APPENDIX M

PPG Sites 121 and 207 (Berry Lane Park), Compliance Averaging Analysis – CCPW Impacts in Site Soils

Memorandum

tel

fax

То	Mark Terril/PPG, Keith Prins/PPG	Page 1
СС	Scott Mikaelian/AECOM; Rich Feinberg/PPG	
Subject	PPG Sites 121 and 207 (Berry Lane Park), Complia CCPW Impacts in Site Soils	nce Averaging Analysis -
From	Alfred LoPilato/AECOM; Claire Hunt/AECOM	
Date	September 11, 2014	

Summary

Hexavalent chromium contamination in soil at Sites 121 and 207 has been remediated by excavation and off-site disposal. Compliance with New Jersey Department of Environmental Protection ("NJDEP") Soil Remediation Standards ("SRS") for CCPW¹-related metals that remain in site soils (nickel, thallium, and vanadium) has been attained via compliance averaging as detailed below.

Background

PPG is responsible for remediation of hexavalent chromium ("Cr⁺⁶") and CCPW-related metals, including antimony, total chromium ("Cr"), nickel, thallium and vanadium, collectively referred to as CCPW-Metals, at a total of three areas of concern ("AOCs") at Berry Lane Park:

AOC 1 - Former Morris Canal; AOC 2 - Site 121; and AOC 3 – Site 207.

We understand that remediation of all other soil contaminants within these AOCs, which includes historic fill as defined by NJDEP that is known to include non-CCPW related metals (lead, arsenic, etc.), is the responsibility of the Jersey City Redevelopment Authority ("JCRA").

Introduction

On behalf of JCRA, Dresdner Robin conducted Site and Remedial Investigations at the subject properties between late 2010 through February 2012. Remedial Action activities were conducted in 2012 and 2013.

¹ Chromium Chemical Production Waste ("CCPW") is a by-product generated from the production of sodium bichromate, including Chromite Ore Processing Residue ("COPR"), Green-Gray Mud, and fill mixed with COPR or Green-Gray Mud.

Based on the findings presented by Dresdner Robin in their draft <u>March 2014 Remedial Action Report</u>, soils within AOC 1 have been completely remediated, and remaining soil concentrations are below NJDEP Residential Direct Contact Soil Remediation Standards ("RDCSRS") and November 2013 Default Impact to Groundwater Soil Screening Levels ("DIGWSSLs").

Soils within AOC 2 and AOC 3 have been remediated with regard to Cr^{+6} (hot spot removal), and fully delineated with regard to CCPW-related metals. These areas have also been capped by JCRA in order to remediate non-CCPW related contaminants and historic fill present on Sites 121 and 207 (and the rest of the Park).

Although CCPW-related metals (specifically nickel, thallium and vanadium) remain in soils at Sites 121 and 207 at concentrations above the DIGWSSL or RDCSRS at specific locations, attainment of overall compliance with applicable SRS is achieved by compliance averaging; therefore, *REMEDIATION OF THESE SPECIFIC CCPW-RELATED CONTAMINANTS IN SOIL IS NOT NECESSARY.*

This memo provides the approach used to arrive at this conclusion, and results of the compliance averaging calculations for nickel, thallium, and vanadium in soil at Site 121 and Site 207. The approach was conducted in accordance with the NJDEP <u>September 2012 Technical Guidance for the Attainment of</u> <u>Remediation Standards and Site-Specific Criteria, Version 1.0</u>. Compliance averaging is an acceptable approach at these sites since these contaminants have been fully delineated.

Data Assessment versus NJDEP Standards

The data used in this evaluation were presented in the Dresdner Robin <u>January 2012 Remedial</u> <u>Investigation Report and Remedial Action Workplan</u>, with additional soil delineation data for thallium and vanadium from the draft Dresdner Robin <u>March 2014 Remedial Action Report – Soil</u> for the Morris Canal. A summary of the soil exceedances is provided in **Table 1**. There are exceedances of the DIGWSSL for nickel at Site 207 (0-2 ft below ground surface ["bgs"]). There are two exceedances of the RDCSRS for thallium at Site 207. There is one soil sample at Site 121, and two soil samples at Site 207 with a concentration greater than the DIGWSSL for thallium, but these samples were collected below the groundwater interface ("GWI") where the DIGWSSL do not apply. There are two exceedances of the RDCSRS for vanadium in soil at Site 121 (0-2 ft bgs) and three exceedances of the RDCSRS for vanadium in soil at Site 207 (2-18 ft bgs).

Approach

In accordance with NJDEP guidance, functional areas were defined for compliance averaging. Details of the functional area selection and statistic calculations are provided in **Attachment 1**. For comparison to the DIGWSSL, samples collected from the ground surface to 2 ft were evaluated within two functional areas on Site 207. Groundwater is shallow beneath the Sites, with the groundwater interface approximately 2 ft bgs.

For comparison to the RDCSRS, functional areas were drawn within the Sites to capture the elevated concentrations. A surface zone of 0 to 2 ft bgs and one subsurface zone greater than 2 ft bgs were evaluated. Although the Sites are currently capped, the sample depths prior to capping are used to identify the data within the functional areas. Three functional areas were identified for compliance averaging in comparison to the RDCSRS:

- Site 207 thallium 2-18 ft bgs,
- Site 207 vanadium 0-2 ft bgs, and

ΑΞϹΟΜ

• Site 121 vanadium 2-18 ft bgs.

Each functional area defined for exceedances of the RDCSRS are approximately 0.25 acres in size and nearly square. There are no exceedances of the RDCSRS outside of the functional areas defined.

The compliance averaging statistics are summarized in **Table 2**. A mean concentration (arithmetic mean or 95% upper confidence limit ["UCL"] on the mean) as well as a spatially weighted average concentration were calculated for each functional area.

Findings

Nickel

The arithmetic mean was selected as the averaging statistic, because there are less than ten sample results in each of the functional areas. The arithmetic means are 41.1 mg/kg and 34.7 mg/kg for the southernmost and northernmost functional areas in Site 207, respectively. The spatially weighted averages are 42.9 mg/kg and 33.1 mg/kg for the southernmost and northernmost functional areas, respectively. All average values are below the DIGWSSL of 48 mg/kg for nickel.

Thallium

For the 2 to 18 ft bgs soil interval within the functional area on Site 207, the 95% UCL was selected as the averaging statistic because there are more than nine sample results. The 95% UCL is 1.274 mg/kg and the spatially weighted average concentration is 3.9 mg/kg. Both values are less than the thallium RDCSRS of 5 mg/kg. Note that the DIGWSSL for thallium (3.0 mg/kg) is not applied in this case, since the soil results were detected in samples collected within the saturated zone, (i.e. below the groundwater interface). Thallium has not been detected in groundwater at concentrations exceeding its respective Groundwater Quality Standard ("GWQS").

Vanadium

For the 0 to 2 ft bgs soil interval within the functional area on Site 207, the arithmetic mean was selected as the averaging statistic because there are less than ten sample results. The arithmetic mean is 69.5 mg/kg and the spatially weighted average concentration is 59.6 mg/kg. Both values are less than the vanadium RDCSRS of 78 mg/kg. Note that NJDEP does not have a DIGWSSL for vanadium.

For the 2 to 18 ft bgs soil interval within the functional area on Site 121, the 95% UCL was selected as the averaging statistic because there are more than nine sample results. The 95% UCL is 32.18 mg/kg and the spatially weighted average concentration is 50.8 mg/kg. Both values are less than the vanadium RDCSRS of 78 mg/kg.

Conclusion

Although nickel was detected in soil on Site 207 above the DIGWSSL, on average, nickel concentrations are in compliance with the DIGWSSL. The lack of impact to groundwater is further supported by the groundwater sampling for the remedial investigation in 2011, which found no exceedance of the nickel GWQS. Nickel concentrations in groundwater were below the GWQS in samples collected from a well located on Site 207 in January 2014. Wells with exceedances of the nickel GWQS are attributed to a source (or former source) outside the bounds of Site 207, because the nickel concentrations from the well located within Site 207 are compliant with the GWQS. Recent groundwater sample results are provided in **Attachment 2**.

Thallium and vanadium were detected in soil at concentrations exceeding the RDCSRS. For both thallium and vanadium within the functional areas defined, on average, the concentrations are below RDCSRS.

Based on compliance averaging and supported by groundwater sampling results, nickel, thallium, and vanadium contamination in soil on Sites 121 and 207 is not at levels which require soil containment or other remedial action.

Units: mg/kg	Sample Depth (ft)			RDCSRS	NRSDCSRS	DIGWSSL	
Boring	Upper	Lower	DTW (ft)	Nickel	1600	23000	48
207_B18	1	1.5	3.1	49.4	Below	Below	Above
207_B2	1	1.5	2.42	52.9	Below	Below	Above
207_B3	1	1.5	2.42	55.1	Below	Below	Above
207_B9	1	1.5	3.9	56.6	Below	Below	Above
207-B16	1.5	2	3.1	52.9	Below	Below	Above
Boring	Upper	Lower	DTW (ft)	Thallium	5	79	3
121_B2	8	8.5	3.9	4.15	Below	Below	NA (1)
207_B4	5.5	6	2.42	6.11	Above	Below	NA (1)
207_B5	9.5	10	3.1	8.23	Above	Below	NA (1)
Boring	Upper	Lower	DTW (ft)	Vanadium	78	1100	NC
121_B1	4.5	5	3.9	119	Above	Below	
121_B1-3	4.5	5	3.9	81.7	Above	Below	
207_B18	1	1.5	3.1	123	Above	Below	
207_B9	1	1.5	3.9	119	Above	Below	
207-B16	1.5	2	3.1	103	Above	Below	

Table 1. Exceedances of Standards

NA = Not applicable

NC = No criterion

Note:

(1) The DIGWSSLs do not apply, because the exceedance occurs below the groundwater interface.

Units: mg/kg	Crit	teria		Averaging Statistic		
Nickel 0-2 ft						
Site 207 Southern-	48	DIGWSSL	41.1	Arithmetic average		
most Area	48	DIGWSSL	42.9	Spatially weighted average		
Site 207 Northern-	48	DIGWSSL	34.7	Arithmetic average		
most Area	48	DIGWSSL	33.1	Spatially weighted average		
Thallium 2-18 ft bgs						
Site 207 - area with	5	RDCSRS	1.3	95% UCL		
exceendances	5	RDCSRS	3.9	Spatially weighted average		
Vanadium 0-2 ft bgs						
Site 207 - area with	78	RDCSRS	69.5	Arithmetic average		
exceendances	78	RDCSRS	59.6	Spatially weighted average		
Vanadium 2-18 ft bgs						
Site 121 - area with	78	RDCSRS	32.2	95% UCL		
exceendances	78	RDCSRS	50.8	Spatially weighted average		

Table 2: Berry Lane Park Compliance Averaging Statistics

Attachment 1 Functional Area Selection and Evaluation

The functional areas were selected and the compliance averaging statistics were calculated as described below. Text from the September 24, 2012 <u>Technical Guidance for the Attainment of Remediation Standards and Site-Specific Criteria, Version 1.0</u> is provided in italics followed by Site specific information.

1.0 Nickel – Impact to Groundwater Default Soil Screening Levels

The use of functional areas facilitates the process of evaluating contaminated areas of the site. The purpose of the functional area is to help select the samples to be included in the compliance averaging process. Compliance averaging using the 95 percent UCL of the mean concentration employs a fixed area approach ("functional area").

For the impact to ground water exposure pathway, the functional area is based on the size of the AOC. The relevant dimension is the length of the AOC in the direction parallel to ground water flow. There is no constraint on the length of the AOC in the direction perpendicular to ground water flow.

For the overall area of Berry Lane Park, the groundwater flow direction observed during both the May and June 2011 groundwater sampling events was to the South-Southeast according to the January 2012 Remedial Investigation ("RI") report prepared by Dresdner Robin. However, within the bounds of Sites 121 and 207, groundwater flow is observed to be generally to the northeast. This is more apparent in June 2011 sampling event. Groundwater contours for the May and June 2011 sampling events are provided on **Figure 1** and **Figure 2**, respectively which are from the RI. Note that the contours for May 2011 include MW-4-1, which appears to have an anomalous groundwater elevation.

