           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 37.74      | 1887.03            | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 1.91       | 95.37              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 510366 | 0.72  | 513001        | 99.5      | 60          | 120         | 1       |
| Tb      | 159 | 1         | 666798 | 1.07  | 679167        | 98.2      | 60          | 120         |         |
| In      | 115 | 1         | 236175 | 0.41  | 247939        | 95.3      | 60          | 120         |         |
| Kr      | 83  | 1         | 24     | 43.83 | 30            | 81.5      | 1           | 1000        |         |
| Ge      | 74  | 1         | 37361  | 0.25  | 38549         | 96.9      | 60          | 120         |         |
| Sc      | 45  | 1         | 250561 | 0.36  | 263470        | 95.1      | 60          | 120         |         |
| Li      | 6   | 1         | 11930  | 0.59  | 12234         | 97.5      | 60          | 120         |         |

Sample Name

PDS 460-31559-b-1-a@50

Data File Name

045SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T22:46:11-04:00

Acq Date Time

Sample

Type VialNumber

2212 50

Dilution Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 247.72     | 12386.07           | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 3.90       | 195.08             | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 84.66      | 4233.00            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 6.50       | 324.98             | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 15.74      | 786.77             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 5.14       | 256.90             | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 5.02       | 251.22             | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 9.99       | 499.63             | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 19.25      | 962.46             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 10.17      | 508.58             | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 12.34      | 617.00             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 164.22     | 8210.89            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 45.62      | 2280.81            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 28.05      | 1402.68            | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 10.03      | 501.62             | ug/l  | 450        |         |
| Fe      | 56  | 45   | . 1       | 8447.94    | 422397.21          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 134.42     | 6721.21            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 743.68     | 37183.82           | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 37.98      | 1899.25            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 140.87     | 7043.64            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 4801.93    | 240096.58          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 825.82     | 41290.83           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 2955.49    | 147774.37          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2630.06    | 131502.92          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1090.70    | 54534.80           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 99.60      | 4979.78            | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 4.95       | 247.45             | ug/l  | 3600       |         |

**QC ISTD Table** 

| <u> </u> | avic |           |        |       |               |           |             |             |         |
|----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element  | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi       | 209  | 1         | 510513 | 0.66  | 513001        | 99.5      | 60          | 120         |         |
| Tb       | 159  | 1         | 670516 | 0.40  | 679167        | 98.7      | 60          | 120         |         |
| In       | 115  | 1         | 235221 | 0.36  | 247939        | 94.9      | 60          | 120         |         |
| Kr       | 83   | 1         | 34     | 14.78 | 30            | 114.8     | 1           | 1000        |         |
| Ge       | 74   | 1         | 37235  | 1.32  | 38549         | 96.6      | 60          | 120         |         |
| Sc       | 45   | 1         | 250228 | 0.41  | 263470        | 95.0      | 60          | 120         |         |
| Li       | 6    | 1         | 11693  | 0.98  | 12234         | 95.6      | 60          | 120         | 1       |

Printed at: 10:47 PM on:10/7/2011 10/21/2011

Sample Name

460-31559-e-5-b@20

Data File Name

046SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T22:51:09-04:00

Type VialNumber Sample 2301

Dilution

20

Comment

. . . .

Operator

MP

ISTDRefDataFileName

004CALB.D

Sample Pass Fail

Fail

ISTD PassFail

Pass

#### **QC Analyte Table**

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units            | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|------------------|------------|---------|
| Pb      | 208 | 209  | 1         | 240.25     | 4804.94            | ug/l             | 3600       |         |
| П       | 205 | 209  | 1         | 0.12       | 2.39               | ug/l             | 720        |         |
| Ва      | 137 | 159  | 1         | 84.80      | 1696.08            | ug/l             | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.29       | 5.84               | ug/l             | 3600       |         |
| Sn      | 118 | 115  | 1         | 28.63      | 572.53             | ug/l             | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.28       | 5.67               | ug/l             | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.17       | 3.31 ug/l 180      |                  | 180        |         |
| Мо      | 95  | 115  | 1         | 1.32       | 26.43              | ug/l             | 3600       |         |
| Sr      | 88  | 115  | 1         | 23.95      | 479.05             | ug/l             | 3600       |         |
| Se      | 78  | 74   | 1         | 1.65       | 33.10              | ug/l             | 450        |         |
| As      | 75  | 74   | 1         | 49.56      | 991.25             | 991.25 ug/l 1800 |            |         |
| Zn      | 66  | 45   | 1         | 629.77     | 12595.35           | 2595.35 ug/l 450 |            | fail    |
| Си      | 63  | 45   | 1         | 30.93      | 618.70             |                  |            |         |
| Ni      | 60  | 45   | 1         | 12.20      | 244.02             | ug/l             | 900        |         |
| Co      | 59  | 45   | 1         | 6.27       | 125.32             | ug/l             | 450        |         |
| Fe      | 56  | 45   | 1         | 14929.57   | 298591.39          | ug/l             | 180000     |         |
| Mn      | 55  | 45   | 1         | 518.80     | 10375.90           | ug/l             | 9000       |         |
| Cr      | 52  | 45   | 1         | 44.21      | 884.29             | ug/l             | 900        |         |
| V       | 51  | 45   | 1         | 26.83      | 536.53             | ug/l             | 3600       |         |
| Ti      | 47  | 45   | 1         | 367.57     | 7351.45            | ug/l             | 3600       |         |
| Ca      | 44  | 6    | 1         | 3415.96    | 68319.24           | ug/l             | 90000      |         |
| K       | 39  | 45   | 1         | 1022.72    | 20454.31           | ug/l             | 360000     |         |
| Al      | 27  | 45   | 1         | 7543.58    | 150871.64          | ug/l             | 36000      |         |
| Mg      | 24  | 45   | 1         | 2400.34    | 48006.86           | ug/l             | 180000     |         |
| Na      | 23  | 45   | 1         | 2639.12    | 52782.30           | ug/l             | 360000     |         |
| В       | 11  | 6    | 1         | 4.29       | 85.77              | ug/l             | 7200       |         |
| Be      | 9   | 6    | 1         | 0.50       | 9.95               | ug/l             | 3600       |         |

| Element    | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag      |
|------------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------|
| Bi         | 209 | 1         | 518578 | 0.82  | 513001        | 101.1     | 60          | 120         | QC Flag      |
| Tb         | 159 | 1         | 688198 | 0.29  | 679167        | 101.3     | 60          | 120         | <del> </del> |
| In         | 115 | 1         | 238874 | 0.65  | 247939        | 96.3      | 60          | 120         |              |
| <b>K</b> r | 83  | 1         | 38     | 22.21 | 30            | 125.9     | 1           | 1000        |              |
| Ge         | 74  | 1         | 37973  | 0.14  | 38549         | 98.5      | 60          | 120         |              |
| Sc         | 45  | 1         | 259753 | 0.27  | 263470        | 98.6      | 60          | 120         |              |
| Li         | 6   | 1         | 11967  | 1.29  | 12234         | 97.8      | 60          | 120         |              |

Sample Name

460-31559-e-5-b@50

Data File Name

047SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T22:56:04-04:00

Type VialNumber Sample 2302

Dilution

20

Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 96.36      | 1927.26            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.05       | 1.10               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 34.72      | 694.40             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.14       | 2.80               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 11.51      | 230.27             | ug/i  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.11       | 2.12               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.06       | 1.25               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.57       | 11.32              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 9.60       | 192.00             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.49       | 9.75               | ug/l  | 450        |         |
| Aś      | 75  | 74   | 1         | 19.98      | 399.64             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 260.66     | 5213.27            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 12.67      | 253.37             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 4.97       | 99.45              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 2.51       | 50.12              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 6152.10    | 123041.98          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 210.57     | 4211.31            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 18.25      | 364.97             | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 10.88      | 217.60             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 152.62     | 3052.32            | ug/l  | 3600       |         |
| Са      | 44  | 6    | 1         | 1402.66    | 28053.20           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 409.14     | 8182.77            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 3118.64    | 62372.75           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 988.18     | 19763.59           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1096.90    | 21937.95           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 2.16       | 43.23              | ug/l  | 7200       |         |
| Ве      | 9   | 6    | 1         | 0.19       | 3.81               | ug/l  | 3600       |         |

| Element    | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|------------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi         | 209 | 1         | 515668 | 0.45  | 513001        | 100.5     | 60          | 120         |         |
| Tb         | 159 | 1         | 674727 | 0.39  | 679167        | 99.3      | 60          | 120         |         |
| In         | 115 | 1         | 238834 | 0.28  | 247939        | 96.3      | 60          | 120         |         |
| <b>K</b> r | 83  | 1         | 27     | 12.51 | 30            | 88.9      | 1           | 1000        | 1       |
| Ge         | 74  | 1         | 38006  | 0.45  | 38549         | 98.6      | 60          | 120         |         |
| Sc         | 45  | 1         | 254625 | 0.10  | 263470        | 96.6      | 60          | 120         |         |
| Li         | 6   | 1         | 11760  | 0.33  | 12234         | 96.1      | 60          | 120         |         |

Sample Name

460-31559-a-6-a@20

Data File Name

048SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T23:01:05-04:00

Type VialNumber

Sample 2303

Dilution

2303 20

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 76.07      | 1521.43            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.11       | 2.14               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 61.69      | 1233.76            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.14       | 2.89               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 3.73       | 74.51              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.19       | 3.86               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.07       | 1.34               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.49       | 9.84               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 11.07      | 221.30             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 1.14       | 22.87              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 7.49       | 149.85             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 138.32     | 2766.39            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 19.39      | 387.81             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 13.13      | 262.63             | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 6.56       | 131.28             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 14274.02   | 285480.43          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 283.93     | 5678.62            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 375.84     | 7516.75            | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 27.12      | 542.34             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 442.26     | 8845.28            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2321.69    | 46433.73           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 989.34     | 19786.79           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 7852.33    | 157046.64          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3039.94    | 60798.78           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 604.52     | 12090.30           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 2.71       | 54.21              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.65       | 13.08              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 523367 | 0.34  | 513001        | 102.0     | 60          | 120         |         |
| Tb      | 159 | 1         | 699201 | 0.43  | 679167        | 102.9     | 60          | 120         |         |
| In      | 115 | 1         | 241648 | 0.48  | 247939        | 97.5      | 60          | 120         |         |
| Kr      | 83  | 1         | 57     | 41.18 | 30            | 188.9     | 1           | 1000        |         |
| Ge      | 74  | 1         | 38146  | 0.19  | 38549         | 99.0      | 60          | 120         |         |
| Sc      | 45  | 1         | 262809 | 1.04  | 263470        | 99.7      | 60          | 120         |         |
| Li      | 6   | 1         | 12023  | 1.15  | 12234         | 98.3      | 60          | 120         |         |

#### Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name Data File Name

CCV 1187191 0496CCV.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T23:06:03-04:00

**Acq Date Time** 

6-CCV

Type VialNumber

1301

Dilution Comment

1 MP

Operator ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

OC Analyte Table

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|---------|
| Be      | 9   | 6    | 1         | 50.09      | 1.84 | ug/l  | 3918.86     | 0.96    | 50        | 100.2 | 90     | 110     |         |
| В       | 11  | 6    | 1         | 95.20      | 1.56 | ug/l  | 2228.01     | 1.56    | 100       | 95.2  | 90     | 110     |         |
| Na      | 23  | 45   | 1         | 4898.79    | 0.66 | ug/l  | 3443772.00  | 0.26    | 5000      | 98.0  | 90     | 110     |         |
| Mg      | 24  | 45   | 1         | 4948.60    | 0.61 | ug/l  | 1725484.54  | 0.57    | 5000      | 99.0  | 90     | 110     |         |
| Al      | 27  | 45   | 1         | 490.07     | 0.95 | ug/l  | 84109.03    | 0.57    | 500       | 98.0  | 90     | 110     |         |
| K       | 39  | 45   | 1         | 4892.85    | 1.06 | ug/l  | 1740814.61  | 0.63    | 5000      | 97.9  | 90     | 110     |         |
| Ca      | 44  | 6    | 1         | 4934.81    | 1.97 | ug/l  | 85372.26    | 0.29    | 5000      | 98.7  | 90     | 110     |         |
| 'n      | 47  | 45   | 1         | 51.52      | 2.21 | ug/l  | 5256.58     | 2.58    | 50        | 103.0 | 90     | 110     | 1       |
| ٧       | 51  | 45   | 1         | 50.30      | 0.49 | ug/l  | 138652.36   | 0.14    | 50        | 100.6 | 90     | 110     |         |
| Cr      | 52  | 45   | 1         | 50.55      | 0.81 | ug/l  | 165103.07   | 0.80    | 50        | 101.1 | 90     | 110     |         |
| Mn      | 55  | 45   | 1         | 502.20     | 1.05 | ug/l  | 1013959.83  | 0.85    | 500       | 100.4 | 90     | 110     |         |
| Fe      | 56  | 45   | 1         | 5033.31    | 0.66 | ug/l  | 12515578.84 | 0.31    | 5000      | 100.7 | 90     | 110     |         |
| Co      | 59  | 45   | 1         | 51.22      | 0.58 | ug/i  | 238397.54   | 0.21    | 50        | 102.4 | 90     | 110     |         |
| Ni      | 60  | 45   | 1         | 49.15      | 0.35 | ug/l  | 63462.04    | 0.33    | 50        | 98.3  | 90     | 110     |         |
| Cu      | 63  | 45   | 1         | 52.00      | 0.71 | ug/l  | 173396.17   | 0.46    | 50        | 104.0 | 90     | 110     |         |
| Zn      | 66  | 45   | 1         | 50.65      | 0.67 | ug/l  | 28165.77    | 0.55    | 50        | 101.3 | 90     | 110     |         |
| As      | 75  | 74   | 1         | 50.49      | 2.10 | ug/l  | 22505.81    | 1.91    | 50        | 101.0 | 90     | 110     |         |
| Se      | 78  | 74   | 1         | 50.67      | 1.16 | ug/l  | 1556.77     | 1.50    | 50        | 101.3 | 90     | 110     |         |
| Sr      | 88  | 115  | 1         | 49.57      | 0.34 | ug/l  | 128022.27   | 0.71    | 50        | 99.1  | 90     | 110     |         |
| Мо      | 95  | 115  | 1         | 49.40      | 0.27 | ug/l  | 81645.80    | 0.43    | 50        | 98.8  | 90     | 110     |         |
| Ag      | 107 | 115  | 1         | 50.26      | 0.06 | ug/l  | 250445.94   | 0.54    | 50        | 100.5 | 90     | 110     | i       |
| Cd      | 111 | 115  | 1         | 50.06      | 0.81 | ug/l  | 38304.31    | 1.03    | 50        | 100.1 | 90     | 110     |         |
| Sn      | 118 | 115  | 1         | 49.64      | 0.73 | ug/l  | 88475.19    | 1.21    | 50        | 99.3  | 90     | 110     | i –     |
| Sb      | 121 | 115  | 1         | 50.10      | 0.73 | ug/l  | 123009.07   | 1.21    | 50        | 100.2 | 90     | 110     | Ť –     |
| Ba      | 137 | 159  | 1         | 49.71      | 0.70 | ug/l  | 45298.09    | 1.20    | 50        | 99.4  | 90     | 110     | 1       |
| TI      | 205 | 209  | 1         | 9.94       | 0.38 | ug/l  | 118593.37   | 1.15    | 10        | 99.4  | 90     | 110     | Ì       |
| Pb      | 208 | 209  | 1         | 50.58      | 0.32 | ug/l  | 794776.04   | 0.82    | 50        | 101.2 | 90     | 110     | i -     |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|------|--------|---------|---------|
| Li      | 6   | 1         | 11651  | 1.76  | 12234   | 95.2 | 60     | 120     |         |
| Sc      | 45  | 1         | 254258 | 0.38  | 263470  | 96.5 | 60     | 120     |         |
| Ge      | 74  | 1         | 37677  | 0.57  | 38549   | 97.7 | 60     | 120     |         |
| Kr      | 83  | 1         | 14     | 58.06 | 30      | 48.1 | 1      | 1000    |         |
| In      | 115 | 1         | 237201 | 0.48  | 247939  | 95.7 | 60     | 120     |         |
| ТЪ      | 159 | 1         | 667244 | 0.73  | 679167  | 98.2 | 60     | 120     |         |
| Bi      | 209 | 1         | 506040 | 0.81  | 513001  | 98.6 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

## Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0506CCB.D

DataPath

**Acq Date Time** 

2011-10-07T23:10:59-04:00

Type VialNumber

6-CCB 1302

Dilution

13

Comment

MP

Operator ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.01      | -461.32 | ug/l  | 2.22      | 114.49  | 0.2     |         |
| В       | 11  | 6    | 1         | 0.77       | 57.03   | ug/l  | 25.55     | 41.94   | 20      |         |
| Na      | 23  | 45   | 1         | -26.61     | -4.44   | ug/l  | 168036.17 | 0.66    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.34       | 18.27   | ug/l  | 314.45    | 6.84    | 50      |         |
| Al      | 27  | 45   | 1         | 0.22       | 18.70   | ug/l  | 676.69    | 0.85    | 10      |         |
| K       | 39  | 45   | 1         | -28.80     | -5.11   | ug/l  | 84783.10  | 0.39    | 50      |         |
| Ca      | 44  | 6    | 1         | -0.49      | -84.18  | ug/i  | 222.23    | 4.13    | 50      |         |
| ŢĪ      | 47  | 45   | 1         | -0.05      | -35.22  | ug/l  | 1.11      | 173.21  | 1       |         |
| ٧       | 51  | 45   | 1         | -0.02      | -54.97  | ug/l  | 412.24    | 8.87    | 1       |         |
| Cr      | 52  | 45   | 1         | 0.01       | 171.92  | ug/l  | 1925.74   | 2.76    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.05       | 32.85   | ug/l  | 150.01    | 23.20   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.55       | 10.69   | ug/l  | 5108.13   | 3.15    | 30      |         |
| Со      | 59  | 45   | 1         | 0.01       | 9.44    | ug/l  | 42.22     | 9.12    | 1       |         |
| Ni      | 60  | 45   | 1         | -0.07      | -8.65   | ug/l  | 108.89    | 7.71    | 1       |         |
| Cu      | 63  | 45   | 1         | -0.08      | -41.57  | ug/l  | 1882.40   | 6.25    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.09       | 60.87   | ug/l  | 311.12    | 9.60    | 4       |         |
| As      | 75  | 74   | 1         | -0.03      | -124.08 | ug/l  | 27.78     | 51.73   | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.32      | -116.03 | ug/l  | 37.78     | 30.03   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.00       | 56.88   | ug/l  | 24.44     | 31.49   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.01       | 63.47   | ug/l  | 84.45     | 15.95   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 56.48   | ug/l  | 60.00     | 44.45   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 98.83   | ug/l  | 13.33     | 25.01   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.03       | 42.31   | ug/l  | 137.79    | 16.99   | 4       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 120.55  | ug/l  | 101.11    | 24.30   | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.00       | -295.55 | ug/l  | 8.89      | 78.08   | 1       |         |
| П       | 205 | 209  | 1         | 0.01       | 31.80   | ug/l  | 143.34    | 28.29   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.02       | 18.09   | ug/l  | 422.24    | 12.29   | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD    | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|---------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11993  | 1.06    | 12234   | 98.0  | 60     | 120     | 1       |
| Sc      | 45  | 1         | 260267 | 0.21    | 263470  | 98.8  | 60     | 120     |         |
| Ge      | 74  | 1         | 38445  | 0.21    | 38549   | 99.7  | 60     | 120     |         |
| Kr      | 83  | 1         | 13     | #VALUE! | 30      | 44.4  | 1      | 1000    |         |
| In      | 115 | 1         | 248282 | 0.40    | 247939  | 100.1 | 60     | 120     |         |
| ТЪ      | 159 | 1         | 688160 | 0.20    | 679167  | 101.3 | 60     | 120     |         |
| Bi      | 209 | 1         | 526217 | 0.27    | 513001  | 102.6 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

460-31559-a-7-a@20

**Data File Name** 

051SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-07T23:16:04-04:00

Type VialNumber Sample

Dilution

2304 20

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 171.64     | 3432.85            | ug/l  | 3600       |         |
| Π       | 205 | 209  | 1         | 0.09       | 1.79               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 78.62      | 1572.30            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.30       | 6.04               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 21.35      | 427.04             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.41       | 8.12               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.08       | 1.64               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 1.03       | 20.55              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 29.57      | 591.39             | ug/l  | . 3600     |         |
| Se      | 78  | 74   | 1         | 0.94       | 18.89              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 5.32       | 106.47             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 327.36     | 6547.15            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 22.45      | 448.96             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 9.61       | 192.13             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 5.27       | 105.48             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 9950.36    | 199007.23          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 214.98     | 4299.62            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 118.91     | 2378.16            | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 21.91      | 438.25             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 332.79     | 6655.79            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 4109.69    | 82193.82           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 702.10     | 14042.04           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 5351.35    | 107027.02          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1737.37    | 34747.31           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1101.51    | 22030.24           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 3.88       | 77.67              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.33       | 6.60               | ug/l  | 3600       |         |

| <u> </u> | abie |           |        |       |               |           |             |             |         |
|----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element  | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi       | 209  | 1         | 523444 | 0.51  | 513001        | 102.0     | 60          | 120         |         |
| Тb       | 159  | 1         | 689555 | 0.23  | 679167        | 101.5     | 60          | 120         |         |
| In       | 115  | 1         | 241985 | 0.08  | 247939        | 97.6      | 60          | 120         |         |
| Kr       | 83   | 1         | 46     | 27.70 | 30            | 151.9     | 1           | 1000        |         |
| Ge       | 74   | 1         | 38115  | 0.64  | 38549         | 98.9      | 60          | 120         |         |
| Sc       | 45   | 1         | 260878 | 0.34  | 263470        | 99.0      | 60          | 120         |         |
| Li       | 6    | 1         | 12086  | 2.25  | 12234         | 98.8      | 60          | 120         |         |

Sample Name

460-31559-a-8-a@20

Data File Name

052SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T23:21:03-04:00

Acq Date Time Type

Sample

VialNumber

2305

Dilution

20

Comment

MP

Operator

004CALB.D

ISTDRefDataFileName SamplePassFail

ISTD PassFail

Fail Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 187.83     | 3756.51            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.11       | 2.18               | ug/l  | 720        | i       |
| Ba      | 137 | 159  | 1         | 92.66      | 1853.26            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 1.20       | 24.06              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 39.83      | 796.61             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.43       | 8.59               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.16       | 3.13               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 2.30       | 46.01              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 57.27      | 1145.41            | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 1.32       | 26.44              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 9.18       | 183.59             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1163.98    | 23279.65           | ug/l  | 450        | fail    |
| Cu      | 63  | 45   | 1         | 24.38      | 487.57             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 10.12      | 202.40             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 4.49       | 89.81              | ug/I  | 450        |         |
| Fe      | 56  | 45   | 1         | 12590.76   | 251815.25          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 1550.18    | 31003.64           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 14.79      | 295.85             | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 16.08      | 321.69             | ug/l  | 3600       |         |
| 1       | 47  | -45  | 1         | 122.26     | 2445.15            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 6133.43    | 122668.62          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 628.09     | 12561.81           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 4173.96    | 83479.27           | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 766.18     | 15323.69           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1880.08    | 37601.70           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 4.33       | 86.62              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.48       | 9.52               | ug/l  | 3600       |         |

| <u>ốc rain i</u> | able |           |        |       |               |           |             |             |         |
|------------------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element          | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi               | 209  | 1         | 513757 | 0.45  | 513001        | 100.1     | 60          | 120         |         |
| Tb               | 159  | 1         | 672703 | 0.22  | 679167        | 99.0      | 60          | 120         |         |
| In               | 115  | 1         | 237767 | 0.16  | 247939        | 95.9      | 60          | 120         |         |
| Kr               | 83   | 1         | 29     | 33.32 | 30            | 96.3      | 1           | 1000        |         |
| Ge               | 74   | 1         | 37969  | 0.66  | 38549         | 98.5      | 60          | 120         |         |
| Sc               | 45   | 1         | 256162 | 0.16  | 263470        | 97.2      | 60          | 120         |         |
| Li               | 6    | 1         | 11806  | 2.33  | 12234         | 96.5      | 60          | 120         |         |

Sample Name

460-31559-e-9-b@20

Data File Name

053SMPL.D

DataPath Acq Date Time

C:\ICPMH\1\DATA\11J07t00.B

Туре

2011-10-07T23:26:02-04:00 Sample

VialNumber Dilution

2306

Comment

20

Operator

MP

ISTDRefDataFile Name

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag                               |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------------------------------------|
| Pb      | 208 | 209  | 1         | 49.67      | 993.38             | ug/l  | 3600       | <u> </u>                              |
| П       | 205 | 209  | 1         | 0.06       | 1.19               | ug/l  | 720        |                                       |
| Ba      | 137 | 159  | 1         | 43.89      | 877.78             | ug/l  | 3600       |                                       |
| Sb      | 121 | 115  | 1         | 0.12       | 2.49               | ug/l  | 3600       |                                       |
| Sn      | 118 | 115  | 1         | 8.83       | 176.60             | ug/l  | 3600       |                                       |
| Cd      | 111 | 115  | 1         | 0.07       | 1.30               | ug/l  | 1800       |                                       |
| Ag      | 107 | 115  | 1         | 0.05       | 1.01               | ug/l  | 180        |                                       |
| Мо      | 95  | 115  | 1         | 0.59       | 11.71              | ug/l  | 3600       |                                       |
| Sr      | 88  | 115  | 1         | 10.58      | 211.65             | ug/l  | 3600       |                                       |
| Se      | 78  | 74   | 1         | 0.84       | 16.72              | ug/l  | 450        |                                       |
| As      | 75  | 74   | 1         | 2.77       | 55.32              | ug/l  | 1800       |                                       |
| Zn      | 66  | 45   | 1         | 161.81     | 3236.15            | ug/i  | 450        |                                       |
| Cu      | 63  | 45   | 1         | 11.59      | 231.90             | ug/l  | 450        |                                       |
| Ni      | 60  | 45   | 1         | 5.97       | 119.41             | ug/l  | 900        |                                       |
| Со      | 59  | 45   | 1         | 3.55       | 70.92              | ug/l  | 450        |                                       |
| Fe      | 56  | 45   | 1         | 9765.56    | 195311.10          | ug/l  | 180000     |                                       |
| Mn      | 55  | 45   | 1         | 179.02     | 3580.41            | ug/l  | 9000       |                                       |
| Cr      | 52  | 45   | 1         | 56.08      | 1121.55            | ug/l  | 900        |                                       |
| ٧       | 51  | 45   | 1         | 13.10      | 262.04             | ug/l  | 3600       |                                       |
| Ti      | 47  | 45   | 1         | 185.58     | 3711.58            | ug/l  | 3600       |                                       |
| Ca      | 44  | 6    | 1         | 1766.48    | 35329.64           | ug/l  | 90000      | **                                    |
| K       | 39  | 45   | 1         | 454.45     | 9089.01            | ug/l  | 360000     |                                       |
| Al      | 27  | 45   | 1         | 4527.44    | 90548.89           | ug/l  | 36000      |                                       |
| Mg      | 24  | 45   | 1         | 1241.64    | 24832.85           | ug/l  | 180000     | · · · · · · · · · · · · · · · · · · · |
| Na      | 23  | 45   | 1         | 1174.09    | 23481.72           | ug/l  | 360000     |                                       |
| В       | 11  | 6    | 1         | 1.46       | 29.16              | ug/l  | 7200       |                                       |
| Be      | 9   | 6    | 1         | 0.29       | 5.90               | ug/l  | 3600       |                                       |

| Element   | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|-----------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi        | 209 | 1         | 523260 | 0.44  | 513001        | 102.0     | 60          | 120         | <del>                                     </del> |
| Tb        | 159 | 1         | 690570 | 0.23  | 679167        | 101.7     | 60          | 120         |                                                  |
| <u>In</u> | 115 | 1         | 244224 | 0.90  | 247939        | 98.5      | 60          | 120         |                                                  |
| Kr        | 83  | 1         | 38     | 13.48 | 30            | 125.9     | 1           | 1000        |                                                  |
| Ge        | 74  | 1         | 38634  | 0.14  | 38549         | 100.2     | 60          | 120         | 1                                                |
| Sc        | 45  | 1         | 262467 | 0.10  | 263470        | 99.6      | 60          | 120         |                                                  |
| Li        | 6   | 1         | 12062  | 0.95  | 12234         | 98.6      | 60          | 120         |                                                  |

Sample Name

460-31559-b-10-a@50

Data File Name

054SMPL.D

DataPath

 $C:\ \ LOPMH\ 1\ \ DATA\ 11J07t00.B$ 

**Acq Date Time** 

2011-10-07T23:31:02-04:00

Type VialNumber

Sample

Dilution

2307 50

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 55.28      | 2764.08            | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.03       | 1.55               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 28.69      | 1434.53            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.15       | 7.48               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 1.96       | 97.82              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.08       | 3.85               | ug/i  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.05       | 2.27               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.39       | 19.48              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 7.89       | 394.49             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.53       | 26.61              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 2.50       | 124.77             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 92.79      | 4639.39            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 12.53      | 626.65             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 3.98       | 199.14             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 2.61       | 130.49             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 6910.44    | 345521.92          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 111.07     | 5553.36            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 412.14     | 20607.07           | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 9.17       | 458.50             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 95.31      | 4765.46            | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1850.49    | 92524.53           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 206.16     | 10308.00           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 2138.37    | 106918.61          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 609.90     | 30494.81           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 86.43      | 4321.62            | ug/I  | 360000     |         |
| В       | 11  | 6    | 1         | 0.75       | 37.27              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.06       | 3.17               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 519756 | 0.73  | 513001        | 101.3     | 60          | 120         | 1                                                |
| Tb      | 159 | 1         | 672834 | 0.42  | 679167        | 99.1      | 60          | 120         | <del>                                     </del> |
| In      | 115 | 1         | 239129 | 0.39  | 247939        | 96.4      | 60          | 120         |                                                  |
| , Kr    | 83  | 1         | 30     | 11.10 | 30            | 100.0     | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 37553  | 0.81  | 38549         | 97.4      | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 252803 | 0.44  | 263470        | 96.0      | 60          | 120         |                                                  |
| Li      | 6   | 1         | 11766  | 1.31  | 12234         | 96.2      | 60          | 120         | 1                                                |

Sample Name

460-31559-b-11-a@20

**Data File Name** 

055SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-07T23:36:04-04:00

Type

Sample

VialNumber

2308 50

Dilution

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 93.28      | 4664.23            | ug/l  | 3600       | -       |
| П       | 205 | 209  | 1         | 0.08       | 4.03               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 108.58     | 5429.12            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.21       | 10.48              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 6.71       | 335.52             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.15       | 7.64               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.11       | 5.64               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.59       | 29.74              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 16.85      | 842.27             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.87       | 43.65              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 6.01       | 300.47             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 205.60     | 10280.01           | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 21.22      | 1060.91            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 7.71       | 385.51             | ug/l  | 900        | -       |
| Co      | 59  | 45   | 1         | 4.34       | 217.01             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 9620.89    | 481044.50          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 225.87     | 11293.70           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 44.71      | 2235.28            | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 16.64      | 831.84             | ug/l  | 3600       |         |
| Tì      | 47  | 45   | 1         | 276.35     | 13817.27           | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2838.83    | 141941.43          | ug/I  | 90000      |         |
| Κ       | 39  | 45   | 1         | 876.21     | 43810.32           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 4903.17    | 245158.65          | ug/I  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1883.38    | 94168.77           | ug/I  | 180000     |         |
| Na      | 23  | 45   | 1         | 561.69     | 28084.60           | ug/l  | 360000     | **      |
| В       | 11  | 6    | 1         | 2.61       | 130.29             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.42       | 20.85              | ug/l  | 3600       |         |

QC ISTD Table

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 520700 | 0.99  | 513001        | 101.5     | 60          | 120         | 1       |
| Tb      | 159 | 1         | 686410 | 0.48  | 679167        | 101.1     | 60          | 120         |         |
| In      | 115 | 1         | 242036 | 0.83  | 247939        | 97.6      | 60          | 120         |         |
| Kr      | 83  | 1         | 46     | 27.70 | 30            | 151.9     | 1           | 1000        |         |
| Ge      | 74  | 1         | 38030  | 1.08  | 38549         | 98.7      | 60          | 120         |         |
| Sc      | 45  | 1         | 259917 | 0.69  | 263470        | 98.7      | 60          | 120         |         |
| Li      | 6   | 1         | 11885  | 2.04  | 12234         | 97.1      | 60          | 120         |         |

Printed at: 11:37 PM on:10/7/2011 10/21/2011

Sample Name

460-31559-a-12-a@20

Data File Name

056SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time

2011-10-07T23:41:06-04:00

Type VialNumber Dilution Sample 2309

Comment Operator 50 MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 216.54     | 10827.24           | ug/l  | 3600       |         |
| Π       | 205 | 209  | 1         | 0.11       | 5.67               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 329.30     | 16464.83           | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.29       | 14.70              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 11.94      | 596.87             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.47       | 23.31              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.10       | 5.05               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.60       | 29.80              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 16.21      | 810.42             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 1.11       | 55.27              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 5.77       | 288.27             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 254.41     | 12720.75           | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 32.99      | 1649.70            | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 15.68      | 783.80             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 5.72       | 285.98             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 13293.33   | 664666.55          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 201.66     | 10083.16           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 839.57     | 41978.35           | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 56.86      | 2843.15            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 375.88     | 18794.09           | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2029.25    | 101462.67          | ug/l  | 90000      |         |
| К       | 39  | 45   | 1         | 689.80     | 34490.09           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 7289.45    | 364472.31          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2382.96    | 119147.83          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 136.60     | 6830.12            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 2.67       | 133.41             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.51       | 25.52              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 516771 | 0.12  | 513001        | 100.7     | 60          | 120         |         |
| Tb      | 159 | 1         | 685325 | 0.24  | 679167        | 100.9     | 60          | 120         |         |
| In      | 115 | 1         | 238305 | 0.52  | 247939        | 96.1      | 60          | 120         |         |
| Kr      | 83  | 1         | 33     | 20.00 | 30            | 111.1     | 1           | 1000        |         |
| Ge      | 74  | 1         | 37640  | 0.53  | 38549         | 97.6      | 60          | 120         |         |
| Sc      | 45  | 1         | 256661 | 0.23  | 263470        | 97.4      | 60          | 120         |         |
| Li      | 6   | 1         | 12001  | 0.67  | 12234         | 98.1      | 60          | 120         |         |

Sample Name

460-31559-a-13-a@20

Data File Name

057SMPL.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B

Type

2011-10-07T23:46:05-04:00 Sample

VialNumber Dilution

2310 50

Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail **ISTD PassFail** 

Pass Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 54.48      | 2724.12            | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.07       | 3.73               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 67.99      | 3399.63            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.17       | 8.66               | uġ/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 2.18       | 109.09             | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.16       | 7.79               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.05       | 2.73               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 1.22       | 60.76              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 7.67       | 383.56             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.94       | 47.18              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 3.59       | 179.46             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 125.92     | 6296.24            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 15.58      | 778.98             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 8.14       | 407.17             | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 4.42       | 220.97             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 11231.41   | 561570.56          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 153.82     | 7691.07            | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 416.20     | 20809.88           | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 20.55      | 1027.52            | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 227.52     | 11376.15           | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1192.45    | 59622.63           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 662.95     | 33147.32           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 7154.92    | 357745.96          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1550.61    | 77530.46           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 135.31     | 6765.63            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 2.61       | 130.54             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.30       | 14.78              | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 522989 | 0.44  | 513001        | 101.9     | 60          | 120         |         |
| Tb      | 159 | 1         | 691418 | 0.15  | 679167        | 101.8     | 60          | 120         |         |
| In      | 115 | 1         | 241823 | 0.50  | 247939        | 97.5      | 60          | 120         |         |
| Kr      | 83  | 1         | 51     | 16.42 | 30            | 170.4     | 1           | 1000        |         |
| Ge      | 74  | 1         | 37814  | 0.36  | 38549         | 98.1      | 60          | 120         |         |
| Sc      | 45  | 1         | 260859 | 0.57  | 263470        | 99.0      | 60          | 120         |         |
| Li      | 6   | 1         | 12048  | 0.83  | 12234         | 98.5      | 60          | 120         |         |



Printed at: 11:47 PM on:10/7/2011 10/21/2011 Page 1 of 1 Page 213 of 332

Sample Name

460-31559-a-14-a@20

Data File Name

058SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time

2011-10-07T23:51:06-04:00

Type VialNumber Sample 2311

Dilution

50

Comment

ΜP

Operator

\*11

ISTDRefDataFileName

004CALB.D

SamplePassFail ISTD PassFail Pass Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 15.33      | 766.49             | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.06       | 3.19               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 24.18      | 1208.83            | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.06       | 2.91               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 1.27       | 63.64              | ug/l  | 3600       | -       |
| Cd      | 111 | 115  | 1         | 0.05       | 2.70               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 0.57               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.28       | 14.12              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 3.46       | 173.06             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.53       | 26.59              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 2.27       | 113.32             | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 41.05      | 2052.29            | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 6.92       | 345.94             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 6.59       | 329.64             | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 4.13       | 206.70             | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 9734.23    | 486711.53          | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 265.15     | 13257.73           | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 16.65      | 832.31             | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 16.67      | 833.60             | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 369.80     | 18489.89           | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 864.32     | 43215.79           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 585.62     | 29281.16           | ug/l  | 360000     | ·       |
| Al      | 27  | 45   | 1         | 4970.25    | 248512.75          | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2135.94    | 106797.21          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 310.16     | 15508.25           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 1.97       | 98.63              | ug/I  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.46       | 22,98              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag      |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------|
| Bi      | 209 | 1         | 567778 | 9.33  | 513001        | 110.7     | 60          | 120         | +            |
| Tb      | 159 | 1         | 758322 | 10.20 | 679167        | 111.7     | 60          | 120         | +            |
| In      | 115 | 1         | 267007 | 10.42 | 247939        | 107.7     | 60          | 120         | <b>†</b>     |
| Kr      | 83  | 1         | 30     | 40.05 | 30            | 100.0     | 1           | 1000        | <del> </del> |
| Ge      | 74  | 1         | 41988  | 8.86  | 38549         | 108.9     | 60          | 120         | <del> </del> |
| Sc      | 45  | 1         | 290056 | 10.41 | 263470        | 110.1     | 60          | 120         | +            |
| Li      | 6   | 1         | 13118  | 7.85  | 12234         | 107.2     | 60          | 120         |              |

Sample Name

CCV 1187191

Data File Name

0596CCV.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B

Type

2011-10-07T23:56:03-04:00 6-CCV

VialNumber

Dilution

1301

Comment

Operator ISTDRefDataFileName MP 004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

OC Analyte Table

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | OC High | QC Flag      |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|--------------|
| Be      | 9   | 6    | 1         | 49,33      | 2.00 | ug/I  | 3909.42     | 3,45    | 50        | 98.7  | 90     | 110     | QC Flag      |
| В       | 11  | 6    | 1         | 97,77      | 2.74 | ug/l  | 2318.02     | 5.19    | 100       | 97.8  | 90     | 110     | <del> </del> |
| Na      | 23  | 45   | 1         | 4857.33    | 0.29 | ug/l  | 3454700.44  | 0.51    | 5000      | 97.1  | 90     | 110     | +            |
| Mg      | 24  | 45   | 1         | 4879.93    | 0.59 | ug/l  | 1720745.50  | 0.98    | 5000      | 97.6  | 90     | 110     | -            |
| Al      | 27  | 45   | 1         | 487.62     | 0.94 | ug/l  | 84637.57    | 1.18    | 500       | 97.5  | 90     | 110     |              |
| К       | 39  | 45   | 1         | 4892.02    | 1.32 | ug/I  | 1760228.46  | 1.57    | 5000      | 97.8  | 90     | 110     |              |
| Ca      | 44  | 6    | 1         | 4943.90    | 2.50 | ug/l  | 86594.28    | 0.41    | 5000      | 98.9  | 90     | 110     | -            |
| Ti      | 47  | 45   | 1         | 48.39      | 2.40 | ug/l  | 4993.15     | 2.11    | 50        | 96.8  | 90     | 110     | -            |
| V       | 51  | 45   | 1         | 50.20      | 0.69 | ug/l  | 139932.32   | 0.29    | 50        | 100.4 | 90     | 110     |              |
| Cr      | 52  | 45   | 1         | 50.66      | 0.85 | ug/l  | 167337.73   | 0.54    | 50        | 101.3 | 90     | 110     |              |
| Mn      | 55  | 45   | 1         | 500.99     | 1.98 | ug/l  | 1022876.05  | 1.61    | 500       | 100.2 | 90     | 110     |              |
| Fe      | 56  | 45   | 1         | 5031.24    | 0.39 | ug/l  | 12651410.92 | 0.10    | 5000      | 100.6 | 90     | 110     |              |
| Co      | 59  | 45   | 1         | 50.92      | 0.50 | ug/l  | 239677.03   | 0.27    | 50        | 101.8 | 90     | 110     | <b></b>      |
| Ni      | 60  | 45   | 1         | 49.21      | 0.80 | ug/l  | 64244.07    | 0.44    | 50        | 98.4  | 90     | 110     | <u> </u>     |
| Cu      | 63  | 45   | 1         | 51.23      | 0.36 | ug/I  | 172782.93   | 0.04    | 50        | 102.5 | 90     | 110     | <b>†</b>     |
| Zn      | 66  | 45   | 1         | 49.61      | 1.18 | ug/l  | 27899.78    | 1.32    | 50        | 99.2  | 90     | 110     |              |
| As      | 75  | 74   | 1         | 49.49      | 1.35 | uq/l  | 22594.28    | 1.80    | 50        | 99.0  | 90     | 110     |              |
| Se      | 78  | 74   | 1         | 49.38      | 3.11 | ug/l  | 1554.55     | 2.18    | 50        | 98.8  | 90     | 110 ·   |              |
| Sr      | 88  | 115  | 1         | 49.82      | 1.04 | ug/l  | 130212.90   | 0.16    | 50        | 99.6  | 90     | 110     | <b>!</b>     |
| Мо      | 95  | 115  | 1         | 48.92      | 1.54 | ug/l  | 81810.98    | 0.65    | 50        | 97.8  | 90     | 110     |              |
| Ag      | 107 | 115  | 1         | 50.61      | 0.46 | ug/l  | 255211.86   | 0.99    | 50        | 101.2 | 90     | 110     |              |
| Cd      | 111 | 115  | 1         | 49.64      | 1.19 | ug/l  | 38440.20    | 1.11    | 50        | 99.3  | 90     | 110     | <b>†</b>     |
| Sn      | 118 | 115  | 1         | 49.85      | 0.87 | ug/l  | 89904.23    | 0.38    | 50        | 99.7  | 90     | 110     |              |
| Sb      | 121 | 115  | 1         | 50.02      | 0.33 | ug/l  | 124257.23   | 1.23    | 50        | 100.0 | 90     | 110     | <b>—</b>     |
| Ba      | 137 | 159  | 1         | 48.77      | 0.76 | ug/l  | 45361.70    | 0.92    | 50        | 97.5  | 90     | 110     |              |
| TI      | 205 | 209  | 1         | 9.94       | 0.56 | ug/l  | 120405.92   | 0.77    | 10        | 99.4  | 90     | 110     |              |
| Pb      | 208 | 209  | 1         | 50.26      | 0.84 | ug/l  | 801698.60   | 0.59    | 50        | 100.5 | 90     | 110     | <b></b>      |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|--------------------------------------------------|
| Ü       | 6   | 1         | 11798  | 2.49  | 12234   | 96.4  | 60     | 120     | <del>                                     </del> |
| Sc      | 45  | 1         | 257122 | 0.40  | 263470  | 97.6  | 60     | 120     | 1                                                |
| Ge      | 74  | 1         | 38584  | 1.00  | 38549   | 100.1 | 60     | 120     |                                                  |
| Kr      | 83  | 1         | 14     | 26.66 | 30      | 48.2  | 1      | 1000    |                                                  |
| In      | 115 | 1         | 240029 | 0.93  | 247939  | 96.8  | 60     | 120     |                                                  |
| Tb      | 159 | 1         | 681134 | 0.49  | 679167  | 100.3 | 60     | 120     |                                                  |
| Bi      | 209 | 1         | 513670 | 0.25  | 513001  | 100.1 | 60     | 120     |                                                  |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium u |

## Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

Data File Name

0606CCB.D

DataPath

**Acq Date Time** 

2011-10-08T00:00:59-04:00

Туре

6-CCB

VialNumber

1302

Dilution

1

Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.02      | -57.68  | ug/l  | 1.11      | 86.60   | 0.2     |         |
| В       | 11  | 6    | 1         | 0.60       | 35.78   | ug/l  | 21.11     | 24.12   | 20      |         |
| Na      | 23  | 45   | 1         | -25.88     | -10.67  | ug/l  | 165385.53 | 0.84    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.52       | 10.12   | ug/l  | 370.56    | 5.21    | 50      |         |
| Al      | 27  | 45   | 1         | 0.43       | 36.16   | ug/l  | 701.14    | 4.10    | 10      |         |
| K       | 39  | 45   | 1         | -23.43     | -5.76   | ug/l  | 85018.73  | 0.34    | 50      |         |
| Ca      | 44  | 6    | 1         | -0.33      | -384.82 | ug/i  | 222.78    | 11.25   | 50      |         |
| Ti      | 47  | 45   | 1         | 0.00       | 1544.38 | ug/l  | 6.67      | 50.03   | 1       |         |
| V       | 51  | 45   | 1         | -0.03      | -50.96  | ug/l  | 381.13    | 11.87   | 1       |         |
| Cr      | 52  | 45   | 1         | 0.00       | 1567.77 | ug/l  | 1867.95   | 5.57    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.07       | 33.87   | ug/l  | 180.01    | 25.46   | 2       |         |
| Fe      | 56  | 45   | 1         | 0.75       | 2.17    | ug/l  | 5506.03   | 1.08    | 30      |         |
| Co      | 59  | 45   | 1         | 0.01       | 26.95   | ug/l  | 26.67     | 24.99   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.08      | -14.95  | ug/l  | 96.67     | 15.80   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.12      | -27.63  | ug/l  | 1713.49   | 6.63    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.04       | 47.38   | ug/l  | 280.01    | 4.29    | 4       |         |
| As      | 75  | 74   | 1         | -0.03      | -29.37  | ug/l  | 27.22     | 12.75   | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.08      | -208.77 | ug/l  | 44.44     | 12.06   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.01       | 26.13   | ug/l  | 33.33     | 17.32   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.01       | 228.91  | ug/l  | 71.11     | 30.50   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 24.57   | ug/l  | 70.00     | 20.75   | 1       | 1       |
| Cd      | 111 | 115  | 1         | 0.01       | 161.78  | ug/l  | 20.00     | 83.35   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.03       | 12.10   | ug/l  | 127.78    | 3.98    | 4.      |         |
| Sb      | 121 | 115  | 1         | 0.00       | 129.63  | ug/l  | 90.00     | 16.14   | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.02       | 13.39   | ug/l  | 25.56     | 7.55    | 1       |         |
| TI      | 205 | 209  | 1         | 0.01       | 4.59    | ug/l  | 118.89    | 4.28    | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.02       | 13.60   | ug/l  | 440.02    | 9.22    | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|------|--------|---------|---------|
| Li      | 6   | 1         | 11868  | 1.18  | 12234   | 97.0 | 60     | 120     |         |
| Sc      | 45  | 1         | 255416 | 0.35  | 263470  | 96.9 | 60     | 120     |         |
| Ge      | 74  | 1         | 37977  | 0.82  | 38549   | 98.5 | 60     | 120     |         |
| Kr      | 83  | 1         | 22     | 45.83 | 30      | 74.1 | 1      | 1000    |         |
| In      | 115 | 1         | 243648 | 0.95  | 247939  | 98.3 | 60     | 120     |         |
| Tb      | 159 | 1         | 671487 | 0.20  | 679167  | 98.9 | 60     | 120     |         |
| Bi      | 209 | 1         | 511904 | 0.50  | 513001  | 99.8 | 60     | 120     | "-      |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

460-31632-f-1-b@5

**Data File Name** 

061SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T00:06:05-04:00

Type VialNumber Sample 2312

Dilution

231 5

Comment

MΡ

Operator ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

QC Analyte Table

| Element    | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|------------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb         | 208 | 209  | 1         | 0.22       | 1.12               | ug/l  | 3600       |         |
| π          | 205 | 209  | 1         | 0.02       | 0.10               | ug/l  | 720        |         |
| Ba         | 137 | 159  | 1         | 4.47       | 22.34              | ug/l  | 3600       |         |
| Sb         | 121 | 115  | 1         | 0.07       | 0.37               | ug/l  | 3600       |         |
| Sn         | 118 | 115  | 1         | 0.17       | 0.87               | ug/l  | 3600       |         |
| Cd         | 111 | 115  | 1         | 0.04       | 0.18               | ug/l  | 1800       |         |
| <b>A</b> g | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо         | 95  | 115  | 1         | 0.18       | 0.91               | ug/l  | 3600       |         |
| Sr         | 88  | 115  | 1         | 3.36       | 16.82              | ug/l  | 3600       |         |
| Se         | 78  | 74   | 1         | -0.15      | -0.74              | ug/l  | 450        |         |
| As         | 75  | 74   | 1         | 0.23       | 1.14               | ug/l  | 1800       |         |
| Zn         | 66  | 45   | 1         | 13.30      | 66.50              | ug/l  | 450        |         |
| Cu         | 63  | 45   | 1         | 1.15       | 5.75               | ug/l  | 450        |         |
| Ni         | 60  | 45   | 1         | 1.79       | 8.94               | ug/l  | 900        |         |
| Co         | 59  | 45   | 1         | 0.22       | 1.08               | ug/l  | 450        |         |
| Fe         | 56  | 45   | 1         | 386.58     | 1932.89            | ug/l  | 180000     |         |
| Mn         | 55  | 45   | 1         | 6.64       | 33.19              | ug/l  | 9000       |         |
| Cr         | 52  | 45   | 1         | 1.43       | 7.17               | ug/l  | 900        |         |
| V          | 51  | 45   | 1         | 0.54       | 2.68               | ug/l  | 3600       |         |
| Tì         | 47  | 45   | 1         | 5.10       | 25.48              | ug/l  | 3600       |         |
| Ca         | 44  | 6    | 1         | 1142.67    | 5713.33            | ug/l  | 90000      |         |
| K          | 39  | 45   | 1         | 1531.56    | 7657.79            | ug/l  | 360000     |         |
| Al         | 27  | 45   | 1         | 240.92     | 1204.59            | ug/l  | 36000      |         |
| Mg         | 24  | 45   | 1         | 272.76     | 1363.78            | ug/l  | 180000     |         |
| Na         | 23  | 45   | 1         | 1628.43    | 8142.16            | ug/l  | 360000     |         |
| В          | 11  | 6    | 1         | 12.95      | 64.73              | ug/l  | 7200       |         |
| Be         | 9   | 6    | 1         | -0.03      | -0.14              | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 524874 | 0.68  | 513001        | 102.3     | 60          | 120         |         |
| Tb      | 159 | 1         | 683251 | 0.84  | 679167        | 100.6     | 60          | 120         |         |
| In      | 115 | 1         | 245316 | 0.54  | 247939        | 98.9      | 60          | 120         |         |
| Kr      | 83  | 1         | 17     | 87.16 | 30            | 55.6      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38728  | 0.45  | 38549         | 100.5     | 60          | 120         |         |
| Sc      | 45  | 1         | 257436 | 0.39  | 263470        | 97.7      | 60          | 120         |         |
| Li      | 6   | 1         | 12154  | 1.47  | 12234         | 99.3      | 60          | 120         | 1.      |



Printed at: 12:07 AM on:10/8/2011 10/21/2011

Sample Name

460-31646-d-2-a@5

Data File Name

062SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T00:11:06-04:00

Type VialNumber Sample

Dilution

2401 5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.06               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 0.12               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.04       | 0.18               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.04               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.01       | 0.05               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.48      | -2.41              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.01       | 0.04               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.03       | 5.13               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.05       | 0.27               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.01       | 0.06               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.00       | 0.01               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 2.04       | 10.19              | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.03       | 0.16               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.07       | 0.34               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.08       | 0.39               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.03      | -0.15              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1.54       | 7.72               | ug/l  | 90000      |         |
| К       | 39  | 45   | 1         | -24.47     | -122.37            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 0.81       | 4.03               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 0.09       | 0.44               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | -21.25     | -106.26            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 0.17       | 0.86               | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.02      | -0.11              | ug/l  | 3600       |         |

| <u>זר זפוה ו</u> | able |           |        |       |               |           |             |             |         |
|------------------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element          | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi               | 209  | 1         | 516537 | 0.94  | 513001        | 100.7     | 60          | 120         |         |
| Тb               | 159  | 1         | 673290 | 1.05  | 679167        | 99.1      | 60          | 120         |         |
| In               | 115  | 1         | 241704 | 0.30  | 247939        | 97.5      | 60          | 120         |         |
| Kr               | 83   | 1         | 23     | 57.15 | 30            | 77.8      | 1           | 1000        |         |
| Ge               | 74   | 1         | 37661  | 0.17  | 38549         | 97.7      | 60          | 120         |         |
| Sc               | 45   | 1         | 251945 | 0.86  | 263470        | 95.6      | 60          | 120         |         |
| Li               | 6    | 1         | 11913  | 2.21  | 12234         | 97.4      | 60          | 120         |         |

Sample Name

460-31646-d-3-a@5

Data File Name

063SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T00:16:10-04:00

Type VialNumber Sample 2402

Dilution

5

Comment Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.02       | 0.08               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 10.01      | 50.04              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.04       | 0.18               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.06       | 0.32               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.01       | 0.05               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 2.61       | 13.04              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.19      | -0.94              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.07       | 0.33               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 3.68       | 18.39              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | -0.02      | -0.08              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.18       | 0.92               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.55       | 2.74               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 633.33     | 3166.65            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 6.05       | 30.24              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.07       | 0.37               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.10       | 0.49               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.01       | 0.06               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 529.61     | 2648.06            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 618.41     | 3092.07            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 27.39      | 136.93             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 93.92      | 469.60             | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1050.92    | 5254.61            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 2.66       | 13.28              | ug/l  | 7200       |         |
| Be      | . 9 | 6    | 1         | -0.01      | -0.04              | ug/l  | 3600       |         |

**QC ISTD Table** 

| ו עוכז אל | able |           |        |       |               |           |             |             |         |
|-----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element   | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi        | 209  | 1         | 526450 | 0.94  | 513001        | 102.6     | 60          | 120         |         |
| Tb        | 159  | 1         | 687088 | 0.36  | 679167        | 101.2     | 60          | 120         |         |
| In        | 115  | 1         | 246631 | 0.41  | 247939        | 99.5      | 60          | 120         |         |
| Kr        | 83   | 1         | 28     | 18.33 | 30            | 92.6      | 1           | 1000        |         |
| Ge        | 74   | 1         | 38779  | 0.77  | 38549         | 100.6     | 60          | 120         |         |
| Sc        | 45   | 1         | 257591 | 1.12  | 263470        | 97.8      | 60          | 120         |         |
| Li        | 6    | 1         | 12050  | 1.48  | 12234         | 98.5      | 60          | 120         |         |

Printed at: 12:17 AM on:10/8/2011 10/21/2011

Sample Name

460-31646-d-5-a@5

Data File Name

064SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time Type

2011-10-08T00:21:12-04:00

VialNumber

Sample 2403

Dilution

5

Comment Operator

MΡ

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.32       | 1.61               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 3.70       | 18.52              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.14       | 0.69               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.17       | 0.83               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | -0.01              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.02               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 2.63       | 13.16              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 24.54      | 122.70             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.10       | 0.51               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.42       | 2.09               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 3.20       | 15.98              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.26       | 1.32               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.70       | 3.50               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.13       | 0.65               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 344.90     | 1724.52            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 16.50      | 82.49              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.42       | 2.09               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.65       | 3.23               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 3.07       | 15.37              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1426.60    | 7133.02            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 950.09     | 4750.43            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 456.59     | 2282.94            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 353.68     | 1768.39            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 14780.19   | 73900.97           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 23.97      | 119.86             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.00       | 0.00               | ug/l  | 3600       |         |

**OC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 515084 | 0.48  | 513001        | 100.4     | 60          | 120         |         |
| Tb      | 159 | 1         | 677105 | 0.77  | 679167        | 99.7      | 60          | 120         |         |
| In      | 115 | 1         | 242662 | 0.45  | 247939        | 97.9      | 60          | 120         |         |
| Kr      | 83  | 1         | 21     | 50.75 | 30            | 70.4      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38746  | 0.54  | 38549         | 100.5     | 60          | 120         |         |
| Sc      | 45  | 1         | 255362 | 0.67  | 263470        | 96.9      | 60          | 120         |         |
| Li      | 6   | 1         | 11689  | 1.26  | 12234         | 95.5      | 60          | 120         |         |

Agilent Technologies

Sample Name

460-31646-d-6-a@5

Data File Name

065SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T00:26:12-04:00

Acq Date Time Type

Sample

VialNumber

2404

Dilution

5

Comment

MP

Operator

004CALB.D

ISTDRefDataFileName SamplePassFail

OUTCALD.

ISTD PassFail

Pass Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.02       | 0.09               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 4.71       | 23.53              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 0.11               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.12               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 0.11               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.03       | 0.14               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 5.46       | 27.29              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.03       | 0.15               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.04       | 0.22               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.90       | 9.48               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.03       | 0.13               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.01       | 0.07               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.14       | 0.71               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 4.28       | 21.38              | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 3.12       | 15.60              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.09       | 0.45               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.14       | 0.69               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.11       | 0.55               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 3451.78    | 17258.91           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 53.20      | 265.98             | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 9.59       | 47.93              | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1559.34    | 7796.68            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 2054.30    | 10271.52           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 5.08       | 25.38              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.07              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 521537 | 0.35  | 513001        | 101.7     | 60          | 120         |         |
| ТЪ      | 159 | 1         | 688272 | 0.80  | 679167        | 101.3     | 60          | 120         |         |
| In      | 115 | 1         | 245774 | 0.14  | 247939        | 99.1      | 60          | 120         |         |
| Kr      | 83  | 1         | 18     | 28.64 | 30            | 59.3      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38762  | 0.14  | 38549         | 100.6     | 60          | 120         |         |
| Sc      | 45  | 1         | 255699 | 0.68  | 263470        | 97.1      | 60          | 120         |         |
| Li      | 6   | 1         | 11899  | 1.07  | 12234         | 97.3      | 60          | 120         |         |

Sample Name

460-31646-d-7-a@5

Data File Name

066SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T00:31:14-04:00

Type VialNumber

Sample 2405

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

Sample Pass Fail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z        | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|------------|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208        | 209  | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |
| TI      | 205        | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ва      | 137        | 159  | 1         | 9.10       | 45.50              | ug/l  | 3600       |         |
| Sb      | 121        | 115  | 1         | 0.03       | 0.16               | ug/l  | 3600       |         |
| Sn      | 118        | 115  | 1         | 0.02       | 0.09               | ug/l  | 3600       |         |
| Cd      | 111        | 115  | 1         | 0.07       | 0.36               | ug/l  | 1800       |         |
| Ag      | 107        | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95         | 115  | 1         | 0.09       | 0.43               | ug/l  | 3600       |         |
| Sr      | 88         | 115  | 1         | 7.42       | 37.11              | ug/l  | 3600       |         |
| Se      | 78         | 74   | 1         | 0.05       | 0.26               | ug/l  | 450        |         |
| As      | <b>7</b> 5 | 74   | 1         | 0.07       | 0.37               | ug/l  | 1800       |         |
| Zn      | 66         | 45   | 1         | 2.52       | 12.61              | ug/l  | 450        |         |
| Cu      | 63         | 45   | 1         | 0.05       | 0.27               | ug/l  | 450        |         |
| Ni      | 60         | 45   | 1         | 0.16       | 0.82               | ug/l  | 900        | -       |
| Со      | 59         | 45   | 1         | 0.12       | 0.59               | ug/l  | 450        |         |
| Fe      | 56         | 45   | 1         | 3.78       | 18.89              | ug/l  | 180000     | -       |
| Mn      | 55         | 45   | 1         | 1.81       | 9.03               | ug/l  | 9000       |         |
| Cr      | 52         | 45   | 1         | 0.35       | 1.77               | ug/l  | 900        |         |
| ٧       | 51         | 45   | 1         | 0.20       | 1.00               | ug/l  | 3600       |         |
| Ti      | 47         | 45   | 1         | 0.04       | 0.22               | ug/l  | 3600       |         |
| Ca      | 44         | 6    | 1         | 1216.38    | 6081.92            | ug/l  | 90000      |         |
| K       | 39         | 45   | 1         | 937.06     | 4685.30            | ug/l  | 360000     |         |
| Al      | 27         | 45   | 1         | 21.74      | 108.68             | ug/l  | 36000      |         |
| Mg      | 24         | 45   | 1         | 202.85     | 1014.27            | ug/l  | 180000     | *****   |
| Na      | 23         | 45   | 1         | 1823.54    | 9117.68            | ug/l  | 360000     |         |
| В       | 11         | 6    | 1         | 3.64       | 18.20              | ug/l  | 7200       |         |
| Ве      | . 9        | 6    | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 526627 | 0.45  | 513001        | 102.7     | 60          | 120         | † <u> </u>                                       |
| Tb      | 159 | 1         | 686511 | 0.41  | 679167        | 101.1     | 60          | 120         | 1                                                |
| In      | 115 | 1         | 248159 | 0.80  | 247939        | 100.1     | 60          | 120         | <del></del>                                      |
| Kr      | 83  | 1         | 19     | 79.59 | 30            | 63.0      | 1           | 1000        | <b>T</b>                                         |
| Ge      | 74  | 1         | 39108  | 0.68  | 38549         | 101.4     | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 257112 | 0.32  | 263470        | 97.6      | 60          | 120         | <del>                                     </del> |
| Li      | 6   | 1         | 11870  | 2.78  | 12234         | 97.0      | 60          | 120         |                                                  |

Sample Name

460-31646-d-8-a@5

Data File Name

067SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T00:36:16-04:00

Type VialNumber Sample 2406

Dilution

Comment

5

Operator

MP

 ${\bf ISTDRefDataFileName}$ 

004CALB.D

SamplePassFail

Pass

**ISTD PassFail** 

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.72       | 3.62               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 8.94       | 44.69              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.05       | 0.23               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.11               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.09       | 0.44               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.00               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 21.54      | 107.71             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.32       | 1.61               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.11       | 0.57               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.83       | 9.17               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.18       | 0.88               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.09       | 0.43               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.17       | 0.84               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 150.23     | 751.13             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 34.94      | 174.69             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.08       | 0.40               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.14       | 0.71               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.00       | 0.01               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 8945.89    | 44729.44           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 541.75     | 2708.73            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 38.20      | 191.02             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2974.92    | 14874.59           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 3857.21    | 19286.04           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 9.81       | 49.06              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.02       | 0.11               | ug/l  | 3600       |         |

| AC TOID I | able | _         |        |       |               |           |             |             |                                                  |
|-----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Element   | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
| Bi        | 209  | 1         | 523496 | 0.42  | 513001        | 102.0     | 60          | 120         | <u> </u>                                         |
| Tb        | 159  | 1         | 696178 | 0.30  | 679167        | 102.5     | 60          | 120         | <b></b>                                          |
| In        | 115  | 1         | 247875 | 0.49  | 247939        | 100.0     | 60          | 120         | <del></del>                                      |
| Kr        | 83   | 1         | 17     | 52.90 | 30            | 55.6      | 1           | 1000        | <del>                                     </del> |
| Ge        | 74   | 1         | 39511  | 0.78  | 38549         | 102.5     | 60          | 120         |                                                  |
| Sc        | 45   | 1         | 259141 | 0.38  | 263470        | 98.4      | 60          | 120         | 1                                                |
| Li        | 6    | 1         | 11752  | 1.03  | 12234         | 96.1      | 60          | 120         |                                                  |

Sample Name

460-31646-d-9-a@5

Data File Name

068SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time

2011-10-08T00:41:18-04:00 Sample

Type VialNumber

2407

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.17       | 0.84               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 10.28      | 51.42              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.03       | 0.16               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.09               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 0.02               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.00               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.05       | 0.25               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 97.80      | 489.02             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.13      | -0.67              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.56       | 2.81               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.24       | 6.18               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.07       | 0.37               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.03       | 0.13               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.07       | 0.35               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 1577.57    | 7887.84            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 41.08      | 205.38             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.25       | 1.24               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.26       | 1.29               | ug/i  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.01       | 0.06               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 14387.86   | 71939.31           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 663.44     | 3317.18            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 3.23       | 16.16              | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2718.05    | 13590.23           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 2288.22    | 11441.11           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 12.08      | 60.39              | ug/i  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.03              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 524280 | 0.66  | 513001        | 102.2     | 60          | 120         |         |
| Tb      | 159 | 1         | 686196 | 0.44  | 679167        | 101.0     | 60          | 120         |         |
| In      | 115 | 1         | 245102 | 0.57  | 247939        | 98.9      | 60          | 120         |         |
| Kr      | 83  | 1         | 24     | 20.83 | 30            | 81.5      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38818  | 0.23  | 38549         | 100.7     | 60          | 120         |         |
| Sc      | 45  | 1         | 257182 | 0.35  | 263470        | 97.6      | 60          | 120         |         |
| Li      | 6   | 1         | 11747  | 1.52  | 12234         | 96.0      | 60          | 120         |         |

Sample Name

460-31646-d-10-a@5

**Data File Name** 

069SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T00:46:18-04:00

Type

2011-10-08100:46:18-04: Sample

i ype VialNumber **2408** 

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.08       | 0.40               | ug/l  | 3600       |         |
| Π       | 205 | 209  | 1         | 0.01       | 0.03               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 5.06       | 25.31              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.13       | 0.65               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.10       | 0.52               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 0.11               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.00               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 1.95       | 9.75               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 40.63      | 203.17             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.08       | 0.40               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.48       | 2.42               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.43       | 12.15              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.18       | 0.92               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.28       | 1.40               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.09       | 0.45               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 79.02      | 395.11             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 24.53      | 122.63             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.10       | 0.49               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.19       | 0.95               | ug/l  | 3600       |         |
| Ті      | 47  | 45   | 1         | 0.17       | 0.84               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2391.07    | 11955.36           | ug/l  | .90000     |         |
| K       | 39  | 45   | 1         | 1269.13    | 6345.64            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 21.08      | 105.42             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 624.27     | 3121.33            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 17098.50   | 85492.50           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 23.23      | 116.13             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.02      | -0.10              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 518384 | 0.45  | 513001        | 101.0     | 60          | 120         |         |
| Τb      | 159 | 1         | 675867 | 0.26  | 679167        | 99.5      | 60          | 120         |         |
| In      | 115 | 1         | 242738 | 0.31  | 247939        | 97.9      | 60          | 120         |         |
| Kr      | 83  | 1         | 16     | 24.76 | 30            | 51.8      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38895  | 0.13  | 38549         | 100.9     | 60          | 120         |         |
| Sc      | 45  | 1         | 253032 | 0.18  | 263470        | 96.0      | 60          | 120         |         |
| Li      | 6   | 1         | 11702  | 1.06  | 12234         | 95.7      | 60          | 120         |         |

Sample Name

460-31646-d-11-a@5

Data File Name

070SMPL.D

DataPath **Acq Date Time**  2011-10-08T00:51:20-04:00

Type VialNumber **Dilution** 

Sample 2409

Comment

5

Operator

MP

ISTDRefDataFileName SamplePassFail

004CALB.D

ISTD PassFail

**Pass Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.50       | 2.48               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 8.76       | 43.82              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.07       | 0.35               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | -0.01      | -0.03              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.00               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.05       | 0.27               | ug/l  | 3600       |         |
| Ŝr      | 88  | 115  | 1         | 18.90      | 94.51              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.05      | -0.25              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 3.93       | 19.63              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.09       | 10.46              | ug/l  | 450        | -       |
| Cu      | 63  | 45   | 1         | 0.02       | 0.08               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.21       | 1.07               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.42       | 2.08               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 2998.56    | 14992.78           | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 36.57      | 182.86             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.25       | 1.26               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.23       | 1.17               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.45       | 2.24               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 3571.82    | 17859.09           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 415.25     | 2076.25            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 16.88      | 84.42              | ug/i  | 36000      |         |
| Mg      | 24  | 45   | 1         | 1140.01    | 5700.05            | ug/i  | 180000     |         |
| Na      | 23  | 45   | 1         | 2663.17    | 13315.85           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 19.82      | 99.11              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.17              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 520098 | 0.24  | 513001        | 101.4     | 60          | 120         | † <u> </u>                                       |
| Tb      | 159 | 1         | 686841 | 0.56  | 679167        | 101.1     | 60          | 120         | <del>                                     </del> |
| In      | 115 | 1         | 244454 | 0.64  | 247939        | 98.6      | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 20     | 28.87 | 30            | 66.7      | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 39002  | 0.29  | 38549         | 101.2     | 60          | 120         | <b>†</b>                                         |
| Sc      | 45  | 1         | 255350 | 0.12  | 263470        | 96.9      | 60          | 120         | +                                                |
| Li      | 6   | 1         | 11934  | 1.42  | 12234         | 97.6      | 60          | 120         |                                                  |

Sample Name

CCV 1187191

Data File Name

0716CCV.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B

Туре

2011-10-08T00:56:22-04:00 6-CCV

VialNumber

1301

Dilution Comment

1

Operator ISTDRefDataFileName

MP 004CALB.D

SamplePassFail ISTD PassFail Pass

Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|---------|
| Be      | 9   | 6    | 1         | 50.54      | 2.86 | ug/l  | 4002.78     | 2.35    | 50        | 101.1 | 90     | 110     |         |
| В       | 11  | 6    | 1         | 94.44      | 4.74 | ug/l  | 2236.90     | 4.39    | 100       | 94.4  | 90     | 110     |         |
| Na      | 23  | 45   | 1         | 4754.79    | 0.87 | ug/l  | 3410538.39  | 0.57    | 5000      | 95.1  | 90     | 110     |         |
| Mg      | 24  | 45   | 1         | 4823.25    | 0.54 | ug/l  | 1713257.34  | 0.56    | 5000      | 96.5  | 90     | 110     |         |
| Al      | 27  | 45   | 1         | 480.29     | 0.47 | ug/l  | 83987.22    | 0.23    | 500       | 96.1  | 90     | 110     |         |
| K       | 39  | 45   | 1         | 4809.83    | 1.33 | ug/l  | 1744915.82  | 1.08    | 5000      | 96.2  | 90     | 110     | 1       |
| Ca      | 44  | 6    | 1         | 4902.20    | 0.82 | ug/l  | 85854.78    | 0.46    | 5000      | 98.0  | 90     | 110     | 1       |
| Ti      | 47  | 45   | 1         | 49.77      | 4.00 | ug/l  | 5173.22     | 3.78    | 50        | 99.5  | 90     | 110     |         |
| ٧       | 51  | 45   | 1         | 49.49      | 0.45 | ug/l  | 138987.01   | 0.19    | 50        | 99.0  | 90     | 110     |         |
| Cr      | 52  | 45   | 1         | 49.68      | 0.64 | ug/l  | 165343.52   | 0.86    | 50        | 99.4  | 90     | 110     |         |
| Mn      | 55  | 45   | 1         | 491.62     | 0.21 | ug/l  | 1011198.77  | 0.43    | 500       | 98.3  | 90     | 110     | 1       |
| Fe      | 56  | 45   | 1         | 4980.19    | 0.63 | ug/l  | 12615514.95 | 0.79    | 5000      | 99.6  | 90     | 110     |         |
| Co      | 59  | 45   | 1         | 50.44      | 0.11 | ug/l  | 239144.45   | 0.33    | 50        | 100.9 | 90     | 110     |         |
| Ni      | 60  | 45   | 1         | 48.69      | 0.23 | ug/l  | 64041.06    | 0.25    | 50        | 97.4  | 90     | 110     |         |
| Cu      | 63  | 45   | 1         | 50.81      | 0.21 | ug/l  | 172642.77   | 0.16    | 50        | 101.6 | 90     | 110     |         |
| Zn      | 66  | 45   | 1         | 50.13      | 2.04 | ug/l  | 28400.78    | 1.78    | 50        | 100.3 | 90     | 110     |         |
| As      | 75  | 74   | 1         | 48.66      | 0.41 | ug/l  | 22109.69    | 0.74    | 50        | 97.3  | 90     | 110     |         |
| Se      | 78  | 74   | 1         | 49.35      | 2.05 | ug/l  | 1546.77     | 2.93    | 50        | 98.7  | 90     | 110     |         |
| Sr      | 88  | 115  | 1         | 48.74      | 1.20 | ug/l  | 129045.12   | 0.75    | 50        | 97.5  | 90     | 110     |         |
| Мо      | 95  | 115  | 1         | 48.42      | 0.41 | ug/l  | 82037.70    | 0.79    | 50        | 96.8  | 90     | 110     |         |
| Ag      | 107 | 115  | 1         | 49.97      | 0.34 | ug/l  | 255278.41   | 0.33    | 50        | 99.9  | 90     | 110     |         |
| Cd      | 111 | 115  | 1         | 49.17      | 0.63 | ug/i  | 38573.94    | 0.17    | 50        | 98.3  | 90     | 110     |         |
| Sn      | 118 | 115  | 1         | 49.18      | 0.36 | ug/l  | 89858.72    | 0.73    | 50        | 98.4  | 90     | 110     |         |
| Sb      | 121 | 115  | 1         | 49.10      | 0.24 | ug/l  | 123583.33   | 0.86    | 50        | 98.2  | 90     | 110     |         |
| Ba      | 137 | 159  | 1         | 48.74      | 0.78 | ug/l  | 45389.46    | 0.64    | . 50      | 97.5  | 90     | 110     |         |
| TI      | 205 | 209  | 1         | 9.85       | 0.89 | ug/l  | 119629.26   | 0.90    | 10        | 98.5  | 90     | 110     |         |
| Pb      | 208 | 209  | 1         | 49.86      | 0.40 | ug/l  | 797255.65   | 0.58    | 50        | 99.7  | 90     | 110     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11792  | 0.63  | 12234   | 96.4  | 60     | 120     |         |
| Sc      | 45  | 1         | 259016 | 0.26  | 263470  | 98.3  | 60     | 120     | 1       |
| Ge      | 74  | 1         | 38403  | 0.99  | 38549   | 99.6  | 60     | 120     |         |
| Kr      | 83  | 1         | 22     | 62.43 | 30      | 74.1  | 1      | 1000    |         |
| In      | 115 | 1         | 243158 | 0.66  | 247939  | 98.1  | 60     | 120     | 1       |
| Тb      | 159 | 1         | 682047 | 0.48  | 679167  | 100.4 | 60     | 120     |         |
| Bi      | 209 | 1         | 514905 | 0.22  | 513001  | 100.4 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0726CCB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T01:01:18-04:00