1.1 Size of functional area

The functional area for the impact to ground water exposure pathway is defined by the area of concern (AOC). The length is defined as the part of the AOC parallel to ground water flow, and is not necessarily the longest dimension of the AOC. The 100 foot length is the AOC length value included in the dilution attenuation factor (DAF) equation utilized in the derivation of the impact to ground water soil remediation screening levels found in Table 1 of the technical guidance document "Development of Site-Specific Impact to Ground Water Soil Remediation Standards Using the Soil-Water Partition Equation" (www.nj.gov/dep/srp/guidance/rs/partition_equation.pdf).

For AOCs with a length up to and including 100 feet in the direction parallel to ground water flow, a length of 100 feet in the direction parallel to ground water flow can be used as the functional area if the investigator:

- Wants to use the impact to ground water soil screening levels found in Table 1 of the technical guidance document "Development of Site-Specific Impact to Ground Water Soil Remediation Standards Using the Soil-Water Partition Equation" (www.nj.gov/dep/srp/guidance/rs/partition_equation.pdf); or
- Has already calculated a site-specific standard using a length of 100 feet in the direction parallel to ground water flow.
- Delineated AOCs situated downgradient of each other whose total length (including "gaps" between AOCs) does not exceed 100 feet can be combined into a single functional area.
- If the size of the AOC is larger than 100 feet in the direction parallel to ground water flow, the investigator can evaluate the AOC using:
- If the default DAF is used, multiple functional areas of 100 feet length in the direction parallel to the direction of ground water flow as described above. To the degree practicable, the placement of the initially assessed functional area shall be biased to the worst case contaminant concentrations; or

• The entire delineated AOC as the functional area. If this option is chosen, then a site-specific DAF and impact to ground water standard are to be calculated using the length of the entire AOC as the functional area parallel to the direction of ground water flow.

There are no exceedances of the default impact to groundwater soil screening level (DIGWSSL) for nickel on Site 121, but there were exceedances of the DIGWSSL on Site 207. Site 207 is approximately 170 ft across site in the direction of flow. Thus, the site was split into two functional areas where the distance across each area is approximately 100 ft in the direction of groundwater flow using the June 2011 contours from the RI. The functional areas are shown in shown in **Figure 3**.

1.2 Shape of functional area

The shape of the functional area is based on the length of the AOC in the direction parallel to ground water flow (minimum length of 100 feet), and the delineated extent of contamination in all other directions.

The functional areas are approximately 100 ft across in the direction of groundwater flow.

1.3 Vertical definition of functional area

For the impact to ground water pathway there will be two vertical zones. The first zone is from the ground surface to two (2) feet above the water table, and the second zone is from two (2) feet above the water table to the water table (Figure 4).

Unlike the direct contact pathways, the receptor for impact to ground water is the ground water. The depth intervals for these zones are based on this receptor. To address fluctuations in the water table and the impact the soil contamination could have on the ground water, the two foot zone above the water table zone was established. The remainder of the vadose zone, whose height is obviously site-specific, is designated as the first zone.

AECOM reviewed the topographic elevation survey contours provided by Dresdner Robin on August 19, 2014. The contours on the site are not labeled in the drawing. Since the site was observed to be flat, a single ground elevation of 12 ft was assigned to the surface based on the surrounding contours. The groundwater elevations are shown below for wells within the two Sites. Groundwater was found from 1.6 to 2.1 ft below ground surface ("bgs") on Site 207. The soil samples collected near the ground surface and above the groundwater interface were all collected between 1 to 2 ft bgs. For the vertical extent, a single groundwater interval of 0-2 ft bgs will be evaluated.

						Ground	Ground
				Depth to	Depth to	water	water
Well			Well	Water	Water	Elevation	Elevation
Name	Northing	Easting	Elevation	May 2011	June 2011	May 2011	June 2011
MW-4-1	684203	611505	12.06	3.9		8.2	
MW-5-1	684031	611362	12.79	2.42	2.85	10.4	9.9
MW-6-1	684346	611555	13.85	4.78	5.52	9.1	8.3

1.4 Evaluation of functional areas

Compliance averaging using the arithmetic mean is only to be applied in those situations where there are two or fewer distinct sample values or nine or fewer total sample points.

The data for the southernmost functional area are listed below.

Boring	Nickel (mg/kg)
207-B1	15.2
207-B2	52.9
207-B3	55.1

Because there are less than ten sample points, an arithmetic average is used to compliance average. The arithmetic average is 41.07 mg/kg. This value is below the DIGWSSL of 48 mg/kg.

The data for the northernmost functional area are listed below.

	Nickel
Boring	(mg/kg)
207-B4	35.8
207-B5	22.5
207-B6	14
207-B8	14.4
207-B9	56.6
207-B16	52.9
207-B17	36.2
207-B18	49.4
207-B19	30.8

The arithmetic average is 34.7 mg/kg. This value is below the DIGWSSL of 48 mg/kg.

1.5 Offsite compliance

For the impact to ground water pathway, the functional area is defined by the associated AOC, which may extend across property boundaries.

Only soil samples falling within or on the boundary of Site 207 were included in the functional areas.

1.6 Compliance Averaging using a Spatially Weighted Average

As indicated in sections 6.7.4.1, 6.7.4.2, 6.7.5.1 and 6.7.5.2, compliance averaging using a weighted average can be conducted for the all exposure pathways in the remedial investigation and/or the remedial action phases. If this compliance option will be used, complete horizontal and vertical delineation using single point compliance, is required for completion of the remedial investigation.

To determine compliance with the applicable soil remediation standard, a spatially weighted average (area weighted mean) may be used whereby the sampling results are weighted according to the area they represent. The corresponding area may be defined using Thiessen Polygons (also known as Voronoi or Dirichlet tessellations). Polygons define individual areas of influence around each of a set of points. Thiessen polygons are polygons whose boundaries define the area that is closest to each point relative to all other points; they are mathematically defined by the perpendicular bisectors of the lines between all points. These calculations are typically performed using CAD or GIS software1, or can be performed manually. The results of each sample are adjusted for the percentage of the overall area the corresponding sample represents, and the adjusted values are averaged.

The methods for determining the size of the functional area and for the vertical subsurface zones to be used for the analyses are the same as defined for the 95 percent UCL of the mean in sections A2.1.1 (size) and A2.1.3 (vertical definition) above. As with the 95 percent UCL of the

mean, the size and vertical definition of the functional area will be determined by the appropriate exposure pathway (ingestion/dermal and inhalation, or impact to ground water).

The spatial analysis must be performed within each of the vertical zones within which contaminant concentrations exceed the applicable remediation standard. If multiple samples exist within a single vertical zone (e.g., 2 feet through 12 feet bgs), the greatest concentration within that zone should be used in the analysis. For sites greater in size than the functional area (0.25 acres for residential and 2 acres for commercial/industrial land uses), multiple functional areas may be defined. To the degree practicable, the placement of the initially assessed functional area shall be biased to the worst case contaminant concentrations.

Spatially weighted nickel concentrations were calculated for the two functional areas in Site 207. Thiessen polygons were established for the sampling locations using ArcGIS (Voroni polygons from the Geospatial Analysis tool). The spatially weighted nickel concentrations are 42.9 mg/kg for the southernmost functional area and 33.1 mg/kg for the northernmost functional area. The calculations are provided below. These values are below the nickel DIGWSSL of 48 mg/kg.

Boring	Nickel (mg/kg)	Area (SF)	Area*Conc.
207-B2	52.9	1700	89930
207-B3	55.1	7004	385920
207-B1	15.2	3698	56210
	Sums:	12402	532060

Calculation for the southernmost functional area:

Spatially Weighted Average 42.9

Boring	Nickel (mg/kg)	Area (SF)	Area*Conc.
207-B4	35.8	2530	90574
207-B6	14	1642	22988
207-B5	22.5	2796	62910
207-B19	30.8	1174	36159.2
207-B18	49.4	1538	75977.2
207-B16	52.9	277	14653.3
207-B17	36.2	94	3402.8
207-B8	14.4	938	13507.2
207-B9	56.6	1868	105728.8
	Sums:	12857	425900.5

Calculation for the northernmost functional area:

2.0 Thallium and Vanadium – Residential Direct Contact

For the ingestion-dermal and inhalation pathways the "functional areas" correspond to the areas of typical residential and non-residential sites, as well as constraints placed on the models

Spatially Weighted Average **33.1**

involved. To the degree practicable, the placement of the initially assessed functional area shall be biased to the worst case contaminant concentrations for the ingestion-dermal and inhalation pathways.

For example, if the site is five acres in size, but contamination is limited to only two acres, only this two acre portion of the site requires evaluation. To determine whether to use the residential or non-residential functional area, land use should be taken into account. The investigator then assesses whether there is an exceedance of the remediation goal within each individual functional area.

The individual Sites 121 and 207 are selected for the functional areas. The functional areas were defined to group areas with detections in soil samples exceeding the residential direct contact soil remediation standards ("RDCSRS").

2.1 Size of functional area

The functional area for residential exposure scenarios will be 0.25 acres. In the case of the nonresidential exposure scenarios, the functional area will be two (2) acres, the default nonresidential site lot size. The residential exposure scenario of 0.25 acres represents one-half of the residential lot size, and assumes that ingestion of contamination is occurring in either the front yard or the back yard of the residence.

If more than one functional area is to be evaluated, and the contaminated areas of the site cannot be divided exactly, the size of the final functional area to be evaluated can be increased by up to 50 percent (note - functional areas are to be evaluated on a "worst case first" basis; see A2.1.4, Evaluation of Functional Areas below, for more details). Examples are as follows:

Residential site - functional area = 0.25 acres

• Site size is 0.33 acre, the entire site can be evaluated as one functional area.

• Site size is 1.1 acres, would require four functional areas, three being 0.25 acres, and the fourth 0.35 acres

Similarly, if the site size is less than 0.25 acres for a residential site or less than 2 acres for a non-residential site, the default functional area is applied, and the applicable residential or non-residential Ingestion-Dermal Soil Remediation Standard applied.

Both Sites are approximately 0.52 acres. The Sites were split into one (approximately 0.25 acre) area with contaminated sample points, and another larger area with no exceedances of RDCSRS. The location of RDCSRS exceedances and the functional areas are shown in **Figure 4** (thallium 2-18 ft bgs), **Figure 5** (vanadium 0-2 ft bgs), and **Figure 6** (vanadium 2-18 ft bgs).

2.2 Shape of functional area

Pursuant to the existing "Guidance Document - Inhalation Standards Compliance - Development of Alternative Remediation Standards for the Inhalation Pathway" (<u>www.nj.gov/dep/srp/</u> guidance/rs/compl_ars_inhalation.pdf), the preferred shape of the functional area is that of a square (Figure 1 below) but can vary somewhat based on site configuration and contamination distribution. However, it is preferred that the length of the functional area be kept to no more than four times the width (Figure 2 below). For consistency, the same shape restrictions apply to both the ingestion-dermal and inhalation exposure pathways.

The ratio of length to width is less than 4 for each functional area (thallium 2-18 ft bgs and vanadium 0-2 ft bgs: 1.2 [121 ft / 97 ft] and vanadium 2-18 ft bgs: 1.1 [110 ft / 103 ft]).

2.3 Vertical definition of functional area

In all cases, there is a surface zone of 0 to 2 feet below ground surface (bgs) and one subsurface zone (greater than 2 feet bgs) associated with the site being evaluated (Figure 3). The surface zone will encompass both surface samples (0.0 to 0.5 feet) as well as any other samples taken at 2 feet of depth or less. The final vertical depth for the subsurface zone shall be determined pursuant to the delineation requirements set forth in N.J.A.C. 7:26E. These depth intervals are based on general assumptions on the potential and likelihood of soil disturbance. Based on the contaminant distribution pattern in both the surface and subsurface zones, the functional areas within the subsurface vertical zones may need to be placed and evaluated distinctly from the comparable functional areas within the surface vertical zone.

Two vertical zones were identified: 0-2 ft bgs and 2-18 ft bgs. For thallium, there is one area on Site 207 with exceedances in the 2-18 ft bgs depth range. For vanadium, there is one area on Site 207 with exceedances in the 0-2 ft bgs depth range and one area on Site 121 with exceedances in the 2-18 ft bgs depth range.