Type

6-CCB

VialNumber

1302

**Dilution** 

1

Comment

MΡ

Operator **ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.01      | -4.23   | ug/l  | 1.67      | 0.00    | 0.2     |         |
| В       | 11  | 6    | 1         | 1.33       | 12.70   | ug/l  | 38.89     | 13.10   | 20      |         |
| Na      | 23  | 45   | 1         | -32.33     | -2.49   | ug/l  | 161082.25 | 0.32    | - 50    |         |
| Mg      | 24  | 45   | 1         | 0.63       | 4.17    | ug/l  | 409.45    | 2.24    | 50      |         |
| Al      | 27  | 45   | 1         | 0.33       | 61.97   | ug/l  | 683.36    | 5.08    | 10      |         |
| K       | 39  | 45   | 1         | -27.87     | -8.16   | ug/l  | 83521.06  | 0.90    | 50      |         |
| Ca      | 44  | 6    | 1         | -0.65      | -334.56 | ug/l  | 218.34    | 16.43   | 50      |         |
| Ti      | 47  | 45   | 1         | -0.04      | -45.49  | ug/i  | 2.22      | 86.60   | 1       |         |
| V       | 51  | 45   | 1         | -0.02      | -66.82  | ug/l  | 414.46    | 8.86    | 1       |         |
| Cr      | 52  | 45   | 1         | -0.01      | -119.79 | ug/i  | 1821.27   | 2.65    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.09       | 10.78   | ug/l  | 218.90    | 8.66    | 2       |         |
| Fe      | 56  | 45   | 1         | 0.73       | 8.79    | ug/l  | 5446.58   | 2.91    | 30      |         |
| Co      | 59  | 45   | 1         | 0.01       | 22.87   | ug/l  | 38.89     | 21.57   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.07      | -36.21  | ug/l  | 108.89    | 30.66   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.10      | -17.37  | ug/l  | 1783.49   | 3.24    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.08       | 31.07   | ug/l  | 301.12    | 4.61    | 4       |         |
| As      | 75  | 74   | 1         | -0.02      | -64.20  | ug/l  | 31.11     | 17.22   | 0.5     |         |
| Se      | 78  | 74   | 1         | 0.21       | 120.62  | ug/l  | 53.89     | 13.95   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.01       | 46.32   | ug/l  | 30.00     | 29.40   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.02       | 55.04   | ug/l  | 97.78     | 19.98   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 28.94   | ug/l  | 75.56     | 24.30   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 33.38   | ug/l  | 15.56     | 12.40   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.02       | 89.50   | ug/l  | 118.89    | 27.52   | 4       | 1       |
| Sb      | 121 | 115  | 1         | 0.00       | 198.51  | ug/l  | 84.45     | 9.94    | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.02       | 56.86   | ug/l  | 26.67     | 33.07   | 1       |         |
| П       | 205 | 209  | 1         | 0.01       | 13.80   | ug/l  | 117.78    | 11.44   | 0.2     | 1       |
| Pb      | 208 | 209  | 1         | 0.02       | 9.24    | ug/l  | 400.02    | 5.83    | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11967  | 2.83  | 12234   | 97.8  | 60     | 120     |         |
| Sc      | 45  | 1         | 255427 | 0.03  | 263470  | 96.9  | 60     | 120     |         |
| Ge      | 74  | 1         | 38456  | 0.75  | 38549   | 99.8  | 60     | 120     |         |
| Kr      | 83  | 1         | 20     | 16.65 | 30      | 66.7  | 1      | 1000    |         |
| In      | 115 | 1         | 246392 | 0.20  | 247939  | 99.4  | 60     | 120     |         |
| Tb      | 159 | 1         | 673090 | 0.54  | 679167  | 99.1  | 60     | 120     |         |
| Bi      | 209 | 1         | 517630 | 0.62  | 513001  | 100.9 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium u |

Sample Name

460-31646-d-12-a@5

Data File Name

073SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T01:06:22-04:00

Type VialNumber Sample

2410

Dilution

5

Comment

MΡ

Operator **ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 2.29       | 11.46              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 12.51      | 62.53              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.08       | 0.41               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.05       | 0.25               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.04               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 3.27       | 16.37              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 96.44      | 482.18             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.07      | -0.37              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 2.19       | 10.94              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.71       | 13.57              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.10       | 0.48               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.04       | 0.18               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.09       | 0.46               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 733.37     | 3666.84            | ug/l  | 180000     | -       |
| Mn      | 55  | 45   | 1         | 6.00       | 29.99              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.12       | 0.62               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.19       | 0.95               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.11       | 0.55               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 20522.35   | 102611.77          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1423.97    | 7119.86            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 5.30       | 26.52              | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3405.91    | 17029.55           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 1455.93    | 7279.65            | ug/I  | 360000     |         |
| В       | 11  | 6    | 1         | 7.80       | 39.02              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.14              | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 516916 | 0.20  | 513001        | 100.8     | 60          | 120         | +                                                |
| Tb      | 159 | 1         | 681453 | 0.10  | 679167        | 100.3     | 60          | 120         | +                                                |
| In      | 115 | 1         | 243700 | 0.77  | 247939        | 98.3      | 60          | 120         | <u> </u>                                         |
| Kr      | 83  | 1         | 13     | 25.01 | 30            | 44.4      | 1           | 1000        | <u> </u>                                         |
| Ge      | 74  | 1         | 38649  | 1.58  | 38549         | 100.3     | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 255820 | 0.30  | 263470        | 97.1      | 60          | 120         | <del>                                     </del> |
| Li      | 6   | 1         | 11848  | 1.60  | 12234         | 96.9      | 60          | 120         |                                                  |

Printed at: 1:07 AM on:10/8/2011 10/21/2011

Sample Name

460-31646-d-13-a@5

Data File Name

074SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T01:11:23-04:00

Acq Date Time

Type VialNumber

Sample

Dilution

2411 5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

QC Analyte Table

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.56       | 2.78               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 7.53       | 37.64              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.03       | 0.14               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 0.12               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 14.51      | 72.56              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.32      | -1.58              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.09       | 0.45               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 3.13       | 15.65              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 2.14       | 10.72              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.10       | 0.51               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.50       | 2.52               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 173.63     | 868.13             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 55.26      | 276.28             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.05       | 0.26               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.12       | 0.60               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.02      | -0.10              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1785.92    | 8929.61            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 242.26     | 1211.32            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 8.74       | 43.69              | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 427.43     | 2137.13            | ug/l  | 180000     | -       |
| Na      | 23  | 45   | 1         | 1454.60    | 7273.00            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 15.40      | 77.00              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.04              | ug/l  | 3600       |         |

**OC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                           |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------------------------------------------------|
| Bi      | 209 | 1         | 527799 | 0.18  | 513001        | 102.9     | 60          | 120         | <del>  `                                   </del> |
| Tb      | 159 | 1         | 688978 | 0.61  | 679167        | 101.4     | 60          | 120         |                                                   |
| In      | 115 | 1         | 250113 | 0.53  | 247939        | 100.9     | 60          | 120         |                                                   |
| Kr      | 83  | 1         | 24     | 43.83 | 30            | 81.5      | 1           | 1000        | 1                                                 |
| Ge      | 74  | 1         | 39344  | 0.94  | 38549         | 102.1     | 60          | 120         |                                                   |
| Sc      | 45  | 1         | 258702 | 0.14  | 263470        | 98.2      | 60          | 120         | †                                                 |
| Li      | 6   | 1         | 12117  | 1.13  | 12234         | 99.1      | 60          | 120         |                                                   |



Printed at: 1:12 AM on:10/8/2011 10/21/2011 Page 1 of 1 Page 230 of 332

Sample Name

460-31658-o-1-b@5

Data File Name

075SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T01:16:25-04:00

Type VialNumber

Sample

Dilution

2412 5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 14.74      | 73.68              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.02       | 0.08               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 28.63      | 143.16             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 2.53       | 12.64              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.14       | 0.70               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.19       | 0.95               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 0.09               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 4.28       | 21.42              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 341.34     | 1706.68            | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.82       | 4.10               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 2.62       | 13.10              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 34.15      | 170.74             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 3.65       | 18.26              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 1.96       | 9.80               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 1.03       | 5.15               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 2557.34    | 12786.68           | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 123.37     | 616.87             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.52       | 2.59               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 1.20       | 6.02               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 3.00       | 15.02              | ug/i  | 3600       |         |
| Ca      | 44  | 6    | 1         | 41925.12   | 209625.60          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 2128.52    | 10642.62           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 69.06      | 345.31             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 5129.36    | 25646.82           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 5130.74    | 25653.71           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 71.07      | 355.37             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.14              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 508708 | 0.41  | 513001        | 99.2      | 60          | 120         |         |
| Tb      | 159 | 1         | 672820 | 0.73  | 679167        | 99.1      | 60          | 120         |         |
| In      | 115 | 1         | 239983 | 0.77  | 247939        | 96.8      | 60          | 120         |         |
| Kr      | 83  | 1         | 18     | 10.81 | 30            | 59.3      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38306  | 0.39  | 38549         | 99.4      | 60          | 120         |         |
| Sc      | 45  | 1         | 252981 | 0.60  | 263470        | 96.0      | 60          | 120         |         |
| Li      | 6   | 1         | 11718  | 1.35  | 12234         | 95.8      | 60          | 120         |         |

### Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

Data File Name

0766CCV.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B

2011-10-08T01:21:24-04:00 6-CCV

Type VialNumber

1301

Dilution

Comment

Operator ISTDRefDataFileName MP 004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|---------|
| Ве      | 9   | 6    | 1         | 50.16      | 1.34 | ug/l  | 3989.99     | 1.23    | 50        | 100.3 | 90     | 110     |         |
| В       | 11  | 6    | 1         | 101.29     | 4.08 | ug/l  | 2409.16     | 3.53    | 100       | 101.3 | 90     | 110     |         |
| Na      | 23  | 45   | 1         | 4873.47    | 1.17 | ug/l  | 3460239.05  | 0.43    | 5000      | 97.5  | 90     | 110     |         |
| Mg      | 24  | 45   | 1         | 4899.54    | 0.48 | ug/l  | 1725054.14  | 0.73    | 5000      | 98.0  | 90     | 110     |         |
| Al      | 27  | 45   | 1         | 491.88     | 1.15 | ug/l  | 85240.98    | 1.08    | 500       | 98.4  | 90     | 110     |         |
| K       | 39  | 45   | 1         | 4893.99    | 0.89 | ug/l  | 1758176.87  | 0.40    | 5000      | 97.9  | 90     | 110     |         |
| Ca      | 44  | 6    | 1         | 4958.53    | 0.45 | ug/l  | 87223.42    | 0.61    | 5000      | 99.2  | 90     | 110     |         |
| Ti      | 47  | 45   | 1         | 49.93      | 4.51 | ug/l  | 5143.23     | 4.01    | 50        | 99.9  | 90     | 110     |         |
| ٧       | 51  | 45   | 1         | 50.19      | 0.58 | ug/l  | 139703.18   | 0.19    | 50        | 100.4 | 90     | 110     |         |
| Cr      | 52  | 45   | 1         | 50.73      | 0.63 | ug/l  | 167325.02   | 0.18    | 50        | 101.5 | 90     | 110     |         |
| Mn      | 55  | 45   | 1         | 502.55     | 0.84 | ug/l  | 1024569.02  | 0.69    | 500       | 100.5 | 90     | 110     |         |
| Fe      | 56  | 45   | 1         | 5056.85    | 1.07 | ug/l  | 12696387.45 | 0.33    | 5000      | 101.1 | 90     | 110     |         |
| Co      | 59  | 45   | 1         | 51.48      | 0.89 | ug/l  | 241947.42   | 0.37    | 50        | 103.0 | 90     | 110     |         |
| Ni      | 60  | 45   | 1         | 50.29      | 1.03 | ug/l  | 65560.43    | 1.11    | 50        | 100.6 | 90     | 110     |         |
| Cu      | 63  | 45   | 1         | 51.65      | 1.13 | ug/l  | 173927.72   | 0.89    | 50        | 103.3 | 90     | 110     |         |
| Zn      | 66  | 45   | 1         | 50.98      | 2.52 | ug/i  | 28616.69    | 1.76    | 50        | 102.0 | 90     | 110     |         |
| Aş      | 75  | 74   | 1         | 49.81      | 1.93 | ug/l  | 22857.45    | 1.13    | 50        | 99.6  | 90     | 110     |         |
| Se      | 78  | 74   | 1         | 48.88      | 7.86 | ug/l  | 1547.33     | 7.34    | 50        | 97.8  | 90     | 110     |         |
| Sr      | 88  | 115  | 1         | 49.73      | 1.53 | ug/l  | 131522.71   | 0.62    | 50        | 99.5  | 90     | 110     |         |
| Мо      | 95  | 115  | 1         | 48.79      | 1.47 | ug/l  | 82561.92    | 1.08    | 50        | 97.6  | 90     | 110     |         |
| Ag      | 107 | 115  | 1         | 50.46      | 1.92 | ug/l  | 257447.13   | 1.02    | 50        | 100.9 | 90     | 110     |         |
| Cd      | 111 | 115  | 1         | 49.76      | 0.98 | ug/l  | 38989.43    | 0.08    | 50        | 99.5  | 90     | 110     |         |
| Sn      | 118 | 115  | 1         | 49.92      | 0.84 | ug/l  | 91109.19    | 0.58    | 50        | 99.8  | 90     | 110     |         |
| Sb      | 121 | 115  | 1         | 49.80      | 0.20 | ug/l  | 125185.72   | 0.82    | 50        | 99.6  | 90     | 110     |         |
| Ba      | 137 | 159  | 1         | 49.90      | 0.23 | ug/l  | 45915.54    | 0.67    | 50        | 99.8  | 90     | 110     | ĺ       |
| Π       | 205 | 209  | 1         | 9.92       | 0.62 | ug/l  | 120376.94   | 0.64    | 10        | 99.2  | 90     | 110     | Ì       |
| Pb      | 208 | 209  | 1         | 50.27      | 0.26 | ug/l  | 803669.50   | 0.32    | 50        | 100.5 | 90     | 110     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11844  | 0.54  | 12234   | 96.8  | 60     | 120     |         |
| Sc      | 45  | 1         | 256741 | 0.75  | 263470  | 97.4  | 60     | 120     |         |
| Ge      | 74  | 1         | 38786  | 1.02  | 38549   | 100.6 | 60     | 120     |         |
| Kr      | 83  | 1         | 14     | 58.06 | 30      | 48.1  | 1      | 1000    |         |
| In      | 115 | 1         | 242893 | 0.91  | 247939  | 98.0  | 60     | 120     |         |
| Tb      | 159 | 1         | 673841 | 0.48  | 679167  | 99.2  | 60     | 120     |         |
| Bi      | 209 | 1         | 514802 | 0.07  | 513001  | 100.4 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium u |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0776CCB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T01:26:19-04:00

Туре VialNumber 6-CCB 1302

Dilution

1

Comment

MP

Operator

004CALB.D

**ISTDRefDataFileName** SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag  |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|----------|
| Ве      | 9   | 6    | 1         | 0.02       | 115.77  | ug/l  | 4.44      | 43.40   | 0.2     |          |
| В       | 11  | 6    | 1         | 0.79       | 55.01   | ug/l  | 25.56     | 39.85   | 20      | <u> </u> |
| Na      | 23  | 45   | 1         | -35.98     | -1.64   | ug/l  | 159478.38 | 0.39    | 50      |          |
| Mg      | 24  | 45   | 1         | 0.79       | 7.90    | ug/l  | 469.46    | 4.51    | 50      |          |
| Al      | 27  | 45   | 1         | 0.24       | 75.65   | ug/l  | 672.25    | 4.64    | 10      |          |
| K       | 39  | 45   | 1         | -30.98     | -9.05   | ug/l  | 82897.32  | 0.64    | 50      |          |
| Ca      | 44  | 6    | 1         | 0.34       | 408.72  | ug/l  | 233.90    | 9.98    | 50      |          |
| <u></u> | 47  | 45   | 1         | -0.06      | 0.00    | ug/l  | 0.00      | #DIV/0! | 1       |          |
| V       | 51  | 45   | 1         | -0.01      | -219.48 | ug/l  | 453.36    | 8.91    | 1       |          |
| Cr      | 52  | 45   | 1         | 0.01       | 165.16  | ug/l  | 1909.07   | 3.41    | 1       |          |
| Mn      | 55  | 45   | 1         | 0.07       | 27.45   | ug/l  | 193.34    | 21.53   | 2       |          |
| Fe      | 56  | 45   | 1         | 0.86       | 3.05    | ug/l  | 5811.16   | 0.67    | 30      |          |
| Co      | 59  | 45   | 1         | 0.01       | 12.42   | ug/l  | 53.34     | 12.50   | 1       |          |
| Ni      | 60  | 45   | 1         | -0.07      | -21.43  | ug/l  | 113.34    | 16.37   | 1       |          |
| Cu      | 63  | 45   | 1         | -0.09      | -30.15  | ug/l  | 1840.17   | 5.20    | 1       | <u> </u> |
| Zn      | 66  | 45   | 1         | 0.06       | 85.69   | ug/l  | 291.12    | 9.53    | 4       |          |
| As      | 75  | 74   | 1         | -0.02      | -98.37  | ug/l  | 31.11     | 26.97   | 0.5     |          |
| Se      | 78  | 74   | 1         | -0.04      | -525.53 | ug/l  | 46.67     | 14.28   | 0.5     |          |
| Sr      | 88  | 115  | 1         | 0.01       | 59.04   | ug/l  | 34.44     | 40.30   | 1       |          |
| Мо      | 95  | 115  | 1         | 0.02       | 86.71   | ug/l  | 91.11     | 27.46   | 1       |          |
| Ag      | 107 | 115  | 1         | 0.02       | 6.80    | ug/l  | 93.33     | 6.19    | 1       |          |
| Cd      | 111 | 115  | 1         | 0.01       | 17.38   | ug/l  | 21.11     | 9.11    | 0.5     |          |
| Sn      | 118 | 115  | 1         | 0.01       | 111.70  | ug/l  | 107.78    | 26.30   | 4       |          |
| Sb      | 121 | 115  | 1         | -0.01      | -110.69 | ug/l  | 66.67     | 22.91   | 0.5     |          |
| Ва      | 137 | 159  | 1         | 0.02       | 94.12   | ug/l  | 25.55     | 52.73   | 1       |          |
| П       | 205 | 209  | 1         | 0.01       | 26.81   | ug/l  | 142.23    | 24.05   | 0.2     |          |
| Pb      | 208 | 209  | 1         | 0.02       | 13.53   | ug/l  | 381.13    | 8.58    | 0.3     |          |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag  |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|----------|
| Li      | 6   | 1         | 11847  | 0.37  | 12234   | 96.8  | 60     | 120     |          |
| Sc      | 45  | 1         | 256772 | 0.63  | 263470  | 97.5  | 60     | 120     |          |
| Ge      | 74  | 1         | 38715  | 0.38  | 38549   | 100.4 | 60     | 120     |          |
| Kr      | 83  | 1         | 19     | 36.75 | 30      | 63.0  | 1      | 1000    |          |
| In      | 115 | 1         | 246275 | 0.30  | 247939  | 99.3  | 60     | 120     |          |
| Тb      | 159 | 1         | 678997 | 1.00  | 679167  | 100.0 | 60     | 120     |          |
| Bi      | 209 | 1         | 519761 | 0.41  | 513001  | 101.3 | 60     | 120     | <b>†</b> |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

mb 460-88640/1-a@5

**Data File Name** 

0786CCB.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T01:31:23-04:00

Type VialNumber Dilution

6-CCB 2501 5

Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD     | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|----------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.01      | -755.82  | ug/l  | 1.67      | 99.90   | 0.2     |         |
| В       | 11  | 6    | 1         | 0.55       | 243.91   | ug/l  | 20.00     | 33.35   | 20      | 1       |
| Na      | 23  | 45   | 1         | -38.17     | -10.24   | ug/l  | 158819.95 | 0.12    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.34       | 96.94    | ug/l  | 313.34    | 7.84    | 50      |         |
| Ai      | 27  | 45   | 1         | 0.23       | 333.44   | ug/l  | 673.92    | 4.24    | 10      |         |
| K       | 39  | 45   | 1         | -29.27     | -15.46   | ug/l  | 83914.15  | 0.35    | 50      |         |
| Ca      | 44  | 6    | 1         | 12.98      | 123.23   | ug/l  | 455.57    | 12.00   | 50      |         |
| Ti      | 47  | 45   | 1         | -0.04      | -224.01  | ug/l  | 2.22      | 86.60   | 1       |         |
| V       | 51  | 45   | 1         | 0.03       | 295.92   | ug/l  | 545.58    | 7.34    | 1       |         |
| Cr      | 52  | 45   | 1         | -0.01      | -825.62  | ug/l  | 1835.72   | 3.65    | 1       | 1       |
| Mn      | 55  | 45   | 1         | 0.01       | 54.43    | ug/l  | 73.34     | 4.55    | 2       |         |
| Fe      | 56  | 45   | 1         | 0.00       | -2067.88 | ug/l  | 3656.03   | 1.41    | 30      |         |
| Co      | 59  | 45   | 1         | 0.00       | 629.12   | ug/l  | 7.78      | 89.21   | 1       | <b></b> |
| Ni      | 60  | 45   | 1         | -0.07      | -73.35   | ug/l  | 108.89    | 12.74   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.08      | -181.58  | ug/l  | 1863.50   | 5.73    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.87       | 19.46    | ug/l  | 745.60    | 2.87    | 4       |         |
| As      | 75  | 74   | 1         | -0.03      | -262.75  | ug/l  | 27.78     | 22.72   | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.25      | -731.92  | ug/l  | 40.56     | 26.74   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.01       | 71.15    | ug/l  | 33.33     | 10.01   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.01       | 573.07   | ug/l  | 73.34     | 16.39   | 1       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 729.39   | ug/l  | 22.22     | 62.43   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 2065.89  | ug/l  | 11.11     | 45.82   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.01       | 740.95   | ug/l  | 100.00    | 26.04   | 4       |         |
| Sb      | 121 | 115  | 1         | -0.01      | -610.60  | ug/l  | 66.67     | 25.98   | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.02       | 152.49   | ug/l  | 27.78     | 18.33   | 1       |         |
| TI      | 205 | 209  | 1         | 0.00       | 184.52   | ug/l  | 58.89     | 26.15   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.01       | 66.08    | ug/l  | 223.34    | 5.38    | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 11845  | 2.01  | 12234   | 96.8  | 60     | 120     |         |
| Sc      | 45  | 1         | 258096 | 0.39  | 263470  | 98.0  | 60     | 120     |         |
| Ge      | 74  | 1         | 38937  | 0.55  | 38549   | 101.0 | 60     | 120     |         |
| Kr      | 83  | 1         | 23     | 51.52 | 30      | 77.8  | 1      | 1000    |         |
| In      | 115 | 1         | 247549 | 0.55  | 247939  | 99.8  | 60     | 120     |         |
| Тb      | 159 | 1         | 685008 | 0.48  | 679167  | 100.9 | 60     | 120     |         |
| Bi      | 209 | 1         | 524310 | 0.17  | 513001  | 102.2 | 60     | 120     | 1       |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

lcs 460-88640/2-a@5

Data File Name

079SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

Acq Date Time

2011-10-08T01:36:28-04:00

Type VialNumber Sample 2502

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag  |
|---------|-----|------|-----------|------------|--------------------|-------|------------|----------|
| Pb      | 208 | 209  | 1         | 5.09       | 25.44              | ug/l  | 3600       | <u> </u> |
| П       | 205 | 209  | 1         | 3.98       | 19.89              | ug/l  | 720        |          |
| Ва      | 137 | 159  | 1         | 9.82       | 49.10              | ug/l  | 3600       | <u> </u> |
| Sb      | 121 | 115  | 1         | 5.09       | 25.46              | ug/l  | 3600       |          |
| Sn      | 118 | 115  | 1         | 9.30       | 46.50              | ug/l  | 3600       |          |
| Cd      | 111 | 115  | 1         | 4.90       | 24.49              | ug/l  | 1800       |          |
| Ag      | 107 | 115  | 1         | 4.76       | 23.79              | ug/l  | 180        |          |
| Мо      | 95  | 115  | 1         | 9.64       | 48.20              | ug/l  | 3600       |          |
| Sr      | 88  | 115  | 1         | 9.76       | 48.81              | ug/l  | 3600       |          |
| Se      | 78  | 74   | 1         | 10.20      | 51.00              | ug/l  | 450        |          |
| As      | 75  | 74   | 1         | 9.99       | 49.97              | ug/l  | 1800       |          |
| Zn      | 66  | 45   | 1         | 52.28      | 261.42             | ug/l  | 450        |          |
| Cu      | 63  | 45   | 1         | 10.39      | 51.95              | ug/l  | 450        |          |
| Ni      | 60  | 45   | 1         | 9.79       | 48.94              | ug/l  | 900        |          |
| Co      | 59  | 45   | 1         | 5.08       | 25.40              | ug/l  | 450        |          |
| Fe      | 56  | 45   | 1         | 527.89     | 2639.45            | ug/l  | 180000     |          |
| Mn      | 55  | 45   | 1         | 50.41      | 252.05             | ug/l  | 9000       | <u> </u> |
| Cr      | 52  | 45   | 1         | 10.04      | 50.22              | ug/l  | 900        |          |
| ٧       | 51  | 45   | 1         | 10.01      | 50.03              | ug/l  | 3600       |          |
| Ti      | 47  | 45   | 1         | 10.26      | 51.32              | ug/l  | 3600       |          |
| Ca      | 44  | 6    | 1         | 489.86     | 2449.32            | ug/l  | 90000      |          |
| K       | 39  | 45   | 1         | 536.66     | 2683.31            | ug/l  | 360000     |          |
| Al      | 27  | 45   | 1         | 493.20     | 2466.01            | ug/I  | 36000      |          |
| Mg      | 24  | 45   | 1         | 506.36     | 2531.79            | ug/l  | 180000     |          |
| Na      | 23  | 45   | 1         | 460.91     | 2304.53            | ug/l  | 360000     |          |
| В       | 11  | 6    | 1         | 97.46      | 487.31             | ug/l  | 7200       |          |
| Be      | 9   | 6    | 1         | 4.43       | 22,13              | ug/l  | 3600       |          |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag      |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------|
| Bi      | 209 | 1         | 516651 | 0.69  | 513001        | 100.7     | 60          | 120         | 1            |
| Tb      | 159 | 1         | 679192 | 1.26  | 679167        | 100.0     | 60          | 120         | <del> </del> |
| In      | 115 | 1         | 244373 | 0.15  | 247939        | 98.6      | 60          | 120         |              |
| Kr      | 83  | 1         | 23     | 24.74 | 30            | 77.8      | 1           | 1000        | <b>-</b>     |
| Ge      | 74  | 1         | 37741  | 0.73  | 38549         | 97.9      | 60          | 120         |              |
| Sc      | 45  | 1         | 255836 | 0.36  | 263470        | 97.1      | 60          | 120         |              |
| Li      | 6   | 1         | 12015  | 1.03  | 12234         | 98.2      | 60          | 120         | -            |

Printed at: 1:37 AM on:10/8/2011 10/21/2011

Sample Name

460-31717-a-15-b du@5

**Data File Name** 

080SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T01:41:28-04:00

Type VialNumber Sample 2503

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

#### QC Analyte Table

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.16       | 0.79               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.01       | 0.07               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 19.77      | 98.83              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.03       | 0.13               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.06       | 0.29               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.05               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 0.03               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.09       | 0.44               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 38.36      | 191.81             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.02       | 0.10               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.08       | 0.38               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.45       | 12.25              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.76       | 3.82               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.71       | 3.56               | ug/i  | 900        |         |
| Со      | 59  | 45   | 1         | 0.24       | 1.22               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 312.99     | 1564.93            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 27.79      | 138.96             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.60       | 3.01               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.66       | 3.30               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 7.80       | 38.98              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 9010.38    | 45051.92           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 937.91     | 4689.56            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 247.33     | 1236.67            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2807.30    | 14036.52           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 15448.08   | 77240.39           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 24.07      | 120.33             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.00       | 0.00               | ug/l  | 3600       |         |

QC ISTD Table

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 512795 | 0.58  | 513001        | 100.0     | 60          | 120         | QC Flag |
| Tb      | 159 | 1         | 679625 | 0.41  | 679167        | 100.1     | 60          | 120         |         |
| In      | 115 | 1         | 244556 | 0.48  | 247939        | 98.6      | 60          | 120         |         |
| Kr      | 83  | 1         | 18     | 10.81 | 30            | 59.3      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38620  | 0.41  | 38549         | 100.2     | 60          | 120         |         |
| Sc      | 45  | 1         | 253994 | 0.48  | 263470        | 96.4      | 60          | 120         |         |
| Li      | 6   | 1         | 11798  | 0.49  | 12234         | 96.4      | 60          | 120         |         |

Page 1 of 1 Page 236 of 332 Printed at: 1:43 AM on:10/8/2011 10/21/2011

Sample Name

460-31717-m-15-c@5

Data File Name

081SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T01:46:30-04:00

Type VialNumber Sample 2504

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.16       | 0.82               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.01       | . 0.04             | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 20.09      | 100.44             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.06               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.04       | 0.22               | ug/l  | 3600       | -       |
| Cd      | 111 | 115  | 1         | 0.00       | 0.01               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.02               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.09       | 0.45               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 38.42      | 192.10             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.15      | -0.77              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.11       | 0.56               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.47       | 12.35              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.80       | 4.00               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.74       | 3.71               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.24       | 1.18               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 324.63     | 1623.16            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 27.60      | 138.00             | ug/i  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.63       | 3.15               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.71       | 3.57               | ug/l  | 3600       |         |
| Τī      | 47  | 45   | 1         | 7.93       | 39.67              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 9034.17    | 45170.86           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 930.67     | 4653.37            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 267.15     | 1335.76            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2744.84    | 13724.21           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 15281.07   | 76405.36           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 25.78      | 128.88             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 517737 | 0.34  | 513001        | 100.9     | 60          | 120         | <del>                                     </del> |
| Tb      | 159 | 1         | 680822 | 0.90  | 679167        | 100.2     | 60          | 120         |                                                  |
| In      | 115 | 1         | 245091 | 0.23  | 247939        | 98.9      | 60          | 120         | <del>                                     </del> |
| Kr      | 83  | 1         | 19     | 53.91 | 30            | 63.0      | 1           | 1000        | <del>                                     </del> |
| Ge      | 74  | 1         | 39330  | 1.02  | 38549         | 102.0     | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 258667 | 0.41  | 263470        | 98.2      | 60          | 120         |                                                  |
| Li      | 6   | 1         | 11802  | 2.79  | 12234         | 96.5      | 60          | 120         | 1                                                |

Sample Name

SD 460-31717-m-15-c@25

Data File Name

082SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T01:51:30-04:00

Туре

Sample 2505

VialNumber Dilution

25

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.04       | 0.88               | ug/l  | 3600       | -       |
| П       | 205 | 209  | 1         | 0.00       | 0.07               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 3.92       | 98.09              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.00       | 0.03               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.01       | 0.20               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.13               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.03               | ug/i  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.03       | 0.69               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 7.53       | 188.32             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.08       | 1.99               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.01       | 0.29               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.26       | 56.39              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.09       | 2.27               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.10       | 2.41               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.06       | 1.40               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 65.06      | 1626.48            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 5.55       | 138.87             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.09       | 2.27               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.20       | 5.06               | ug/l  | 3600       |         |
| Ti ,    | 47  | 45   | 1         | 1.52       | 38.08              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1776.39    | 44409.76           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 153.53     | 3838.17            | ug/l  | 360000     |         |
| A!      | 27  | 45   | 1         | 54.99      | 1374.68            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 555.52     | 13888.10           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 3065.55    | 76638.77           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 5.28       | 132.11             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.02      | -0.53              | ug/i  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 536310 | 0.64  | 513001        | 104.5     | 60          | 120         | 1                                                |
| Tb      | 159 | 1         | 697446 | 0.60  | 679167        | 102.7     | 60          | 120         |                                                  |
| In      | 115 | 1         | 253963 | 0.29  | 247939        | 102.4     | 60          | 120         | <del> </del>                                     |
| Kr      | 83  | 1         | 12     | 41.65 | 30            | 40.7      | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 39766  | 0.53  | 38549         | 103.2     | 60          | 120         | -                                                |
| Sc      | 45  | 1         | 264024 | 0.88  | 263470        | 100.2     | 60          | 120         | <del>                                     </del> |
| Li      | 6   | 1         | 12228  | 1.35  | 12234         | 100.0     | 60          | 120         |                                                  |

Sample Name

460-31717-m-15-d ms@5

Data File Name

083SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T01:56:32-04:00

Type VialNumber Sample 2506

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 4.91       | 24.57              | ug/l  | 3600       |         |
| Π       | 205 | 209  | 1         | 3.73       | 18.67              | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 29.31      | 146.57             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 4.57       | 22.85              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 8.45       | 42.23              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 4.74       | 23.72              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 4.45       | 22.24              | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 8.97       | 44.85              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 48.86      | 244.31             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 8.81       | 44.07              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 9.21       | 46.03              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 57.97      | 289.87             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 10.55      | 52.76              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 10.03      | 50.13              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 5.10       | 25.51              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 802.62     | 4013.11            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 75.55      | 377.76             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 9.88       | 49.41              | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 10.10      | 50.51              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 17.39      | 86.94              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 9553.63    | 47768.14           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1474.13    | 7370.67            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 745.72     | 3728.62            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3276.62    | 16383.11           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 16012.47   | 80062.37           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 118.82     | 594.12             | ug/l  | 7200       |         |
| Ве      | 9   | 6    | 1         | 4.56       | 22.80              | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 526061 | 0.76  | 513001        | 102.5     | 60          | 120         | <del>                                     </del> |
| Tb      | 159 | 1         | 699210 | 0.73  | 679167        | 103.0     | 60          | 120         | 1                                                |
| In      | 115 | 1         | 249298 | 0.84  | 247939        | 100.5     | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 22     | 31.22 | 30            | 74.1      | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 40273  | 1.05  | 38549         | 104.5     | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 262200 | 1.02  | 263470        | 99.5      | 60          | 120         | 1                                                |
| Li      | 6   | 1         | 12099  | 2.01  | 12234         | 98.9      | 60          | 120         | +                                                |

Printed at: 1:58 AM on:10/8/2011 10/21/2011

Sample Name

PDS 460-31717-m-15-c@5

Data File Name

084SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T02:01:32-04:00

Type VialNumber Sample 2507

Dilution

5

Comment

MP

Operator

ISTDRefDataFileNameSamplePassFail

004CALB.D Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value        | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|-------------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 5.19              | 25.94              | ug/l  | 3600       |         |
| Ħ       | 205 | 209  | 1         | 3.91              | 19.55              | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 29.70             | 148.52             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 4.90              | 24.49              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 9.05              | 45.23              | ug/l  | 3600       |         |
| СС      | 111 | 115  | 1         | 4.78              | 23.89              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 4.95              | 24.76              | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 9.53              | 47.66              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 48.45             | 242.23             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 9.13              | 45.65              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 9.63              | 48.17              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 57.71             | 288.55             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 10.88             | 54.39              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 10.37             | 51.87              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 5.29              | 26.45              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 824.91            | 4124.53            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 77. <del>44</del> | 387.21             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 10.45             | 52.23              | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 10.69             | 53.45              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 17.29             | 86.47              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 9485.22           | 47426.10           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1491.45           | 7457.23            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 762.63            | 3813.16            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3270.92           | 16354.58           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 15835.96          | 79179.82           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 124.08            | 620.40             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 4.98              | 24.88              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 514586 | 0.63  | 513001        | 100.3     | 60          | 120         |         |
| Tb      | 159 | 1         | 680211 | 0.50  | 679167        | 100.2     | 60          | 120         |         |
| In      | 115 | 1         | 243365 | 0.31  | 247939        | 98.2      | 60          | 120         |         |
| Kr      | 83  | 1         | 18     | 65.83 | 30            | 59.3      | 1           | 1000        |         |
| Ge      | 74  | 1         | 38692  | 0.66  | 38549         | 100.4     | 60          | 120         |         |
| Sc      | 45  | 1         | 255301 | 0.53  | 263470        | 96.9      | 60          | 120         |         |
| Li      | 6   | 1         | 11824  | 2.38  | 12234         | 96.7      | 60          | 120         |         |

Sample Name

460-31691-l-6-a@5

Data File Name

085SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T02:06:31-04:00

Type VialNumber Sample

Dilution

2508 5

Comment

MP

Operator ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

**ISTD PassFail** 

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.01       | 0.04               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 4.22       | 21.08              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.06       | 0.31               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.04       | 0.18               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.04               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.08       | 0.41               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 35.61      | 178.04             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.18      | -0.89              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.05       | 0.26               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.86       | 14.32              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.32       | 1.59               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.34       | 1.68               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.06       | 0.31               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 2.58       | 12.92              | ug/i  | 180000     |         |
| Mn      | 55  | 45   | 1         | 9.86       | 49.28              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.10       | 0.50               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.27       | 1.35               | ug/l  | 3600       |         |
| Ті      | 47  | 45   | 1         | -0.03      | -0.16              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 5428.89    | 27144.45           | ug/l  | 90000      |         |
| К       | 39  | 45   | 1         | 1193.68    | 5968.41            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 0.59       | 2.94               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3241.00    | 16205.02           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 22183.29   | 110916.45          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 13.73      | 68.67              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.14              | ug/l  | 3600       |         |

| SC TOID I |     |           |        |       |               |           |             |             |                                                  |
|-----------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Element   | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
| Bi        | 209 | 1         | 510319 | 0.67  | 513001        | 99.5      | 60          | 120         |                                                  |
| Τb        | 159 | 1         | 684269 | 0.94  | 679167        | 100.8     | 60          | 120         |                                                  |
| In        | 115 | 1         | 245362 | 0.24  | 247939        | 99.0      | 60          | 120         |                                                  |
| Kr        | 83  | 1         | 16     | 98.94 | 30            | 51.9      | 1           | 1000        |                                                  |
| Ge        | 74  | 1         | 39508  | 0.63  | 38549         | 102.5     | 60          | 120         | <del>                                     </del> |
| Sc        | 45  | 1         | 260904 | 0.38  | 263470        | 99.0      | 60          | 120         | 1                                                |
| Li        | 6   | 1         | 11924  | 1.63  | 12234         | 97.5      | 60          | 120         |                                                  |

Sample Name

460-31691-l-6-b ms@5

Data File Name

086SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T02:11:32-04:00

**Acq Date Time Type** 

Sample

VialNumber

2509

Dilution

5

Comment Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 5.05       | 25.24              | ug/i  | 3600       |         |
| П       | 205 | 209  | 1         | 3.92       | 19.61              | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 13.95      | 69.76              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 5.15       | 25.75              | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 9.37       | 46.83              | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 4.74       | 23.68              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 4.66       | 23.31              | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 9.72       | 48.62              | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 45.63      | 228.14             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 10.05      | 50.24              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 9.89       | 49.46              | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 52.05      | 260.27             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 10.46      | 52.32              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 10.20      | 51.00              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 5.08       | 25.42              | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 519.54     | 2597.70            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 59.67      | 298.33             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 9.77       | 48.83              | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 10.22      | 51.12              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 10.36      | 51.79              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 5882.22    | 29411.12           | ug/l  | 90000      |         |
| Κ       | 39  | 45   | 1         | 1750.71    | 8753.57            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 488.38     | 2441.92            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3696.74    | 18483.70           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 22575.08   | 112875.39          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 109.03     | 545.13             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 5.15       | 25.75              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 518895 | 0.41  | 513001        | 101.1     | 60          | 120         | Quille  |
| Tb      | 159 | 1         | 691336 | 0.29  | 679167        | 101.8     | 60          | 120         |         |
| In      | 115 | 1         | 247212 | 0.54  | 247939        | 99.7      | 60          | 120         |         |
| Kr      | 83  | 1         | 22     | 37.76 | 30            | 74.1      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39320  | 0.37  | 38549         | 102.0     | 60          | 120         |         |
| Sc      | 45  | 1         | 261984 | 0.40  | 263470        | 99.4      | 60          | 120         |         |
| Li      | 6   | 1         | 12129  | 0.62  | 12234         | 99.1      | 60          | 120         | 1       |

Sample Name

460-31691-e-3-a@5

Data File Name

087SMPL.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T02:16:32-04:00

Type VialNumber

Sample 2510

Dilution

5

Comment Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 2.18       | 10.92              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.03       | 0.15               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 12.31      | 61.57              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.08       | 0.39               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.24       | 1.19               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 0.12               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 0.06               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.51       | 2.55               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 55.93      | 279.63             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.00       | -0.02              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 1.14       | 5.69               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 10.01      | 50.04              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 4.57       | 22.85              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 3.34       | 16.71              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 1.07       | 5.33               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 7229.51    | 36147.57           | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 133.41     | 667.04             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 4.10       | 20.48              | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 2.76       | 13.79              | ug/l  | 3600       |         |
| TI      | 47  | 45   | 1         | 15.56      | 77.81              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 6464.88    | 32324.39           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 2108.84    | 10544.20           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1177.20    | 5886.01            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 6550.85    | 32754.26           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 46516.05   | 232580.27          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 24.39      | 121.95             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.04       | 0.22               | ug/l  | 3600       |         |

**OC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag      |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------|
| Bi      | 209 | 1         | 510431 | 0.36  | 513001        | 99.5      | 60          | 120         |              |
| Tb      | 159 | 1         | 684798 | 0.37  | 679167        | 100.8     | 60          | 120         |              |
| In      | 115 | 1         | 242884 | 0.78  | 247939        | 98.0      | 60          | 120         |              |
| Kr      | 83  | 1         | 19     | 40.75 | 30            | 63.0      | 1           | 1000        |              |
| Ge      | 74  | 1         | 39162  | 0.93  | 38549         | 101.6     | 60          | 120         |              |
| Sc      | 45  | 1         | 259164 | 0.36  | 263470        | 98.4      | 60          | 120         |              |
| Li      | 6   | 1         | 11667  | 0.15  | 12234         | 95.4      | 60          | 120         | <del>†</del> |

Agilent Technologies

#### Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

Data File Name

0886CCV.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T02:21:30-04:00

Type

6-CCV

VialNumber

1301 1

Dilution

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

OC Analyte Table

| QC Analyt | e labie |      |           |            |      |       |             |         |           |       |        |         |         |
|-----------|---------|------|-----------|------------|------|-------|-------------|---------|-----------|-------|--------|---------|---------|
| Element   | m/z     | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Exp Value | %Rec  | QC Low | QC High | QC Flag |
| Be        | 9       | 6    | 1         | 50.08      | 3.36 | ug/l  | 4050.56     | 2.85    | 50        | 100.2 | 90     | 110     |         |
| В         | 11      | 6    | 1         | 95.84      | 7.91 | ug/l  | 2319.13     | 8.34    | 100       | 95.8  | 90     | 110     | T       |
| Na        | 23      | 45   | 1         | 4839.77    | 0.61 | ug/l  | 3518644.88  | 0.52    | 5000      | 96.8  | 90     | 110     | 1       |
| Mg        | 24      | 45   | 1         | 4850.98    | 0.50 | ug/l  | 1748146.69  | 0.10    | 5000      | 97.0  | 90     | 110     |         |
| Al        | 27      | 45   | 1         | 489.44     | 1.21 | ug/l  | 86816.97    | 0.79    | 500       | 97.9  | 90     | 110     |         |
| K         | 39      | 45   | 1         | 4840.92    | 0.91 | ug/l  | 1781106.87  | 0.50    | 5000      | 96.8  | 90     | 110     |         |
| Ca        | 44      | 6    | 1         | 4942.50    | 1.24 | ug/l  | 88396.78    | 0.72    | 5000      | 98.9  | 90     | 110     |         |
| Ti        | 47      | 45   | 1         | 49.37      | 1.73 | ug/l  | 5206.57     | 1.32    | 50        | 98.7  | 90     | 110     |         |
| V         | 51      | 45   | 1         | 49.78      | 1.14 | ug/l  | 141823.60   | 0.74    | 50        | 99.6  | 90     | 110     |         |
| Cr        | 52      | 45   | 1         | 50.16      | 0.76 | ug/l  | 169346.47   | 0.34    | 50        | 100.3 | 90     | 110     |         |
| Mn        | 55      | 45   | 1         | 496.52     | 0.57 | ug/l  | 1036124.10  | 0.86    | 500       | 99.3  | 90     | 110     |         |
| Fe        | 56      | 45   | 1         | 4991.46    | 0.71 | ug/l  | 12827750.92 | 0.59    | 5000      | 99.8  | 90     | 110     |         |
| Co        | 59      | 45   | 1         | 50.63      | 0.46 | ug/l  | 243574.26   | 0.78    | 50        | 101.3 | 90     | 110     |         |
| Ni        | 60      | 45   | 1         | 49.04      | 0.25 | ug/l  | 65437.85    | 0.66    | 50        | 98.1  | 90     | 110     | 1       |
| Cu        | 63      | 45   | 1         | 51.02      | 0.75 | ug/l  | 175869.19   | 1.03    | 50        | 102.0 | 90     | 110     |         |
| Zn        | 66      | 45   | 1         | 50.45      | 0.79 | ug/l  | 28996.25    | 0.66    | 50        | 100.9 | 90     | 110     |         |
| As        | 75      | 74   | 1         | 50.08      | 0.23 | ug/l  | 23215.20    | 0.77    | 50        | 100.2 | 90     | 110     |         |
| Se        | 78      | 74   | 1         | 51.88      | 0.80 | ug/l  | 1656.23     | 0.51    | 50        | 103.8 | 90     | 110     |         |
| Sr        | 88      | 115  | 1         | 49.57      | 0.35 | ug/l  | 132891.58   | 0.22    | 50        | 99.1  | 90     | 110     |         |
| Мо        | 95      | 115  | 1         | 48.86      | 0.60 | ug/l  | 83821.67    | 0.40    | 50        | 97.7  | 90     | 110     |         |
| Ag        | 107     | 115  | 1         | 50.18      | 0.37 | ug/l  | 259584.12   | 0.57    | 50        | 100.4 | 90     | 110     |         |
| Cd        | 111     | 115  | 1         | 49.48      | 1.12 | ug/l  | 39304.70    | 1.25    | 50        | 99.0  | 90     | 110     | 1       |
| Sn        | 118     | 115  | 1         | 50.07      | 0.45 | ug/l  | 92642.00    | 0.27    | 50        | 100.1 | 90     | 110     | T       |
| Sb        | 121     | 115  | 1         | 49.79      | 1.51 | ug/l  | 126882.09   | 1.42    | 50        | 99.6  | 90     | 110     |         |
| Ва        | 137     | 159  | 1         | 50.02      | 2.54 | ug/l  | 46986.74    | 2.01    | 50        | 100.0 | 90     | 110     |         |
| TI        | 205     | 209  | 1         | 9.85       | 0.20 | ug/l  | 121390.93   | 0.32    | 10        | 98.5  | 90     | 110     |         |
| Pb        | 208     | 209  | 1         | 50.11      | 0.82 | ug/l  | 813009.17   | 0.70    | 50        | 100.2 | 90     | 110     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 12042  | 0.53  | 12234   | 98.4  | 60     | 120     |         |
| Sc      | 45  | 1         | 262783 | 0.42  | 263470  | 99.7  | 60     | 120     |         |
| Ge      | 74  | 1         | 39181  | 0.54  | 38549   | 101.6 | 60     | 120     |         |
| Kr      | 83  | 1         | 20     | 33.35 | 30      | 66.7  | 1      | 1000    |         |
| In      | 115 | 1         | 246223 | 0.22  | 247939  | 99.3  | 60     | 120     |         |
| Тъ      | 159 | 1         | 687999 | 0.53  | 679167  | 101.3 | 60     | 120     |         |
| Bi      | 209 | 1         | 522425 | 0.45  | 513001  | 101.8 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

0896CCB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T02:26:26-04:00

**Type** VialNumber 6-CCB 1302

**Dilution** 

1

Comment Operator

MΡ

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

**Pass** 

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | 0.00       | -747.48 | ug/l  | 2.78      | 34.52   | 0.2     |         |
| В       | 11  | 6    | 1         | 0.34       | 102.01  | ug/l  | 15.56     | 53.90   | 20      |         |
| Na      | 23  | 45   | 1         | -46.04     | -2.13   | ug/l  | 158815.92 | 0.08    | 50      |         |
| Mg      | 24  | 45   | 1         | 0.90       | 1.01    | ug/l  | 526.13    | 0.18    | 50      |         |
| Al      | 27  | 45   | 1         | 0.33       | 51.22   | ug/l  | 713.92    | 4.49    | 10      |         |
| K       | 39  | 45   | 1         | -39.30     | -1.56   | ug/l  | 83273.67  | 0.20    | 50      |         |
| Ca      | 44  | 6    | 1         | -0.15      | -910.93 | ug/l  | 235.56    | 9.02    | 50      |         |
|         | 47  | 45   | 1         | -0.01      | -583.50 | ug/l  | 5.55      | 124.93  | 1       |         |
| V       | 51  | 45   | 1         | 0.01       | 219.50  | ug/l  | 518.91    | 11.50   | 1       |         |
| Cr      | 52  | 45   | 1         | -0.04      | -51.36  | ug/l  | 1815.72   | 3.22    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.10       | 1.85    | ug/l  | 258.90    | 1.97    | 2       |         |
| Fe      | 56  | 45   | 1         | 0.92       | 7.11    | ug/l  | 6204.64   | 2.58    | 30      |         |
| Co      | 59  | 45   | 1         | 0.01       | 50.35   | ug/i  | 38.89     | 47.21   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.08      | -4.08   | ug/l  | 105.56    | 3.64    | 1       | 1       |
| Cu      | 63  | 45   | 1         | -0.11      | -17.01  | ug/l  | 1827.95   | 3.84    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.08       | 32.40   | ug/l  | 315.57    | 5.21    | 4       |         |
| As      | 75  | 74   | 1         | -0.01      | -163.90 | ug/l  | 33.89     | 32.01   | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.47      | -61.50  | ug/l  | 34.44     | 26.65   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.01       | 39.99   | ug/l  | 33.33     | 26.47   | 1       |         |
| Mo      | 95  | 115  | 1         | 0.02       | 21.54   | ug/l  | 97.78     | 7.10    | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 34.54   | ug/l  | 73.33     | 28.39   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 82.59   | ug/l  | 24.44     | 47.91   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.03       | 20.61   | ug/l  | 141.12    | 8.30    | 4       |         |
| Sb      | 121 | 115  | 1         | 0.00       | 208.26  | ug/l  | 92.23     | 19.91   | 0.5     |         |
| Ba      | 137 | 159  | 1         | 0.01       | 35.84   | ug/l  | 25.56     | 19.92   | 1       |         |
| П       | 205 | 209  | 1         | 0.01       | 19.20   | ug/l  | 177.78    | 17.72   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.01       | 17.79   | ug/l  | 375.57    | 11.24   | 0.3     |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 12390  | 1.35  | 12234   | 101.3 | 60     | 120     |         |
| Sc      | 45  | 1         | 267043 | 0.46  | 263470  | 101.4 | 60     | 120     |         |
| Ge      | 74  | 1         | 39652  | 0.60  | 38549   | 102.9 | 60     | 120     |         |
| Kr      | 83  | 1         | 18     | 28.64 | 30      | 59.3  | 1      | 1000    | 1       |
| In      | 115 | 1         | 256177 | 0.21  | 247939  | 103.3 | 60     | 120     |         |
| Тb      | 159 | 1         | 703223 | 0.20  | 679167  | 103.5 | 60     | 120     |         |
| Bi      | 209 | 1         | 541556 | 0.47  | 513001  | 105.6 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

460-31691-i-4-a@5

Data File Name

090SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T02:31:31-04:00

Type VialNumber Sample

Dilution

2511 5

Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.04       | 0.22               | ug/l  | 3600       |         |
| T       | 205 | 209  | 1         | 0.01       | 0.03               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 4.23       | 21.14              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.11       | 0.53               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.04       | 0.21               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.05               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.10       | 0.51               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 36.07      | 180.33             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.33      | -1.67              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.07       | 0.37               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 13.17      | 65.87              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.38       | 1.90               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.38       | 1.88               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.08       | 0.40               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 219.84     | 1099.19            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 10.41      | 52.05              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.15       | 0.73               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.27       | 1.35               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.33       | 1.65               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 5543.28    | 27716.40           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1224.14    | 6120.68            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 16.48      | 82.39              | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3284.47    | 16422.37           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 22343.33   | 111716.67          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 12.77      | 63.83              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.17              | ug/l  | 3600       |         |

QC ISTD Table

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 517314 | 0.92  | 513001        | 100.8     | 60          | 120         | 1                                                |
| Tb      | 159 | 1         | 687620 | 0.51  | 679167        | 101.2     | 60          | 120         | -                                                |
| In      | 115 | 1         | 247102 | 0.16  | 247939        | 99.7      | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 18     | 57.27 | 30            | 59.3      | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 39428  | 0.68  | 38549         | 102.3     | 60          | 120         | <del>                                     </del> |
| Sc      | 45  | 1         | 261505 | 0.10  | 263470        | 99.3      | 60          | 120         |                                                  |
| Li      | 6   | 1         | 11802  | 1.88  | 12234         | 96.5      | 60          | 120         |                                                  |

Page 1 of 1 Page 246 of 332

Sample Name

460-31691-l-5-a@5

Data File Name

091SMPL.D

DataPath

Acq Date Time

2011-10-08T02:36:33-04:00

Type VialNumber

Sample 2512

ViaiNumber Dilution 25 5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.03       | 0.13               | ug/l  | 3600       |         |
| . 🎞     | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 4.17       | 20.85              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.03       | 0.17               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.03       | 0.14               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 0.02               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.09       | 0.47               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 36.05      | 180.23             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.35      | -1.73              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.04       | 0.22               | ug/i  | 1800       |         |
| Zn      | 66  | 45   | 1         | 3.57       | 17.83              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.31       | 1.54               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.41       | 2.05               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.07       | 0.34               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 1.24       | 6.22               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 10.00      | 49.99              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.06       | 0.28               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.25       | 1.27               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.03      | -0.16              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 5461.41    | 27307.05           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1210.99    | 6054.93            | ug/l  | 360000     |         |
| Al ·    | 27  | 45   | 1         | 0.81       | 4.03               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3254.91    | 16274.55           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 22405.74   | 112028.72          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 11.60      | 57.99              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.00       | -0.01              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 524118 | 0.45  | 513001        | 102.2     | 60          | 120         | <del>                                     </del> |
| Tb .    | 159 | 1         | 698847 | 0.31  | 679167        | 102.9     | - 60        | 120         | 1                                                |
| In      | 115 | 1         | 250670 | 0.61  | 247939        | 101.1     | 60          | 120         | <del>                                     </del> |
| Kr      | 83  | 1         | 10     | 66.70 | 30            | 33.3      | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 39746  | 0.57  | 38549         | 103.1     | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 264113 | 0.86  | 263470        | 100.2     | 60          | 120         |                                                  |
| Li      | 6   | 1         | 12278  | 1.11  | 12234         | 100.4     | 60          | 120         |                                                  |

Sample Name

460-31691-i-7-a@5

Data File Name

092SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T02:41:35-04:00

Type VialNumber Sample 3101

Dilution

5

Comment

MP

Operator **ISTDRefDataFileName** 

SamplePassFail

004CALB.D

ISTD PassFail

Pass Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.05               | ug/l  | 3600       |         |
| Π       | 205 | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 0.02       | 0.08               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.05               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.03       | 0.15               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 0.01               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.02       | 0.08               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.06       | 0.30               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.05      | -0.26              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.04       | 0.18               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.54       | 12.69              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.08       | 0.40               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.05      | -0.25              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.00       | 0.02               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 0.87       | 4.37               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.05       | 0.27               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.04       | 0.21               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.22       | 1.10               | ug/i  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.05      | -0.26              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 11.58      | 57.89              | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 5.22       | 26.10              | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 0.93       | 4.65               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 5.08       | 25.42              | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 593.94     | 2969.71            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 6.96       | 34.80              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.02      | -0.11              | ug/l  | 3600       |         |

| SC 121D I | ubic |           |        |      | -             |           |             |             |         |
|-----------|------|-----------|--------|------|---------------|-----------|-------------|-------------|---------|
| Element   | m/z  | Tune Step | CPS    | %RSD | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi        | 209  | 1         | 527684 | 0.58 | 513001        | 102.9     | 60          | 120         |         |
| Tb        | 159  | 1         | 688757 | 1.01 | 679167        | 101.4     | 60          | 120         |         |
| In        | 115  | 1         | 249879 | 0.75 | 247939        | 100.8     | 60          | 120         |         |
| Kr        | 83   | 1         | 20     | 0.00 | 30            | 66.7      | 1           | 1000        |         |
| Ge        | 74   | 1         | 39029  | 0.63 | 38549         | 101.2     | 60          | 120         |         |
| Sc        | 45   | 1         | 263157 | 0.73 | 263470        | 99.9      | 60          | 120         |         |
| Li        | 6    | 1         | 12241  | 0.19 | 12234         | 100.1     | 60          | 120         |         |

Sample Name

460-31691-r-16-a@5

Data File Name

093SMPL.D

DataPath **Acq Date Time** 

C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T02:46:40-04:00

Type VialNumber

Sample 3102

Dilution

5

Comment **Operator** 

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag  |
|---------|-----|------|-----------|------------|--------------------|-------|------------|----------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.03               | ug/l  | 3600       | <u> </u> |
| TI      | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |          |
| Ва      | 137 | 159  | 1         | 4.18       | 20.90              | ug/l  | 3600       |          |
| Sb      | 121 | 115  | 1         | 0.03       | 0.17               | ug/l  | 3600       |          |
| Sn      | 118 | 115  | 1         | 0.02       | 0.09               | ug/l  | 3600       | <u> </u> |
| Cd      | 111 | 115  | 1         | 0.00       | -0.01              | ug/l  | 1800       |          |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |          |
| Мо      | 95  | 115  | 1         | 0.09       | 0.43               | ug/l  | 3600       |          |
| Sr      | 88  | 115  | 1         | 36.05      | 180.26             | ug/l  | 3600       |          |
| Se      | 78  | 74   | 1         | 0.09       | 0.45               | ug/l  | 450        |          |
| As      | 75  | 74   | 1         | 0.04       | 0.21               | ug/l  | 1800       |          |
| Zn      | 66  | 45   | 1         | 2.89       | 14.46              | ug/l  | 450        |          |
| Cu      | 63  | 45   | 1         | 0.29       | 1.46               | ug/l  | 450        |          |
| Ni      | 60  | 45   | 1         | 0.35       | 1.77               | ug/i  | 900        |          |
| Co      | 59  | 45   | 1         | 0.06       | 0.32               | ug/l  | 450        |          |
| Fe      | 56  | 45   | 1         | 1.29       | 6.43               | ug/l  | 180000     |          |
| Mn      | 55  | 45   | 1         | 9.73       | 48.66              | ug/l  | 9000       |          |
| Cr      | 52  | 45   | 1         | 0.10       | 0.51               | ug/i  | 900        |          |
| ٧       | 51  | 45   | 1         | 0.23       | 1.17               | ug/l  | 3600       |          |
| Tī      | 47  | 45   | 1         | -0.01      | -0.05              | ug/l  | 3600       |          |
| Ca      | 44  | 6    | 1         | 5473.93    | 27369.66           | ug/l  | 90000      | ****     |
| K       | 39  | 45   | 1         | 1213.72    | 6068.59            | ug/l  | 360000     |          |
| Al      | 27  | 45   | 1         | 4.08       | 20.40              | ug/l  | 36000      |          |
| Mg      | 24  | 45   | 1         | 3290.13    | 16450.63           | ug/l  | 180000     |          |
| Na      | 23  | 45   | 1         | 22627.15   | 113135.73          | ug/l  | 360000     | <u> </u> |
| В       | 11  | 6    | 1         | 12.78      | 63.90              | ug/l  | 7200       |          |
| Be      | 9   | 6    | 1         | -0.03      | -0.17              | ug/l  | 3600       |          |

**OC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 514476 | 0.13  | 513001        | 100.3     | 60          | 120         |         |
| Tb      | 159 | 1         | 686061 | 0.59  | 679167        | 101.0     | 60          | 120         |         |
| In      | 115 | 1         | 245677 | 0.12  | 247939        | 99.1      | 60          | 120         |         |
| Kr      | 83  | 1         | 23     | 24.74 | 30            | 77.8      | 1           | 1000        | 1       |
| Ge      | 74  | 1         | 38675  | 0.20  | 38549         | 100.3     | 60          | 120         |         |
| Sc      | 45  | 1         | 260942 | 0.33  | 263470        | 99.0      | 60          | 120         |         |
| Li      | 6   | 1         | 11953  | 2.25  | 12234         | 97.7      | 60          | 120         |         |

Agilent Technologies

Sample Name

460-31691-ac-17-c@5

Data File Name

094SMPL.D

DataPath

**Acq Date Time** 

2011-10-08T02:51:42-04:00

Type VialNumber Sample

Dilution

3103

Comment

5

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.06               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.01       | 0.04               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 29.19      | 145.96             | ug/l  | 3600       | ·       |
| Sb      | 121 | 115  | 1         | 0.15       | 0.75               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 0.09               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.00               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.59       | 2.95               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 254.67     | 1273.33            | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.17       | 0.83               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.16       | 0.82               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 4.67       | 23.37              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 2.04       | 10.21              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 2.54       | 12.71              | ug/i  | 900        |         |
| Co      | 59  | 45   | 1         | 0.44       | 2.22               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 5.57       | 27.84              | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 66.65      | 333.23             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.13       | 0.67               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.30       | 1.48               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.00       | -0.01              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 40472.34   | 202361.68          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 7106.84    | 35534.20           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1.62       | 8.12               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 21388.19   | 106940.96          | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 148224.49  | 741122.47          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 39.52      | 197.62             | ug/i  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.03              | ug/l  | 3600       |         |

**QC ISTD Table** 

| OC TOID I | able |           |        |       |               |           |             |             |                                                  |
|-----------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Element   | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
| Bi        | 209  | 1         | 504374 | 0.30  | 513001        | 98.3      | 60          | 120         | 1                                                |
| Tb        | 159  | 1         | 692931 | 0.16  | 679167        | 102.0     | 60          | 120         | 1                                                |
| In        | 115  | 1         | 246746 | 0.84  | 247939        | 99.5      | 60          | 120         | <del>                                     </del> |
| Kr        | 83   | 1         | 12     | 56.76 | 30            | 40.7      | 1           | 1000        |                                                  |
| Ge        | 74   | 1         | 40185  | 0.71  | 38549         | 104.2     | 60          | 120         | <u> </u>                                         |
| Sc        | 45   | 1         | 272081 | 1.67  | 263470        | 103.3     | 60          | 120         | 1                                                |
| Li        | 6    | 1         | 11622  | 0.81  | 12234         | 95.0      | 60          | 120         | 1                                                |

Page 1 of 1 Page 250 of 332

Sample Name

460-31691-b-19-a@5

**Data File Name** 

095SMPL.D

DataPath **Acq Date Time**   $\textbf{C:} \\ \textbf{ICPMH} \\ \textbf{1} \\ \textbf{DATA} \\ \textbf{11J07t00.B}$ 2011-10-08T02:56:40-04:00

Type VialNumber

Sample 3104

Dilution

5

Comment Operator

MP

**ISTDRefDataFileName** 

SamplePassFail

004CALB.D

ISTD PassFail

**Pass** 

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 2.81       | 14.05              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.02       | 0.08               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 12.55      | 62.75              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.11       | 0.54               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.20       | 1.02               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.04       | 0.19               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 0.09               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.40       | 2.00               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 35.94      | 179.71             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.03       | 0.17               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 1.31       | 6.55               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 15.48      | 77.39              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 5.27       | 26.35              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 3.47       | 17.37              | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 1.23       | 6.13               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 8209.68    | 41048.41           | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 85.85      | 429.23             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 4.41       | 22.03              | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 3.25       | 16.24              | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 18.86      | 94.29              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 5363.22    | 26816.09           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1356.76    | 6783.78            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1444.31    | 7221.53            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 3471.78    | 17358.88           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 20178.21   | 100891.06          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 13.22      | 66.12              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.03       | 0.13               | ug/l  | 3600       |         |

#### OC ISTD Table

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 523310 | 0.05  | 513001        | 102.0     | 60          | 120         | -                                                |
| Tb      | 159 | 1         | 701598 | 0.50  | 679167        | 103.3     | 60          | 120         | <del>                                     </del> |
| In      | 115 | 1         | 249860 | 0.05  | 247939        | 100.8     | 60          | 120         | 1                                                |
| Kr      | 83  | 1         | 18     | 21.66 | 30            | 59.3      | 1           | 1000        | <b>†</b>                                         |
| Ge      | 74  | 1         | 40021  | 0.18  | 38549         | 103.8     | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 268113 | 0.69  | 263470        | 101.8     | 60          | 120         | <u> </u>                                         |
| Li      | 6   | 1         | 12273  | 1.67  | 12234         | 100.3     | 60          | 120         | T                                                |

Printed at: 2:58 AM on:10/8/2011 10/21/2011

Sample Name

460-31717-m-16-b@5

**Data File Name** 

096SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T03:01:40-04:00

Type VialNumber Sample

Dilution

3105 5

Comment

Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.76       | 3.82               | ug/l  | 3600       | 1       |
| TI      | 205 | 209  | 1         | 0.01       | 0.05               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 21.56      | 107.79             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.03       | 0.14               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.10       | 0.51               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.02       | 0.12               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.02               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.50       | 2.52               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 31.38      | 156.92             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.10      | -0.49              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.19       | 0.94               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 5.26       | 26.32              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 2.67       | 13.37              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 2.19       | 10.96              | ug/i  | 900        |         |
| Co      | 59  | 45   | 1         | 0.82       | 4.10               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 1037.94    | 5189.71            | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 101.17     | 505.84             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 1.79       | 8.95               | ug/i  | 900        |         |
| V       | 51  | 45   | 1         | 1.70       | 8.52               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 24.12      | 120.62             | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 7143.51    | 35717.56           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1353.99    | 6769.97            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 858.86     | 4294.32            | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2395.46    | 11977.29           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 16104.61   | 80523.05           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 28.34      | 141.72             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.05       | 0.27               | ug/l  | 3600       |         |

OC ISTD Table

| <u>SC TOID I</u> | able |           |        |       |               |           |             |             |          |
|------------------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|----------|
| Element          | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag  |
| Bi               | 209  | 1         | 529760 | 0.16  | 513001        | 103.3     | 60          | 120         |          |
| Тb               | 159  | 1         | 701637 | 0.45  | 679167        | 103.3     | 60          | 120         |          |
| In               | 115  | 1         | 251473 | 0.28  | 247939        | 101.4     | 60          | 120         |          |
| Kr               | 83   | 1         | 22     | 37.76 | 30            | 74.1      | 1           | 1000        |          |
| Ge               | 74   | 1         | 40234  | 0.66  | 38549         | 104.4     | 60          | 120         |          |
| Sc               | 45   | 1         | 269053 | 0.41  | 263470        | 102.1     | 60          | 120         | <u> </u> |
| Li               | 6    | 1         | 12203  | 0.62  | 12234         | 99.7      | 60          | 120         | +        |



Agilent Technologies

Sample Name

460-31717-m-17-b@5

Data File Name

097SMPL.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T03:06:39-04:00

Type VialNumber Dilution

Sample 3106

Comment

Operator

MP

5

ISTDRefDataFileName

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.07       | 0.35               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 17.70      | 88.51              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | 0.00               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.02               | ug/l  | 180        |         |
| Mo      | 95  | 115  | 1         | 0.06       | 0.29               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 44.38      | 221.92             | ug/l  | 3600       | ·       |
| Se      | 78  | 74   | 1         | 0.07       | 0.35               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.07       | 0.35               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.55       | 7.77               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.40       | 2.02               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.46       | 2.31               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.10       | 0.49               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 122.34     | 611.69             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 12.60      | 63.01              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.30       | 1.49               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.52       | 2.60               | ug/l  | 3600       |         |
| Tī      | 47  | 45   | 1         | 3.24       | 16.20              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 11083.04   | 55415.19           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 837.08     | 4185.42            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 106.10     | 530.50             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2914.38    | 14571.90           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 10285.98   | 51429.92           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 22.41      | 112.04             | ug/l  | 7200       | •       |
| Be      | 9   | 6    | 1         | -0.03      | -0.17              | ug/l  | 3600       |         |

**OC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                           |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------------------------------------------------|
| Bi      | 209 | 1         | 527765 | 0.46  | 513001        | 102.9     | 60          | 120         | <del>  `                                   </del> |
| Tb      | 159 | 1         | 700136 | 0.06  | 679167        | 103.1     | 60          | 120         |                                                   |
| In      | 115 | 1         | 251900 | 0.16  | 247939        | 101.6     | 60          | 120         |                                                   |
| Kr      | 83  | 1         | 27     | 43.30 | 30            | 88.9      | 1           | 1000        |                                                   |
| Ge      | 74  | 1         | 39994  | 0.56  | 38549         | 103.7     | 60          | 120         |                                                   |
| Sc      | 45  | 1         | 265312 | 0.81  | 263470        | 100.7     | 60          | 120         |                                                   |
| Li      | 6   | 1         | 12412  | 1.98  | 12234         | 101.5     | 60          | 120         | <b>†</b>                                          |

Agilent Technologies

Sample Name

460-31717-m-18-b@5

**Data File Name** 

098SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T03:11:40-04:00

Type VialNumber Sample

Dilution

3107

Comment

5

Operator

MP

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.10       | 0.51               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 14.83      | 74.15              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.05               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.03       | 0.13               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.03               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Mo      | 95  | 115  | _ 1       | 0.32       | 1.59               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 30.64      | 153.22             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.25       | 1.23               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.09       | 0.45               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.93       | 9.64               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.53       | 2.67               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.87       | 4.34               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.16       | 0.82               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 146.70     | 733.48             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 44.43      | 222.16             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.34       | 1.70               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.57       | 2.84               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 4.28       | 21.40              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 6831.85    | 34159.23           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 1110.74    | 5553.72            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 123.19     | 615.95             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2071.42    | 10357.10           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 16495.91   | 82479.56           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 28.52      | 142.61             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.01      | -0.07              | ug/l  | 3600       |         |

OC ISTD Table

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 527818 | 0.32  | 513001        | 102.9     | 60          | 120         |         |
| ТЪ      | 159 | 1         | 695334 | 0.50  | 679167        | 102.4     | 60          | 120         | 1       |
| In      | 115 | 1         | 248996 | 0.57  | 247939        | 100.4     | 60          | 120         |         |
| Kr      | 83  | 1         | 20     | 33.35 | 30            | 66.7      | 1           | 1000        |         |
| Ge      | 74  | 1         | 40006  | 1.05  | 38549         | 103.8     | 60          | 120         |         |
| Sc      | 45  | 1         | 264891 | 0.28  | 263470        | 100.5     | 60          | 120         |         |
| Li      | 6   | 1         | 12272  | 0.73  | 12234         | 100.3     | 60          | 120         | 1       |

Agilent Technologies Page 254 of 332

Sample Name

460-31717-m-20-b@5

**Data File Name** 

099SMPL.D

DataPath Acq Date Time C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T03:16:42-04:00

Туре

Sample

VialNumber Dilution 3108

Comment

5

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.00       | 0.02               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 0.02       | 0.08               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.03               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.00               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.00       | 0.01               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.33      | -1.63              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.01       | 0.05               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.65       | 13.26              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | -0.04      | -0.20              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.05      | -0.26              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.00       | 0.01               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 0.28       | 1.41               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.02       | 0.08               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.04       | 0.22               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.26       | 1.30               | ug/l  | 3600       |         |
| Ті      | 47  | 45   | 1         | -0.05      | -0.26              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1.88       | 9.40               | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | -32.20     | -161.02            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 0.98       | 4.88               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 0.32       | 1.58               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | -24.49     | -122.45            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 18.24      | 91.21              | ug/l  | 7200       |         |
| Ве      | 9   | 6    | 1         | -0.03      | -0.14              | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 516498 | 0.34  | 513001        | 100.7     | 60          | 120         | <del>                                     </del> |
| Tb      | 159 | 1         | 675232 | 0.88  | 679167        | 99.4      | 60          | 120         | T                                                |
| In      | 115 | 1         | 243894 | 0.59  | 247939        | 98.4      | 60          | 120         |                                                  |
| Kr      | 83  | 1         | 14     | 81.07 | 30            | 48.1      | 1           | 1000        |                                                  |
| Ge      | 74  | 1         | 38032  | 0.26  | 38549         | 98.7      | 60          | 120         |                                                  |
| Sc      | 45  | 1         | 257724 | 0.79  | 263470        | 97.8      | 60          | 120         |                                                  |
| Li      | 6   | 1         | 12185  | 0.81  | 12234         | 99.6      | 60          | 120         | <del>                                     </del> |

# Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

Data File Name

1006CCV.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T03:21:47-04:00

**Acq Date Time** 

6-CCV

Type VialNumber

1301

Dilution

1

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD | Units | CPS         | CPS%RSD | Eve Value | 0/ Doc | 001    | OC Hist | Loc El                                           |
|---------|-----|------|-----------|------------|------|-------|-------------|---------|-----------|--------|--------|---------|--------------------------------------------------|
| Be      | 9   | 6    | 1 1       | 49.00      | 4.33 |       |             |         | Exp Value | %Rec   | QC Low | QC High | QC Flag                                          |
| В       | 11  | 6    |           |            |      | ug/l  | 3930.53     | 4.49    | 50        | 98.0   | 90     | 110     | <u> </u>                                         |
| Na Na   |     |      | 1         | 97.81      | 4.08 | ug/l  | 2345.80     | 3.55    | 100       | 97.8   | 90     | 110     |                                                  |
|         | 23  | 45   | 1         | 4829.84    | 1.07 | ug/l  | 3453356.13  | 0.52    | 5000      | 96.6   | 90     | 110     |                                                  |
| Mg      | 24  | 45   | 1         | 4889.22    | 0.77 | ug/l  | 1732619.75  | 0.20    | 5000      | 97.8   | 90     | 110     |                                                  |
| Al      | 27  | 45   | 1         | 489.52     | 1.27 | ug/l  | 85386.80    | 0.44    | 500       | 97.9   | 90     | 110     |                                                  |
| K       | 39  | 45   | 1         | 4875.68    | 1.41 | ug/l  | 1763373.20  | 0.91    | 5000      | 97.5   | 90     | 110     |                                                  |
| Ca      | 44  | 6    | 1         | 4917.61    | 0.71 | ug/l  | 87217.12    | 0.38    | 5000      | 98.4   | 90     | 110     |                                                  |
| Ti      | 47  | 45   | 1         | 49.12      | 2.18 | ug/l  | 5094.32     | 2.39    | 50        | 98.2   | 90     | 110     |                                                  |
| V       | 51  | 45   | 1         | 49.80      | 0.68 | ug/l  | 139521.79   | 0.51    | 50        | 99.6   | 90     | 110     | 1                                                |
| Cr      | 52  | 45   | 1         | 49.97      | 1.42 | ug/l  | 165899.36   | 0.50    | 50        | 99.9   | 90     | 110     |                                                  |
| Mn      | 55  | 45   | 1         | 499.43     | 0.94 | ug/l  | 1024826.27  | 0.30    | 500       | 99.9   | 90     | 110     |                                                  |
| Fe      | 56  | 45   | 1         | 4979.22    | 1.41 | ug/l  | 12583071.76 | 0.79    | 5000      | 99.6   | 90     | 110     |                                                  |
| Co      | 59  | 45   | 1         | 50.24      | 0.90 | ug/l  | 237670.59   | 0.07    | 50        | 100.5  | 90     | 110     |                                                  |
| Ni      | 60  | 45   | 1         | 48.49      | 0.87 | ug/l  | 63632.79    | 0.64    | 50        | 97.0   | 90     | 110     | <b>†</b>                                         |
| Cu      | 63  | 45   | 1         | 50.58      | 0.95 | ug/l  | 171482.22   | 0.43    | 50        | 101.2  | 90     | 110     | <del> </del>                                     |
| Zn      | 66  | 45   | 1         | 49.73      | 1.81 | ug/l  | 28109.09    | 1.02    | 50        | 99.5   | 90     | 110     | <del>                                     </del> |
| As      | 75  | 74   | 1         | 49.09      | 0.63 | ug/l  | 22313.32    | 0.56    | 50        | 98.2   | 90     | 110     | <del>                                     </del> |
| Se      | 78  | 74   | 1         | 52.02      | 0.86 | ug/l  | 1628.45     | 1.34    | 50        | 104.0  | 90     | 110     |                                                  |
| Sr      | 88  | 115  | 1         | 49.50      | 0.62 | ug/l  | 129904.84   | 0.46    | 50        | 99.0   | 90     | 110     | <del></del>                                      |
| Mo      | 95  | 115  | 1         | 48.52      | 0.91 | ug/l  | 81483.96    | 0.55    | 50        | 97.0   | 90     | 110     | <b></b>                                          |
| Ag      | 107 | 115  | 1         | 50.11      | 0.12 | ug/l  | 253747.67   | 0.68    | 50        | 100.2  | 90     | 110     | <del>                                     </del> |
| Cd      | 111 | 115  | 1         | 49.86      | 1.39 | ug/l  | 38768,92    | 1,28    | 50        | 99.7   | 90     | 110     | <del></del>                                      |
| Sn      | 118 | 115  | 1         | 49.87      | 1.86 | ug/l  | 90327.24    | 1.69    | 50        | 99.7   | 90     | 110     | <del>                                     </del> |
| Sb      | 121 | 115  | . 1       | 49.75      | 0.99 | ug/l  | 124116.53   | 1.08    | 50        | 99.5   | 90     | 110     | <del>                                     </del> |
| Ba      | 137 | 159  | 1         | 49.48      | 1.72 | ug/l  | 45529.92    | 1.68    | 50        | 99.0   | 90     | 110     | $\vdash$                                         |
| TI      | 205 | 209  | 1         | 9.86       | 1.12 | ug/l  | 118737.26   | 1.08    | 10        | 98.6   | 90     | 110     | <del></del>                                      |
| Pb      | 208 | 209  | 1         | 50.04      | 0.73 | ug/l  | 793380.75   | 0.07    | 50        | 100.1  | 90     | 110     | <del> </del>                                     |