2.4 Offsite compliance

For the ingestion-dermal and inhalation pathways, if delineation indicates that contamination has migrated offsite at any depth, then delineation and compliance with the applicable soil remediation standard shall be determined by applying the most restrictive applicable standard to the offsite contaminated area. Pursuant to the Technical Requirements, contamination migrating offsite is to be delineated to the unrestricted use standard (N.J.A.C. 7:26E-4.2(a)2). Therefore, the contaminated offsite area shall be addressed separately and the 95 percent UCL of the mean of the offsite area compared to the most restrictive soil remediation standard, irrespective of its current land use.

If the functional area compliance evaluation for the offsite area indicates that there are no exceedances of the most stringent soil remediation standard in the worst case area, then no further remediation of the offsite contamination is required for either the ingestion-dermal or the inhalation exposure pathways. This does not preclude the need for additional remediation for the offsite area being evaluated based on the impact to ground water pathway. If the compliance evaluation for the offsite functional area indicates that there is an exceedance of the most restrictive soil remediation standard, a remedial action will be required; this may involve removal, treatment, or establishment of an institutional control, with or without an engineering control.

Offsite migration of the thallium and vanadium contamination in soil is not suspected. Only soil samples falling within or on the boundary of the Sites were included in the functional areas.

2.5 Evaluation of functional areas

In all cases, each individual contaminant detected in the vertical zones (surface, subsurface) is evaluated by comparing the 95 percent UCL of the mean of the selected data against the applicable standard. The data to be selected are to include those required to delineate the AOC encompassed by the functional area. Data below regulatory concern other than those needed to delineate the AOC would not be included. Data from AOCs that are not of regulatory concern also would not be included.

The 95 percent UCL of the mean approach is used by the United States Environmental Protection Agency (U.S. EPA) for situations where, from a statistical perspective, there is a limited amount of data for a given AOC or site. All data necessary for delineation within a given functional area and vertical zone(s) are utilized in the evaluation.

An algorithm that properly addresses non-detect results should be used to evaluate the data. The program ProUCL is widely used and can be downloaded from the U.S. EPA website (go to www.epa.gov/osp/hstl/tsc/software.htm for the most up-to-date version of this software). The investigator can elect to utilize other software, but they must provide documentation on the algorithm used, and the underlying assumptions and techniques employed.

If more than one potential UCL is identified by the algorithm used, the lower value should be used in the evaluation.

If the calculated UCL is greater than all values in the data set, the maximum sample value in the data set should be used for evaluation.

Compliance averaging using the arithmetic mean is only to be applied in those situations where there are two or fewer distinct sample values or nine or fewer total sample points. The data are listed below for each functional area.

Boring	Upper Depth (ft)	Lower Depth (ft)	Thallium	q
207-B18	13	13.5	0.464	<u>ч</u> ј
207-B18	16.5	13.5	0.294	1
207-B18	5.5	6	0.267	1
207-B18	9.5	10	1.88	J
207-B10	13	13.5	0.434	J
207-B19	16.5	17	0.252	J
207-B19	5.5	6	0.486	•
207-B19	9.5	10	1.24	
207-B4	13	13.5	0.272	J
207-B4	16.5	17	0.26	J
207-B4	5.5	6	6.11	-
207-B4	9.5	10	0.37	
207-B5	13	13.5	0.304	J
207-B5	16.5	17	0.162	U
207-B5	5.5	6	1.45	
207-B5	9.5	10	8.23	
207-B6	10	10.5	0.16	U
207-B6	12	12.5	0.227	U
207-B6	6	6.5	0.204	J
207-B6	8	8.5	0.21	J
207-B8	12	12.5	0.146	U
207-B8	6	6.5	0.234	J
207-B8	9	9.5	0.649	
207-B9	12	12.5	0.146	U
207-B9	14.5	15	0.242	U
207-В9	4	4.5	0.268	J
207-В9	8	8.5	0.399	
207-B16	13.5	14	0.269	U
207-B16	17.5	18	0.17	U
207-B16	5.5	6	0.172	J
207-B16	9.5	10	0.395	
207-B5	9.5	10	0.165	U
207-B4	5.5	6	0.295	J
207-B17	13.5	14	0.279	J
207-B17	17.5	18	0.164	U
207-B17	5.5	6	0.16	U
207-B17	9.5	10	0.724	

Thallium 2-18 ft bgs on Site 207:

Boring	Upper Depth (ft)	Lower Depth (ft)	Vanadium
207-B18	1	1.5	123
207-B19	1	1.5	44.1
207-B4	1	1.5	63.9
207-B5	1	1.5	27.1
207-B6	1	1.5	28.7
207-B8	1	1.5	34.9
207-B16	1.5	2	103
207-B17	1	1.5	59.6
207-B9	1	1.5	141

Vanadium 0-2 ft bgs on Site 207:

Vanadium 2-18 ft bgs on Site 121:

	Upper	Lower	
Boring	Depth (ft)	Depth (ft)	Vanadium
121-B1	12	12.5	20.3
121-B1	4.5	5	119
121-B1	8	8.5	21.7
121-B10	13.5	14	28
121-B10	17	17.5	35.4
121-B10	5.5	6	20.5
121-B10	9.5	10	30.9
121-B11	13.5	14	10.3
121-B11	17	17.5	20.6
121-B11	5.5	6	18.5
121-B11	9.5	10	27.3
121-B12	13	13.5	9.89
121-B12	17	17.5	25.5
121-B12	3.5	4	17.5
121-B12	5.5	6	22.3
121-B12	9.5	10	28
121-B13	12.5	13	16.6
121-B13	16	16.5	18.1
121-B13	5.5	6	20.9
121-B13	8.5	9	27.6
121-B2	12	12.5	36
121-B2	4.5	5	19.8
121-B2	8	8.5	21.2
121-B9	13.5	14	13.1
121-B9	17	17.5	18.5
121-B9	5.5	6	16
121-B9	9.5	10	28.7
121-B1	4.5	5	41

Boring	Upper Depth (ft)	Lower Depth (ft)	Vanadium
121-B1	4.5	5	81.7
121-B1	8	8.5	15.5
121-B1	4.5	5	21.7
121-B5	13.5	14	22.1
121-B5	17	17.5	14.9
121-B5	3.5	4	23.9
121-B5	5.5	6	21.1
121-B5	7.5	8	21.5
121-B5	9.5	10	33.4

ProUCL was used to calculate the UCLs. For thallium 2-18 ft bgs, the UCL suggested by ProUCL is 1.274 mg/kg. This value is below the RDCSRS of 5 mg/kg.

For vanadium 0-2 ft bgs, because there are less than ten sample points, an arithmetic average is used to compliance average. The arithmetic average is 69.5 mg/kg. This value is below the RDCSRS of 78 mg/kg.

For vanadium 2-18 ft bgs, the UCL suggested by ProUCL is 32.18 mg/kg. This value is below the RDCSRS of 78 mg/kg.

The calculated values from ProUCL are provided in **Table 1** for thallium 2-18 ft bgs and **Table 2** vanadium 2-18 ft bgs. (Note: to reproduce the UCL calculations, a copy of ProUCL should be downloaded from the USEPA website.)

2.6 Compliance Averaging using a Spatially Weighted Average

As indicated in sections 6.7.4.1, 6.7.4.2, 6.7.5.1 and 6.7.5.2, compliance averaging using a weighted average can be conducted for the all exposure pathways in the remedial investigation and/or the remedial action phases. If this compliance option will be used, complete horizontal and vertical delineation using single point compliance, is required for completion of the remedial investigation.

To determine compliance with the applicable soil remediation standard, a spatially weighted average (area weighted mean) may be used whereby the sampling results are weighted according to the area they represent. The corresponding area may be defined using Thiessen Polygons (also known as Voronoi or Dirichlet tessellations). Polygons define individual areas of influence around each of a set of points. Thiessen polygons are polygons whose boundaries define the area that is closest to each point relative to all other points; they are mathematically defined by the perpendicular bisectors of the lines between all points. These calculations are typically performed using CAD or GIS software1, or can be performed manually. The results of each sample are adjusted for the percentage of the overall area the corresponding sample represents, and the adjusted values are averaged.

The methods for determining the size of the functional area and for the vertical subsurface zones to be used for the analyses are the same as defined for the 95 percent UCL of the mean in sections A2.1.1 (size) and A2.1.3 (vertical definition) above. As with the 95 percent UCL of the mean, the size and vertical definition of the functional area will be determined by the appropriate exposure pathway (ingestion/dermal and inhalation, or impact to ground water).

Spatially weighted concentrations were calculated for the three functional areas. The Thiessen polygons were established for the sampling locations using ArcGIS (Voroni polygons from the Geospatial Analysis tool). The Thiessen polygons are shown on **Figure 4** (thallium 2-18 ft bgs), **Figure 5** (vanadium 0-2 ft bgs), and **Figure 6** (vanadium 2-18 ft bgs). The maximum

concentration detected within a boring and depth interval was selected for each Thiessen polygon to calculate the spatially weighted average.

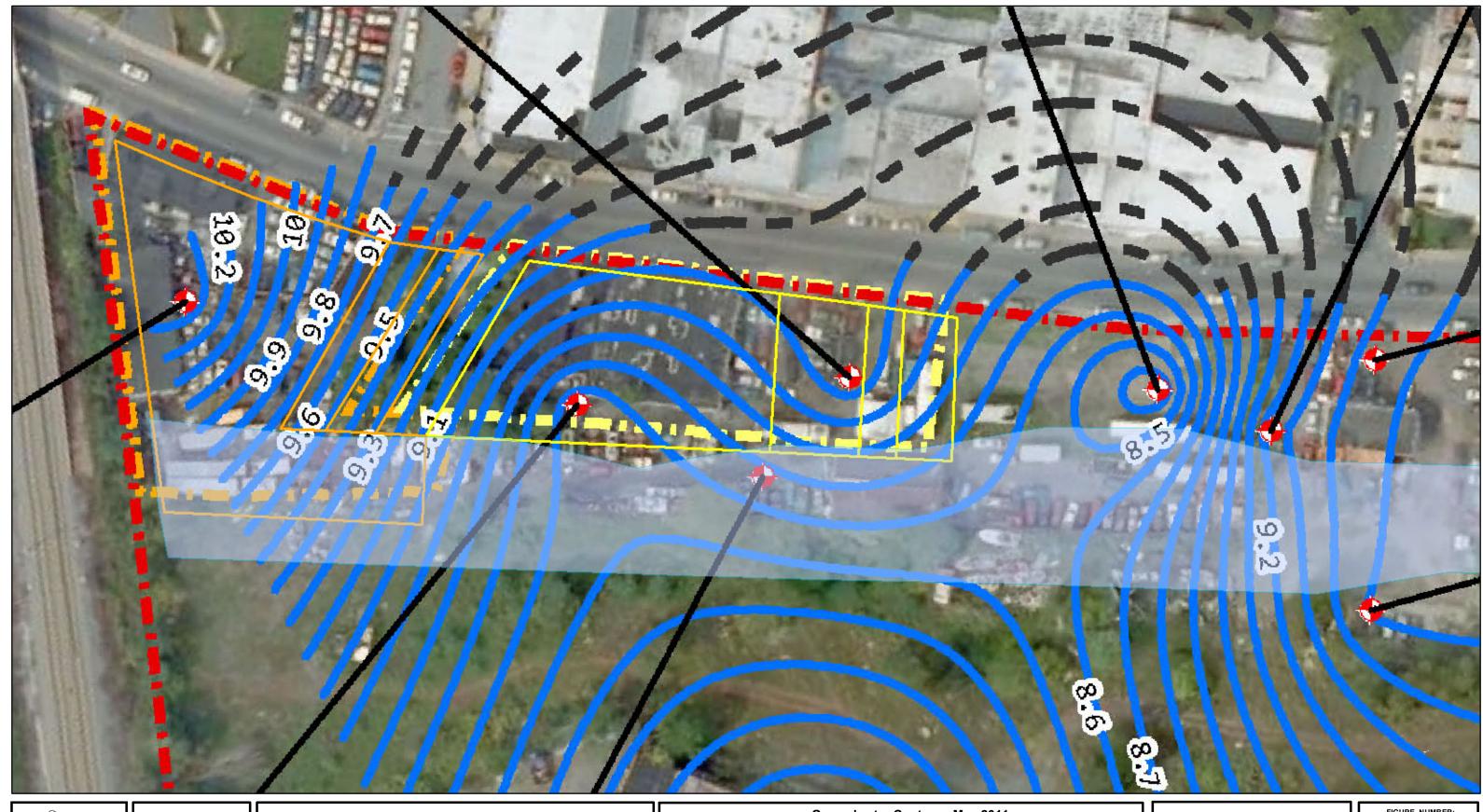
For thallium 2-18 ft bgs, the spatially weighted average is 3.9 mg/kg. This value is below the RDCSRS of 5 mg/kg.