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|------|--------|---------|---------|
| Li      | 6   | 1         | 11942  | 0.83  | 12234   | 97.6 | 60     | 120     |         |
| Sc      | 45  | 1         | 258421 | 0.90  | 263470  | 98.1 | 60     | 120     |         |
| Ge      | 74  | 1         | 38419  | 0.56  | 38549   | 99.7 | 60     | 120     |         |
| Kr      | 83  | 1         | 21     | 71.19 | 30      | 70.4 | 1      | 1000    |         |
| În      | 115 | 1         | 241042 | 0.56  | 247939  | 97.2 | 60     | 120     |         |
| Tb      | 159 | 1         | 673841 | 0.92  | 679167  | 99.2 | 60     | 120     |         |
| Bi      | 209 | 1         | 510552 | 0.73  | 513001  | 99.5 | 60     | 120     | 1       |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |



# Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

Data File Name

1016CCB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T03:26:43-04:00

Туре

6-CCB

VialNumber

1302 1

Dilution Comment

MP

Operator ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element  | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|----------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be       | 9   | 6    | 1         | -0.01      | -152.53 | ug/l  | 1.67      | 99.90   | 0.2     |         |
| В        | 11  | 6    | 1         | 1.20       | 33.37   | ug/l  | 35.56     | 27.07   | 20      |         |
| Na       | 23  | 45   | 1         | -33.16     | -8.24   | ug/l  | 160565.72 | 0.81    | 50      |         |
| Mg       | 24  | 45   | 1         | 0.97       | 8.32    | ug/l  | 530.57    | 5.80    | 50      |         |
| Al       | 27  | 45   | 1         | 0.34       | 138.21  | ug/l  | 685.58    | 11.74   | 10      | 1       |
| <u> </u> | 39  | 45   | 1         | -32.39     | -5.81   | ug/l  | 82009.00  | 0.45    | 50      |         |
| Ca       | 44  | 6    | 1         | 0.62       | 123.66  | ug/l  | 240.01    | 5.93    | 50      |         |
| Ti       | 47  | 45   | 1         | -0.04      | -45.62  | ug/l  | 2.22      | 86.60   | 1       |         |
| V        | 51  | 45   | 1         | 0.01       | 164.27  | ug/l  | 504.47    | 11.26   | 1       |         |
| Cr       | 52  | 45   | 1         | -0.02      | -112.74 | ug/l  | 1799.06   | 4.25    | 1       |         |
| Mn       | 55  | 45   | 1         | 0.10       | 25.72   | ug/l  | 255.57    | 21.60   | 2       |         |
| Fe       | 56  | 45   | 1         | 0.99       | 1.80    | ug/l  | 6102.38   | 1.09    | 30      |         |
| Co       | 59  | 45   | 1         | 0.01       | 22.26   | ug/l  | 47.78     | 21.31   | 1       |         |
| Ni       | 60  | 45   | 1         | -0.07      | -48.53  | ug/l  | 108.89    | 41.33   | 1       |         |
| Cu       | 63  | 45   | 1         | -0.11      | -8.15   | ug/l  | 1761.27   | 1.54    | 1       |         |
| Zn       | 66  | 45   | 1         | 0.04       | 195.96  | ug/l  | 276.68    | 14.66   | 4       |         |
| As       | 75  | 74   | 1         | -0.01      | -110.07 | ug/l  | 34.44     | 14.78   | 0.5     |         |
| Se       | 78  | 74   | 1         | 0.14       | 291.63  | ug/l  | 51.11     | 22.90   | 0.5     |         |
| Sr       | 88  | 115  | 1         | 0.01       | 45.75   | ug/l  | 47.78     | 35.12   | 1       |         |
| Мо       | 95  | 115  | 1         | 0.02       | 51.45   | ug/l  | 92.22     | 17.08   | 1       |         |
| Ag       | 107 | 115  | . 1       | 0.01       | 23.77   | ug/l  | 72.23     | 19.22   | 1       | 1       |
| Cd       | 111 | 115  | 1         | 0.02       | 82.59   | ug/l  | 22.22     | 45.85   | 0.5     |         |
| Sn       | 118 | 115  | 1         | 0.03       | 27.04   | ug/l  | 128.89    | 9.79    | 4       |         |
| Sb       | 121 | 115  | 1         | 0.00       | -647.66 | ug/l  | 78.89     | 6.45    | 0.5     |         |
| Ba       | 137 | 159  | 1         | 0.02       | 34.05   | ug/l  | 31.11     | 22.32   | 1       | · ·     |
| П        | 205 | 209  | 1         | 0.01       | 17.21   | ug/l  | 135.56    | 14.82   | 0.2     |         |
| Pb       | 208 | 209  | 1         | 0.02       | 9.53    | ug/l  | 422.24    | 5.98    | 0.3     | l       |

| Element   | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|-----------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| <u>Li</u> | 6   | 1         | 11901  | 0.87  | 12234   | 97.3  | 60     | 120     |         |
| Sc        | 45  | 1         | 255490 | 0.46  | 263470  | 97.0  | 60     | 120     | 1       |
| Ge        | 74  | 1         | 38042  | 0.55  | 38549   | 98.7  | 60     | 120     |         |
| Kr        | 83  | 1         | 11     | 91.66 | 30      | 37.0  | 1      | 1000    |         |
| In        | 115 | 1         | 244323 | 0.68  | 247939  | 98.5  | 60     | 120     |         |
| ТЪ        | 159 | 1         | 674396 | 0.38  | 679167  | 99.3  | 60     | 120     |         |
| Bi        | 209 | 1         | 517412 | 0.69  | 513001  | 100.9 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Sample Name

460-31717-m-21-b@5

Data File Name

102SMPL.D

DataPath Acq Date Time

C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T03:31:49-04:00

Type

Sample

VialNumber Dilution

3109 5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.05               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.04       | 0.19               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.05               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.20      | -0.98              | ug/l  | 450        |         |
| As      | 75  | 74   | 11        | 0.02       | 0.09               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.36       | 6.82               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | -0.02      | -0.12              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.01       | 0.06               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.00       | 0.01               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 0.15       | 0.77               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.02       | 0.12               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.07       | 0.36               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.14       | 0.72               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.02      | -0.10              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 0.76       | 3.78               | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | -28.80     | -143.98            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 0.34       | 1.69               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 0.25       | 1.24               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | -28.24     | -141.22            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 13.93      | 69.67              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.00       | 0.00               | ug/l  | 3600       |         |

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                           |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------------------------------------------------|
| Bi      | 209 | 1         | 522581 | 0.51  | 513001        | 101.9     | 60          | 120         | † <u>`                                    </u>    |
| Тb      | 159 | 1         | 683075 | 0.55  | 679167        | 100.6     | 60          | 120         |                                                   |
| In      | 115 | 1         | 247883 | 0.66  | 247939        | 100.0     | 60          | 120         |                                                   |
| Kr      | 83  | 1         | 19     | 26.96 | 30            | 63.0      | 1           | 1000        |                                                   |
| Ge      | 74  | 1         | 38483  | 0.73  | 38549         | 99.8      | 60          | 120         | <del>†                                     </del> |
| Sc      | 45  | 1         | 258441 | 0.22  | 263470        | 98.1      | 60          | 120         |                                                   |
| Li      | 6   | 1         | 12172  | 0.94  | 12234         | 99.5      | 60          | 120         |                                                   |

Sample Name

460-31762-b-1-a@5

**Data File Name** 

103SMPL.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B

Type

2011-10-08T03:36:53-04:00

VialNumber Dilution

Sample 3110

Comment

5 MP

Operator **ISTDRefDataFileName** 

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**OC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 2.19       | 10.97              | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.02               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 45.17      | 225.83             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 1.02       | 5.10               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.10       | 0.51               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.26       | 1.30               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.02       | 0.08               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.77       | 3.84               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 157.95     | 789.75             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | 0.41       | 2.04               | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.37       | 1.84               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 31.69      | 158.46             | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 3.75       | 18.74              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 2.24       | 11.20              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.13       | 0.64               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 27.10      | 135.51             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 3.46       | 17.32              | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.39       | 1.95               | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 1.28       | 6.40               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.59       | 2.95               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 44485.69   | 222428.43          | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 8280.03    | 41400.17           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 27.58      | 137.91             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 10790.06   | 53950.31           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 20915.07   | 104575.35          | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 34.89      | 174.44             | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.14              | ug/l  | 3600       |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS                 | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|---------------------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 511112              | 0.75  | 513001        | 99.6      | 60          | 120         |         |
| Tb      | 159 | 1         | 689305              | 0.73  | 679167        | 101.5     | 60          | 120         |         |
| In      | 115 | 1         | 2 <del>44</del> 875 | 0.68  | 247939        | 98.8      | 60          | 120         |         |
| Kr      | 83  | 1         | 23                  | 51.52 | 30            | 77.8      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39165               | 1.78  | 38549         | 101.6     | 60          | 120         |         |
| Sc      | 45  | 1         | 259057              | 0.99  | 263470        | 98.3      | 60          | 120         |         |
| Li      | 6   | 1         | 11883               | 1.85  | 12234         | 97.1      | 60          | 120         |         |

Agilent Technologies

Sample Name

460-31936-d-1-a@5

Data File Name

104SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T03:41:53-04:00

Type VialNumber

Sample 3111

Dilution

5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value          | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|---------------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.09                | 0.45               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.00                | 0.01               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 26.87               | 134.34             | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.07                | 0.37               | ug/i  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02                | 0.11               | ug/l  | 3600       | Ì       |
| Cd      | 111 | 115  | 1         | 0.03                | 0.17               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00                | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.20                | 0.99               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 57.10               | 285.50             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.09               | -0.45              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.22                | 1.09               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 10.03               | 50.15              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 0.40                | 2.00               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.28                | 1.38               | ug/l  | 900        |         |
| Со      | 59  | 45   | 1         | 0.05                | 0.27               | ug/l  | 450        | -       |
| Fe      | 56  | 45   | 1         | 191.94              | 959.69             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 40.72               | 203.61             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.04                | 0.21               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.47                | 2.33               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 0.00                | 0.00               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 15458.08            | 77290.41           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 766.70              | 3833.49            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 3.54                | 17.72              | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2977. <del>44</del> | 14887.18           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 10409.98            | 52049.90           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 16.36               | 81.81              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.02               | -0.11              | ug/l  | 3600       |         |

| <del>40 10 10 1</del> | 4010 |           |        |       |               |           |             |             |         |
|-----------------------|------|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Element               | m/z  | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
| Bi                    | 209  | 1         | 521133 | 0.72  | 513001        | 101.6     | 60          | 120         |         |
| Tb                    | 159  | 1         | 691575 | 0.61  | 679167        | 101.8     | 60          | 120         |         |
| In                    | 115  | 1         | 249215 | 1.14  | 247939        | 100.5     | . 60        | 120         |         |
| Kr                    | 83   | 1         | 20     | 16.65 | 30            | 66.7      | 1           | 1000        |         |
| Ge                    | 74   | 1         | 39052  | 0.86  | 38549         | 101.3     | 60          | 120         |         |
| Sc                    | 45   | 1         | 260819 | 0.29  | 263470        | 99.0      | 60          | 120         | 1       |
| Li                    | 6    | 1         | 12098  | 0.80  | 12234         | 98.9      | 60          | 120         |         |

#### Sample Report

Sample Name

460-31936-d-2-a@5

Data File Name

105SMPL.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B

Type

2011-10-08T03:46:56-04:00

VialNumber

Sample

Dilution

3112 5

Comment

MP

Operator **ISTDRefDataFileName** 

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.79       | 3.93               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ba      | 137 | 159  | 1         | 17.43      | 87.14              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.15       | 0.74               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.03       | 0.14               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.06               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.31       | 1.55               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 40.30      | 201.48             | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.09      | -0.47              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.21       | 1.05               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 2.58       | 12.88              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 1.01       | 5.06               | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 0.32       | 1.60               | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.03       | 0.16               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 127.29     | 636.43             | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 22.85      | 114.25             | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.06       | 0.31               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.62       | 3.09               | ug/l  | 3600       |         |
| . Ti    | 47  | 45   | 1         | 0.39       | 1.94               | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 10161.28   | 50806.42           | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 600.94     | 3004.71            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 14.71      | 73.53              | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 2008.12    | 10040.60           | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 7210.63    | 36053.16           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 11.17      | 55.87              | ug/l  | 7200       |         |
| Ве      | 9   | 6    | 1         | -0.02      | -0.11              | ug/I  | 3600       |         |

**OC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag                                          |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|--------------------------------------------------|
| Bi      | 209 | 1         | 520888 | 0.52  | 513001        | 101.5     | 60          | 120         | T -                                              |
| Tb      | 159 | 1         | 689153 | 0.72  | 679167        | 101.5     | 60          | 120         | <del>                                     </del> |
| In      | 115 | 1         | 247707 | 1.01  | 247939        | 99.9      | 60          | 120         | 1                                                |
| Kr      | 83  | 1         | 19     | 53.91 | 30            | 63.0      | 1           | 1000        | 1                                                |
| Ge      | 74  | 1         | 39194  | 0.93  | 38549         | 101.7     | 60          | 120         | 1                                                |
| Sc      | 45  | 1         | 258180 | 0.76  | 263470        | 98.0      | 60          | 120         |                                                  |
| Li      | 6   | 1         | 12443  | 0.93  | 12234         | 101.7     | 60          | 120         |                                                  |

#### Sample Report

Sample Name

460-32006-c-3-b@5

Data File Name

106SMPL.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T03:51:58-04:00

Type

Sample

VialNumber Dilution

3201

Comment Operator

MP

5

**ISTDRefDataFileName** 

004CALB.D

SamplePassFail

**Pass** 

ISTD PassFail

**Pass** 

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.71       | 3.54               | ug/l  | 3600       |         |
| П       | 205 | 209  | 1         | 0.00       | 0.01               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 13.74      | 68.68              | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.02       | 0.11               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.11       | 0.56               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 0.07               | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 0.03               | ug/l  | 180        |         |
| Мо      | 95  | 115  | 1         | 0.04       | 0.20               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 12.64      | 63.20              | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.08      | -0.41              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.09       | 0.46               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 13.31      | 66.56              | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | 171.98     | 859.89             | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | 2.23       | 11.13              | ug/l  | 900        | •       |
| Co      | 59  | 45   | 1         | 0.02       | 0.11               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 16.52      | 82.58              | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.37       | 1.85               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | 0.23       | 1.17               | ug/l  | 900        |         |
| V       | 51  | 45   | 1         | 0.58       | 2.88               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | 3.00       | 15.00              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 1229.67    | 6148.33            | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | 4216.26    | 21081.29           | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 24.80      | 123.99             | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 664.28     | 3321.41            | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | 14625.25   | 73126.26           | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 3.46       | 17.32              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | 0.01       | 0.03               | ug/l  | 3600       |         |

**OC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | %Recovery | Lower Limit | Upper Limit | QC Flag |
|---------|-----|-----------|--------|-------|---------------|-----------|-------------|-------------|---------|
| Bi      | 209 | 1         | 530303 | 0.33  | 513001        | 103.4     | 60          | 120         | 1       |
| Tb      | 159 | 1         | 696939 | 0.54  | 679167        | 102.6     | 60          | 120         |         |
| In      | 115 | 1         | 248843 | 0.38  | 247939        | 100.4     | 60          | 120         |         |
| Kr      | 83  | 1         | 18     | 84.57 | 30            | 59.3      | 1           | 1000        |         |
| Ge      | 74  | 1         | 39390  | 0.77  | 38549         | 102.2     | 60          | 120         |         |
| Sc      | 45  | 1         | 261708 | 0.47  | 263470        | 99.3      | 60          | 120         |         |
| Li      | 6   | 1         | 12408  | 1.25  | 12234         | 101.4     | 60          | 120         |         |

#### Sample Report

Sample Name

460-31796-d-14-b@5

Data File Name

107SMPL.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T03:57:00-04:00

Type VialNumber Sample

Dilution

3202 5

Comment Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | FinalConcentration | Units | High Value | QC Flag |
|---------|-----|------|-----------|------------|--------------------|-------|------------|---------|
| Pb      | 208 | 209  | 1         | 0.00       | 0.02               | ug/l  | 3600       |         |
| TI      | 205 | 209  | 1         | 0.00       | 0.00               | ug/l  | 720        |         |
| Ва      | 137 | 159  | 1         | 0.04       | 0.20               | ug/l  | 3600       |         |
| Sb      | 121 | 115  | 1         | 0.01       | 0.07               | ug/l  | 3600       |         |
| Sn      | 118 | 115  | 1         | 0.02       | 0.10               | ug/l  | 3600       |         |
| Cd      | 111 | 115  | 1         | 0.00       | -0.02              | ug/l  | 1800       |         |
| Ag      | 107 | 115  | 1         | 0.00       | 0.01               | ·ug/l | 180        |         |
| Мо      | 95  | 115  | 1         | 0.01       | 0.04               | ug/l  | 3600       |         |
| Sr      | 88  | 115  | 1         | 0.00       | 0.01               | ug/l  | 3600       |         |
| Se      | 78  | 74   | 1         | -0.34      | -1.69              | ug/l  | 450        |         |
| As      | 75  | 74   | 1         | 0.04       | 0.22               | ug/l  | 1800       |         |
| Zn      | 66  | 45   | 1         | 1.73       | 8.67               | ug/l  | 450        |         |
| Cu      | 63  | 45   | 1         | -0.01      | -0.05              | ug/l  | 450        |         |
| Ni      | 60  | 45   | 1         | -0.02      | -0.11              | ug/l  | 900        |         |
| Co      | 59  | 45   | 1         | 0.00       | 0.01               | ug/l  | 450        |         |
| Fe      | 56  | 45   | 1         | 0.38       | 1.90               | ug/l  | 180000     |         |
| Mn      | 55  | 45   | 1         | 0.02       | 0.10               | ug/l  | 9000       |         |
| Cr      | 52  | 45   | 1         | -0.03      | -0.13              | ug/l  | 900        |         |
| ٧       | 51  | 45   | 1         | 0.44       | 2.22               | ug/l  | 3600       |         |
| Ti      | 47  | 45   | 1         | -0.03      | -0.16              | ug/l  | 3600       |         |
| Ca      | 44  | 6    | 1         | 2.54       | 12.72              | ug/l  | 90000      |         |
| K       | 39  | 45   | 1         | -34.24     | -171.20            | ug/l  | 360000     |         |
| Al      | 27  | 45   | 1         | 1.00       | 4.98               | ug/l  | 36000      |         |
| Mg      | 24  | 45   | 1         | 0.32       | 1.61               | ug/l  | 180000     |         |
| Na      | 23  | 45   | 1         | -33.64     | -168.20            | ug/l  | 360000     |         |
| В       | 11  | 6    | 1         | 10.98      | 54.90              | ug/l  | 7200       |         |
| Be      | 9   | 6    | 1         | -0.03      | -0.14              | ug/l  | 3600       |         |

QC ISTD Table

| Element | m/z | Tune Step | CPS    | %RSD  | Reference CPS | 0/ Danes  | Lauran Lineta | 11          | T00 FI  |
|---------|-----|-----------|--------|-------|---------------|-----------|---------------|-------------|---------|
|         |     | Tune Step | CFS    | 70KSD | Reference CPS | %Recovery | Lower Limit   | Upper Limit | QC Flag |
| Bi      | 209 | 1         | 532772 | 0.31  | 513001        | 103.9     | 60            | 120         |         |
| Tb      | 159 | 1         | 695246 | 0.12  | 679167        | 102.4     | 60            | 120         |         |
| In      | 115 | 1         | 250854 | 0.12  | 247939        | 101.2     | 60            | 120         |         |
| Kr      | 83  | 1         | 26     | 7.55  | 30            | 85.2      | 1             | 1000        |         |
| Ge      | 74  | 1         | 38978  | 0.45  | 38549         | 101.1     | 60            | 120         |         |
| Sc      | 45  | 1         | 261721 | 0.36  | 263470        | 99.3      | 60            | 120         |         |
| Li      | 6   | 1         | 12408  | 2.70  | 12234         | 101.4     | 60            | 120         |         |

Page 263 of 332 Printed at: 3:58 AM on: 10/8/2011 10/21/2011

#### Continuing Calibration Verification (CCV) - US EPA Method 6020

Sample Name

CCV 1187191

**Data File Name** 

1086CCV.D

DataPath **Acq Date Time**  C:\ICPMH\1\DATA\11J07t00.B 2011-10-08T04:02:05-04:00

Туре

6-CCV

VialNumber

1301

Dilution Comment 1

Operator

MP

ISTDRefDataFileName SamplePassFail

004CALB.D

Pass

ISTD PassFail

**Pass** 

OC Analyte Table

| Element | m/z | ISTD | Tune Step   | Meas Value | %RSD | Units | CPS         | CDCW/DCD | From Male: | 0/ 0- | 061-   | 00.111-1 | Tee ::                                           |
|---------|-----|------|-------------|------------|------|-------|-------------|----------|------------|-------|--------|----------|--------------------------------------------------|
| Be      | 9   |      | <del></del> |            |      |       |             | CPS%RSD  | Exp Value  | %Rec  | QC Low | QC High  | QC Flag                                          |
|         |     | 6    | 1           | 49.33      | 2.25 | ug/l  | 4016.66     | 1.82     | 50         | 98.7  | 90     | 110      |                                                  |
| В       | 11  | - 6  | 1           | 97.61      | 6.05 | ug/l  | 2376.93     | 6.00     | 100        | 97.6  | 90     | 110      |                                                  |
| Na      | 23  | 45   | 1           | 4763.44    | 0.50 | ug/l  | 3452459.39  | 0.45     | 5000       | 95.3  | 90     | 110      |                                                  |
| Mg      | 24  | 45   | 1           | 4777.34    | 0.56 | ug/l  | 1714830.36  | 0.36     | 5000       | 95.5  | 90     | 110      |                                                  |
| Al      | 27  | 45   | 1           | 483.86     | 0.57 | ug/l  | 85497.78    | 0.39     | 500        | 96.8  | 90     | 110      |                                                  |
| K       | 39  | 45   | 1           | 4808.12    | 0.67 | ug/l  | 1762761.55  | 0.86     | 5000       | 96.2  | 90     | 110      |                                                  |
| Ca      | 44  | 6    | 1 .         | 4848.89    | 0.97 | ug/l  | 87312.64    | 0.60     | 5000       | 97.0  | 90     | 110      |                                                  |
| Ti      | 47  | 45   | 1           | 49.06      | 2.79 | ug/l  | 5153.23     | 2.67     | 50         | 98.1  | 90     | 110      | 1                                                |
| V       | 51  | 45   | 1           | 49.58      | 0.63 | ug/l  | 140708.79   | 0.83     | 50         | 99.2  | 90     | 110      |                                                  |
| Сг      | 52  | 45   | 1           | 49.63      | 0.57 | ug/l  | 166906.01   | 0.83     | 50         | 99.3  | 90     | 110      |                                                  |
| Mn      | 55  | 45   | 1           | 492.00     | 0.59 | ug/l  | 1022645.87  | 0.67     | 500        | 98.4  | 90     | 110      |                                                  |
| Fe      | 56  | 45   | 1           | 4956.02    | 1.01 | ug/l  | 12686765.23 | 1.23     | 5000       | 99.1  | 90     | 110      |                                                  |
| Co      | 59  | 45   | 1           | 50.19      | 0.25 | ug/l  | 240491.46   | 0.32     | 50         | 100.4 | 90     | 110      | t                                                |
| Ni      | 60  | 45   | 1           | 48.57      | 0.65 | ug/l  | 64552.23    | 0.66     | 50         | 97.1  | 90     | 110      | <b>†</b>                                         |
| Cu      | 63  | 45   | 1           | 50.67      | 0.46 | ug/l  | 173977.79   | 0.22     | 50         | 101.3 | 90     | 110      |                                                  |
| Zn      | 66  | 45   | 1           | 49.21      | 0.82 | ug/l  | 28175.83    | 0.78     | 50         | 98.4  | 90     | 110      | <del>                                     </del> |
| As      | 75  | 74   | 1           | 48.67      | 1.92 | ug/I  | 22529.72    | 1.87     | 50         | 97.3  | 90     | 110      | <del>                                     </del> |
| Se      | 78  | 74   | 1           | 51.58      | 1.10 | ug/l  | 1644.56     | 1.02     | 50         | 103.2 | 90     | 110      |                                                  |
| Sr      | 88  | 115  | 1           | 48.44      | 0.37 | ug/l  | 131075.29   | 0.59     | 50         | 96.9  | 90     | 110      | <u> </u>                                         |
| Mo      | 95  | 115  | .1          | 47.91      | 1.07 | ug/l  | 82970.53    | 1.34     | 50         | 95.8  | 90     | 110      | † · · · · ·                                      |
| Ag      | 107 | 115  | 1           | 49.40      | 0.14 | ug/l  | 257898.56   | 0.28     | 50         | 98.8  | 90     | 110      |                                                  |
| Cd      | 111 | 115  | 1           | 48.63      | 1.34 | ug/l  | 38990.62    | 1.10     | 50         | 97.3  | 90     | 110      | <del></del>                                      |
| Sn      | 118 | 115  | 1           | 49.02      | 0.49 | ug/I  | 91537.51    | 0.67     | 50         | 98.0  | 90     | 110      | <del>                                     </del> |
| Sb      | 121 | 115  | 1           | 49.07      | 0.57 | ug/l  | 126228.27   | 0.66     | 50         | 98.1  | 90     | 110      | <del> </del>                                     |
| Ba      | 137 | 159  | 1           | 49.04      | 1.33 | ug/l  | 46360.22    | 2.14     | 50         | 98.1  | 90     | 110      | <del> </del>                                     |
| П       | 205 | 209  | 1           | 9.72       | 0.35 | ug/l  | 120883.74   | 0.61     | 10         | 97.2  | 90     | 110      | <del>                                     </del> |
| Pb      | 208 | 209  | 1           | 49.50      | 0.45 | ug/l  | 811067.12   | 0.76     | 50         | 99.0  | 90     | 110      | <del>                                     </del> |

QC ISTD Table

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 12123  | 0.44  | 12234   | 99.1  | 60     | 120     |         |
| Sc      | 45  | 1         | 261747 | 0.26  | 263470  | 99.3  | 60     | 120     |         |
| Ge      | 74  | 1         | 39123  | 0.25  | 38549   | 101.5 | 60     | 120     |         |
| Kr      | 83  | 1         | 23     | 42.86 | 30      | 77.8  | 1      | 1000    |         |
| In      | 115 | 1         | 248513 | 0.28  | 247939  | 100.2 | 60     | 120     |         |
| Tb      | 159 | 1         | 692220 | 0.81  | 679167  | 101.9 | 60     | 120     |         |
| Bi      | 209 | 1         | 527594 | 0.75  | 513001  | 102.8 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

#### Continuing Calibration Blank (CCB) - US EPA Method 6020

Sample Name

CCB

**Data File Name** 

1096CCB.D

DataPath

C:\ICPMH\1\DATA\11J07t00.B

**Acq Date Time** 

2011-10-08T04:07:01-04:00

Туре

**6-CCB** 

VialNumber

1302

Dilution

1

Comment

Operator

MP

ISTDRefDataFileName

004CALB.D

SamplePassFail

Pass

ISTD PassFail

Pass

**QC Analyte Table** 

| Element | m/z | ISTD | Tune Step | Meas Value | %RSD    | Units | CPS       | CPS%RSD | QC High | QC Flag |
|---------|-----|------|-----------|------------|---------|-------|-----------|---------|---------|---------|
| Be      | 9   | 6    | 1         | -0.01      | -148.07 | ug/l  | 2.22      | 43.11   | 0.2     |         |
| В       | 11  | 6    | 1         | 0.57       | 48.75   | ug/l  | 21.11     | 32.88   | 20      |         |
| Na      | 23  | 45   | 1         | -40.37     | -3.02   | ug/l  | 157961.00 | 0.08    | 50      |         |
| Mg      | 24  | 45   | 1         | 1.15       | 13.48   | ug/l  | 599.47    | 8.78    | 50      |         |
| Al      | 27  | 45   | 1         | 0.35       | 58.28   | ug/l  | 697.25    | 5.63    | 10      |         |
| K       | 39  | 45   | 1         | -37.06     | -0.21   | ug/l  | 81575.82  | 0.53    | 50      |         |
| Ca      | 44  | 6    | 1         | 0.84       | 70.24   | ug/l  | 251.12    | 4.42    | 50      |         |
| П       | 47  | 45   | 1         | -0.01      | -398.93 | ug/l  | 5.55      | 69.34   | 1       | 1       |
| ٧       | 51  | 45   | 1         | 0.16       | 19.87   | ug/l  | 913.39    | 9.55    | 1       |         |
| Cr      | 52  | 45   | 1         | -0.03      | -40.95  | ug/l  | 1781.27   | 3.00    | 1       |         |
| Mn      | 55  | 45   | 1         | 0.12       | 10.50   | ug/l  | 293.35    | 8.88    | 2       |         |
| Fe      | 56  | 45   | 1         | 1.29       | 1.61    | ug/i  | 6939.40   | 1.17    | 30      |         |
| Co      | 59  | 45   | 1         | 0.01       | 59.65   | ug/l  | 58.89     | 56.98   | 1       |         |
| Ni      | 60  | 45   | 1         | -0.06      | -20.01  | ug/l  | 122.23    | 13.73   | 1       |         |
| Cu      | 63  | 45   | 1         | -0.14      | -2.04   | ug/l  | 1677.92   | 0.50    | 1       |         |
| Zn      | 66  | 45   | 1         | 0.02       | 273.70  | ug/l  | 273.34    | 12.85   | 4       |         |
| As      | 75  | 74   | 1         | 0.02       | 68.17   | ug/l  | 46.67     | 9.44    | 0.5     |         |
| Se      | 78  | 74   | 1         | -0.13      | -154.83 | ug/l  | 43.89     | 13.34   | 0.5     |         |
| Sr      | 88  | 115  | 1         | 0.01       | 41.13   | ug/l  | 47.78     | 31.47   | 1       |         |
| Мо      | 95  | 115  | 1         | 0.01       | 6.44    | ug/l  | 87.78     | 2.19    | 1       |         |
| Ag      | 107 | 115  | 1         | 0.01       | 21.66   | ug/l  | 90.00     | 18.52   | 1       |         |
| Cd      | 111 | 115  | 1         | 0.01       | 57.42   | ug/l  | 18.89     | 26.96   | 0.5     |         |
| Sn      | 118 | 115  | 1         | 0.02       | 27.45   | ug/l  | 125.56    | 9.32    | 4       |         |
| Sb      | 121 | 115  | 1         | 0.00       | 87.81   | ug/l  | 92.23     | 10.44   | 0.5     | 1       |
| Ва      | 137 | 159  | 1         | 0.02       | 70.90   | ug/l  | 27.78     | 42.13   | 1       | Ì       |
| П       | 205 | 209  | 1         | 0.01       | 27.70   | ug/l  | 156.67    | 25.09   | 0.2     |         |
| Pb      | 208 | 209  | 1         | 0.02       | 14.23   | ug/l  | 438.91    | 9.68    | 0.3     |         |