For vanadium 0-2 ft bgs, the spatially weighted average is 59.6 mg/kg. This value is below the RDCSRS of 78 mg/kg.

For vanadium 2-18 ft bgs, the spatially weighted average is 50.8 mg/kg. This value is below the RDCSRS of 78 mg/kg.

Boring	Thallium (mg/kg)	Area (SF)	Area*Conc.
207-B4	6.11	2306	14090
207-B6	0.227	1165	264
207-B5	8.23	2771	22805
207-B19	1.24	1165	1445
207-B18	1.88	1113	2092
207-B16	0.395	277	109
207-B17	0.724	94	68
207-B8	0.649	938	609
207-B9	0.399	921	367
	Sums:	10750	41850
Spa	3.9		

Spatially weighted average calculation for thallium 2-18 ft bgs:


Spatially weighted average calculation for vanadium 0-2 ft bgs:

Boring	Vanadium (mg/kg)	Area (SF)	Area*Conc.
207-B4	63.9	2306	147353.4
207-B6	28.7	1167	33492.9
207-B5	27.1	2772	75121.2
207-B19	44.1	1165	51376.5
207-B18	123	1113	136899
207-B16	103	277	28531
207-B17	59.6 94		5602.4
207-B8	34.9	938	32736.2
207-B9	141	925	130425
	Sums:	10757	641538
Spa	ted Average	59.6	

Spatially Weighted Average **59.6**

Boring	Vanadium (mg/kg)	Area (SF)	Area*Conc.		
121-B1	119	2479	295001		
121-B12	28	1512	42336		
121-B11	27.3	1544	42151.2		
121-B5	33.4	765	25551		
121-B9	28.7	927	26604.9		
121-B10	35.4	727	25735.8 58788 35024.4		
121-B2	36	1633			
121-B13	27.6	1269			
	Sums:	10856	551192		
Spa	ted Average	50.8			

Spatially weighted average calculation for vanadium 2-18 ft bgs:

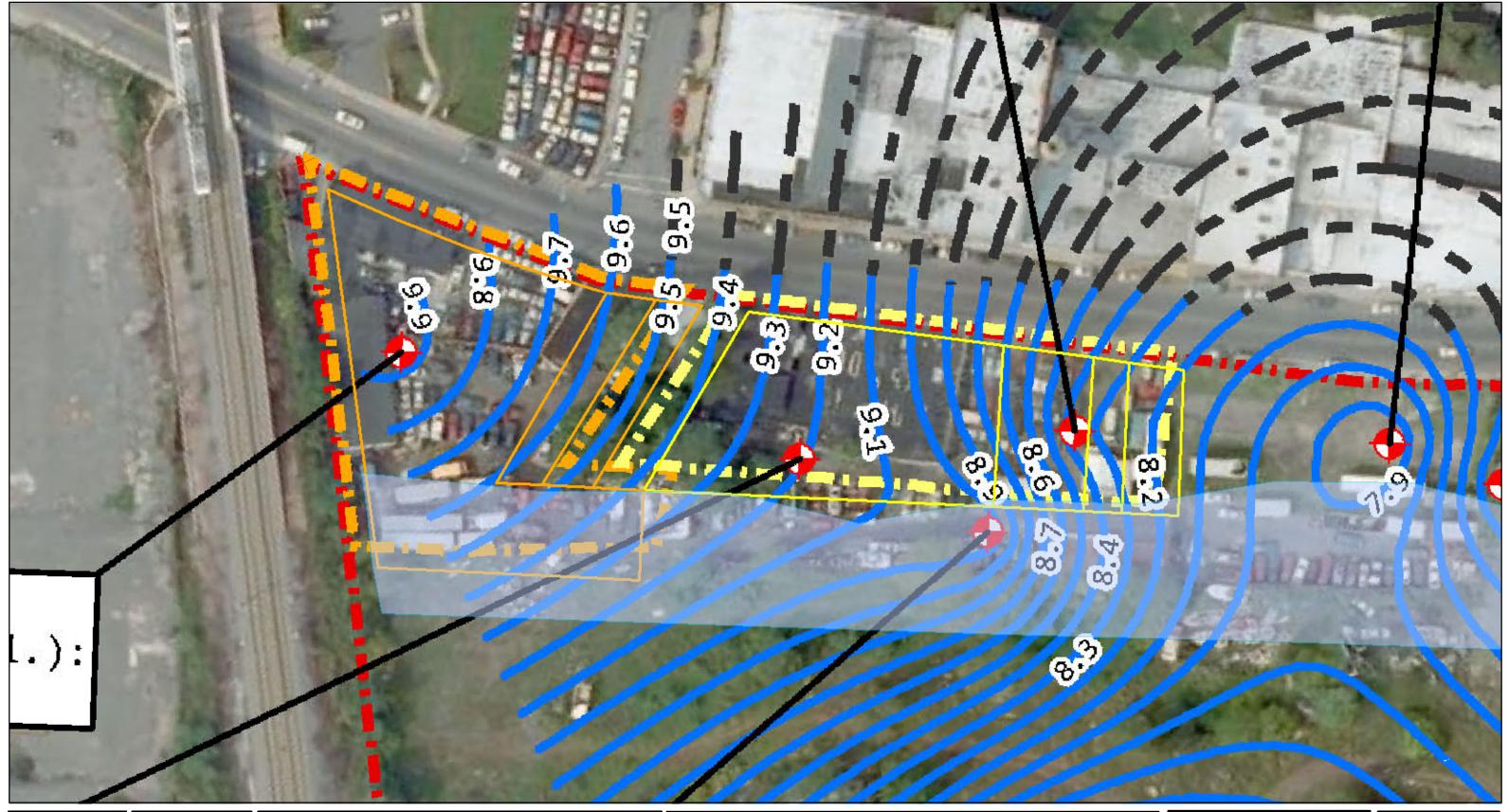
25

Feet

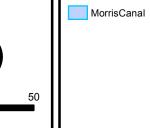
Contours.jpg Red: Band_1 Green: Band_2

Blue: Band_3

Groundwater Contours May 2011 From Figure 11A of January 2012 RI/RAWP


PPG Sites 112 and 207 Berrys Lane Park Jersey City, New Jersey 07304

SCALE:	DATE:	PROJECT NUMBER:	PATH AND FILE NAME:
1:600	10/14/2013	60308927	ECC14\GIS

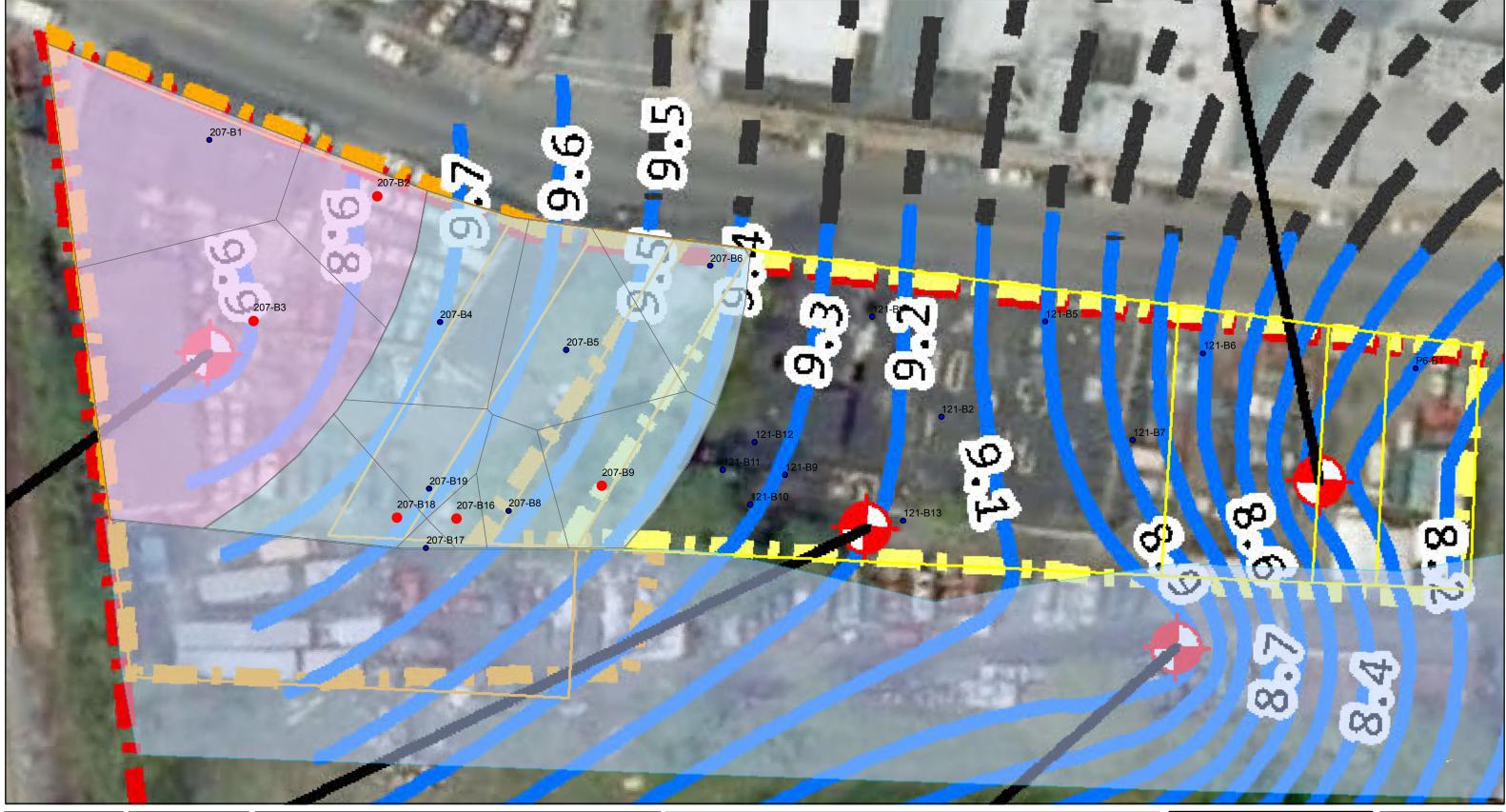


AECOM Environment 100 RED SCHOOLHOUSE RD, SUITE B-1 CHESTNUT RIDGE, NY 10977 PHONE: (845) 425-4980 FAX: (845) 425-4989 WEB: HTTP://WWW.AECOM.COM

FIGURE NUMBER: SHEET NUMBER: 1 of 1

25

Feet


Groundwater Contours June 2011 From Figure 12A of January 2012 RI/RAWP

PPG Sites 112 and 207 Berrys Lane Park Jersey City, New Jersey 07304

SCALE:	DATE:	PROJECT NUMBER:	PATH AND FILE NAME:
1:600	10/14/2013	60308927	ECC14\GIS

AECOM Environment 100 RED SCHOOLHOUSE RD, SUITE B-1 CHESTNUT RIDGE, NY 10977 PHONE: (845) 425-4980 FAX: (845) 425-4989 WEB: HTTP://WWW.AECOM.COM FIGURE NUMBER: 2 SHEET NUMBER: 1 of 1

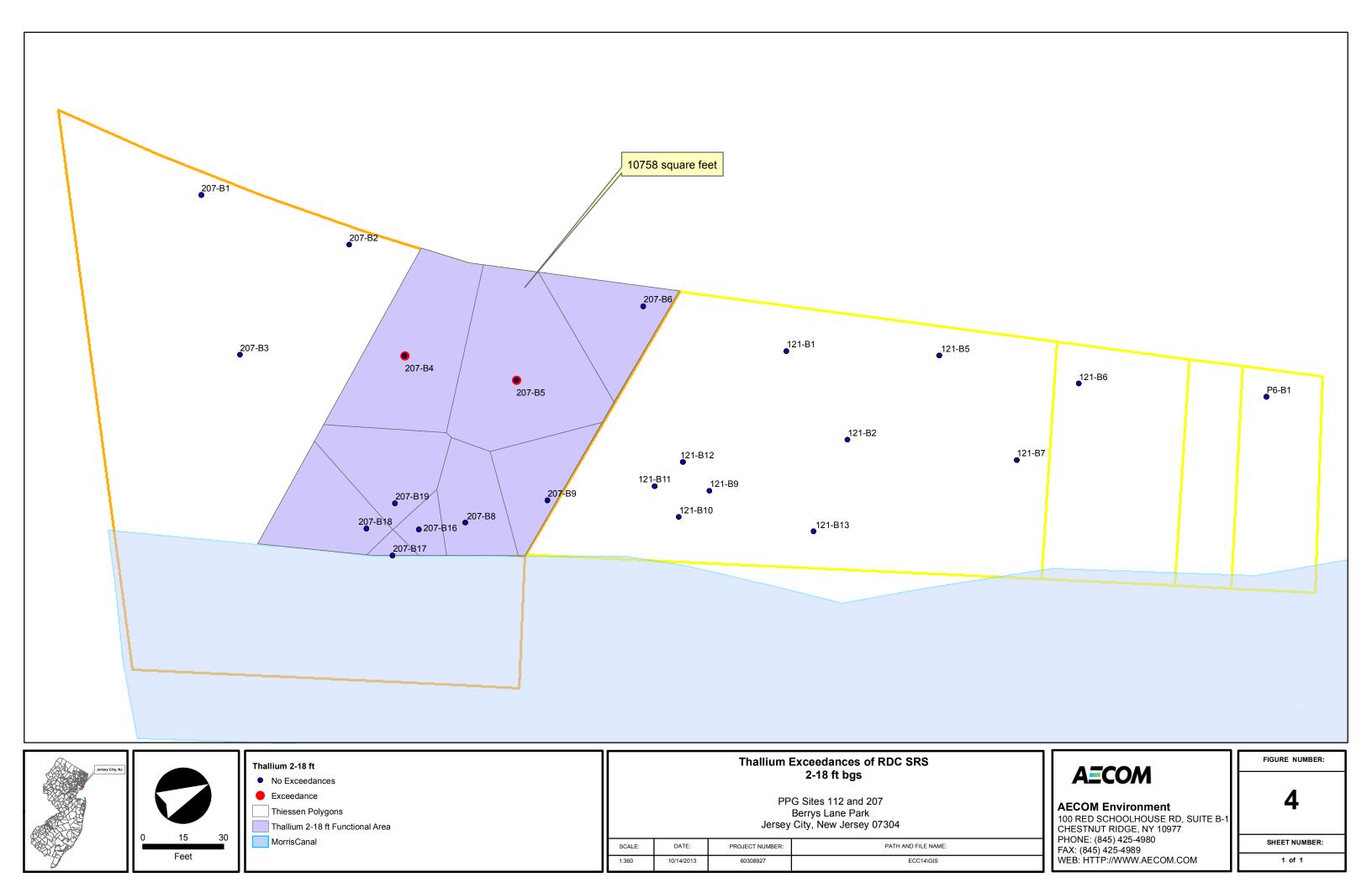
15

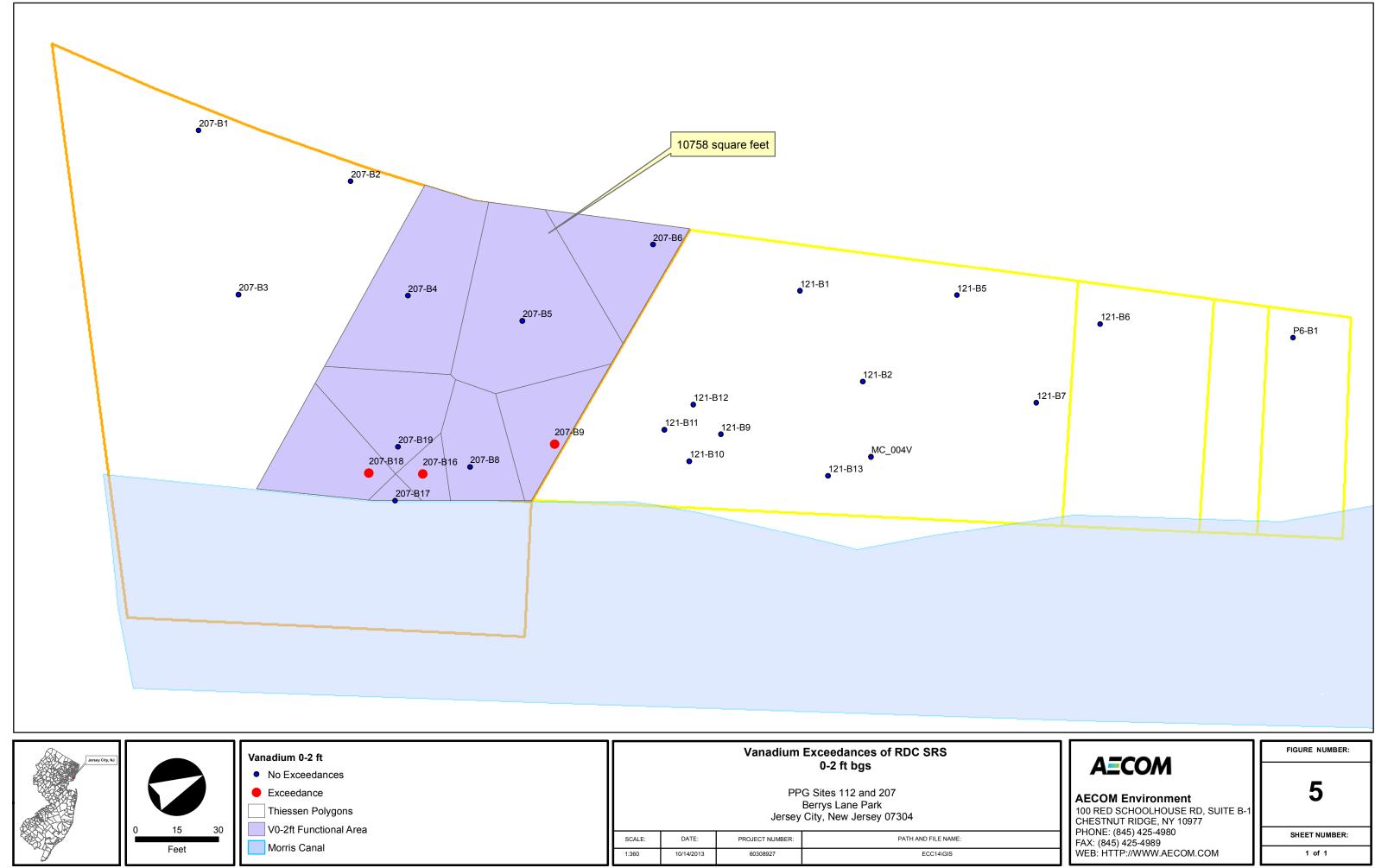
Feet

	Nickel 0-2 ft
	• No
	• Yes
′	Thiessen Polygons
30	MorrisCanal
	June 2011 groundwater contours shown.

Nickel Exceedances of DIGWSL 0-2 ft bgs

PPG Sites 112 and 207 Berrys Lane Park Jersey City, New Jersey 07304


SCALE:	DATE:	PROJECT NUMBER:	PATH AND FILE NAME:
1:360	10/14/2013	60308927	ECC14\GIS



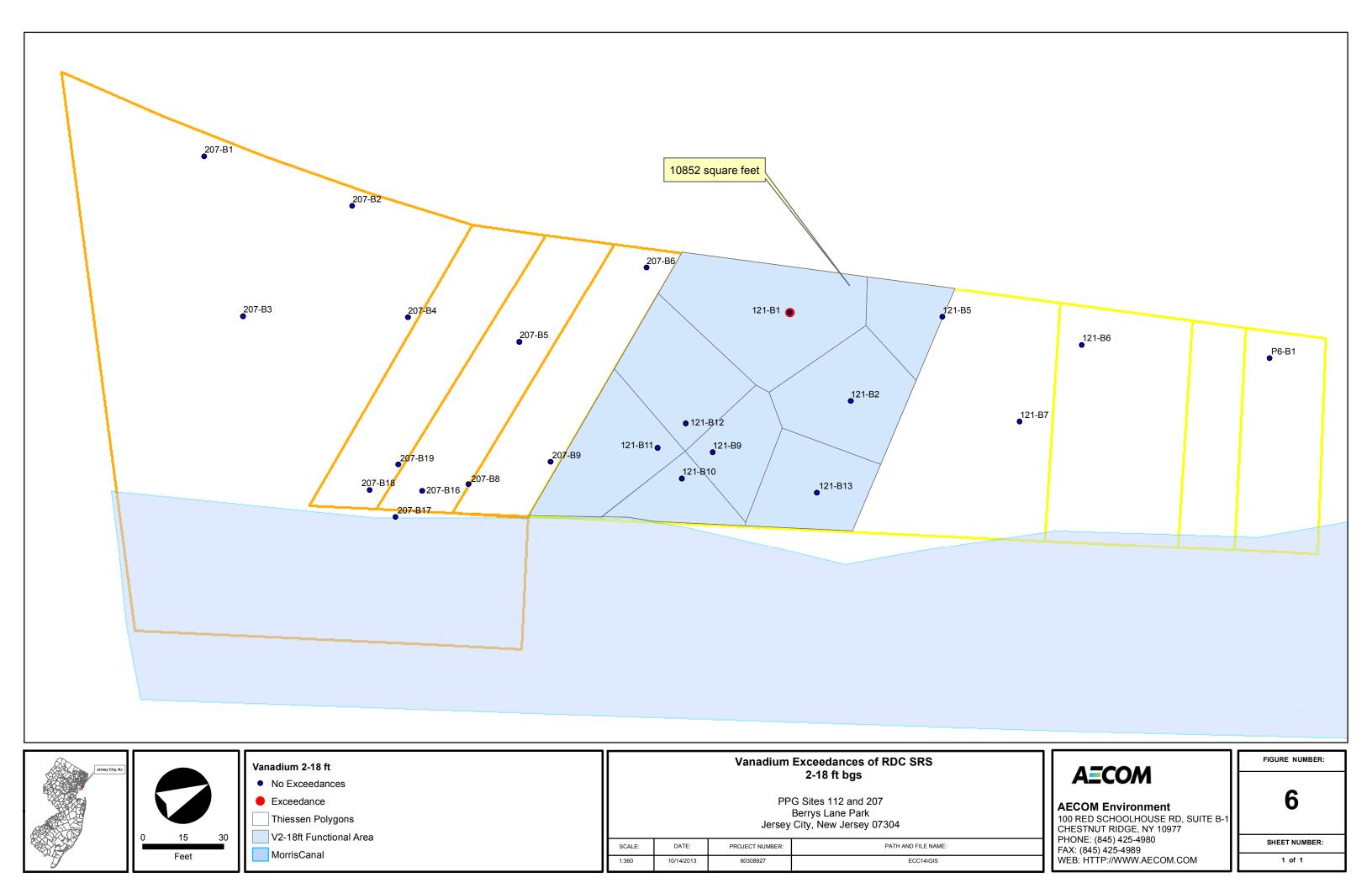
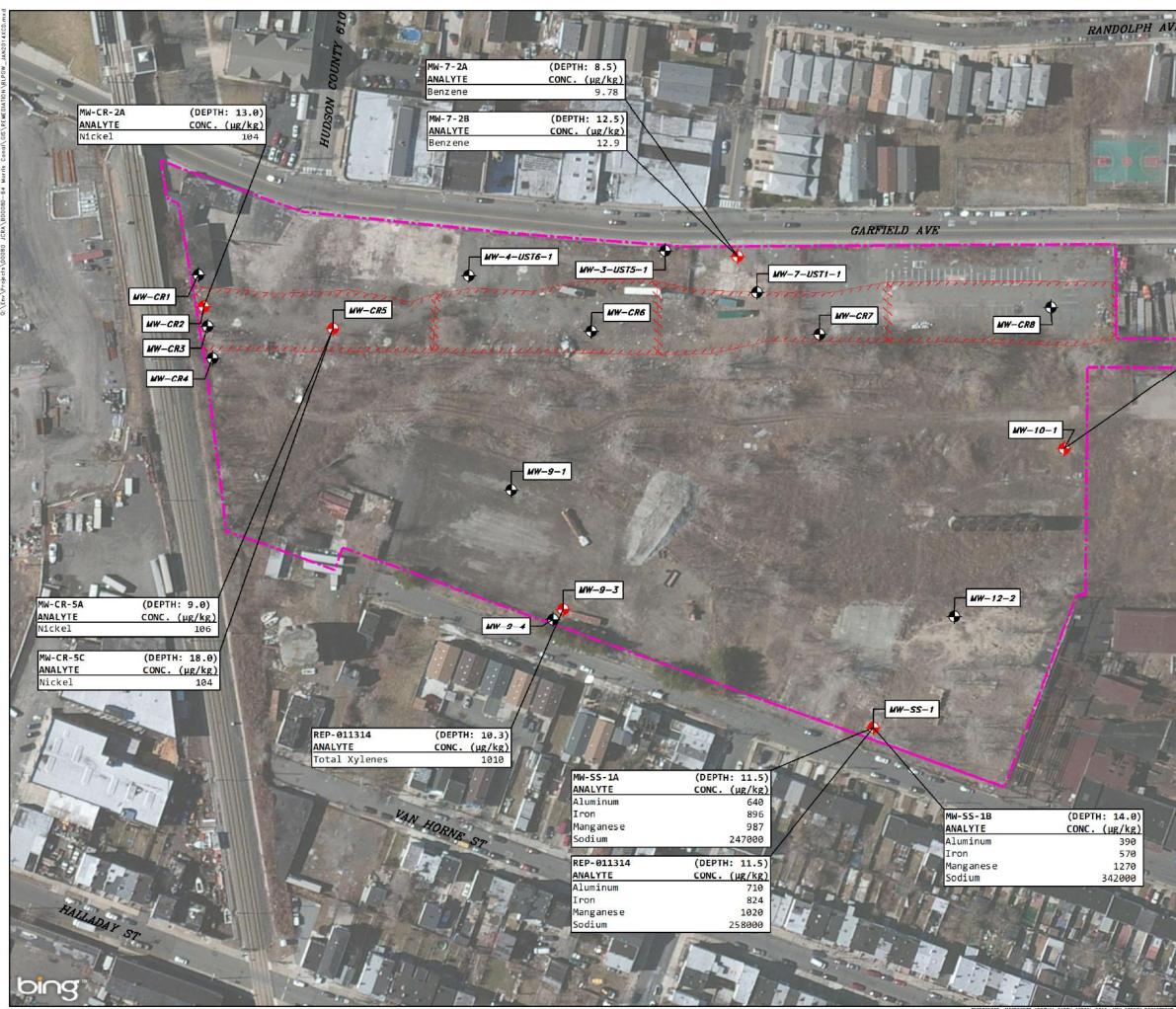