**QC ISTD Table** 

| Element | m/z | Tune Step | CPS    | %RSD  | Ref CPS | %Rec  | QC Low | QC High | QC Flag |
|---------|-----|-----------|--------|-------|---------|-------|--------|---------|---------|
| Li      | 6   | 1         | 12253  | 0.85  | 12234   | 100.2 | 60     | 120     |         |
| Sc      | 45  | 1         | 259134 | 0.54  | 263470  | 98.4  | 60     | 120     |         |
| Ge      | 74  | 1         | 38745  | 1.01  | 38549   | 100.5 | 60     | 120     |         |
| Kr      | 83  | 1         | 12     | 41.65 | 30      | 40.7  | 1      | 1000    |         |
| In      | 115 | 1         | 248714 | 0.36  | 247939  | 100.3 | 60     | 120     |         |
| Tb      | 159 | 1         | 683718 | 0.62  | 679167  | 100.7 | 60     | 120     |         |
| Bi      | 209 | 1         | 527129 | 0.42  | 513001  | 102.8 | 60     | 120     |         |

| TuneStep | TuneFile |
|----------|----------|
| 1        | helium.u |

Folder: 88100HG1
Protocol: SW846A Page 1999

|                   |                              |                               |                                       | otocol:                                  |                     | t. d.                 |      |                  | 5-                    |
|-------------------|------------------------------|-------------------------------|---------------------------------------|------------------------------------------|---------------------|-----------------------|------|------------------|-----------------------|
| Line              |                              | Units                         | SD/RSD                                |                                          | REPORT*:<br>2       |                       | 4    | 5                |                       |
| ***               | Standard:                    | 1 Rep: 1                      |                                       | Seq:                                     | 10                  | 21:03:20              | 03 C | Oct 11           | HG                    |
| Hg                | .000                         | ppb                           | -82                                   |                                          |                     |                       |      |                  |                       |
| ***               | Standard:                    | 2 Rep: 1                      |                                       | Seq:                                     | 11                  | 21:05:06              | 03 C | Oct 11           | =<br>HG               |
| Hg                | .100                         | ppb                           | 8797                                  |                                          |                     |                       |      |                  | =                     |
| ***               | Standard:                    | 3 Rep: 1                      |                                       | Seq:                                     | 12                  | 21:06:52              | 03 0 | Oct 11           |                       |
| Hg                | 1.00                         | ppb                           | 42987                                 |                                          |                     |                       |      |                  | _                     |
| ***               | Standard:                    | 4 Rep: 1                      |                                       | Seq:                                     | 13                  | 21:08:39              | 03 C | Oct 11           | =<br>HG               |
| Hg                | 2.00                         | ppb                           | 81405                                 |                                          |                     |                       |      |                  | _                     |
| ***               | Standard:                    | 5 Rep: 1                      |                                       | Seq:                                     | 14                  | 21:10:29              | 03 C | Oct 11           | =<br>HG               |
| Hg                | 5.00                         | ppb                           | 192289                                |                                          |                     |                       |      |                  | _                     |
| ***               | Standard:                    | 6 Rep: 1                      |                                       | Seq:                                     | 15                  | 21:12:16              | 03 0 | Oct 11           | =<br>HG               |
| Hg                | 10.0                         | ppb                           | 376877                                |                                          |                     |                       |      |                  | _                     |
| ***<br>Line<br>Hg | Check Star<br>e Flag %1<br>9 | ndard: 3<br>Rcv. Fou<br>8.0 4 | Ck3AICV<br>und True<br>.90 5.00       | Seq:<br>Units<br>ppb                     | 16<br>SD/I          | 21:14:03<br>RSD<br>00 | 03 0 | Oct 11           |                       |
| Line              | e Flag F                     | ound Range                    | CklICB/CCB<br>e(+/-) Units<br>200 ppb | s S                                      | D/RSD               | 21:15:47              | 03 0 | Oct 11           |                       |
| ***               | Sample ID                    | :                             | 460                                   | Seq:                                     | 18                  | 21:17:31              | 03 0 | Oct 11           | =<br>HG               |
| Hg                | 056                          | ppb                           | mb 460-                               | -88100/1<br>056                          | 0-a                 |                       |      |                  | =                     |
|                   | =======<br>Sample ID         |                               | ========<br>460                       |                                          |                     | ========<br>21:19:15  |      |                  | ======<br>HG          |
| Hg                | 5.15                         | ppb                           | -88100,<br>.000                       |                                          |                     |                       |      |                  | _                     |
| ====              | =======<br>Sample ID         |                               | =======                               |                                          |                     | ========<br>21:21:00  | na c | ======<br>Oat 11 | =======<br>uc         |
|                   | _                            |                               | 460-318<br>.000                       | 882-f-16                                 |                     | 21.21.00              | 03 0 | )CC 11           | 11G                   |
|                   |                              |                               | Pro                                   | otocol:                                  |                     |                       |      |                  | =<br>Page 1999        |
| Line              | e Conc.                      | Units                         | SD/RSD                                |                                          | REPORT*:            | * *<br>3              | 4    | 5                |                       |
| ***               | Sample ID                    | :                             |                                       | Seq:                                     | 21                  | 21:23:09              | 03 0 | Oct 11           | HG                    |
| Нд                | .342                         | ppb                           | 460-318<br>.000                       |                                          | -b du               |                       |      |                  |                       |
| ***               | Sample ID                    | :                             | 460-318                               | <b>Page<sup>Seg:</sup><br/>882-f-1</b> 6 | of <sup>2</sup> 332 | 21:25:38              | 03 0 | Oct 11           | =<br>HG<br>10/21/2011 |

| Hg 1.95 ppb                              | .000                 | 1.95                         |                |           |                |
|------------------------------------------|----------------------|------------------------------|----------------|-----------|----------------|
| *** Sample ID:                           | 460 21               | Seq: 23<br>1791-a-1-a        | 21:27:38       | 03 Oct 13 | =<br>1 HG      |
| Hg .002 ppb                              |                      |                              |                |           | =              |
| *** Sample ID:                           |                      | Seq: 24<br>1791-a-2-a        | 21:29:21       | 03 Oct 13 |                |
| Hg .206 ppb                              | .000                 |                              |                |           | =              |
| *** Sample ID:                           | 460-31               | Seq: 25<br>1791-a-3-a        | 21:31:27       | 03 Oct 13 | l HG           |
| Hg 2.79 ppb                              | .000                 |                              |                |           | =              |
| *** Sample ID:                           |                      | L850-b-4−e                   | 21:33:24       | 03 Oct 1  | l HG           |
| <pre>Hg006 ppb  *** Sample ID:</pre>     |                      | 006<br>Seq: 27               | 21.25.20       | 02 Oat 1  | =<br>1 HG      |
| Hg038 ppb                                | 460-31               | L654-d-1−c                   | 21.33.20       | 03 000 1. | i ng           |
| *** Check Standard:                      |                      |                              | 21:37:16       | 03 Oct 13 | =<br>1 HG      |
| Line Flag %Rcv.<br>Hg 105.               | Found True 5.27 5.00 | e Units<br>) ppb             | SD/RSD<br>.000 |           |                |
| *** Check Standard:<br>Line Flag Found R | 1 CkliCB/CCE         | 3 Seq: 29                    | 21:39:01       | 03 Oct 13 | =<br>1 HG      |
| Hg124                                    | .200 ppk             | .000                         | ,              |           | =              |
| *** Sample ID:                           | 460-31               | Seq: 30<br>1654-c-2-c        | 21:40:56       | 03 Oct 13 | 1 HG           |
| Hg .004 ppb                              | .000                 |                              |                |           | =              |
| *** Sample ID:                           |                      | Seq: 31<br>1896-a-7-b        | 21:42:55       | 03 Oct 13 | l HG           |
| Hg 1.84 ppb                              | .000                 |                              | 01.44.40       | 02 0 1    | =              |
| *** Sample ID: Hg 2.10 ppb               |                      | Seq: 32<br>1896-a-14-b       | 21:44:40       | 03 Oct 1  | l HG           |
| ng 2.10 ppp                              |                      | 2.10<br>older: 88100         | HG1            |           | =<br>Page 1999 |
|                                          | Pr                   | cotocol: SW846 POST-RUN REPO | SΑ             |           | rage 1999      |
| Line Conc. Units                         |                      |                              | 3              | 4         | 5              |
| *** Sample ID:                           |                      |                              | 21:46:24       | 03 Oct 13 | l HG           |
| Hg 4.14 ppb                              |                      | 1530-a-17-c<br>4.14          |                |           |                |
| *** Sample ID:                           | 460_21               | Seq: 34<br>L530-a-18-c       | 21:48:40       | 03 Oct 13 | =<br>1 HG      |
| Hg .196 ppb                              |                      |                              |                |           | =              |
| *** Sample ID:                           | 460-31               | Seq: 35<br>1866-g-1-a        | 21:50:24       | 03 Oct 13 |                |
| Hg .129 ppb                              |                      |                              |                |           | =              |
| *** Sample ID:                           |                      | 1876-a-1-a                   | 21:52:10       | 03 Oct 13 | l HG           |
| Hg .055 ppb                              | .000                 | Page 267 of 33               | 2              |           | 10/21/2011     |

| *** Sample ID:                                                                                                                                                                                 | 460-31876                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 | 21:54:01                                        | 03 Oct                                 | 11                   | HG                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------|----------------------|-----------------------------------|
| Hg .041 ppb                                                                                                                                                                                    | .000 .0                                                                                                                                                                                | 041                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                        |                      | =                                 |
| *** Sample ID:                                                                                                                                                                                 | 460-31876                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 | 21:55:46                                        | 03 Oct                                 | 11                   | HG                                |
| Hg .009 ppb                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                        |                      | _                                 |
| *** Sample ID:                                                                                                                                                                                 | 460-31882                                                                                                                                                                              | 2-e-15-a                                                                                                                                                                                                                                                                                                                                                                        | 21:57:42                                        | 03 Oct                                 | 11                   | HG                                |
| Hg 3.29 ppb                                                                                                                                                                                    |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                        |                      | =                                 |
| *** Check Standard:<br>Line Flag %Rcv.<br>Hg 106.                                                                                                                                              | 2 Ck2ACCV<br>Found True U<br>5.31 5.00                                                                                                                                                 | Seq: 40<br>Units<br>ppb                                                                                                                                                                                                                                                                                                                                                         | 21:59:37<br>SD/RSD<br>.000                      | 03 Oct                                 | 11                   | HG =                              |
| *** Check Standard:<br>Line Flag Found Ra<br>Hg068                                                                                                                                             | nge(+/-) Units                                                                                                                                                                         | SD/RSI                                                                                                                                                                                                                                                                                                                                                                          |                                                 | 03 Oct                                 | 11                   | HG                                |
| *** Sample ID:                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 | 22:03:11                                        | 03 Oct                                 | 11                   | HG                                |
| Hg .196 ppb                                                                                                                                                                                    | 460-31882<br>.000 .1                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                        |                      |                                   |
| *** Sample ID:                                                                                                                                                                                 |                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                               | 22:05:09                                        | 03 Oct                                 | 11                   | =<br>HG                           |
| Hg .207 ppb                                                                                                                                                                                    | 460-31882<br>.000 .2                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                        |                      |                                   |
| *** Sample ID:                                                                                                                                                                                 |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 | 22:06:54                                        | 03 Oct                                 | 11                   | =<br>HG                           |
| Hg .161 ppb                                                                                                                                                                                    | 460-31882<br>.000 .1                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                        |                      |                                   |
|                                                                                                                                                                                                |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                        |                      |                                   |
|                                                                                                                                                                                                | Folde                                                                                                                                                                                  | er: 88100                                                                                                                                                                                                                                                                                                                                                                       | )HG1                                            |                                        |                      | =<br>Page 1999                    |
|                                                                                                                                                                                                | Proto                                                                                                                                                                                  | er: 88100<br>ocol: SW846                                                                                                                                                                                                                                                                                                                                                        | 5A                                              |                                        |                      | Page 1999                         |
| Line Conc. Units                                                                                                                                                                               | Proto<br>***POS                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                 | 5A                                              | 4                                      | 5                    | =<br>Page 1999                    |
| Line Conc. Units* *** Sample ID:                                                                                                                                                               | Proto<br>***POS<br>SD/RSD                                                                                                                                                              | ocol: SW846 ST-RUN REPO 1 2 Seq: 45                                                                                                                                                                                                                                                                                                                                             | 5A<br>DRT***<br>3<br>                           |                                        |                      |                                   |
|                                                                                                                                                                                                | Proto<br>***POS<br>SD/RSD<br>                                                                                                                                                          | ocol: SW846 ST-RUN REPO 1 2 Seq: 45                                                                                                                                                                                                                                                                                                                                             | 5A<br>DRT***<br>3<br>                           |                                        |                      | HG                                |
| *** Sample ID:                                                                                                                                                                                 | Proto<br>***POS<br>SD/RSD<br>                                                                                                                                                          | ST-RUN REPO<br>1 2<br><br>Seq: 45<br>2-d-34-a<br>198<br>Seq: 46                                                                                                                                                                                                                                                                                                                 | 5A<br>DRT***<br>3<br>                           | 03 Oct                                 | 11                   | HG =                              |
| *** Sample ID: Hg .198 ppb                                                                                                                                                                     | Proto<br>***POS<br>SD/RSD<br>                                                                                                                                                          | Seq: 46 1882-f-16-a                                                                                                                                                                                                                                                                                                                                                             | 5A<br>DRT***<br>3<br>                           | 03 Oct                                 | 11                   | HG =                              |
| *** Sample ID:  Hg .198 ppb  *** Sample ID:                                                                                                                                                    | Proto<br>***POS<br>SD/RSD<br>                                                                                                                                                          | Seq: 45 Seq: 46 Seq: 46 Seq: 46 Seq: 46 Seq: 46 Seq: 46                                                                                                                                                                                                                                                                                                                         | 5A<br>DRT***<br>3<br>                           | 03 Oct                                 | 11                   | HG = HG                           |
| *** Sample ID:  Hg .198 ppb  *** Sample ID:  Hg131 ppb                                                                                                                                         | Proto<br>***POS<br>SD/RSD<br>                                                                                                                                                          | Seq: 46 1882-f-16-a 1882-f-16-a                                                                                                                                                                                                                                                                                                                                                 | 5A<br>DRT***<br>3<br>                           | 03 Oct                                 | 11                   | HG = HG                           |
| *** Sample ID:  Hg .198 ppb  *** Sample ID:  Hg131 ppb  *** Sample ID:  Hg116 ppb  *** Check Standard: Line Flag %Rcv.                                                                         | Proto<br>***POS<br>SD/RSD<br>                                                                                                                                                          | Seq: 45 Seq: 46 1882-f-16-a 116 Seq: 48                                                                                                                                                                                                                                                                                                                                         | 22:12:12 22:13:58 SD/RSD                        | 03 Oct 03 Oct                          | 11<br>11<br>11       | HG = HG = HG                      |
| *** Sample ID:  Hg .198 ppb  *** Sample ID:  Hg131 ppb  *** Sample ID:  Hg116 ppb  *** Check Standard: Line Flag %Rcv.                                                                         | Proto<br>***POS<br>SD/RSD<br>460-31882<br>.000 .1<br>SD 460-31<br>.0001<br>SD 460-31<br>.0001<br>2 Ck2ACCV<br>Found True U<br>5.28 5.00<br>1 Ck1ICB/CCB                                | Scol: SW846 ST-RUN REPO  1 2 Seq: 45 2-d-34-a 198 Seq: 46 1882-f-16-a 131 Seq: 47 1882-f-16-a 116 Seq: 48 Units ppb Seq: 49                                                                                                                                                                                                                                                     | 22:10:27 22:12:12 22:13:58 SD/RSD .000 22:15:43 | 03 Oct 03 Oct 03 Oct                   | 11<br>11<br>11       | HG = HG = HG                      |
| *** Sample ID:  Hg .198 ppb  *** Sample ID:  Hg131 ppb  *** Sample ID:  Hg116 ppb  *** Check Standard: Line Flag %Rcv. Hg 106.  *** Check Standard:                                            | Proto<br>***POS<br>SD/RSD<br>.000 .1<br>SD 460-31<br>.0001<br>SD 460-31<br>.0001<br>2 Ck2ACCV<br>Found True U<br>5.28 5.00<br>1 Ck1ICB/CCB<br>inge(+/-) Units<br>.200 ppb              | Seq: 45 Seq: 45 Seq: 46 1882-f-16-a 131 Seq: 47 1882-f-16-a 116 Seq: 48 Units ppb Seq: 49 SD/RSI .000 Seq: 50                                                                                                                                                                                                                                                                   | 22:10:27 22:12:12 22:13:58 SD/RSD .000 22:15:43 | 03 Oct  03 Oct  03 Oct  03 Oct         | 11<br>11<br>11<br>11 | HG = HG = HG HG = HG              |
| *** Sample ID:  Hg .198 ppb  *** Sample ID:  Hg131 ppb  *** Sample ID:  Hg116 ppb  *** Check Standard: Line Flag %Rcv. Hg 106.  *** Check Standard: Line Flag Found Rand Hg030                 | Proto<br>***POS<br>SD/RSD<br>460-31882<br>.000 .1<br>SD 460-31<br>.0001<br>SD 460-31<br>.0001<br>2 Ck2ACCV<br>Found True U<br>5.28 5.00<br>1 Ck1ICB/CCB<br>inge(+/-) Units<br>.200 ppb | Seq: 45 Seq: 45 Seq: 46 Seq: 46 Seq: 46 Seq: 46 Seq: 47 Seq: 47 Seq: 47 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 48 Seq: 49 Seq: 50 Seq: 50 Seq: 50 | 22:10:27 22:12:12 22:13:58 SD/RSD .000 22:15:43 | 03 Oct  03 Oct  03 Oct  03 Oct         | 11<br>11<br>11<br>11 | HG = HG = HG HG = HG              |
| *** Sample ID:  Hg .198 ppb  *** Sample ID:  Hg131 ppb  *** Sample ID:  Hg116 ppb  *** Check Standard: Line Flag %Rcv. Hg 106.  *** Check Standard: Line Flag Found Rame Hg030  *** Sample ID: | Proto ***POS SD/RSD  460-31882 .000 .1  SD 460-31 .0001  SD 460-31 .0001  2 Ck2ACCV Found True to 5.28 5.00  1 Ck1ICB/CCB inge(+/-) Units .200 ppb  mb 460-88 .0000                    | Seq: 45 Seq: 46 1882-f-16-a 131 Seq: 47 1882-f-16-a 116 Seq: 48 Units ppb Seq: 49 SD/RSI .000 Seq: 50 8101/10-a 018                                                                                                                                                                                                                                                             | 22:10:27 22:12:12 22:13:58 SD/RSD .000 22:15:43 | 03 Oct  03 Oct  03 Oct  03 Oct  03 Oct | 11 11 11 11 11       | HG = HG = HG HG HG = HG = HG = HG |

|      |                | ppb      | .000                                 |                                     |                           |                            |       |     |       |       | =         |
|------|----------------|----------|--------------------------------------|-------------------------------------|---------------------------|----------------------------|-------|-----|-------|-------|-----------|
| ***  | Sample         | ID:      |                                      | Seq:<br>-31882-h-72                 |                           | 22:21:05                   | 03    | Oct | 11    | HG    |           |
|      | Sample         |          |                                      | Seq:<br>-31882-h-72<br>011          |                           | 22:22:50                   | 03    | Oct | 11    | HG    | =         |
| ***  | Sample         |          | 460-                                 |                                     |                           | 22:24:35                   | 03    | Oct | 11    | HG    | =         |
| ***  | Sample         |          | 460-                                 |                                     |                           | 22:26:35                   | 03    | Oct | 11    | HG    | =         |
|      |                |          | ÷.                                   | Folder:<br>Protocol:<br>***POST-RUN | SW846                     | A                          |       |     |       | Page  | =<br>1999 |
| Line | e Conc         | c. Units | SD/RSD                               | 1<br>                               | 2                         | 3                          | 4<br> |     | 5<br> |       |           |
|      | Sample         |          | 460-                                 | Seq:<br>-31882-e-36<br>030          |                           | 22:28:36                   | 03    | Oct | 11    | HG    |           |
| ***  | Sample         | ID:      | 460-                                 | Seq:<br>-31882-i-51                 |                           | 22:30:36                   | 03    | Oct | 11    | HG    | =         |
| ***  | Sample         |          | 460-                                 | .526<br>Seq:<br>-31882-g-52         |                           | 22:32:28                   | 03    | Oct | 11    | HG    | =         |
|      | .881<br>Sample | ID:      |                                      | .881<br>Seq:<br>-31882-e-53         |                           | 22:34:14                   | 03    | Oct | 11    | HG    | =         |
| Нд   | 047            | dqq      | .000                                 |                                     |                           |                            |       |     |       |       | =         |
|      |                | %Rcv.    | Found Ti                             | Seq:<br>rue Units<br>.00 ppb        |                           | 22:36:26<br>SD/RSD<br>.000 | 03    | Oct | 11    | HG    | _         |
|      | e Flag         | Found Ra | 1 Ck1ICB/(<br>ange(+/-) Ur<br>.200 p | nits <sup>-</sup> S                 | D/RSD                     | 22:38:12                   | 03    | Oct | 11    | HG    | =         |
| ***  | Sample         | ID:      |                                      | Seq:                                | 62                        | 22:39:59                   | 03    | Oct | 11    | HG    | =         |
| Hg   | .008           | ppb      |                                      | -31882-h-54<br>.008                 | -a                        |                            |       |     |       |       |           |
|      | Sample         |          |                                      |                                     |                           | 22:41:45                   | 03    | Oct | 11    | HG    | =         |
| Hg   | 1.13           | dqq      |                                      | -31882-f-69<br>1.13                 | -a                        |                            |       |     |       |       |           |
| ***  | Sample         | ID:      | 460                                  |                                     |                           | 22:43:32                   | 03    | Oct | 11    | HG    | =         |
| Hg   | .024           | ppb      | .000                                 | -31882-g-70<br>.024                 |                           |                            |       |     |       |       | _         |
| ***  | Sample         | ID:      | 460-                                 | Page Seg:<br>-31882-f-71            | <b>of</b> <sup>6</sup> 33 | 22:45:18                   | 03    | Oct | 11    | HG/21 |           |

Hg -.041 ppb .000 -.041

\*\*\* Sample ID: Seq: 66 22:47:03 03 Oct 11 HG

SD 460-31882-h-72-a@

Hg -.037 ppb .000 -.037

\*\*\* Check Standard: 2 Ck2ACCV Seq: 67 22:48:51 03 Oct 11 HG

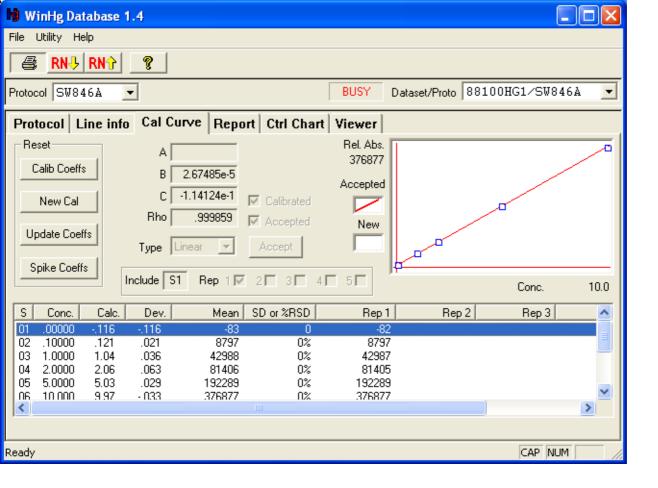
Line Flag %Rcv. Found True Units SD/RSD

Hg 104. 5.20 5.00 ppb .000

Folder: 88100HG1 Page 1999

Protocol: SW846A

\*\*\*POST-RUN REPORT\*\*\*


Line Conc. Units SD/RSD 1 2 3 4 5

\*\*\* Check Standard: 1 Ck1ICB/CCB Seq: 68 22:50:34 03 Oct 11 HG

Line Flag Found Range(+/-) Units SD/RSD

Hg -.094 .200 ppb .000

Page 270 of 332



Folder: 88100HG1 Page 1999

|                                 |                    | Prot                                         | cocol:            |                    |          |        |       | Page 1999 |
|---------------------------------|--------------------|----------------------------------------------|-------------------|--------------------|----------|--------|-------|-----------|
| Line Conc                       | . Units            | ***P(<br>SD/RSD                              |                   | REPORT*            | **<br>   | 4      | 5     |           |
| *** Standard                    | d: 1 Rep: 1        |                                              | Seq:              | 10                 | 21:03:20 | 03 Oct | 11    | HG        |
| Hg .000                         | ppb<br>Bkgd 1      | -82<br>6316336                               |                   |                    |          |        |       |           |
| *** Standard                    | d: 2 Rep: 1        |                                              | Seq:              | 11                 | 21:05:06 | 03 Oct | 11    | HG        |
| Нд .100                         | ppb<br>Bkgd 1      | 8797<br>6318665                              |                   |                    |          |        |       |           |
| *** Standard                    | d: 3 Rep: 1        |                                              | Seq:              | 12                 | 21:06:52 | 03 Oct | 11    | HG        |
| Нд 1.00                         |                    | 42987<br>6314553                             |                   |                    |          |        |       |           |
| *** Standard                    | d: 4 Rep: 1        |                                              | Seq:              | 13                 | 21:08:39 | 03 Oct | 11    | HG        |
| Нд 2.00                         | ppb<br>Bkgd 1      | 81405<br>6310507                             |                   |                    |          |        |       |           |
| *** Standard                    | d: 5 Rep: 1        |                                              | Seq:              | 14                 | 21:10:29 | 03 Oct | 11    | HG        |
| Нд 5.00                         |                    | 192289<br>6308625                            |                   |                    |          |        |       |           |
| *** Standard                    | d: 6 Rep: 1        |                                              | Seq:              | 15                 | 21:12:16 | 03 Oct | 11    | HG        |
| Нд 10.0                         | ppb<br>Bkgd 1      | 376877<br>6304331                            |                   |                    |          |        |       |           |
|                                 |                    | Ck3AICV<br>Intensities<br>187463<br>6301199  | Seq:              | 16                 | 21:14:03 | 03 Oct | 11    | HG        |
| *** Check St<br>Line Flag<br>Hg | candard: 1  Bkgd 1 | Ck1ICB/CCB<br>Intensities<br>1250<br>6299848 | Seq:              | 17                 | 21:15:47 | 03 Oct | 11    | HG        |
| *** Sample 1                    | ID:                | 1 460 6                                      |                   |                    | 21:17:31 | 03 Oct | 11    | HG        |
| Нд056                           | ppb<br>Bkgd 1      | mb 460-8<br>2184<br>6300955                  | 38100/1           | 0-a                |          |        |       |           |
| ========                        |                    | Fold                                         | =====<br>der:     | ======<br>88100HG1 | ======   | =====  | ====  | Page 1999 |
|                                 |                    | ***P(                                        | cocol:<br>OST-RUN | REPORT*            |          |        |       | J         |
| Line Conc                       | . Units<br>        | SD/RSD                                       | 1                 | 2                  | 3        | 4<br>  | 5<br> |           |
| *** Sample I                    | ID: lcssrm         | 460 -88100/1                                 |                   |                    | 21:19:15 | 03 Oct | 11    | HG        |
| Hg 5.15                         |                    |                                              | LI AWIU           |                    |          |        |       | =         |
| ========                        |                    | .=====================================       | age 272           | of 332             | =======  | =====  | ====  | 10/21/201 |

| *** Sample I                     | D:            | 460-3188               | Seq: 20<br>2-f-16-a          | 21:21:00     | 03 Oct | : 11 | HG         |
|----------------------------------|---------------|------------------------|------------------------------|--------------|--------|------|------------|
| Hg .223                          | ppb<br>Bkgd 1 | 12621<br>6304665       |                              |              |        |      | =          |
| *** Sample I                     | D:            | 460-3188               | Seq: 21<br>2-f-16-b du       | 21:23:09     | 03 Oct | : 11 | HG         |
| Нд .342                          | ppb<br>Bkgd 1 | 17050<br>6315018       | 2-1-10-b du                  |              |        |      | =          |
| *** Sample I                     | D:            | 460-3188               | Seq: 22<br>2-f-16-c ms       | 21:25:38     | 03 Oct | : 11 | HG         |
| Hg 1.95                          | ppb<br>Bkgd 1 | 77307                  |                              |              |        |      | =          |
| *** Sample I                     | D:            | 460-3179               | Seq: 23<br>1-a-1-a           | 21:27:38     | 03 Oct | : 11 | HG         |
| Нд .002                          | ppb<br>Bkgd 1 | 4346<br>6311439        | - 4 - 4                      |              |        |      | =          |
| *** Sample I                     | D:            | 460-3179               | Seq: 24<br>1-a-2-a           | 21:29:21     | 03 Oct | : 11 | HG         |
| Нд .206                          | ppb<br>Bkgd 1 | 11983<br>6308138       | 1 4 2 4                      |              |        |      | =          |
| *** Sample I                     | D:            | 460-3179               | Seq: 25<br>1-a-3-a           | 21:31:27     | 03 Oct | : 11 | HG         |
| Нд 2.79                          | ppb<br>Bkgd 1 | 108603<br>6305807      |                              |              |        |      | =          |
| *** Sample I                     | D:            | 460-3185               | Seq: 26<br>0-b-4-e           | 21:33:24     | 03 Oct | : 11 | HG         |
| Нд006                            | ppb<br>Bkgd 1 | 4038<br>6303995        |                              |              |        |      | =          |
| *** Sample I                     | D:            | 460-3165               | Seq: 27<br>4-d-1-c           | 21:35:20     | 03 Oct | : 11 | HG         |
| Hg038                            | ppb<br>Bkgd 1 | 2836<br>6303717        |                              |              |        |      | =          |
|                                  |               | Prot                   | er: 88100HG                  |              |        |      | Page 1999  |
| Line Conc.                       | Units         |                        | ST-RUN REPORT                | 3            | 4      | 5    |            |
| Line Flag                        | andard: 2     | Ck2ACCV<br>Intensities | Seq: 28                      | 21:37:16     | 03 Oct | : 11 | HG         |
| Hg                               | Bkgd 1        | 201343<br>6302241      |                              |              |        |      | =          |
| *** Check Sta<br>Line Flag<br>Hg |               | Intensities<br>-361    | Seq: 29                      | 21:39:01     | 03 Oct | : 11 |            |
| *** Commis T                     | Bkgd 1        | 6300813                | gog: 20                      | 21 - 40 - 50 | 02 0~+ | . 11 | =<br>=     |
| *** Sample II Hg .004            |               | 460-3165<br>4429       | Seq: 30<br>4-c-2-c           | Z1.4U.50     | US OCT | , 11 | HG         |
| 119 .004                         | Bkgd 1        | 6301581                |                              |              |        |      | =          |
| *** Sample I                     | D:            | 460-3189               | Seq: 31<br>6-a-7-b<br>ge 332 | 21:42:55     | 03 Oct | : 11 | HG         |
| Hg 1.84                          | dqq           | 72899                  | ige <sup></sup> 273 of 332   |              |        |      | 10/21/2011 |

| Bkgd 1                                                                                                                                                                           | 6301583                                                                                                                                                                                       | =                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| *** Sample ID:                                                                                                                                                                   | Seq: 32 21:44:40 03 Oct 11 460-31896-a-14-b                                                                                                                                                   |                                          |
| Hg 2.10 ppb<br>Bkgd 1                                                                                                                                                            |                                                                                                                                                                                               | =                                        |
| *** Sample ID:                                                                                                                                                                   | Seq: 33 21:46:24 03 Oct 11 460-31530-a-17-c                                                                                                                                                   |                                          |
| Hg 4.14 ppb<br>Bkgd 1                                                                                                                                                            |                                                                                                                                                                                               | =                                        |
| *** Sample ID:                                                                                                                                                                   | Seq: 34 21:48:40 03 Oct 11 460-31530-a-18-c                                                                                                                                                   |                                          |
| Hg .196 ppb<br>Bkgd 1                                                                                                                                                            |                                                                                                                                                                                               | =                                        |
| *** Sample ID:                                                                                                                                                                   | Seq: 35 21:50:24 03 Oct 11 460-31866-g-1-a                                                                                                                                                    |                                          |
| Hg .129 ppb<br>Bkgd 1                                                                                                                                                            | 9082<br>6314299                                                                                                                                                                               | =                                        |
| *** Sample ID:                                                                                                                                                                   | Seq: 36 21:52:10 03 Oct 11 460-31876-a-1-a                                                                                                                                                    |                                          |
| Hg .055 ppb<br>Bkgd 1                                                                                                                                                            |                                                                                                                                                                                               | =                                        |
|                                                                                                                                                                                  | Folder: 88100HG1 Protocol: SW846A ***POST-RUN REPORT***                                                                                                                                       | =<br>Page 1999                           |
| Line Conc. Units                                                                                                                                                                 |                                                                                                                                                                                               |                                          |
|                                                                                                                                                                                  |                                                                                                                                                                                               |                                          |
| *** Sample ID:                                                                                                                                                                   | Seq: 37 21:54:01 03 Oct 11                                                                                                                                                                    | HG                                       |
| нд .041 ppb                                                                                                                                                                      | 460-31876-a-2-a                                                                                                                                                                               | =                                        |
| нд .041 ppb                                                                                                                                                                      | 460-31876-a-2-a<br>5782<br>6309086<br>Seq: 38 21:55:46 03 Oct 11                                                                                                                              | = =                                      |
| Hg .041 ppb<br>Bkgd 1                                                                                                                                                            | 460-31876-a-2-a<br>5782<br>6309086<br>Seq: 38 21:55:46 03 Oct 11<br>460-31876-a-3-a<br>4588                                                                                                   | =<br>=<br>HG                             |
| Hg .041 ppb Bkgd 1  *** Sample ID:  Hg .009 ppb                                                                                                                                  | 460-31876-a-2-a<br>5782<br>6309086<br>Seq: 38 21:55:46 03 Oct 11<br>460-31876-a-3-a<br>4588<br>6305896<br>Seq: 39 21:57:42 03 Oct 11                                                          | =<br>=<br>HG                             |
| Hg .041 ppb Bkgd 1  *** Sample ID:  Hg .009 ppb Bkgd 1                                                                                                                           | 460-31876-a-2-a<br>5782<br>6309086<br>Seq: 38 21:55:46 03 Oct 11<br>460-31876-a-3-a<br>4588<br>6305896                                                                                        | = HG = HG                                |
| Hg .041 ppb Bkgd 1  *** Sample ID:  Hg .009 ppb Bkgd 1  *** Sample ID:  Hg 3.29 ppb Bkgd 1  *** Check Standard: 2 Line Flag                                                      | 460-31876-a-2-a 5782 6309086  Seq: 38                                                                                                                                                         | =<br>HG<br>=<br>HG                       |
| Hg .041 ppb Bkgd 1  *** Sample ID:  Hg .009 ppb Bkgd 1  *** Sample ID:  Hg 3.29 ppb Bkgd 1  *** Check Standard: 2                                                                | 460-31876-a-2-a 5782 6309086  Seq: 38                                                                                                                                                         | = HG = = = = = = = = = = = = = = = = = = |
| Hg .041 ppb Bkgd 1  *** Sample ID:  Hg .009 ppb Bkgd 1  *** Sample ID:  Hg 3.29 ppb Bkgd 1  *** Check Standard: 2 Line Flag Hg  Bkgd 1  *** Check Standard: 1 Line Flag Hg       | 460-31876-a-2-a 5782 6309086  Seq: 38 21:55:46 03 Oct 11 460-31876-a-3-a 4588 6305896  Seq: 39 21:57:42 03 Oct 11 460-31882-e-15-a 127268 6305004  Ck2ACCV Seq: 40 Intensities 202802 6303162 | ## ## ## ## ## ## ## ## ## ## ## ## ##   |
| Hg .041 ppb Bkgd 1  *** Sample ID:  Hg .009 ppb Bkgd 1  *** Sample ID:  Hg 3.29 ppb Bkgd 1  *** Check Standard: 2 Line Flag Hg Bkgd 1  *** Check Standard: 1 Line Flag           | 460-31876-a-2-a 5782 6309086  Seq: 38                                                                                                                                                         | HG = HG HG HG                            |
| Hg .041 ppb Bkgd 1  *** Sample ID:  Hg .009 ppb Bkgd 1  *** Sample ID:  Hg 3.29 ppb Bkgd 1  *** Check Standard: 2 Line Flag Hg Bkgd 1  *** Check Standard: 1 Line Flag Hg Bkgd 1 | 460-31876-a-2-a 5782 6309086  Seq: 38                                                                                                                                                         | HG = HG HG HG = HG = HG = HG             |

460-31882-d-18-a

| Hg .207                          | ppb<br>Bkgd 1        | 460-31882-d-18-a<br>12007<br>6301270                    | =               |
|----------------------------------|----------------------|---------------------------------------------------------|-----------------|
| *** Sample II                    | :                    | Seq: 44 22:06:54 03 Oct 11 460-31882-d-33-a             | HG              |
| Нд .161                          | ppb<br>Bkgd 1        |                                                         | =               |
| *** Sample II                    | ):                   | Seq: 45 22:08:43 03 Oct 11 460-31882-d-34-a             |                 |
| Нд .198                          | ppb<br>Bkgd 1        | 11680                                                   | =               |
|                                  |                      | Folder: 88100HG1 Protocol: SW846A ***POST-RUN REPORT*** | Page 1999       |
| Line Conc.                       | Units                | SD/RSD 1 2 3 4 5                                        |                 |
| *** Sample II                    | ):                   | Seq: 46 22:10:27 03 Oct 11<br>SD 460-31882-f-16-a@      | HG              |
| Нд131                            | ppb<br>Bkgd 1        | -624                                                    | =               |
| *** Sample II                    | ):                   | Seq: 47 22:12:12 03 Oct 11<br>SD 460-31882-f-16-a@      | HG              |
| Hg116                            | ppb<br>Bkgd 1        | -52<br>6310743                                          | =               |
| *** Check Sta<br>Line Flag       | andard: 2            | Ck2ACCV Seq: 48 22:13:58 03 Oct 11 Intensities 201838   |                 |
| Нд                               | Bkgd 1               |                                                         | =               |
| *** Check Sta<br>Line Flag<br>Hg | andard: 1            | <pre>Ck1ICB/CCB Seq: 49</pre>                           | HG              |
|                                  | Bkgd 1               | 6310571                                                 | = =             |
| *** Sample II                    |                      | Seq: 50 22:17:33 03 Oct 11 mb 460-88101/10-a            | HG              |
| Hg018                            | ppb<br>Bkgd 1        | 3609<br>6308292                                         | = =             |
| *** Sample II                    | :======<br>): lcssrm |                                                         | HG              |
| Hg 5.25                          | ppb<br>Bkgd 1        | -88101/11-a@10<br>200376<br>6306899                     | =               |
|                                  | ======               |                                                         | =               |
| *** Sample II                    |                      | Seq: 52 22:21:05 03 Oct 11<br>460-31882-h-72-a          | HG              |
| Hg019                            | ppb<br>Bkgd 1        | 3549<br>6302453                                         | =               |
| *** Sample ID                    | ):                   | Seq: 53 22:22:50 03 Oct 11 460-31882-h-72-b du          | HG              |
| Hg011                            | ppb<br>Bkgd 1        | 3867<br>6301832                                         | =               |
| *** Sample II                    | ):                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$    | =<br>HG/21/2011 |
|                                  |                      |                                                         |                 |

Hq 1.05 dqq 43416 Bkqd 1 6301796 Folder: 88100HG1 Page 1999 Protocol: SW846A \*\*\*POST-RUN REPORT\*\*\* Line Conc. Units SD/RSD 1 2 \*\*\* Sample ID: 22:26:35 03 Oct 11 Seq: 55 HG 460-31882-g-35-a ppb 8991 .126 Bkgd 1 6300098 \*\*\* Sample ID: 22:28:36 03 Oct 11 Seq: 56 HG 460-31882-e-36-a ppb Hg -.030 3157 Bkqd 1 6301499 = \*\*\* Sample ID: Seq: 57 22:30:36 03 Oct 11 460-31882-i-51-a ppb .526 23922 Ηq Bkqd 1 6301949 \*\*\* Sample ID: Seq: 58 22:32:28 03 Oct 11 HG 460-31882-g-52-a ppb .881 37210 Bkgd 1 6309926 \*\*\* Sample ID: Seq: 59 22:34:14 03 Oct 11 HG 460-31882-e-53-a Hg - .047ppb 2503 Bkgd 1 6313478 = \*\*\* Check Standard: 2 Ck2ACCV Seq: 60 22:36:26 03 Oct 11 HG Line Flag Intensities 200198 Hq 6313924 Bkgd 1 \*\*\* Check Standard: 1 CklICB/CCB Seq: 61 22:38:12 03 Oct 11 HG Line Flag Intensities 1436 Hg 6307745 Bkgd 1 \*\*\* Sample ID: Seq: 62 22:39:59 03 Oct 11 HG 460-31882-h-54-a ppb 4552 .008 Bkgd 1 6307180 = \*\*\* Sample ID: Seq: 63 22:41:45 03 Oct 11 HG 460-31882-f-69-a 1.13 ppb 46407 Нg Bkqd 1 6305393 Folder: 88100HG1 Page 1999 Protocol: SW846A \*\*\*POST-RUN REPORT\*\*\* SD/RSD 1 2 Line Conc. Units

Seq: 64

22:43:32 03 Oct 11 HG

10/21/2011

Hg .024 ppb 5146 Page 276 of 332 Bkgd 1 6302808

\*\*\* Sample ID:

| *** Sample ID                    | :             | 460-3188                         | Seq:<br>2-f-71 |    | 22:45:18 | 03 0 | ct 11 | HG | _ |
|----------------------------------|---------------|----------------------------------|----------------|----|----------|------|-------|----|---|
| Hg041                            | ppb<br>Bkgd 1 | 2748<br>6300962                  |                |    |          |      |       |    | = |
| *** Sample ID                    | :             | SD 460-3                         | Seq:<br>1882-h |    | 22:47:03 | 03 0 | ct 11 | HG |   |
| Hg037                            | ppb<br>Bkgd 1 | 2875<br>6301273                  |                |    |          |      |       |    | = |
| *** Check Sta<br>Line Flag<br>Hg | ndard: 2      | Ck2ACCV<br>Intensities<br>198745 | Seq:           | 67 | 22:48:51 | 03 0 | ct 11 | HG | _ |
| 3                                | Bkgd 1        | 6300119                          |                |    |          |      |       |    | = |
| *** Check Sta<br>Line Flag<br>Hq | ndard: 1      | Ck1ICB/CCB<br>Intensities<br>737 | Seq:           | 68 | 22:50:34 | 03 0 | ct 11 | HG | _ |
| 5                                | Bkgd 1        | 6297128                          |                |    |          |      |       |    | = |