AECOM Environment 100 RED SCHOOLHOUSE RD, SUITE B-1 CHESTNUT RIDGE, NY 10977 PHONE: (845) 425-4980 FAX: (845) 425-4989 WEB: HTTP://WWW.AECOM.COM

FIGURE NUMBER: 3 SHEET NUMBER:

1 of 1

	A B C	DE	F	G H I I J K I							
1	=		UCL Stat	istics for Data Sets with Non-Detects							
2											
3	User Selected Options	i									
4	Date/Time of Computation	9/5/2014 2:16:36 PM									
5	From File for ProUCL_memo R2_c.xls										
6	Full Precision	Full Precision OFF									
7	Confidence Coefficient	95%									
	mber of Bootstrap Operations	2000									
9		1									
10	Thallium										
11											
12			General	Statistics							
13	Total Nu	mber of Observations	37	Number of Distinct Observations	35						
14		Number of Detects	26	Number of Non-Detects	11						
15	Numb	per of Distinct Detects	26	Number of Distinct Non-Detects	9						
16		Minimum Detect	0.172	Minimum Non-Detect	0.146						
17		Maximum Detect	8.23	Maximum Non-Detect	0.269						
18		Variance Detects	3.554	Percent Non-Detects	29.73%						
19		Mean Detects	1.005	SD Detects	1.885						
20		Median Detects	0.337	CV Detects	1.875						
21		Skewness Detects	3.26	Kurtosis Detects	10.33						
22	Ме	an of Logged Detects	-0.72	SD of Logged Detects	0.994						
23				I I							
24		Normal	GOF Tes	st on Detects Only							
25	Shap	piro Wilk Test Statistic	0.46	Shapiro Wilk GOF Test							
26	5% Shap	iro Wilk Critical Value	0.92	Detected Data Not Normal at 5% Significance Le	vel						
27		Lilliefors Test Statistic	0.367								
28	5% L	illiefors Critical Value	0.174	Detected Data Not Normal at 5% Significance Le	vel						
29		Detected Data	Not Norma	al at 5% Significance Level							
30											
31	Kaplan-Meier	'(KM) Statistics using		Critical Values and other Nonparametric UCLs							
32		Mean	0.752	Standard Error of Mean	0.268						
33		SD	1.598	95% KM (BCA) UCL	1.274						
34		95% KM (t) UCL	1.204	95% KM (Percentile Bootstrap) UCL	1.238						
35		95% KM (z) UCL	1.193	95% KM Bootstrap t UCL	2.561						
36		KM Chebyshev UCL	1.556	95% KM Chebyshev UCL	1.92						
37	97.5%	KM Chebyshev UCL	2.425	99% KM Chebyshev UCL	3.418						
38											
39				etected Observations Only							
40		A-D Test Statistic 5% A-D Critical Value	3.479	Anderson-Darling GOF Test							
41	:			Detected Data Not Gamma Distributed at 5% Significar							
42		K-S Test Statistic	0.309	Kolmogrov-Smirnoff GOF							
43		5% K-S Critical Value		Detected Data Not Gamma Distributed at 5% Significar tributed at 5% Significance Level	ICE LEVE						
44		Delected Data NOL Ga		and at 5 /0 Signinicance Level							
45		Comma Si	tatietica ci	n Detected Data Only							
46		k hat (MLE)	0.816	k star (bias corrected MLE)	0.747						
47		Theta hat (MLE)	1.233	Theta star (bias corrected MLE)	1.345						
48		nu hat (MLE)	42.42	nu star (bias corrected WLE)	38.86						
49	MIEN	Mean (bias corrected)	1.005	MLE Sd (bias corrected)	1.163						
50			1.000								
51		Gamma	Kaplan-M	eier (KM) Statistics							
52		Gamina		() • •••••••							
53		k hat (KM)	0.221	nu hat (KM)	16.38						


100 101 102 ^{The}	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparametr Data do not follow a Disc 95% KM (BCA) UCL e: Suggestions regarding the selection of a 95% L Recommendations are base	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provice ic Distribut cernible Di Suggested 1.274 JCL are pro- d upon data s of the sim	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	e (2006).						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96 97 98 99 100 Note 101 102	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparametr Data do not follow a Disc 95% KM (BCA) UCL e: Suggestions regarding the selection of a 95% L Recommendations are base	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provice ic Distribut cernible Di Suggested 1.274 JCL are pro- d upon data s of the sim	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL SD in Log Scale SD in Log Scale SD in Log Scale 95% H-Stat UCL ded for comparisons and historical reasons toon Free UCL Statistics stribution at 5% Significance Level UCL to Use UCL to Use a size, data distribution, and skewness. uulation studies summarized in Singh, Maichle, and Lee	1.273 1.216 2.526 -1.224 1.147 0.926 -5% UCL. (2006).						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 Note 101	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparametr Data do not follow a Disc 95% KM (BCA) UCL Se Suggestions regarding the selection of a 95% L Recommendations are base	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provice ic Distribut cernible Di Suggested 1.274 JCL are prod	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL SD in Log Scale bul/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL 95% H-Stat UCL Jed for comparisons and historical reasons tion Free UCL Statistics stribution at 5% Significance Level UCL to Use UCL to use	1.273 1.216 2.526 -1.224 1.147 0.926 						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparametr Data do not follow a Disc 95% KM (BCA) UCL	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provice ic Distribut cernible Di Suggested 1.274 JCL are pro-	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 100 L/2 Log-Transformed SD in Log Scale 95% H-Stat UCL 100 Log Scale 95% H-Stat UCL 100 Log Scale 95% H-Stat UCL 100 Log Scale 95% H-Stat UCL 100 Log Scale 95% H-Stat UCL 100 Log Scale 95% H-Stat UCL 100 Log Scale 100 Log Scale	1.273 1.216 2.526 -1.224 1.147 0.926						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 91	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparametr Data do not follow a Disc 95% KM (BCA) UCL	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provice ic Distribut cernible Di Suggested 1.274	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL tatistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale SD in Log Scale 95% H-Stat UCL Ided for comparisons and historical reasons tion Free UCL Statistics istribution at 5% Significance Level UCL to Use	1.273 1.216 2.526 -1.224 1.147 0.926						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparametr Data do not follow a Disc	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provice ic Distribut cernible Di Suggested	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 100 tatistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ded for comparisons and historical reasons tion Free UCL Statistics stribution at 5% Significance Level	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparametr Data do not follow a Disc	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provice ic Distribut cernible Di Suggested	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 100 tatistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ded for comparisons and historical reasons tion Free UCL Statistics stribution at 5% Significance Level	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 90 91 92 93 94 95 96	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met Nonparametr Data do not follow a Disc	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provice ic Distribut cernible Di	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 100 tatistics DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ded for comparisons and historical reasons tion Free UCL Statistics stribution at 5% Significance Level	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provid	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ded for comparisons and historical reasons tion Free UCL Statistics	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provid	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL 95% Bootstrap t UCL DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL ded for comparisons and historical reasons tion Free UCL Statistics	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality) DL/2 is not a recommended met	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185 hod, provid	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL Jed for comparisons and historical reasons	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale 95% t UCL (Assumes normality)	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627 1.185	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 95% Bootstrap t UCL DL/2 Log-Transformed Mean in Log Scale SD in Log Scale 95% H-Stat UCL	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale SD in Original Scale	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734 1.627	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 1 DL/2 Log-Transformed Mean in Log Scale SD in Log Scale DL/2 Log-Transformed SD in Log Scale	1.273 1.216 2.526 -1.224 1.147						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal Mean in Original Scale	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St 0.734	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL 100 tatistics DL/2 Log-Transformed Mean in Log Scale	1.273 1.216 2.526 -1.224						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS) DL/2 Normal	Statistics U 0.726 1.63 1.178 1.397 1.056 DL/2 St	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL tatistics DL/2 Log-Transformed	1.273 1.216 2.526						
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL 95% H-UCL (Log ROS)	Statistics I 0.726 1.63 1.178 1.397 1.056	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	1.273 1.216						
73 74 75 76 77 78 79 80 81 82 83 84 85 86	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	Statistics I 0.726 1.63 1.178 1.397 1.056	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL 95% Bootstrap t UCL	1.273 1.216						
73 74 75 76 77 78 79 80 81 82 83 84 85	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	Statistics I 0.726 1.63 1.178 1.397	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	1.273 1.216						
73 74 75 76 77 78 79 80 81 82 83 84	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data) 95% BCA Bootstrap UCL	Statistics I 0.726 1.63 1.178 1.397	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	1.273 1.216						
73 74 75 76 77 78 79 80 81 82 83	Lognormal ROS Mean in Original Scale SD in Original Scale 95% t UCL (assumes normality of ROS data)	Statistics U 0.726 1.63 1.178	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale 95% Percentile Bootstrap UCL	1.273 1.216						
73 74 75 76 77 78 79 80 81 82	Lognormal ROS Mean in Original Scale SD in Original Scale	Statistics I 0.726 1.63	Jsing Imputed Non-Detects Mean in Log Scale SD in Log Scale	1.273						
73 74 75 76 77 78 79 80 81	Lognormal ROS Mean in Original Scale	Statistics U	Using Imputed Non-Detects Mean in Log Scale							
73 74 75 76 77 78 79 80	Lognormal ROS	Statistics I	Jsing Imputed Non-Detects	-1.332						
73 74 75 76 77 78 79										
73 74 75 76 77 78	Detected Data No	ot Lognorm	nal at 5% Significance Level							
73 74 75 76 77	Detected Data No	ot Lognorm	nal at 5% Significance Level							
73 74 75 76	Detected Data Not L concerned at 5% Significance Level									
73 74 75	5% Lilliefors Critical Value	5% Lilliofare Critical Value 0.174 Detected Data Not Legnermal at 5% Significance Level								
73 74	Lilliefors Test Statistic	0.231	Lilliefors GOF Test							
73	5% Shapiro Wilk Critical Value	0.92	Detected Data Not Lognormal at 5% Significance	Level						
	Shapiro Wilk Test Statistic	0.792	Shapiro Wilk GOF Test							
72	-		etected Observations Only							
1 1										
71 95	% Gamma Approximate UCL (use when n>=50)	1.148	95% Gamma Adjusted UCL (use when n<50)	1.173						
70	Approximate Chi Square Value (30.25, α)	18.69	Adjusted Chi Square Value (30.25, β)	18.3						
69	Approvimate Chi Square Value (20.05	10.00	Adjusted Level of Significance (β)							
68	MLE Mean (bias corrected)	0.71	MLE Sd (bias corrected)	0.0431						
67	nu hat (MLE)		nu star (bias corrected)	30.25 1.11						
66	Theta hat (MLE)	1.668 31.47	Theta star (bias corrected MLE)	1.735						
65	k hat (MLE)	0.425	k star (bias corrected MLE)	0.409						
64	SD	1.637	CV	2.308						
63	Maximum	8.23	Median	0.268						
62	Minimum	0.01	Mean	0.71						
61										
60			to yield inflated values of UCLs and BTVs y be computed using gamma distribution on KM estima	atos						
59	GROS may not be used when kstar of detected data is small such as < 0.1 For such situations, GROS method tends to yield inflated values of UCLs and BTVs									
58	CDOS may not be used when later of detected data is small such as < 0.1									
57	CROS may not be used when data set has > 50% NDs with many tied absentations at multiple DLs.									
56	Camma DOS S	tatistice us	sing Imputed Non-Detects							
55		1.490	35 /0 Gamma Aujusten Kivi-OCL (USE WHEN N<50)	1.043						
54	amma Approximate KM-UCL (use when n>=50)	8.234 1.496	95% Gamma Adjusted KM-UCL (use when n<50)	1.543						
	A B C D E Approximate Chi Square Value (16.38, α)	F 8.234	G H I J K Adjusted Chi Square Value (16.38, β)	L 7.983						