#### METALS BATCH WORKSHEET

| Lab Name: TestAmerica Edison | Job No.: 460-31791-1 |
|------------------------------|----------------------|
|------------------------------|----------------------|

SDG No.:

Batch Number: 88293 Batch Start Date: 10/05/11 08:22 Batch Analyst: Chen, Mandi

Batch Method: 3050B Batch End Date: 10/05/11 14:00

| Lab Sample ID         | Client Sample ID | Method Chain | Basis | InitialAmount | FinalAmount | ME_ipmsSPK 00006 | ME_LCSS_62<br>00013 |  |
|-----------------------|------------------|--------------|-------|---------------|-------------|------------------|---------------------|--|
| MB 460-88293/1        |                  | 3050B, 6020  |       | 1.00 g        | 50 mL       |                  |                     |  |
| LCSSRM<br>460-88293/2 |                  | 3050B, 6020  |       | 1.00 g        | 50 mL       |                  | 1 g                 |  |
| 460-31791-A-3         | NTB-B2-2.0       | 3050B, 6020  | Т     | 1.02 g        | 50 mL       |                  |                     |  |
| 460-31791-A-3<br>DU   | NTB-B2-2.0       | 3050B, 6020  | Т     | 1.03 g        | 50 mL       |                  |                     |  |
| 460-31791-A-3<br>MS   | NTB-B2-2.0       | 3050B, 6020  | Т     | 1.03 g        | 50 mL       | 1 mL             |                     |  |
| 460-31791-A-1         | NTB-C2-12.0      | 3050B, 6020  | Т     | 1.01 g        | 50 mL       |                  |                     |  |
| 460-31791-A-2         | NTB-C1-11.0      | 3050B, 6020  | Т     | 1.09 g        | 50 mL       |                  |                     |  |

| Batch Notes                   |              |  |  |  |  |  |
|-------------------------------|--------------|--|--|--|--|--|
| Balance ID                    | 35           |  |  |  |  |  |
| Hydrogen peroxide lot number  | 1            |  |  |  |  |  |
| Lot # of hydrochloric acid    | K14068       |  |  |  |  |  |
| Logbook ID for diluted Nitric | 8            |  |  |  |  |  |
| Lot # of Nitric Acid          | K15028       |  |  |  |  |  |
| Hood ID or number             | 8            |  |  |  |  |  |
| Hot Block ID number           | 1            |  |  |  |  |  |
| Pipette ID                    | 25           |  |  |  |  |  |
| Temperature                   | 95 Degrees C |  |  |  |  |  |
| ID number of the thermometer  | ICP-3        |  |  |  |  |  |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

6020 Page 1 of 1

#### METALS BATCH WORKSHEET

| Lab Name: | TestAmerica | Edison | Job | No.: | 460-31791-1 |  |
|-----------|-------------|--------|-----|------|-------------|--|
|-----------|-------------|--------|-----|------|-------------|--|

SDG No.:

Batch Number: 88100 Batch Start Date: 10/03/11 18:00 Batch Analyst: Staib, Thomas

Batch Method: 7471A Batch End Date: 10/03/11 20:00

| Lab Sample ID          | Client Sample ID | Method Chain | Basis | InitialAmount | FinalAmount | ME_DCAL-IN<br>00639 | ME_DQCS-INT<br>00332 | ME_LCSS_62<br>00013 |  |
|------------------------|------------------|--------------|-------|---------------|-------------|---------------------|----------------------|---------------------|--|
| ICV 460-88100/7        |                  | 7471A, 7471A |       | 0.60 g        | 100 mL      |                     | 5 mL                 |                     |  |
| CCV 460-88100/8        |                  | 7471A, 7471A |       | 0.60 g        | 100 mL      |                     | 5 mL                 |                     |  |
| MB 460-88100/10        |                  | 7471A, 7471A |       | 0.60 g        | 100 mL      |                     |                      |                     |  |
| LCSSRM<br>460-88100/11 |                  | 7471A, 7471A |       | 0.60 g        | 100 mL      |                     |                      | 0.6 g               |  |
| 460-31882-F-16<br>DU   |                  | 7471A, 7471A | Т     | 0.60 g        | 100 mL      |                     |                      |                     |  |
| 460-31882-F-16<br>MS   |                  | 7471A, 7471A | Т     | 0.60 g        | 100 mL      | 1 mL                |                      |                     |  |
| 460-31791-A-1          | NTB-C2-12.0      | 7471A, 7471A | Т     | 0.62 g        | 100 mL      |                     |                      |                     |  |
| 460-31791-A-2          | NTB-C1-11.0      | 7471A, 7471A | Т     | 0.60 g        | 100 mL      |                     |                      |                     |  |
| 460-31791-A-3          | NTB-B2-2.0       | 7471A, 7471A | Т     | 0.61 g        | 100 mL      |                     |                      |                     |  |

| Batch Notes                       |                                           |  |  |  |  |  |  |  |
|-----------------------------------|-------------------------------------------|--|--|--|--|--|--|--|
| Hydroxylamine Hydrochloride Lot   | HgR01370                                  |  |  |  |  |  |  |  |
| Balance ID                        | #35                                       |  |  |  |  |  |  |  |
| Batch Comment                     | Autoclave Pressure 15 LBS                 |  |  |  |  |  |  |  |
| Sulfuric Acid Lot Number          | K03051                                    |  |  |  |  |  |  |  |
| Lot # of hydrochloric acid        | HgR01380                                  |  |  |  |  |  |  |  |
| Lot # of Nitric Acid              | K15028                                    |  |  |  |  |  |  |  |
| Hood ID or number                 | #1                                        |  |  |  |  |  |  |  |
| Potassium Permanganate Lot Number | HgR01379                                  |  |  |  |  |  |  |  |
| NaCL Lot #                        | HgR01370                                  |  |  |  |  |  |  |  |
| Oven, Bath or Block Temperature 1 | Autoclave Temperature 121 Degrees Celcius |  |  |  |  |  |  |  |
| Pipette ID                        | #25                                       |  |  |  |  |  |  |  |
| Stannous Chloride Lot Number      | HgR01368                                  |  |  |  |  |  |  |  |
| ID number of the thermometer      | Prep-1                                    |  |  |  |  |  |  |  |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

## GENERAL CHEMISTRY

#### COVER PAGE GENERAL CHEMISTRY

| Lab Name: | TestAmerica Edison     | Job Number: 460-31791-1 |  |
|-----------|------------------------|-------------------------|--|
| SDG No.:  |                        |                         |  |
| Project:  | PPG Northern Transects |                         |  |
|           | Client Sample ID       | Lab Sample ID           |  |
|           | NTB-C2-12.0            | 460-31791-1             |  |
|           | NTB-C1-11.0            | 460-31791-2             |  |
|           | NTB-B2-2.0             | 460-31791-3             |  |

Comments:

Client Sample ID: NTB-C2-12.0 Lab Sample ID: 460-31791-1

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG ID.:

Matrix: Solid Date Sampled: 09/28/2011 12:00

Reporting Basis: DRY Date Received: 09/28/2011 17:40

% Solids: 64.1

| CAS No.    | Analyte | Result | RL  | MDL  | Units | С | Q | DIL | Method |
|------------|---------|--------|-----|------|-------|---|---|-----|--------|
| 18540-29-9 | Cr (VI) | 3.2    | 3.2 | 0.80 | mg/Kg | U |   | 1   | 7196A  |

| Client Sample   | Client Sample ID: NTB-C2-12.0  Lab Name: TestAmerica Edison |        |  | Lab Sample                     | ID: 460-  | 460-31791-1 |       |     |        |  |
|-----------------|-------------------------------------------------------------|--------|--|--------------------------------|-----------|-------------|-------|-----|--------|--|
| Lab Name: Tes   |                                                             |        |  | Job No.: 460-31791-1           |           |             |       |     |        |  |
| SDG ID.:        |                                                             |        |  |                                |           |             |       |     |        |  |
| Matrix: Solid   |                                                             |        |  | Date Sampled: 09/28/2011 12:00 |           |             |       |     |        |  |
| Reporting Basis | s: WET                                                      |        |  | Date Receiv                    | red: 09/2 | 8/2011      | 17:40 |     |        |  |
| CAS No.         | Analyte                                                     | Result |  |                                | Units     | С           | Q     | DIL | Method |  |
|                 |                                                             | 0.40   |  |                                | CII       |             | III.  | 1   | 00450  |  |
|                 | рH                                                          | 9.48   |  |                                | SU        |             | HF    | 1   | 9045C  |  |

Client Sample ID: NTB-C2-12.0 Lab Sample ID: 460-31791-1 Job No.: 460-31791-1 Lab Name: TestAmerica Edison SDG ID.: Date Sampled: 09/28/2011 12:00 Matrix: Solid Date Received: 09/28/2011 17:40 Reporting Basis: WET CAS No. Analyte Result Units С Q DIL Method 390 1 SM 2580B Oxidation Reduction millivo Potential

Client Sample ID: NTB-C1-11.0 Lab Sample ID: 460-31791-2

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG ID.:

Matrix: Solid Date Sampled: 09/28/2011 12:40

Reporting Basis: DRY Date Received: 09/28/2011 17:40

% Solids: 81.4

| CAS No.    | Analyte | Result | RL  | MDL  | Units | С | Q | DIL | Method |
|------------|---------|--------|-----|------|-------|---|---|-----|--------|
| 18540-29-9 | Cr (VI) | 2.5    | 2.5 | 0.61 | mg/Kg | U |   | 1   | 7196A  |

| Client Sample          | lient Sample ID: NTB-C1-11.0 |      |  |                                 | ID: 460- | 460-31791-2 |    |     |        |  |  |
|------------------------|------------------------------|------|--|---------------------------------|----------|-------------|----|-----|--------|--|--|
| Lab Name: Te           | Lab Name: TestAmerica Edison |      |  | Job No.: 460-31791-1            |          |             |    |     |        |  |  |
| SDG ID.:               |                              |      |  |                                 |          |             |    |     |        |  |  |
| Matrix: Solid          |                              |      |  | Date Sampled: 09/28/2011 12:40  |          |             |    |     |        |  |  |
| Reporting Basi         | s: WET                       |      |  | Date Received: 09/28/2011 17:40 |          |             |    |     |        |  |  |
| CAS No. Analyte Result |                              |      |  |                                 | Units    | С           | Q  | DIL | Method |  |  |
|                        | рн                           | 7.93 |  |                                 | SU       |             | HF | 1   | 9045C  |  |  |

| Client Sample  | ID: NTB-C1-11.0               |        | Lab Sample ID: 460-31791-2      |  |  |  |  |  |  |  |
|----------------|-------------------------------|--------|---------------------------------|--|--|--|--|--|--|--|
| Lab Name: Te   | estAmerica Edison             |        | Job No.: 460-31791-1            |  |  |  |  |  |  |  |
| SDG ID.:       |                               |        |                                 |  |  |  |  |  |  |  |
| Matrix: Soli   | d                             |        | Date Sampled: 09/28/2011 12:40  |  |  |  |  |  |  |  |
| Reporting Basi | is: WET                       |        | Date Received: 09/28/2011 17:40 |  |  |  |  |  |  |  |
| CAS No.        | Analyte                       | Result | Units C Q DIL Method            |  |  |  |  |  |  |  |
|                | Oxidation Reduction Potential | 430    | millivo 1 SM 2580B              |  |  |  |  |  |  |  |

Client Sample ID: NTB-B2-2.0 Lab Sample ID: 460-31791-3

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG ID.:

Matrix: Solid Date Sampled: 09/28/2011 14:40

Reporting Basis: DRY Date Received: 09/28/2011 17:40

% Solids: 86.9

| CAS No.    | Analyte | Result | RL  | MDL  | Units | С | Q | DIL | Method |
|------------|---------|--------|-----|------|-------|---|---|-----|--------|
| 18540-29-9 | Cr (VI) | 2.2    | 2.2 | 0.56 | mg/Kg | Ū |   | 1   | 7196A  |

| Client Sample          | ID: NTB-B2-2.0               |  | Lab Sample | ID: 460-    | 460-31791-3                    |        |       |     |        |  |  |  |
|------------------------|------------------------------|--|------------|-------------|--------------------------------|--------|-------|-----|--------|--|--|--|
| Lab Name: Te           | Lab Name: TestAmerica Edison |  |            |             | Job No.: 460-31791-1           |        |       |     |        |  |  |  |
| SDG ID.:               |                              |  |            |             |                                |        |       |     |        |  |  |  |
| Matrix: Solid          | Matrix: Solid                |  |            |             | Date Sampled: 09/28/2011 14:40 |        |       |     |        |  |  |  |
| Reporting Basis        | S: WET                       |  |            | Date Receiv | 7ed: 09/2                      | 8/2011 | 17:40 |     |        |  |  |  |
|                        |                              |  |            |             |                                |        |       |     |        |  |  |  |
| CAS No. Analyte Result |                              |  |            |             | Units                          | С      | Q     | DIL | Method |  |  |  |
| pH 7.46                |                              |  |            |             | SU                             |        | HF    | 1   | 9045C  |  |  |  |

Client Sample ID: NTB-B2-2.0 Lab Sample ID: 460-31791-3

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG ID.:

Matrix: Solid Date Sampled: 09/28/2011 14:40

Reporting Basis: WET Date Received: 09/28/2011 17:40

| CAS No. | Analyte                          | Result |  | Units          | С | Q | DIL | Method   |
|---------|----------------------------------|--------|--|----------------|---|---|-----|----------|
|         | Oxidation Reduction<br>Potential | 444    |  | millivo<br>lts |   |   | 1   | SM 2580B |

## 2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Analyst: JC Batch Start Date: 10/21/2011

Reporting Units: ug/L Analytical Batch No.: 90310

| Sample ( |     | Time  | Analyte | Result |     | (%)<br>Recovery | Limits | Qual | Reagent        |
|----------|-----|-------|---------|--------|-----|-----------------|--------|------|----------------|
| 7        | ICV | 10:42 | Cr (VI) | 497.6  | 500 | 100             | 90-110 |      | WThcrIM3_00014 |
| 8        | ICB | 10:42 | Cr (VI) | 10.0   |     |                 |        | U    |                |
| 19 (     | CCV | 10:42 | Cr (VI) | 497.6  | 500 | 100             | 90-110 |      | WThcrIM3_00014 |
| 20 (     | ССВ | 10:42 | Cr (VI) | 10.0   |     |                 |        | U    |                |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results.

## 2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Analyst: MB Batch Start Date: 10/06/2011

Reporting Units: SU Analytical Batch No.: 88553

| Sample Q<br>Number T |       | ime? | Analyte | Result | Spike<br>Amount | (%)<br>Recovery | Limits | Qual | Reagent       |
|----------------------|-------|------|---------|--------|-----------------|-----------------|--------|------|---------------|
| 1 C                  | CCV 1 | 1:19 | рН      | 7.020  | 7.00            | 100             | 99-101 |      | WTpHCCV_00011 |
| 12 C                 | CCV 1 | 1:38 | рн      | 7.000  | 7.00            | 100             | 99-101 |      | WTpHCCV_00011 |
| 23 C                 | CCV 1 | 1:50 | рН      | 7.010  | 7.00            | 100             | 99-101 |      | WTpHCCV_00011 |
| 26 C                 | CCV 1 | 1:53 | рН      | 7.010  | 7.00            | 100             | 99-101 |      | WTpHCCV_00011 |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results.

## 2-IN CALIBRATION QUALITY CONTROL GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Analyst: MB Batch Start Date: 10/06/2011

Reporting Units: millivolts Analytical Batch No.: 88558

| Sample<br>Number | QC<br>Type | Time  | Analyte                          | Result | Spike<br>Amount | (%)<br>Recovery | Limits | Qual | Reagent          |
|------------------|------------|-------|----------------------------------|--------|-----------------|-----------------|--------|------|------------------|
| 1                | ICV        | 13:00 | Oxidation Reduction<br>Potential | 675.0  | 679             | 99              | 98-102 |      | WTredoxLCS_00010 |
| 12               | CCV        | 13:21 | Oxidation Reduction Potential    | 672.0  | 679             | 99              | 98-102 |      | WTredoxLCS_00010 |
| 23               | CCV        | 13:46 | Oxidation Reduction Potential    | 673.0  | 679             | 99              | 98-102 |      | WTredoxLCS_00010 |

Note! Calculations are performed before rounding to avoid round-off errors in calculated results.

## 3-IN METHOD BLANK GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

| Method          | Lab Sample ID                   | Analyte          | Result Qual Units                                    | RL  | Dil |
|-----------------|---------------------------------|------------------|------------------------------------------------------|-----|-----|
| Batch ID: 7196A | 90310 Date:<br>MB 460-90228/1-A | 10/21/2011 10:42 | Prep Batch: 90228 Date: 10/20/2011 13:00 2.0 U mg/Kg | 2.0 | 1   |
| Batch ID:       |                                 | 10/06/2011 11:29 | 2.0 0 mg/1/g                                         | 2.0 |     |
| 9045C           | MB 460-88553/2                  | рН               | 5.720 SU                                             |     | 1   |

## 5-IN MATRIX SPIKE SOLUBLE SAMPLE RECOVERY GENERAL CHEMISTRY

| Lab Name: | TestAmerica Edison | Job No.: | 460-31791-1 |
|-----------|--------------------|----------|-------------|
| SDG No.:  |                    |          |             |

Matrix: Solid

| Method | Lab Sample I       | D Ana | alyte            | Result C Unit     | Spike Pct.<br>Amount Rec. Limits RPD | RPD<br>Limit Q |
|--------|--------------------|-------|------------------|-------------------|--------------------------------------|----------------|
| Batch  | ID: 90310          | Date: | 10/21/2011 10:42 | Prep Batch: 90228 | Date: 10/20/2011 13:00               |                |
| 7196A  | 460-31791-2        | Cr    | (VI)             | 2.5 U mg/Kg       |                                      |                |
| 7196A  | 460-31791-2<br>MSS | Cr    | (VI)             | 38.75 mg/Kg       | 49.1 79 75-125                       |                |
| Batch  | ID: 90310          | Date: | 10/21/2011 10:42 | Prep Batch: 90228 | Date: 10/20/2011 13:00               |                |
| 7196A  | 460-31791-2        | Cr    | (VI)             | 2.5 U mg/Kg       |                                      |                |
| 7196A  | 460-31791-2<br>MSI | Cr    | (VI)             | 774.5 mg/Kg       | 870 89 75-125                        |                |
| Batch  | ID: 90310          | Date: | 10/21/2011 10:42 | Prep Batch: 90228 | Date: 10/20/2011 13:00               |                |
| 7196A  | 460-31791-2        | Cr    | (VI)             | 2.5 U mg/Kg       |                                      |                |
| 7196A  | 460-31791-2<br>PDS | Cr    | (VI)             | 55.01 mg/Kg       | 49.1 112 85-115                      |                |

Calculations are performed before rounding to avoid round-off errors in calculated results. Note - Results and Reporting Limits have been adjusted for dry weight.

## 6-IN DUPLICATE GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Matrix: Solid

| Method    | Client<br>Sample ID | Lab<br>Sample ID       | Analyte                       | Result       | Unit                | RPD | RPD<br>Limit | Qual |
|-----------|---------------------|------------------------|-------------------------------|--------------|---------------------|-----|--------------|------|
| Batch ID: | 90310 Date          | : 10/21/2011 10:42     | Prep Batch: 90228             | Date: 10/20/ | /2011 13 <b>:</b> ( | 00  |              |      |
| 7196A     | NTB-C1-11.0         | 460-31791-2            | Cr (VI)                       | 2.5          | mg/Kg               |     |              | U    |
| 7196A     | NTB-C1-11.0         | 460-31791-2 DU         | Cr (VI)                       | 2.5          | mg/Kg               | NC  | 20           | U    |
| Batch ID: | 88553 Date          | : 10/06/2011 11:32     |                               |              |                     |     |              |      |
| 9045C     |                     | 460-31882-J-16         | рн                            | 8.51         | SU                  |     |              |      |
| 9045C     |                     | 460-31882-J-16<br>DU   | рН                            | 8.450        | SU                  | 0.7 | 10           |      |
| Batch ID: | 88558 Date          | : 10/06/2011 13:07     |                               |              |                     |     |              |      |
| SM 2580B  |                     | 460-31882-J-16-B       | Oxidation Reduction Potential | 470          | milliv<br>olts      |     |              |      |
| SM 2580B  |                     | 460-31882-J-16-B<br>DU | Oxidation Reduction Potential | 468.0        | milliv<br>olts      | 0.4 | 10           |      |

Calculations are performed before rounding to avoid round-off errors in calculated results.

## 7A-IN LAB CONTROL SAMPLE GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Matrix: Solid

 Method
 Lab Sample ID
 Analyte
 Result C Unit
 Spike Amount Rec.
 Pct. Limits
 RPD Limit
 Q

 Batch ID:
 88553
 Date:
 10/06/2011 11:30
 LCS Source:
 WTpHLCS\_00013

 9045C
 LCS LCS Ado-88553/3
 pH
 5.490
 SU
 5.50
 100
 95-105

Calculations are performed before rounding to avoid round-off errors in calculated results.

## 7A-IN LAB CONTROL SAMPLE SOLUBLE GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Matrix: Solid

| Method | Lab Sample ID         | Analyte                | Result C Unit     | Spike<br>Amount | Pct.<br>Rec.         | Limits               | RPD | RPD<br>Limit | Q |
|--------|-----------------------|------------------------|-------------------|-----------------|----------------------|----------------------|-----|--------------|---|
| Batch  | ID: 90310             | Date: 10/21/2011 10:42 | Prep Batch: 90228 |                 | 10/20/20<br>ThcrsLCS | 011 13:00<br>S 00048 |     |              |   |
| 7196A  | LCSS<br>460-90228/2-A | Cr (VI)                | 14.71 mg/Kg       | 14.2            | 103                  | -<br>85-115          |     |              |   |
| Batch  | ID: 90310             | Date: 10/21/2011 10:42 | Prep Batch: 90228 | Date:           | 10/20/20             | 011 13:00            |     |              |   |
|        |                       |                        | LCS S             | ource: W        | ThcrPbCı             | r_00004              |     |              |   |
| 7196A  | LCSI<br>460-90228/3-A | Cr (VI)                | 702.9 mg/Kg       | 708             | 99                   | 80-120               |     |              |   |

Calculations are performed before rounding to avoid round-off errors in calculated results.

## 9-IN DETECTION LIMITS GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job Number: 460-31791-1

SDG Number:

Matrix: Solid Instrument ID: WetHexSpec

Method: 7196A MDL Date: 12/22/2008 10:47

Prep Method: 3060A

| Analyte | Wavelength/ | RL      | MDL     |
|---------|-------------|---------|---------|
|         | Mass        | (mg/Kg) | (mg/Kg) |
| Cr (VI) |             | 2       | 0.495   |

## 9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

| Lab Name: TestAmerica Edison | Job Number: 460-31791-1     |
|------------------------------|-----------------------------|
| SDG Number:                  |                             |
| Matrix: Solid                | Instrument ID: WetHexSpec   |
| Method: 7196A                | XMDL Date: 12/22/2008 10:48 |

| Analyte | Wavelength/ | XRL    | XMDL   |
|---------|-------------|--------|--------|
|         | Mass        | (ug/L) | (ug/L) |
| Cr (VI) |             | 10     | 1.51   |

# 9-IN DETECTION LIMITS GENERAL CHEMISTRY

| Lab Name | e: TestAmerica Edison | Job Number: 460-31791-1   |
|----------|-----------------------|---------------------------|
| SDG Numb | per:                  |                           |
| Matrix:  | Solid                 | Instrument ID: NOEQUIP    |
| Method:  | Moisture              | RL Date: 02/15/2007 17:07 |

| Analyte          | Wavelength/<br>Mass | RL<br>(%) |  |
|------------------|---------------------|-----------|--|
| Percent Moisture |                     | 1         |  |
| Percent Solids   |                     | 1         |  |

## 9-IN CALIBRATION BLANK DETECTION LIMITS GENERAL CHEMISTRY

| Lab Name: TestAmerica Edison | Job Number: 460-31791-1    |
|------------------------------|----------------------------|
| SDG Number:                  |                            |
| Matrix: Solid                | Instrument ID: NOEQUIP     |
| Method: Moisture             | XRL Date: 01/01/2007 16:49 |

| Analyte          | Wavelength/<br>Mass | XRL<br>(%) |  |
|------------------|---------------------|------------|--|
| Percent Moisture |                     | 1          |  |
| Percent Solids   |                     | 1          |  |

## 11-IN LINEAR RANGES GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No: 460-31791-1

SDG No.:

Instrument ID: WetHexSpec Date: 01/01/2009 10:43

|       | Analyte | Integ.<br>Time<br>(Sec.) | Concentration (mg/L) | Method |
|-------|---------|--------------------------|----------------------|--------|
| Cr (V | I)      |                          | 1.25                 | 7196A  |

## 12-IN PREPARATION LOG GENERAL CHEMISTRY

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Prep Method: 3060A

| Lab<br>Sample<br>ID | Preparation<br>Date | Prep<br>Batch | Initial<br>Weight<br>(g) | Initial<br>Volume | Final<br>Volume<br>(mL) |
|---------------------|---------------------|---------------|--------------------------|-------------------|-------------------------|
| MD 460 00000/1 7    | 10/00/0011 12:00    | 00000         | _                        |                   |                         |
| MB 460-90228/1-A    | 10/20/2011 13:00    | 90228         | 2.50                     |                   | 100                     |
| LCSS 460-90228/2-A  | 10/20/2011 13:00    | 90228         | 2.50                     |                   | 100                     |
| LCSI 460-90228/3-A  | 10/20/2011 13:00    | 90228         | 2.50                     |                   | 100                     |
| 460-31791-2         | 10/20/2011 13:00    | 90228         | 2.50                     |                   | 100                     |
| 460-31791-2 DU      | 10/20/2011 13:00    | 90228         | 2.50                     |                   | 100                     |
| 460-31791-2 MSS     | 10/20/2011 13:00    | 90228         | 2.50                     |                   | 100                     |
| 460-31791-2 MSI     | 10/20/2011 13:00    | 90228         | 2.50                     |                   | 100                     |
| 460-31791-1         | 10/20/2011 13:00    | 90228         | 2.40                     |                   | 100                     |
| 460-31791-3         | 10/20/2011 13:00    | 90228         | 2.56                     |                   | 100                     |

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Instrument ID: WetHexSpec Method: 7196A

Start Date: 10/21/2011 09:07 End Date: 10/21/2011 14:25

| Start Date: $\frac{10/21}{}$ | ./2011 |        | •     |   |  | 110 | Du | te: |  | Z I / |     |     |    |  |  |  | _ |
|------------------------------|--------|--------|-------|---|--|-----|----|-----|--|-------|-----|-----|----|--|--|--|---|
|                              |        |        |       |   |  |     |    |     |  | A     | nal | yte | es |  |  |  |   |
|                              |        |        |       | С |  |     |    |     |  |       |     |     |    |  |  |  |   |
|                              |        |        |       | r |  |     |    |     |  |       |     |     |    |  |  |  |   |
| Lab                          | D      | T      |       | 6 |  |     |    |     |  |       |     |     |    |  |  |  |   |
| Sample                       | _      | У      |       |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ID                           | F      | p<br>e | Time  |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
|                              |        |        |       |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| IC 460-90310/1               |        |        | 09:07 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| IC 460-90310/2               |        |        | 09:07 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| IC 460-90310/3               |        |        | 09:07 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| IC 460-90310/4               |        |        | 09:07 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| IC 460-90310/5               |        |        | 09:07 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| IC 460-90310/6               |        |        | 09:07 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 09:16 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ICV 460-90310/7              | 1      |        | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ICB 460-90310/8              | 1      |        | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| MB 460-90228/1-A             | 1      | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| LCSS 460-90228/2-A           | 1      | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| LCSI 460-90228/3-A           | 50     | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| 460-31791-2                  | 1      | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| 460-31791-2 DU               | 1      | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| 460-31791-2 MSS              | 1      | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| 460-31791-2 MSI              | 50     | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| 460-31791-2 PDS              | 1      | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| 460-31791-1                  | 1      | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| 460-31791-3                  | 1      | Т      | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| CCV 460-90310/19             | 1      |        | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| CCB 460-90310/20             | 1      |        | 10:42 | Х |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 14:25 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 14:25 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 14:25 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |
| ZZZZZZ                       |        |        | 14:25 |   |  |     |    |     |  |       |     |     |    |  |  |  |   |

| Lab Name:   | TestAmerica Edison | Job No.: 460-31791-1       |  |
|-------------|--------------------|----------------------------|--|
| SDG No.:    |                    |                            |  |
| Instrument  | ID: WetHexSpec     | Method: 7196A              |  |
| Start Date: | 10/21/2011 09:07   | End Date: 10/21/2011 14:25 |  |

|                     |             |                  |       |             |  |  |  | А | nal | yte | es |  |  |  |  |
|---------------------|-------------|------------------|-------|-------------|--|--|--|---|-----|-----|----|--|--|--|--|
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  | C<br>r<br>6 |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 14:25 |             |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 14:25 |             |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 14:25 |             |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 14:25 |             |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 14:25 |             |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 14:25 |             |  |  |  |   |     |     |    |  |  |  |  |
| CCV 460-90310/31    |             |                  | 14:25 |             |  |  |  |   |     |     |    |  |  |  |  |
| CCB 460-90310/32    |             |                  | 14:25 |             |  |  |  |   |     |     |    |  |  |  |  |

Prep Types

T = Total/NA

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Instrument ID: NOEQUIP Method: 9045C

Start Date: 10/06/2011 11:19 End Date: 10/06/2011 11:53

|                     |             |                  |       |        |  |  |   |   | 7 | m = 1 |      |        |  |  |  | <br> |
|---------------------|-------------|------------------|-------|--------|--|--|---|---|---|-------|------|--------|--|--|--|------|
|                     |             |                  |       |        |  |  | I | I | A | nal   | -yte | ∌S<br> |  |  |  | _    |
|                     |             |                  |       | p<br>H |  |  |   |   |   |       |      |        |  |  |  |      |
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  |        |  |  |   |   |   |       |      |        |  |  |  |      |
| CCV 460-88553/1     | 1           |                  | 11:19 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |
| MB 460-88553/2      | 1           | Т                | 11:29 | X      |  |  |   |   |   |       |      |        |  |  |  |      |
| LCS 460-88553/3     | 1           | Т                | 11:30 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:31 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| 460-31882-J-16 DU   | 1           | Т                | 11:32 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:33 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:34 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:35 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:36 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:37 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:37 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| CCV 460-88553/12    | 1           |                  | 11:38 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:39 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:40 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:41 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:42 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:43 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:44 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:45 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:46 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| ZZZZZZ              |             |                  | 11:48 |        |  |  |   |   |   |       |      |        |  |  |  |      |
| 460-31791-1         | 1           | Т                | 11:49 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |
| CCV 460-88553/23    | 1           |                  | 11:50 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |
| 460-31791-2         | 1           | Т                | 11:51 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |
| 460-31791-3         | 1           | Т                | 11:52 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |
| CCV 460-88553/26    | 1           |                  | 11:53 | Х      |  |  |   |   |   |       |      |        |  |  |  |      |

Prep Types

T = Total/NA

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Instrument ID: NOEQUIP Method: Moisture

Start Date: 10/04/2011 13:14 End Date: 10/05/2011 00:31

| 10/04 = 10/04       |             |                  |       |             |                  | _                  |  |  |   |   |     |     |    |   |     |  |  | _   |
|---------------------|-------------|------------------|-------|-------------|------------------|--------------------|--|--|---|---|-----|-----|----|---|-----|--|--|-----|
|                     |             |                  |       |             |                  |                    |  |  |   | А | nal | Lyt | es |   |     |  |  |     |
|                     |             |                  |       | 왕           | М                |                    |  |  |   |   |     | 7 - |    |   |     |  |  | Т   |
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  | s<br>0<br>1 | o<br>i<br>s<br>t |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | Ť   |
|                     |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  | $\vdash$           |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| 460-31791-1         | 1           | T                | 13:14 | X           | X                |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| 460-31791-2         | 1           | T                | 13:14 | X           | X                |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| 460-31791-3         | 1           | T                | 13:14 | X           | X                |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              | 1           | 1                | 13:14 | ^           | ^                |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
|                     |             |                  | 1     |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | 4   |
| ZZZZZZ<br>ZZZZZZ    |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
|                     | 1           |                  | 13:14 | 37          | 37               |                    |  |  |   |   |     |     |    |   |     |  |  | +   |
| 460-31864-A-3 DU    | 1           | Т                | 13:14 | Х           | Х                |                    |  |  |   |   |     |     |    |   |     |  |  | 1   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | 1   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | 1   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | 1   |
| ZZZZZZ              |             |                  | 13:14 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | 1   |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | 1   |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | 1   |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | 1   |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  | $oxedsymbol{oxed}$ |  |  |   |   |     |     |    |   |     |  |  |     |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | Ī   |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | Ţ   |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | Ť   |
| ZZZZZZ              |             |                  | 13:57 |             |                  |                    |  |  |   |   |     |     |    |   |     |  |  | †   |
|                     |             |                  |       |             |                  |                    |  |  | I |   |     |     |    | l | l . |  |  | - 1 |

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Instrument ID: NOEQUIP Method: Moisture

Start Date: 10/04/2011 13:14 End Date: 10/05/2011 00:31

| Start Date: 10/ | 04/2011 | 13:1 | . 4    |        |   | _ Er | nd | Dat | te: | 10/ | 05/ | 201 | .1 ( | 00:     | 3 I |   |  |               | <br>_ |
|-----------------|---------|------|--------|--------|---|------|----|-----|-----|-----|-----|-----|------|---------|-----|---|--|---------------|-------|
|                 |         |      |        |        |   |      |    |     |     |     | 71  | 1   |      |         |     |   |  |               | <br>_ |
|                 |         |      |        | _      |   |      |    |     |     |     | A   | nal | yt.  | es<br>— |     |   |  |               | <br>_ |
|                 |         |      |        | %<br>S | M |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| Lab             | D       | Т    |        | 0      | i |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| Sample          | / /     | У    |        | 1      | s |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ID              | F       | р    | Time   |        | t |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
|                 |         | е    | 111110 |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 13:57  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | П     |
| ZZZZZZ          |         |      | 13:57  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 13:57  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 13:57  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | <br>T |
| ZZZZZZ          |         |      | 13:57  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 13:57  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 13:57  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  | $\Box$        | Г     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | Г     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  | $\Box$        | Г     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | Т     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | Т     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | Т     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | Т     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | Т     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | Г     |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 14:41  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 15:29  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 16:21  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 16:21  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 16:21  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | П     |
| ZZZZZZ          |         |      | 16:21  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               |       |
| ZZZZZZ          |         |      | 16:21  |        |   |      |    |     |     |     |     |     |      |         |     |   |  | $\Box$        | <br>Г |
| ZZZZZZ          |         |      | 16:21  |        |   |      |    |     |     |     |     |     |      |         |     |   |  |               | П     |
| ZZZZZZ          |         |      | 16:21  |        |   |      |    |     |     |     |     |     |      |         |     |   |  | $\Box$        | Г     |
|                 |         | 1    |        | 1      | 1 |      |    |     |     |     |     |     |      |         |     | 1 |  | $\overline{}$ | <br>  |

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Instrument ID: NOEQUIP Method: Moisture

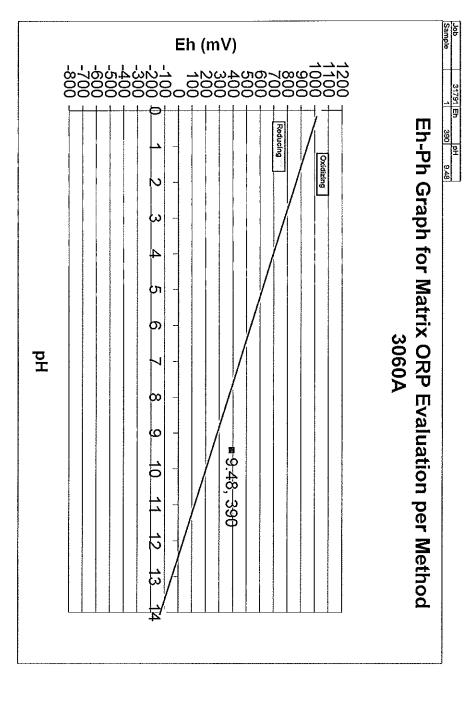
Start Date: 10/04/2011 13:14 End Date: 10/05/2011 00:31

| Start Date: 1 | 10/04/2011 | 13.1 | . 4   |        |   | — E1 | Iu | Dat | €. | - | 10/ | 05/ | 201   | . 1 (    |   | ) <u>T</u> |  |  |  | _            |
|---------------|------------|------|-------|--------|---|------|----|-----|----|---|-----|-----|-------|----------|---|------------|--|--|--|--------------|
|               |            |      |       |        |   |      |    |     |    |   |     | 7\  | n n 1 |          |   |            |  |  |  | _            |
|               |            |      |       | 0.     | М |      | _  |     |    |   |     | A   | naı   | yte<br>T | S |            |  |  |  | Т            |
|               |            |      |       | ુ<br>S | M |      |    |     |    |   |     |     |       |          |   |            |  |  |  |              |
| Lab           | D          | T    |       | 0      | i |      |    |     |    |   |     |     |       |          |   |            |  |  |  |              |
| Sample        | /          | У    |       | 1      | s |      |    |     |    |   |     |     |       |          |   |            |  |  |  |              |
| ID            | F          | р    | Time  |        | t |      |    |     |    |   |     |     |       |          |   |            |  |  |  |              |
|               |            | e    | TIME  |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  |              |
| ZZZZZZ        | i          |      | 16:21 | i      |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | Ŧ            |
| ZZZZZZ        |            |      | 16:21 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 16:21 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 16:21 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 16:21 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 16:21 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | t            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | Ť            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | Ť            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | Ť            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | Ť            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | Ť            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | Ī            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | Ť            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | T            |
| ZZZZZZ        |            |      | 00:31 |        |   |      |    |     |    |   |     |     |       |          |   |            |  |  |  | $^{\dagger}$ |

| Lab Name:     | TestAmerica Edison | Job No.:  | 460-31791-1      |
|---------------|--------------------|-----------|------------------|
| SDG No.:      |                    |           |                  |
| Instrument II | D: NOEQUIP         | Method: M | oisture          |
| Start Date:   | 10/04/2011 13:14   | End Date: | 10/05/2011 00:31 |

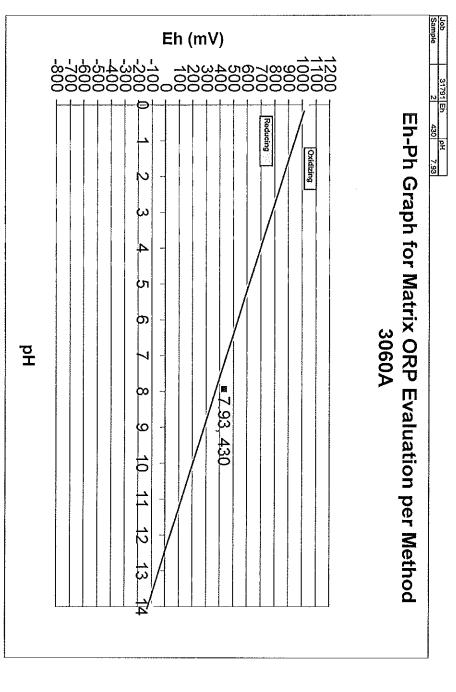
|                     |             |                  |       |                  |                       |  |  |  | А | nal | yte | es |  |  |  |  |
|---------------------|-------------|------------------|-------|------------------|-----------------------|--|--|--|---|-----|-----|----|--|--|--|--|
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  | %<br>S<br>o<br>1 | M<br>o<br>i<br>s<br>t |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |
| ZZZZZZ              |             |                  | 00:31 |                  |                       |  |  |  |   |     |     |    |  |  |  |  |

Prep Types


T = Total/NA

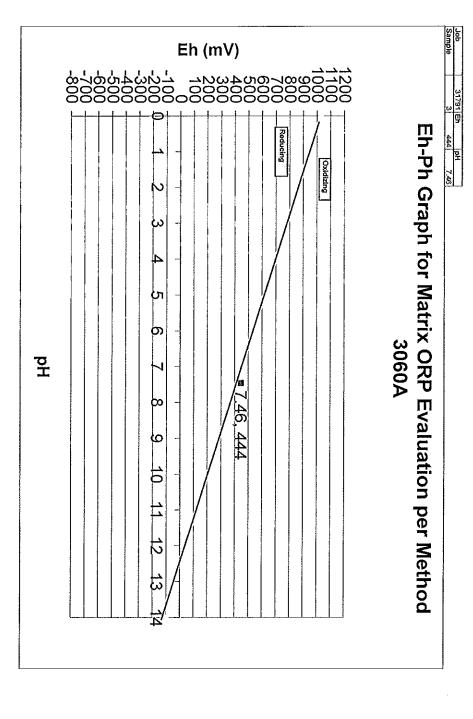
|                     |             |                  |       |             |  |  |  | А | nal | yte | es |  |  |  |  |
|---------------------|-------------|------------------|-------|-------------|--|--|--|---|-----|-----|----|--|--|--|--|
| Lab<br>Sample<br>ID | D<br>/<br>F | T<br>Y<br>p<br>e | Time  | O<br>R<br>P |  |  |  |   |     |     |    |  |  |  |  |
| ICV 460-88558/1     | 1           |                  | 13:00 | Х           |  |  |  |   |     |     |    |  |  |  |  |
| 460-31882-J-16-B DU | 1           | S                | 13:07 | Х           |  |  |  |   |     |     |    |  |  |  |  |
| CCV 460-88558/12    | 1           |                  | 13:21 | Х           |  |  |  |   |     |     |    |  |  |  |  |
| 460-31791-1         | 1           | S                | 13:40 | Х           |  |  |  |   |     |     |    |  |  |  |  |
| 460-31791-2         | 1           | S                | 13:42 | Х           |  |  |  |   |     |     |    |  |  |  |  |
| 460-31791-3         | 1           | S                | 13:45 | Х           |  |  |  |   |     |     |    |  |  |  |  |
| CCV 460-88558/23    | 1           |                  | 13:46 | Х           |  |  |  |   |     |     |    |  |  |  |  |

Prep Types


S = Soluble






Using a combination Platinum electrode, the Eh readings at 20 deg C are adjusted by adding 204 mv. Eh values plotted on this diagram are corrected for the reference electrode voltage.





Eh values plotted on this diagram are corrected for the reference electrode voltage. Using a combination Platinum electrode, the Eh readings at 20 deg C are adjusted by adding 204 mv.





Eh values plotted on this diagram are corrected for the reference electrode voltage.

Using a combination Platinum electrode, the Eh readings at 20 deg C are adjusted by adding 204 mv.

PROJECT Of the Prep Low-Book Notebook No. 06203 Continued From Page \_ BATEN # 90228 MHAUX SOLVA Spaine SAGINE WYG) INITIALIA 845H 0.10 jpg 76) 7-20 85 フャウ 7.70 7.4 us se CCS TASIL 7.6 3/79/2 3/791-2 DVP 317912-Sie 7.38 31791-2 Tull 7.65 31791-1 317913 7.80 1000 32440-1 1330 0) 32/41/ 324837 3d 500 -1 780 7.02 34505-3 1 32505-4 7.05 32 505 5 32510-1 7.41 325102

Read and Understood By

7.80

720

Signed

CCS

OB

Page<sup>D3</sup>126 of 332

Signed

10/21/2010ate

Continued on Page

Continued From Page

| Job #         |            |           |        |       | Bornit 8     | 90310  |           | MUDIC SOLID      |
|---------------|------------|-----------|--------|-------|--------------|--------|-----------|------------------|
|               |            |           |        |       |              |        |           |                  |
| HOSTE E       | i' ABS     | By H      | #      | Tolef | pearl        |        | inulpH    | 214              |
| (2)44         | 6-000      |           |        | 345 A | 1903         |        | 736 170   |                  |
| Oyns<br>OS ou | 0.048      |           |        |       |              | 11.    | 259 1.69  |                  |
| 10 1011       | 0 089      |           |        |       |              | ichihi | 202 1.63  |                  |
| SO WAI        | 0.416      |           |        |       |              |        | 7-75 1.60 |                  |
| 15 MI         | 0.612      | -         |        |       |              |        | 7.39 1.61 |                  |
| 5 11011       | 1-003      |           |        | 558   | 1907         |        | ZJO /61   |                  |
|               | 0.406      |           |        | 1015A | 1024         |        | 1.47      |                  |
| 13            | 0.00       |           |        |       | / - -        |        | 1.65      |                  |
| B             | 000        |           |        |       |              | ,      | 199       | -                |
| is silver     | 0.30 >     |           |        |       |              |        | 162       |                  |
| still bo      | 0.289      |           |        |       |              |        | 160       |                  |
| 791-2         | 10/a 0-602 | 0.009 06  | / 1 1  |       |              |        | 1.68      |                  |
| 7912 DUP      | 0.00/      | 0.008 000 | 4. しつ  |       |              |        | 17        |                  |
| 19912 Sil     | 0.645      | 1 1 1.    | 1 169  | _     |              |        | 1.09      |                  |
| 191-2- Juste  |            |           | 1 165  |       |              |        | 1.69      |                  |
| 1791-2-125    | 0.808      | 0.004     | 163    |       |              |        | Lief      |                  |
| 1791-1        | 0.025      | 6-621     | 1 1.79 | -   - |              |        | 121       |                  |
| 79/-3         | 0.054      | 6.052/    | 1//2   |       | 11,1         |        | 167       |                  |
| 205           | 0.406      |           |        | 1019  | 1/042        | ,      | 1-45      |                  |
| 2446-1        | 0.036      | 0-018/    | 179    | 1400  | <b>1</b> 1   |        | 1.62      |                  |
| 274/1         | 0.013      | 0.004/    | 165    | 111   |              |        | 1.65      |                  |
| 2463-7        | 0.060      | 000/      | 163    |       |              |        | 167       |                  |
| 2505-1        | 6026       | 0.009     | 160    |       |              |        | 1.77      |                  |
| 2525-2        | 0.021      | 0016/     | 1.66   |       |              |        | 1.69      |                  |
| 32505-3       | 0.014      | 0-005/    | 168    |       |              |        | 1.78      |                  |
| 82505-4       | 0.017      | 0.48/     | 171    |       |              |        | 1.70      |                  |
| 1205-5        | 0.006      | 0.001/    | 167    |       |              |        | 1-65      |                  |
| 325-10-1      | 0.006      | 0-00//    | 1.60   |       |              | e l    | 160       |                  |
| 3,510-2       | 0 023      | owg/      | 1061   |       | _            |        | 1.44      |                  |
| 48            | U. 404     |           |        |       |              |        | 4.67      | nutinued on Boss |
| CCA           | ono        |           |        | 1407  | Read and Und |        | (65) c    | ontinued on Page |

Signed

Signed

#### Dilution Form Wet Chemistry

| Method No.:       | 6 3060A/7196 | Analyst:       | INN CHELOND |
|-------------------|--------------|----------------|-------------|
| Prep Batch:       | 90228        | Analysis Date: | 10/21/11    |
| Analytical Batch: | 90310        |                |             |

|                   | ole of a market was a second |                    |                    |         |
|-------------------|------------------------------|--------------------|--------------------|---------|
| Job/Sample Number | Dilution<br>Factor           | Sample Volume (ml) | Einal Volume (ml): | Diluent |
| 31791-2 File      | JUX                          | /me                | Sonie              | Nr 140  |
|                   |                              |                    |                    |         |
|                   |                              |                    | ,                  |         |
|                   |                              |                    |                    |         |
|                   |                              |                    |                    |         |
|                   |                              |                    |                    |         |
|                   |                              |                    |                    |         |
|                   |                              |                    | ·                  |         |
|                   | ,                            |                    |                    | ·       |
|                   |                              |                    |                    | •       |
| ·                 |                              |                    |                    |         |
|                   |                              |                    |                    |         |
|                   |                              |                    |                    |         |
|                   |                              | -                  | •                  |         |
|                   |                              |                    |                    | · .     |
|                   |                              |                    | •                  |         |
|                   |                              |                    | ,                  |         |
|                   | ,                            |                    |                    |         |
| •                 | Í                            |                    |                    |         |

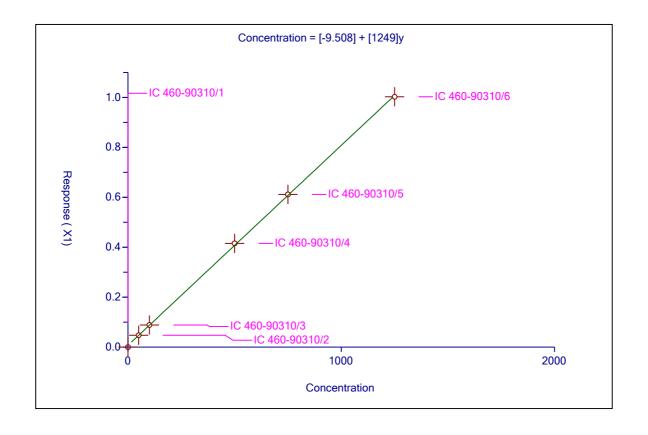
#### Calibration

RF Rounding:

Curve Type: Linear
Weighting: None
Origin: None
Dependency: Concentration
Calib Mode: ESTD

 Intercept:
 -9.508

 Slope:
 1249


**Curve Coefficients** 

**Error Coefficients** 

Standard Error: 8.13
Relative Standard Error: NC
Correlation Coefficient: 1.000

Coefficient of Determination (Adjusted): 1.000 (1.000)

| ID | Level          | Concentration | Response | IS Amount | IS Response | RF       | Used |
|----|----------------|---------------|----------|-----------|-------------|----------|------|
| 1  | IC 460-90310/1 | 0.0           | 0.0      |           |             | NaN      | Υ    |
| 2  | IC 460-90310/2 | 50.0          | 0.048    |           |             | 0.00096  | Υ    |
| 3  | IC 460-90310/3 | 100.0         | 0.089    |           |             | 0.00089  | Υ    |
| 4  | IC 460-90310/4 | 500.0         | 0.416    |           |             | 0.000832 | Υ    |
| 5  | IC 460-90310/5 | 750.0         | 0.612    |           |             | 0.000816 | Υ    |
| 6  | IC 460-90310/6 | 1250.0        | 1.003    |           |             | 0.000802 | Υ    |



Signed

Continued From Page \_

10/21/2011

Signed

| notal | 545 Smp  | e Whit DI                                    | les lost#1                                       | Uslant to lesoft regar to                        | ve_   |
|-------|----------|----------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------|
|       | 1        |                                              | 468                                              | 47 675 225                                       | 1:00  |
| 38558 | 31882 14 | 5 Solid                                      | 269                                              | 266 470 2211                                     | 20.   |
|       | 100      | elo i i                                      | 766                                              |                                                  | 1:07  |
|       |          | $\mathbf{r}_{ \mathcal{I} }$                 | 144                                              | 141 345 2211                                     | १ ७९  |
|       |          | <u>-                                    </u> | 220                                              |                                                  | , 0   |
|       |          | 6                                            | 119                                              |                                                  | 11:   |
|       |          | >                                            | 90                                               | <del>                                     </del> | 113   |
|       |          |                                              | 225                                              | 1-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1          | : 15  |
|       |          |                                              | 235                                              | 238 442 225 [                                    |       |
|       |          | , Z                                          | 741                                              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1            | 1/18  |
|       | 5        | 9                                            | 465                                              |                                                  | 1:21  |
|       | S7       | <del></del>                                  | <del>                                     </del> |                                                  | 26    |
|       | 52       |                                              | 288                                              | 288 492 2241                                     | , 28  |
|       | 5        |                                              | 370                                              |                                                  | 3     |
|       |          | 914                                          | 195                                              | 158 392 23.11                                    | 1, 33 |
|       |          | OF I                                         | 285                                              | 290 494 22.71                                    | 35    |
|       | 1 1 3    | 1+                                           | 271                                              |                                                  | 1-36  |
|       |          | 21                                           | 1 305                                            |                                                  | : 358 |
|       | 31791    |                                              | 190                                              |                                                  | :41   |
|       |          | _                                            | 221                                              |                                                  | 542   |
| W     | 1 4 1 2  | »     \b                                     | 720                                              | 240 444 2261                                     | - 1 - |
|       |          | <u> </u>                                     | 466                                              | 469 673 22 71                                    | 1:41  |
|       |          |                                              |                                                  |                                                  |       |
|       |          |                                              |                                                  |                                                  |       |
|       |          |                                              | ENTAL                                            |                                                  |       |
|       |          | Respents                                     | 1774                                             |                                                  |       |
|       |          |                                              |                                                  |                                                  |       |
|       |          |                                              | 1111                                             |                                                  |       |
|       |          |                                              |                                                  |                                                  |       |
|       | T        |                                              |                                                  |                                                  |       |
|       |          |                                              |                                                  |                                                  |       |
|       |          |                                              |                                                  |                                                  |       |
|       |          |                                              | + + + + + + + + + + + + + + + + + + + +          | Continued on Page                                |       |

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Batch Number: 90228 Batch Start Date: 10/20/11 13:00 Batch Analyst: Acierno, Mark

Batch Method: 3060A Batch End Date: 10/20/11 14:00

| Lab Sample ID        | Client Sample ID | Method Chain | Basis | InitialAmount | FinalAmount | Initial pH | Final pH | WThcrIM 00028 | WThcrPbCr 00004 |
|----------------------|------------------|--------------|-------|---------------|-------------|------------|----------|---------------|-----------------|
| MB 460-90228/1       |                  | 3060A, 7196A |       | 2.50 g        | 100 mL      | 7.95 SU    | 1.92 SU  |               |                 |
| LCSS<br>460-90228/2  |                  | 3060A, 7196A |       | 2.50 g        | 100 mL      | 7.25 SU    | 1.62 SU  |               |                 |
| LCSI<br>460-90228/3  |                  | 3060A, 7196A |       | 2.50 g        | 100 mL      | 7.61 SU    | 1.60 SU  |               | 0.011 g         |
| 460-31791-A-2        | NTB-C1-11.0      | 3060A, 7196A | Т     | 2.50 g        | 100 mL      | 7.74 SU    | 1.68 SU  |               |                 |
| 460-31791-A-2<br>DU  | NTB-C1-11.0      | 3060A, 7196A | Т     | 2.50 g        | 100 mL      | 7.13 SU    | 1.74 SU  |               |                 |
| 460-31791-A-2<br>MSS | NTB-C1-11.0      | 3060A, 7196A | Т     | 2.50 g        | 100 mL      | 7.38 SU    | 1.64 SU  | 1 mL          |                 |
| 460-31791-A-2<br>MSI | NTB-C1-11.0      | 3060A, 7196A | Т     | 2.50 g        | 100 mL      | 7.65 SU    | 1.69 SU  |               | 0.011 g         |
| 460-31791-A-1        | NTB-C2-12.0      | 3060A, 7196A | Т     | 2.40 g        | 100 mL      | 7.24 SU    | 1.66 SU  |               |                 |
| 460-31791-A-3        | NTB-B2-2.0       | 3060A, 7196A | T     | 2.56 g        | 100 mL      | 7.37 SU    | 1.71 SU  |               |                 |

| Lab Sample ID        | Client Sample ID | Method Chain | Basis | WThcrsLCS 00048 | AnalysisComment |  |  |
|----------------------|------------------|--------------|-------|-----------------|-----------------|--|--|
| MB 460-90228/1       |                  | 3060A, 7196A |       |                 |                 |  |  |
| LCSS<br>460-90228/2  |                  | 3060A, 7196A |       | 5 mL            |                 |  |  |
| LCSI<br>460-90228/3  |                  | 3060A, 7196A |       |                 |                 |  |  |
| 460-31791-A-2        | NTB-C1-11.0      | 3060A, 7196A | Т     |                 | lt brn          |  |  |
| 460-31791-A-2<br>DU  | NTB-C1-11.0      | 3060A, 7196A | Т     |                 | lt brn          |  |  |
| 460-31791-A-2<br>MSS | NTB-C1-11.0      | 3060A, 7196A | Т     |                 | lt brn          |  |  |
| 460-31791-A-2<br>MSI | NTB-C1-11.0      | 3060A, 7196A | Т     |                 | yellow          |  |  |
| 460-31791-A-1        | NTB-C2-12.0      | 3060A, 7196A | Т     |                 | colorless       |  |  |
| 460-31791-A-3        | NTB-B2-2.0       | 3060A, 7196A | Т     |                 | med brn         |  |  |

7196A Page 1 of 2

| Lab Name:  | TestAmerica Edison | Job No.: 460-31791-1             |                              |
|------------|--------------------|----------------------------------|------------------------------|
| SDG No.:   |                    |                                  |                              |
| Batch Numb | er: 90228          | Batch Start Date: 10/20/11 13:00 | Batch Analyst: Acierno, Mark |

Batch End Date: 10/20/11 14:00

Batch Notes Alkaline Digestion Solution Reagent ID C-7525-11 exp: 11/5/11 Temp after 30 minutes = 94.0C Batch Comment First End time 14:00 C-7439-11 exp: 3/6/12 Potassium Phosphate Buffer Reagent ID Lead Chromate Lot # BCBC2419 Lead Chromate Vendor ID Aldrich Magnesium Chloride Lot Number K13R006 Magnesium Chloride Vendor Aesar First Start time 13:00 Ending Temperature 94.0C Celsius Starting Temperature 92.0C Celsius

| Basis |          | Basis | Description |
|-------|----------|-------|-------------|
| Т     | Total/NA |       |             |

Batch Method: 3060A

Lab Name: TestAmerica Edison Job No.: 460-31791-1

SDG No.:

Batch Number: 90310 Batch Start Date: 10/21/11 09:16 Batch Analyst: Carlone, John

Batch Method: 7196A Batch End Date: 10/21/11 14:25

| Lab Sample ID   | Client Sample ID | Method Chain | Basis | FinalAmount | ColorBlk   | UnCorResp  | CalcMsg        | WThcrIM 00029 | WThcrIM3 00014 |
|-----------------|------------------|--------------|-------|-------------|------------|------------|----------------|---------------|----------------|
| IC 460-90310/1  |                  | 7196A        |       | 100 mL      |            |            | Color Resp. is |               |                |
|                 |                  |              |       |             |            |            | Blank          |               |                |
| IC 460-90310/2  |                  | 7196A        |       | 100 mL      |            |            | Color Resp. is | 0.05 mL       |                |
|                 |                  |              |       |             |            |            | Blank          |               |                |
| IC 460-90310/3  |                  | 7196A        |       | 100 mL      |            |            | Color Resp. is | 0.1 mL        |                |
|                 |                  |              |       |             |            |            | Blank          |               |                |
| IC 460-90310/4  |                  | 7196A        |       | 100 mL      |            |            | Color Resp. is | 0.5 mL        |                |
|                 |                  |              |       |             |            |            | Blank          |               |                |
| IC 460-90310/5  |                  | 7196A        |       | 100 mL      |            |            | Color Resp. is | 0.75 mL       |                |
|                 |                  |              |       |             |            |            | Blank          |               |                |
| IC 460-90310/6  |                  | 7196A        |       | 100 mL      |            |            | Color Resp. is | 1.25 mL       |                |
|                 |                  |              |       |             |            |            | Blank          |               |                |
| ICV 460-90310/7 |                  | 7196A        |       | 100 mL      |            | 0.406      | OK w/o         |               | 0.5 mL         |
|                 |                  |              |       |             |            | Absorbance | Correction     |               |                |
| ICB 460-90310/8 |                  | 7196A        |       | 100 mL      |            | 0.000      | OK w/o         |               |                |
|                 |                  |              |       |             |            | Absorbance | Correction     |               |                |
| 1B              |                  | 7196A        |       | 100 mL      |            | 0.000      | OK w/o         |               |                |
| 160-90228/1-A   |                  |              |       |             |            | Absorbance | Correction     |               |                |
| LCSS            |                  | 7196A        |       | 100 mL      |            | 0.302      | OK w/o         |               |                |
| 460-90228/2-A   |                  |              |       |             |            | Absorbance | Correction     |               |                |
| LCSI            |                  | 7196A        |       | 100 mL      |            | 0.289      | OK w/o         |               |                |
| 460-90228/3-A   |                  |              |       |             |            | Absorbance | Correction     |               |                |
| 460-31791-A-2-J | NTB-C1-11.0      | 7196A        | Т     | 100 mL      | 0.004      | 0.009      | OK             |               |                |
|                 |                  |              |       |             | Absorbance | Absorbance |                |               |                |
| 460-31791-A-2-K | NTB-C1-11.0      | 7196A        | Т     | 100 mL      | 0.003      | 0.008      | OK             |               |                |
| DU              |                  |              |       |             | Absorbance | Absorbance |                |               |                |
| 460-31791-A-2-L | NTB-C1-11.0      | 7196A        | Т     | 100 mL      | 0.006      | 0.645      | OK             |               |                |
| MSS             |                  |              |       |             | Absorbance | Absorbance |                |               |                |
| 160-31791-A-2-M | NTB-C1-11.0      | 7196A        | Т     | 100 mL      | 0.000      | 0.260      | OK             |               |                |
| 4SI             |                  |              |       |             | Absorbance | Absorbance |                |               |                |
| 160-31791-A-2-J | NTB-C1-11.0      | 7196A        | Т     | 50 mL       | 0.004      | 0.908      | OK             | 0.5 mL        |                |
| PDS             |                  |              |       |             | Absorbance | Absorbance |                |               |                |
| 460-31791-A-1-G | NTB-C2-12.0      | 7196A        | Т     | 100 mL      | 0.021      | 0.025      | OK             |               |                |
|                 |                  |              |       |             | Absorbance | Absorbance |                |               |                |
| 160-31791-A-3-I | NTB-B2-2.0       | 7196A        | Т     | 100 mL      | 0.052      | 0.054      | OK             |               |                |
|                 |                  |              |       |             | Absorbance | Absorbance |                |               |                |
| CCV             |                  | 7196A        |       | 100 mL      |            | 0.406      | OK w/o         |               | 0.5 mL         |
| 460-90310/19    |                  |              |       |             |            | Absorbance | Correction     |               |                |
| CCB             |                  | 7196A        |       | 100 mL      |            | 0.000      | OK w/o         |               |                |
| 160-90310/20    |                  |              |       |             |            | Absorbance | Correction     |               |                |

 Lab Sample ID
 Client Sample ID
 Method Chain
 Basis
 AnalysisComment

 IC 460-90310/1
 7196A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 T1 96A
 <t

| Lab Name: Tes | tAmerica Edison | JOD NO.: 460-31/91 | 1              |                |               |
|---------------|-----------------|--------------------|----------------|----------------|---------------|
| SDG No.:      |                 |                    |                |                |               |
| Batch Number: | 90310           | Batch Start Date:  | 10/21/11 09:16 | Batch Analyst: | Carlone, John |
| Batch Method: | 7196A           | Batch End Date: 1  | 0/21/11 14:25  |                |               |

| Lab Sample ID          | Client Sample ID | Method Chain | Basis | AnalysisComment |  |  |  |
|------------------------|------------------|--------------|-------|-----------------|--|--|--|
| IC 460-90310/3         |                  | 7196A        |       |                 |  |  |  |
| IC 460-90310/4         |                  | 7196A        |       |                 |  |  |  |
| IC 460-90310/5         |                  | 7196A        |       |                 |  |  |  |
| IC 460-90310/6         |                  | 7196A        |       |                 |  |  |  |
| ICV 460-90310/7        |                  | 7196A        |       |                 |  |  |  |
| ICB 460-90310/8        |                  | 7196A        |       |                 |  |  |  |
| MB<br>460-90228/1-A    |                  | 7196A        |       |                 |  |  |  |
| LCSS<br>460-90228/2-A  |                  | 7196A        |       |                 |  |  |  |
| LCSI<br>460-90228/3-A  |                  | 7196A        |       |                 |  |  |  |
| 460-31791-A-2-J        | NTB-C1-11.0      | 7196A        | Т     | 1.63            |  |  |  |
| 460-31791-A-2-K<br>DU  | NTB-C1-11.0      | 7196A        | Т     | 1.64            |  |  |  |
| 460-31791-A-2-L<br>MSS | NTB-C1-11.0      | 7196A        | Т     | 1.69            |  |  |  |
| 460-31791-A-2-M<br>MSI | NTB-C1-11.0      | 7196A        | Т     | 1.65            |  |  |  |
| 460-31791-A-2-J<br>PDS | NTB-C1-11.0      | 7196A        | Т     | 1.63            |  |  |  |
| 460-31791-A-1-G        | NTB-C2-12.0      | 7196A        | Т     | 1.64            |  |  |  |
| 460-31791-A-3-I        | NTB-B2-2.0       | 7196A        | Т     | 1.75            |  |  |  |
| CCV<br>460-90310/19    |                  | 7196A        |       |                 |  |  |  |
| CCB<br>460-90310/20    |                  | 7196A        |       |                 |  |  |  |

| Batch Notes                        |                        |  |  |  |  |
|------------------------------------|------------------------|--|--|--|--|
| Spectrophotometer Cell Path Length | 1 cm                   |  |  |  |  |
| Color Reagent ID Number            | C-7552-11 EXP 11/14/11 |  |  |  |  |
| Nitric Acid Reagent ID Number      | C-7543-11 EXP 4/12/12  |  |  |  |  |
| Sulfuric Acid Reagent ID Number    | C-7548-11 EXP 4/13/12  |  |  |  |  |

| Basis |          | Basis | Description |
|-------|----------|-------|-------------|
| Т     | Total/NA |       |             |

7196A Page 2 of 2

| Lab Name: | TestAmerica Edison | Job No.: | 460-31791-1 |
|-----------|--------------------|----------|-------------|
|           |                    |          |             |

SDG No.:

Batch Number: 88553 Batch Start Date: 10/06/11 11:19 Batch Analyst: Cabanganan, Maria

Batch Method: 9045C Batch End Date: 10/06/11 11:53

| Lab Sample ID        | Client Sample ID | Method Chain | Basis | InitialAmount | FinalAmount | SampleTemp   | WTpHCCV 00011 | WTpHLCS 00013 |
|----------------------|------------------|--------------|-------|---------------|-------------|--------------|---------------|---------------|
| CCV 460-88553/1      |                  | 9045C        |       | 20 mL         | 20 mL       | 21.5 Celsius | 20 mL         |               |
| MB 460-88553/2       |                  | 9045C        |       | 20 mL         | 20 mL       | 22.1 Celsius |               |               |
| LCS 460-88553/3      |                  | 9045C        |       | 20 mL         | 20 mL       | 22.0 Celsius |               | 20 mL         |
| 460-31882-J-16<br>DU |                  | 9045C        | Т     | 20 g          | 20 mL       | 22.9 Celsius |               |               |
| CCV<br>460-88553/12  |                  | 9045C        |       | 20 mL         | 20 mL       | 21.9 Celsius | 20 mL         |               |
| 460-31791-A-1        | NTB-C2-12.0      | 9045C        | Т     | 20 g          | 20 mL       | 21.5 Celsius |               |               |
| CCV<br>460-88553/23  |                  | 9045C        |       | 20 mL         | 20 mL       | 22.0 Celsius | 20 mL         |               |
| 460-31791-A-2        | NTB-C1-11.0      | 9045C        | Т     | 20 g          | 20 mL       | 22.1 Celsius |               |               |
| 460-31791-A-3        | NTB-B2-2.0       | 9045C        | Т     | 20 g          | 20 mL       | 21.9 Celsius |               |               |
| CCV<br>460-88553/26  |                  | 9045C        |       | 20 mL         | 20 mL       | 21.9 Celsius | 20 mL         |               |

| Batch Notes    |                                  |  |  |  |  |
|----------------|----------------------------------|--|--|--|--|
| pH Buffer 1 ID | 7.00: Fisher/108231 exp. 1/2013  |  |  |  |  |
| pH Buffer 2 ID | 4.00: Thermo/910104 exp. 9/2012  |  |  |  |  |
| pH Buffer 3 ID | 10.00: Fisher/108086 exp. 1/2013 |  |  |  |  |
| Instrument ID  | pH meter B                       |  |  |  |  |

| Basis |          | Basis | Description |
|-------|----------|-------|-------------|
| T     | Total/NA |       |             |

9045C Page 1 of 1

| Lab Name: Tes | tAmerica Edison | Job No.: 460-3179 | 1-1            |                |                   |
|---------------|-----------------|-------------------|----------------|----------------|-------------------|
| SDG No.:      |                 |                   |                |                |                   |
| Batch Number: | 88198           | Batch Start Date: | 10/04/11 13:14 | Batch Analyst: | Armbruster, Chris |
| Batch Method: | Moisture        | Batch End Date:   |                |                |                   |

| Lab Sample ID       | Client Sample ID | Method Chain | Basis | DISH# | DishWeight | SampleMassWet | SampleMassDry |  |
|---------------------|------------------|--------------|-------|-------|------------|---------------|---------------|--|
| 460-31791-A-1       | NTB-C2-12.0      | Moisture     | Т     | 14    | 1.02 g     | 6.26 g        | 4.38 g        |  |
| 460-31791-A-2       | NTB-C1-11.0      | Moisture     | Т     | 15    | 1.01 g     | 6.55 g        | 5.52 g        |  |
| 460-31791-A-3       | NTB-B2-2.0       | Moisture     | Т     | 16    | 1.00 g     | 6.28 g        | 5.59 g        |  |
| 460-31864-A-3<br>DU |                  | Moisture     | Т     | 21    | 1.01 g     | 6.69 g        | 5.32 g        |  |

| Batch Notes                              |                    |  |  |  |  |
|------------------------------------------|--------------------|--|--|--|--|
| Balance ID                               | 104 No Unit        |  |  |  |  |
| Date samples were placed in the oven     | 10/4/11            |  |  |  |  |
| Oven Temp when samples are put in oven   | 105, 105 Degrees C |  |  |  |  |
| Date samples were removed from oven      | 10/5/11            |  |  |  |  |
| Oven Temp when samples removed from oven | 101, 99 Degrees C  |  |  |  |  |
| Time Samples were removed from oven      | 10:00              |  |  |  |  |
| Oven ID                                  | 1, 2               |  |  |  |  |
| ID number of the thermometer             | 1895, 1840         |  |  |  |  |

| Basis | Basis Description |
|-------|-------------------|
| Т     | Total/NA          |

Moisture Page 1 of 1 Page 327 of 332 10/21/2011

| Lab Name: Tes | stAmerica Edison | Į.                    | J       | Job No.: 460-31791-1 |             |       |                |             |       |
|---------------|------------------|-----------------------|---------|----------------------|-------------|-------|----------------|-------------|-------|
| SDG No.:      |                  |                       |         |                      |             |       |                |             |       |
| Batch Number: | 88556            |                       | В       | atch Start Date:     | 10/06/11    | 14:17 | Batch Analyst: | Cabanganan, | Maria |
| Batch Method: | DI Leach         |                       | В       | atch End Date:       |             |       |                |             |       |
| Lab Sample ID | Client Sample ID | Method Chain          | Basis   | InitialAmount        | FinalAmount |       |                |             |       |
| 460-31791-A-1 | NTB-C2-12.0      | DI Leach, SM<br>2580B | S       | 20 g                 | 20 mL       |       |                |             |       |
| 460-31791-A-2 | NTB-C1-11.0      | DI Leach, SM<br>2580B | S       | 20 g                 | 20 mL       |       |                |             |       |
| 460-31791-A-3 | NTB-B2-2.0       | DI Leach, SM<br>2580B | S       | 20 g                 | 20 mL       |       |                |             |       |
|               |                  | Ba                    | tch Not | es                   |             |       |                |             |       |

| Basi | s |         | Basis | Description |  |
|------|---|---------|-------|-------------|--|
| S    |   | Soluble |       |             |  |

SM 2580B Page 1 of 1

| Lab Name: Tes       | tAmerica Edison    |              | J       | Job No.: 460-31791-1 |                     |       |                |             |       |
|---------------------|--------------------|--------------|---------|----------------------|---------------------|-------|----------------|-------------|-------|
| SDG No.:            |                    |              |         |                      |                     |       |                |             |       |
| Batch Number:       | 88558              |              | Ва      | atch Start Date      | e: <u>10/06/11</u>  | 13:00 | Batch Analyst: | Cabanganan, | Maria |
| Batch Method:       | SM 2580B           |              | Ва      | atch End Date:       | 10/06/11 13         | 3:46  | -              |             |       |
| Lab Sample ID       | Client Sample ID   | Method Chain | Basis   | FinalAmount          | WTredoxLCS<br>00010 |       |                |             |       |
| ICV 460-88558/1     |                    | SM 2580B     |         | 20 mL                | 20 mL               |       |                |             |       |
| CCV<br>460-88558/12 |                    | SM 2580B     |         | 20 mL                | 20 mL               |       |                |             |       |
| CCV<br>460-88558/23 |                    | SM 2580B     |         | 20 mL                | 20 mL               |       |                |             |       |
|                     |                    | Ba           | tch Not | es                   |                     |       |                |             |       |
| Batch Comment       |                    |              | Res     | ults adjusted by H   | + 204 mV            |       |                |             |       |
| Quinhydrone Refe    | rence Solution Lot | #            | Ori     | on: 900011           |                     |       |                |             |       |

Light Solution: 475 mV +/- 10 mV

| Basis | Basis Description |
|-------|-------------------|
|       |                   |

Fe2/Fe3 Standard Lot #

SM 2580B Page 1 of 1 Page 329 of 332

# Shipping and Receiving Documents

| CHAIN OF CUSTODY / ANALYSIS REQUEST  Samplers Name (Printed)  Sile/Project Identification  H. Merchine ( CO213-7-2  State (Location of site): NJ: NY: Other:  Sincard Name (Document Time State)  Analysis Turnaround Time Sincard No. off.  2 Week |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

#### **Login Sample Receipt Checklist**

Client: AECOM, Inc. Job Number: 460-31791-1

Login Number: 31791 List Source: TestAmerica Edison

List Number: 1

Creator: Villadarez, Gerson Timothy S

| Question                                                                         | Answer | Comment      |
|----------------------------------------------------------------------------------|--------|--------------|
| Radioactivity either was not measured or, if measured, is at or below background | N/A    |              |
| The cooler's custody seal, if present, is intact.                                | N/A    | Not present  |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |              |
| Samples were received on ice.                                                    | True   |              |
| Cooler Temperature is acceptable.                                                | True   |              |
| Cooler Temperature is recorded.                                                  | True   | 3.6° C IR 50 |
| COC is present.                                                                  | True   |              |
| COC is filled out in ink and legible.                                            | True   |              |
| COC is filled out with all pertinent information.                                | True   |              |
| Is the Field Sampler's name present on COC?                                      | True   |              |
| There are no discrepancies between the sample IDs on the containers and the COC. | True   |              |
| Samples are received within Holding Time.                                        | True   |              |
| Sample containers have legible labels.                                           | True   |              |
| Containers are not broken or leaking.                                            | True   |              |
| Sample collection date/times are provided.                                       | True   |              |
| Appropriate sample containers are used.                                          | True   |              |
| Sample bottles are completely filled.                                            | True   |              |
| Sample Preservation Verified.                                                    | True   |              |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |              |
| VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.     | True   |              |
| Multiphasic samples are not present.                                             | True   |              |
| Samples do not require splitting or compositing.                                 | N/A    |              |
| Residual Chlorine Checked.                                                       | N/A    |              |