	A B C D E	F	G H I J K	<u> </u>			
1		-	tistics for Data Sets with Non-Detects				
2							
3	User Selected Options						
4	Date/Time of Computation 9/5/2014 2:14:44 PM	1					
5	From File for ProUCL_memo F	R2_e.xls					
6	Full Precision OFF						
7	Confidence Coefficient 95%						
	mber of Bootstrap Operations 2000						
9							
9 10							
11	Vanadium						
12							
13		General	Statistics				
14	Total Number of Observations	37	Number of Distinct Observations	34			
15			Number of Missing Observations	0			
16	Minimum	9.89	Mean	26.73			
17	Maximum	119	Median	21.5			
18	SD	19.63	Std. Error of Mean	3.228			
19	Coefficient of Variation	0.735	Skewness	3.625			
20 21		Normal (GOF Test				
	Shapiro Wilk Test Statistic	0.581	Shapiro Wilk GOF Test				
22	5% Shapiro Wilk Critical Value		Data Not Normal at 5% Significance Level				
23 24	Lilliefors Test Statistic		Lilliefors GOF Test				
	5% Lilliefors Critical Value	0.146					
25	Data Not	 Normal at {	5% Significance Level				
26 27							
27	Ass	uming Nor	mal Distribution				
	95% Normal UCL	•	95% UCLs (Adjusted for Skewness)				
29 30	95% Student's-t UCL	. 32.18	95% Adjusted-CLT UCL (Chen-1995)	34.09			
			95% Modified-t UCL (Johnson-1978)	32.5			
31 32							
33		Gamma	GOF Test				
34	A-D Test Statistic	2.241	Anderson-Darling Gamma GOF Test				
35	5% A-D Critical Value	0.753	Data Not Gamma Distributed at 5% Significance I	Level			
36	K-S Test Statistic	0.189	•				
37	5% K-S Critical Value	0.146	Data Not Gamma Distributed at 5% Significance I	Level			
38	Data Not Gamm	a Distribut	ed at 5% Significance Level				
39							
40		Gamma	Statistics				
40	k hat (MLE)	3.781	k star (bias corrected MLE)	3.492			
41	Theta hat (MLE)		Theta star (bias corrected MLE)	7.654			
42	nu hat (MLE)		nu star (bias corrected)	258.4			
43	MLE Mean (bias corrected)		MLE Sd (bias corrected)	14.3			
44	``````````````````````````````````````	1	Approximate Chi Square Value (0.05)	222.2			
45	Adjusted Level of Significance	0.0431		220.7			
40		1					
47	Ass	uming Gam	Ima Distribution				
48	95% Approximate Gamma UCL (use when n>=50))	-	95% Adjusted Gamma UCL (use when n<50)	31.29			
49 50		1	· · · · · · · · · · · · · · · · · · ·				
		Lognorma	I GOF Test				
51	Shapiro Wilk Test Statistic	-	Shapiro Wilk Lognormal GOF Test				
52	5% Shapiro Wilk Critical Value		Data Not Lognormal at 5% Significance Leve				
53							

	A	В	С	D	E	F	G	Н	I	J	K	L
54	7			Lilliefors Te	st Statistic	0.158			-	ormal GOF		
55			5% l	_illiefors Cri	tical Value	0.146	E	Data Not Lo	ognormal a	t 5% Signifi	icance Lev	el
56				D	ata Not Log	gnormal at	5% Signif	icance Lev	/el			
57												
58						Lognorma	I Statistics					
59	9 Minimum of Logged Data 2.292 Mean of logged Data											
60			Max	imum of Lo	gged Data	4.779				SD of lo	gged Data	0.472
61												
62						ning Logno	ormal Distr	ibution				
63					5% H-UCL	30.22				ebyshev (M		32.25
64	95% Chebyshev (MVUE) UCL				,	35.1		ę	97.5% Che	ebyshev (M	VUE) UCL	39.06
65			99% Che	ebyshev (M	VUE) UCL	46.84						
66												
67					onparametr							
68				Data	a do not fol	low a Disc	ernible Dis	stribution ((0.05)			
69												
70					•	metric Dist	tribution F	ree UCLs				
71					CLT UCL	32.04					knife UCL	32.18
72				andard Boot	•	31.87				95% Boots	•	40.07
73				Hall's Boot	•	59.65			95% Pero	centile Boot	strap UCL	32.76
74				6 BCA Boot		34.51						
75			-	/shev(Mear		36.41			,	vshev(Mear	. ,	40.8
76		97.	5% Cheby	/shev(Mear	n, Sd) UCL	46.89		9	9% Cheby	vshev(Mear	n, Sd) UCL	58.85
77												
78						uggested	UCL to Us	e				
79				95% Stude	ent's-t UCL	32.18		1	0	r 95% Modi	ified-t UCL	32.5
80												
81		-						-		the most a		
82	These r									Singh, Sing	-	ิ่ม (2002)
83		and S	ingh and \$,					World data	a sets.	
84				⊢or additio	onal insight	the user m	ay want to	consult a s	statistician			
85												

Attachment 2 Recent Groundwater Data

E E					
3.	the state of the state of the	The second	1	1	
					Mar LL
			100	1	AND THE
and a star			1	S	
	F Contraction		100	NO	ALC: NO
	and the second s	Gi	100	RM	
PORT				HA	
- 4	T TO ALL STORE	1			and the second
7 篇		5	23 C		
	- 17 100 1		and a state		
	MW-10-1A	(DE	PTH: 11.0)	4	1
	ANALYTE 2-Methylnaphthalene	CON	. (μg/kg) 70.3	-	a starter
	Benzo(A)Anthracene		3.03	- 100	
	Benzo(A)Pyrene		2.07	ale la	
3	Benzo(B)Fluoranthene Benzo(K)Fluoranthene		1.75 1.96	-31	
	Dibenzo(A,H)Anthracene		0.569	(Sn)	13
1 in	Indeno(1,2,3-Cd)Pyrene		0.955	and.	
		b	and the second		1.00
<u> </u>				1	
-		-		and the second	
-	2.82		Sector Sector		
	Legend	100	and the second second	1	
ETERSTON AND	Legend				
	🔶 MONITORING WELL LOC	CATIO	N WITH GWG	C EXC	EEDANCE
C. Service					
	MONITORING WELL LOC	CATIO	N		1 2
and a state	BERRY LANE PARK BO	UND	ARY	1	3-
	HORIZONTAL EXTENT C	F E)	CAVATION	5	/
		Higi	her of PQLs	Vapor I	Intrusion
			PQLs and		W
			GWQC	Le	ening vels
Start a	Analyte 2-Methylnaphthalene	T	(μg/L) 30		g/L)
and the second	Aluminum		200		NS IS
	Benzene Benzo(A)Anthracene		1		20
	Benzo(A)Pyrene		0.1		NS IS
n man me	Benzo(B)Fluoranthene		0.2		NS .
	Benzo(K)Fluoranthene Dibenzo(A,H)Anthracene		0.5		15
A BANK	Indeno(1,2,3-Cd)Pyrene		0.2		NS .
E	lron Manganese		300 50		15
	Nickel		100		vs
- E	Sodium Total Xylenes		50000 1000		4S 500
Halla Martin	GWQC = GROUNDWATE	R QUAL	ITY CRITERIA	NS =	NO STANDARD
- Top	0 30 60 90 120		240		360
in the second	0 30 00 30 120		240		560
- the	1 in	FEE ch =	T 120 feet		
	PROJECT:	-236			
	REMEDIAL	IN	VESTIGATIC	N	
En Sl.	FOOT OF	BERR	Y LANE RO	AD	
A D D MART			RSEY CITY		
J. in	HUDSON CO	UNT	Y, NEW JEF	SEY	
	DRAWING TITLE:				10 0000
00.17	GROUNDWATER SAMPLING				
100	NJDEP GROUNDWATER (Nex cel 1221	6105.00 383 89 03306009	IA EX	
The 1	1		DRAWN BY:	N.K.	JOB NUMBER: B80-806
			CHECKED BY:	322	FILE:
and free			DATE:	J.T.	BLPGW_JAN2014XCD
	DRESDNER ROBIN		02/	04/14	FIGURE 1

Sample #:	HIGHER OF		Μ	W-CR-1A			M	W-CR-1B			Μ	W-CR-1C			
	PQLs														
Lab ID:	and		0	0370-001			00	0370-002			00	0370-003			
Date Sampled:	GWQC		0	1/14/2014			01	/14/2014		01/14/2014					
Depth(ft):	(ug/L)			12.5				17.5				22.5			
Pesticides (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Dieldrin	0.03	~		~	~	~		~	~	~		~	~		
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Antimony	6	1.03	J	2.00	1.00	1.00	J	2.00	1.00	ND		2.00	1.00		
Chromium	70	11.6		2.00	2.00	11.2		2.00	2.00	6.84		2.00	2.00		
Nickel	100	13.9		2.00	1.00	12.5		2.00	1.00	9.73		2.00	1.00		
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500		
Vanadium	NS	ND		2.00	2.00	2.10		2.00	2.00	ND		2.00	2.00		
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00		
Notes:						0.700.01									
NJDEP Class II-A Specific Ground Water Qu							ov 20	05							
BOLD Conc	Indicates a cor					criteria.							ļ		
BOLD RL	Indicates RL th														
BOLD MDL	Indicates MDL	that excee	ds a	pplicable cri	teria.										
NS = No Standard Available															
ND = Analyzed for but Not Detected at the N	/IDL														
J = Concentration detected at a value below	the RL and ab	ove the MD	L foi	r target com	pounds. Fo	r non-targe	t com	pounds (i.e	. TICs), qua	lifier indicat	tes es	stimated co	ncentrations		

Sample #:	HIGHER OF		М	W-CR-2A			M	W-CR-2B			Μ	W-CR-2C	
	PQLs												
Lab ID:	and		0	0370-004			00	370-005			00	0370-006	
Date Sampled:	GWQC		01	1/14/2014			01	/14/2014			01	/14/2014	
Depth(ft):	(ug/L)			13.0				18.0	1		-11	23.0	1
						-							
Pesticides (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Dieldrin	0.03	~		~	~	~		~	~	~		~	~
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Antimony	6	ND		2.00	1.00	ND		2.00	1.00	ND		2.00	1.00
Chromium	70	3.13		2.00	2.00	4.63		2.00	2.00	6.23		2.00	2.00
Nickel	100	104		2.00	1.00	86.1		2.00	1.00	88.0		2.00	1.00
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500
Vanadium	NS	29.3		2.00	2.00	29.5		2.00	2.00	29.9		2.00	2.00
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00
Notes:													
NJDEP Class II-A Specific Ground Water Qu	ality Criteria :												
BOLD Conc	Indicates a cor												
BOLD RL	Indicates RL th												
BOLD MDL	Indicates MDL												
NS = No Standard Available													
ND = Analyzed for but Not Detected at the M	alyzed for but Not Detected at the MDL												
J = Concentration detected at a value below	Concentration detected at a value below the RL and abu												

Sample #:	HIGHER OF		M	W-CR-3A			M	W-CR-3B			Μ	W-CR-3C			
	PQLs														
Lab ID:	and		0	0370-008			00	370-009			00	0370-010			
Date Sampled:	GWQC		01	/14/2014			01	/14/2014		01/14/2014					
Depth(ft):	(ug/L)			14.0				18.0				23.0			
		0	_		MDI	0	-		MDI	0	_		MDI		
Pesticides (ug/L)	0.00	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Dieldrin	0.03	~	~	~		~		~	~	~		~	~		
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Antimony	6	ND		2.00	1.00	ND		2.00	1.00	ND		2.00	1.00		
Chromium	70	18.1		2.00	2.00	22.5		2.00	2.00	27.3		2.00	2.00		
Nickel	100	97.8		2.00	1.00	94.2		2.00	1.00	93.7		2.00	1.00		
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500		
Vanadium	NS	27.8		2.00	2.00	27.9		2.00	2.00	36.8		2.00	2.00		
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00		
Notes:															
NJDEP Class II-A Specific Ground Water Qu	uality Criteria : 0														
BOLD Conc	Indicates a cor														
BOLD RL	Indicates RL th														
BOLD MDL	Indicates MDL														
NS = No Standard Available															
ND = Analyzed for but Not Detected at the M	= Analyzed for but Not Detected at the MDL														
J = Concentration detected at a value below	= Concentration detected at a value below the RL and ab														

Sample #:	HIGHER OF		M	W-CR-4A			M١	N-CR-4B			М	W-CR-4C	
	PQLs												
Lab ID:	and		0	0410-001			00	410-002			0	0410-003	
Date Sampled:	GWQC		01	/15/2014			01	/15/2014			01	/15/2014	
Depth(ft):	(ug/L)		1 1	11.0				16.0	1			21.0	
						-	_						
Pesticides (ug/L)		Conc	Q			Conc	Q	RL	MDL	Conc	Q	Conc	Q
Dieldrin	0.03	~				~		~	~	~		~	~
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Antimony	6	2.63		2.00	1.00	1.96	J	2.00	1.00	ND		2.00	1.00
Chromium	70	11.5		2.00	2.00	9.48		2.00	2.00	6.07		2.00	2.00
Nickel	100	20.2		2.00	1.00	18.0		2.00	1.00	18.2		2.00	1.00
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500
Vanadium	NS	4.05		2.00	2.00	3.45		2.00	2.00	ND		2.00	2.00
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00
Notes:													
NJDEP Class II-A Specific Ground Water Qu	uality Criteria : (
BOLD Conc	Indicates a cor												
BOLD RL	Indicates RL th												
BOLD MDL	Indicates MDL												
NS = No Standard Available													
ND = Analyzed for but Not Detected at the M	= Analyzed for but Not Detected at the MDL												
J = Concentration detected at a value below	= Concentration detected at a value below the RL and ab												

Sample #:	HIGHER OF		M	W-CR-5A			M	W-CR-5B			М	W-CR-5C	
	PQLs												
Lab ID:	and		0	0410-004			00	0410-005			0	0410-006	
Date Sampled:	GWQC		01	1/15/2014			01	/15/2014			01	1/15/2014	
Depth(ft):	(ug/L)		1 1	9.0				13.0	1		1 1	18.0	
Destisidas (cont)		0	~			0	-		MDI	0	~	0	
Pesticides (ug/L)		Conc	Q			Conc	Q	RL	MDL	Conc	Q	Conc	Q
Dieldrin	0.03	~				~		~	~	~		~	~
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Antimony	6	1.31	J	2.00	1.00	1.16	J	2.00	1.00	1.27	J	2.00	1.00
Chromium	70	9.73		2.00	2.00	3.37		2.00	2.00	2.19		2.00	2.00
Nickel	100	106		2.00	1.00	99.1		2.00	1.00	104		2.00	1.00
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500
Vanadium	NS	51.8		2.00	2.00	49.9		2.00	2.00	52.7		2.00	2.00
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00
Notes:													
NJDEP Class II-A Specific Ground Water Qu	ality Criteria :												
BOLD Conc	Indicates a cor												
BOLD RL	Indicates RL th												
BOLD MDL	Indicates MDL												
NS = No Standard Available													
ND = Analyzed for but Not Detected at the M	alyzed for but Not Detected at the MDL												
J = Concentration detected at a value below	n detected at a value below the RL and ab												

Sample #:	HIGHER OF		М	W-CR-6A			M	W-CR-6B			M	W-CR-6C				
	PQLs															
Lab ID:	and		0	0453-010			00	0453-011			00	0453-012				
Date Sampled:	GWQC		01	1/16/2014			01	/16/2014			01	/16/2014				
Depth(ft):	(ug/L)		1 1	11.0				15.5	1		20.5					
Pesticides (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL			
Dieldrin	0.03	~	G	~	~	~	G	~	~	~	u u	~	~			
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL			
Antimony	6	ND		2.00	1.00	ND		2.00	1.00	ND		2.00	1.00			
Chromium	70	6.67		2.00	2.00	5.64		2.00	2.00	5.11		2.00	2.00			
Nickel	100	27.7		2.00	1.00	30.3		2.00	1.00	29.1		2.00	1.00			
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500			
Vanadium	NS	13.6		2.00	2.00	13.9		2.00	2.00	13.6		2.00	2.00			
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL			
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00			
Notes:																
NJDEP Class II-A Specific Ground Water Q	uality Criteria : 0															
BOLD Conc	Indicates a cor															
BOLD RL	Indicates RL th															
BOLD MDL	Indicates MDL															
NS = No Standard Available																
ND = Analyzed for but Not Detected at the N																
J = Concentration detected at a value below	the RL and ab															

Sample #:	HIGHER OF		М	W-CR-7A			M٧	V-CR-7B			M\	N-CR-7C			
	PQLs														
Lab ID:	and		0	0453-013			00	453-014			00	453-015			
Date Sampled:	GWQC		0	1/16/2014			01/	16/2014			01	/16/2014			
Depth(ft):	(ug/L)		1 1	8.0				13.0	1	18.0					
Pesticides (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Dieldrin	0.03	~		~	~	~		~	~	~		~	~		
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Antimony	6	ND		2.00	1.00	ND		2.00	1.00	ND		2.00	1.00		
Chromium	70	8.03		2.00	2.00	7.52		2.00	2.00	7.60		2.00	2.00		
Nickel	100	2.61		2.00	1.00	2.19		2.00	1.00	2.68		2.00	1.00		
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500		
Vanadium	NS	6.96		2.00	2.00	6.50		2.00	2.00	6.32		2.00	2.00		
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00		
Notes:															
NJDEP Class II-A Specific Ground Water Qu	ality Criteria :														
BOLD Conc	Indicates a cor														
BOLD RL	Indicates RL th														
BOLD MDL	Indicates MDL														
NS = No Standard Available															
ND = Analyzed for but Not Detected at the N	IDL														
J = Concentration detected at a value below	the RL and ab														

Sample #:	HIGHER OF		М	W-CR-8A			M	W-CR-8B			М	W-CR-8C			
	PQLs														
Lab ID:	and		0	0453-016			00	0453-017			0	0453-018			
Date Sampled:	GWQC		0.	1/16/2014			01	1/16/2014			0.	1/16/2014			
Depth(ft):	(ug/L)		1 1	10.0	1		1 1	15.0		20.0					
									MD		_				
Pesticides (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Dieldrin	0.03	0.0085		0.010	0.0025	0.0079		0.010	0.0025	0.00795		0.010	0.0025		
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Antimony	6	1.40	J	2.00	1.00	1.37	J	2.00	1.00	1.57	J	2.00	1.00		
Chromium	70	6.55		2.00	2.00	2.24		2.00	2.00	2.26		2.00	2.00		
Nickel	100	23.2		2.00	1.00	20.5		2.00	1.00	23.5		2.00	1.00		
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500		
Vanadium	NS	33.7		2.00	2.00	33.2		2.00	2.00	38.1		2.00	2.00		
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL		
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00		
Notes:															
NJDEP Class II-A Specific Ground Water Qu	ality Criteria : (
BOLD Conc	Indicates a cor														
BOLD RL	Indicates RL th														
BOLD MDL	Indicates MDL														
NS = No Standard Available															
ND = Analyzed for but Not Detected at the M	IDL														
J = Concentration detected at a value below	on detected at a value below the RL and ab														

Sample #:	HIGHER OF		RE	EP-011614			F	B01414			FE	3-011514			FE	3-011614	
	PQLs																
Lab ID:			0	0453-020			00	370-007			00	0410-007			00	0453-019	
Date Sampled:			0	1/16/2014			01	/14/2014			01	/15/2014			01	/16/2014	
Depth(ft):	(ug/L)			-			-				-		-				
Pesticides (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL	Conc	Q	RL	MDL
Dieldrin	0.03	0.0082		0.010	0.0025	~		~	~	~		~	~	ND		0.010	0.0025
Metals (ug/L)		Conc	Q	RL	MDL	Conc	Q	RL	MDL		Q	RL	MDL	Conc	Q	RL	MDL
Antimony	6	1.61	J	2.00	1.00	ND		2.00	1.00	ND		2.00	1.00	ND		2.00	1.00
Chromium	70	ND		2.00	2.00	ND		2.00	2.00	ND		2.00	2.00	ND		2.00	2.00
Nickel	100	24.0		2.00	1.00	ND		2.00	1.00	ND		2.00	1.00	ND		2.00	1.00
Thallium	2	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500	ND		2.00	0.500
Vanadium	NS	38.5		2.00	2.00	ND		2.00	2.00	ND		2.00	2.00	ND		2.00	2.00
General Analytical		Conc	Q	RL	MDL	Conc	Q	RL	MDL		Q	RL	MDL	Conc	Q	RL	MDL
Hexavalent Chromium-ug/L	NS	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00	ND		10.0	4.00
Notes:																	
NJDEP Class II-A Specific Ground Water Qu	uality Criteria : ((
BOLD Conc	Indicates a cor	r															
BOLD RL	Indicates RL th																
BOLD MDL	Indicates MDL																
NS = No Standard Available																	
ND = Analyzed for but Not Detected at the M	IDL																
J = Concentration detected at a value below	the RL and ab	1															